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lNTRODUCTION 

'simulating the entry ·of .long-range ballistic missiles into the.amhla 

atlIJ.Osphere.,. As is well known, such~ssiles traversing the . atmosphere 

experi-enc:e seveI'e aerodynamic.heating,.and the attendant thermal. 

stresses a.nd:abla.tion,.~lting or bu,rningof.the s~rface present s¢ri-

ous prob~ems •. An .apparatusdevisedtor the study o£ these problems 

consists of' a.lIlodelof the-atmosphere,scaladas to its densi~yvariliil--

tion, through ... which·amodel ·of the .missile is propelled. .The .modalis 

observed. throughouti ts f'light and is recovered for later. ex;yn1nation,> 

. NO~TlaN 

A reference al"eaf'Qr drag ~va.lua.tion 

CD . dragcoe£f'icient 

. Of'1 equi v~t . skin;"f'riction . coefficient 

e .2.71828". the. base of naturalloga,rithms 
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m mass of missile or model 

Q. totl:W. heat transferred 

S surface ?,l"ea 

V velocity 

. VE velocity at ·entranceto earth I s atmosphere .or· si.n.Iulator 

y altitude 

. j3 constant in the .. altitude-density relation (fig. 1) 

~angle ·of missile flight path to horizontal at entrance to earth's 
atmosphere 

p a.ir denSity 

Po reference air density (simulator reservoir or earth's surface) 

PRINCIPLE.OFSlMOLATION 

The sinlulator discussed here was proposed by A •. J .. Eggers of the 

Ames Research Center (ref •. 1). It is based on certain simplif':ying 

assumptions; notably (1) that radiation has a.secondary effect on 

missile heating, and (2) that gravity has a secondary efi'ecton 

missile .motion.These assu,mptions are suggested byanan~sis . 
\. 

(ref. 2) of the motion .and aerodynandcheatingof missiles. entering l-

the atmosphere •. To facilitate. analysis anexponentiaJ. var1~tionof 

atmospheric density with altitude has beenassumedwhich·closely 

'. approximates the eartb's atmosphere between sea level and 200,OOO"feet 

altitUde, which includes the region of interest. 
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The basis of simulation is shown infigureJ... . The .. a.nalY$is of 

r~ference 2' gives the expre.ssion.shown .. for the. total heat·· absorbed:per 

uni tlllB.SS, by a missile which .has descended through the a:tmo8:phere to 

altitude y. rf'we wish to duplicate this. quantity in ,model-tests in 

the simulator , the various factors in the equa.tion lnUstrema,in the 

. same. Thus for similitude 

(a) The same entrance velocity, YE, for . both model -and missile 

is .. required6 

(b). Geometric similarity be"tyeenmissUe and _mOdel .is requ.iI"ed., 

_ with the resultant' duplication of . a/A, the .. ra.tio -of ' surface­

to cross-sectionEli area. 

(0) The s~e_.Re-ynolds number for both,modelan.dmiss1le .1s 

,. req1;!.ired, which ,res'lll.ts in the duplication of' the;eq1;!.1valent 

,sk;in"friction, ,coefi'icien:t '" Of', and in conjunction ,wi th . the 

previous requirement ,of geometric dm1J..a,rity,' duplicates the 

tota.l ,drag c.oefficient" Cp. 

(d) T.hesamevalueof ~yis .required.which, . .means that the ' 

density ratio at, corresponding . point,s in the atmosph~re; '.a.r,td 

the simulator must be the same. 

(e) ,The sa,me value ,of ,CJ)PoA/l3m sin,Ct.E is ,req\lired,which, as 

shown in ref'erence l, resu]. ts in the. sl2Jl]emissiJ..eveloci ty 

" at corresponding points in ,the. atmosphere and in the 

simulator. 
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-vli th these condi ti.ons _ established thetota,l, convective heat 

-transfer :per unit nm.ss,will be duplicated •. The requil'em.entsfor 

silnUitude -a,lso determine ,the test ,cha.niberlengthand ail' d.ensitydis­

tribution in the, simulated portion of the atmosphere. . The a.rJ,alySi,130f 

reterencela.lso shows that the heat-transfer rates, for the ,MOdel are 

_higher 1nproportionto the ratio of the missile to the .model size and 

that:tf the model. is geometric-ally simil.ar, thetheI'1iJa.l stresses ·Vil.l. 

be .dupl.icated, provided :tdenticalmateria,ls are used .. 

. APP,A.'RA'rUS,ANDTEST ,PROCEDURE 

Atmosphere EntrySimtiLator 

A practical. simulator, based on tne requirements -set -forth above 

,is shown schematically in f:tgure ,2 •. Ah;r.pervelocity gun.launches the 

model-with the required entrance velocity into ,the test chamber. ,-.;rhe 

test cha.mber consists ot-a superaonicnozzle so shaped that.thedensity 

d:tstributionfollows the required exponentiaJ._variationwith altitude. 

,Compressedail'is dischargedtrom the reservoir through the nozue--and 

is led by a large pipe to an evacuated -sphere,. ,It has beens:q.own 

(ret., 2), that -the maJor ;part of' the aero~a:m.ic -heatingot -a ,baJ.listic 

missi~e -entering I the atmosphere occu:rs _rlthin an al.titud.e range of 

a,bout ~OO,OOO feet. The corresponding density range C$.Il beo'btained 

,between the reservo:tr and the ex:!. t of a ,Mach number .5 supersonic 

nozz~e. In ,contrast to the atmosphere the air in the nozzle is in 
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lD.otionandprovides an affective increase inentra.:Q.ce ve-Ioci ty,'of about. 

2,300teetper . .aecond •. The use of the.relative velocity·in thismann~r 

ispel'lllissible to the;accur~ of the si~ation • 

. 'The. f?imtiLatorisopera~d .in the following .. manner •. A.copper 

d.iaphi'a~ is pla.cedbetween the reservoira.nd the·Ilozzle. ,The reser­

voir is pumped. to the desired press'4-re, be-tween 100· and 600 pounds ';Per 

square inch, ,depending on the altitude range to be simulated. ,The 

. diaphragm is ruptured by a remotely operated Illcunger andj.a.tter ad.$la;y 

of . approximately 1/10 of a second to allow the I'J.ow to stabilize, the 

model is fired from the gun upstream through. .the Il,ozzle. 

In order to test the utility ,of such:asilIIll:la.tora.sma.:u-sca,le 

unit was constructed.with a nozzle 8-1/2feet long, simulating a 

lOO,OOO-foot segment ~of the atmosphere,. ,Models·yere launched,froma 

.O.22"dncn-bore light-gas gun. .Encouragingresu1.ts wereo'Qtained .with 

this unit and .alarger simulator has been constru.cted.as . shOwn in fig­

Ure 3 •. Inthisphotograph thecompresse'd air.reservoir'IDa.y bese-en at 

:the~ft .. The nozzle is 40 feetl.ongand s1mulates a 1.30,OOO-foot 

segment .ofalti tude .ofthe atmosphere. ~e large pipe in theba,*­

ground leads the air to an. evacuatedf?phe:reoutside .the!·b"Q.Uding •. The 

gun.whichlaunches the .models is located ina ,se:PB-rate room on ~ .far 

. ·side o.f the .pipe • 

. Figure 4. is. ac10ser view of the I:l,ozzle. . Optical ~as:s;windows 

at .12 stations along the nozzle permitlight.beam"photocell units to 
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detect,the passa.ge of the m,tssile model .. Signals from these photocells 

oper~teelectronic counters to give a time-distance history of the 

flight of themodeJ.. •. From this history the veloclty..at each point in 

the simul.a.torean be obtained. The photocell signals also operate 

t:qrough . time ,delay circuits to take spark .shadowgraphs of the.modelin 

both the vertical and horizontal pJ;anes • 

. Just·as .missiJ.es are slowed to speeds of the order of 1,000 feet 

per second .or less in traversing the atmosphere,· so the model·sj;leed is 

reduced in tra.versing the simUlator .. Hence the model may be recovered 

.inaca.tcher located inside the compressed-air reservoir. . If the 

ca.tcher is filledwith.so:ft material, such as sponge rubber, tbemodel 

will be ,un~fectedby the impact. . Much can be learned by examining 

the. surface. of the .model. and by determining its .. weight loss .• 

. Light~Gas.Gun 

If the siDlulator is to be usefuJ.in.stud:yingthe atmospheric 

entry ·of long-range ba.l.listic missiles, the models ,must be launched a.t 

muzzle- velocities in the range of 16,000 to 20,000 feet per second, 

giving velocities relative to the air in the simulator inabout.the 

range of 18,000 to 22;000 feet per second. ,The launch gun used is 

shown schematica.J..ly in figure 5. .Itis termed·a two-.stage .light-gas 

gun because the driving medium, helium, is . compressed and heated by 

a ,shock process in two stages. 
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. Tl::).e princi:paJ.parts of the gun are : the first shock tube of 

4-in,chbore, the ,second shock t'l1beof2-1/4-inch bore,a,.light piston 

.. which operates in the seconq. . sho ck tube , and. the launch barrel of 

2o-mm (OA 787 in.) bore .. A blast ta,nkwith interna.l .. baffles· is placed 

at the muzzle. of the .launchba.rrel and connected to a vacuum systetQ.. 

Its function is to main,tainas low a pressure as possible in . the launch 

ba.l"it'el up to the instant of firing, and to attenuate the blast of the 

gun entering the simulator nO'zzle. 

,Tbe sequence of operation of the gun is as ,follows: ·AlIlOd.el is 

placed·at the breech of the launchba.rrel·and se~ed .with a. light 

diapllragm. ,A'piston of a plastic, such as .Micarta, weighing .. about 

'125 grams is . placed at the breech of the, second .sb,ocktube and is held 

in place by. a thin integral.shear disk. ·A·charge of smoke~esa powd~r 

is loaded in the breech of the first shock tube and both shock tubes 

are filled .wi th hel,ium ,to a pressure of the .orq.erof 300 pounds per 

square inch. ,When .the powder is exploded by an electric primer, a 

strong shock:wave tra.vels down.the first shock tube and is.ref'1ected 

from its.partia,J.ly,clol!1ed end, compl'ess1ngand.heating the helium. in 

this tube, which drives the piston down the ,second .shock tube •. The 

piston, being light, exceeds the speed of $ound in.the helium ahead. of 

it •. Hence a shockwave is (!.riven q.own the second .shock tube which is 

reflected several times beween the end of the tube and the-f'a.ce of 

the advancing piston. ,This process compresses and heats the helium to 
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a high pressure and temperature. This helium then drives the mod.el 

through the launch t-qbe. The maximum pressure of the helium reaches 

about 100,000 psi. The maximum temperature has not been measured but 

is estimtedto be of the order of 8,0000 R from the observed .velocity 

of the projectile. 'lhese conditions are favoI'able for a chi eying high 

projectile velocities, and muzzle velocities of over 19,000 feet per 

second are obtained.with models weighing 4-1/2 grams. 

A view of the gun is shown in figure 6. The two shock tubes ,may 

be seen .in the foreground. The launch barrel extends throUgh the 

opening in the far wall of the room. 

EXAMPLES OF RESULTS 

'As an example of the results obtained from the simulator, figure 7 

shows shadowgraphs of a model taken at two stations •. These shadowgraphs 

serve to show if the model is launched intact and if it flies straight 

and in propel' orientation. . The apparent distortion of the model is an. 

optical effect dUe to the high density gradients in the surrounding 

air flow. ,Figure 8 shows a comparison of the ca.lculated~d eXperi­

mental variation of velocity with altitude for the test illustrated in 

figure 7. The characteristics of the. missile simulated are listed in 

figure 8. The curve labeled "theoryll was calculated by the method of 

reference 2 for a missile with the characteristics listed, enteri~g 

the earth I satmos,phere • The experimental points shown .~re those 
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observed for a..model .of this misSile traversing the ·simu,lator •. ·The 

general· ag. reement -between .the curves :l-ndicates that theve:I,.ocity at .. - , '. 

"corresponding point.s in the trajectory is .the s~ for bothmbde1·and 

missile ,whie-his one of the requirements for proper simUlation. The 

curves further indicate that the range of aJ.titudecov~redbythe 

simulator includes the part ·of the traJectory where most of the 

velocitypf' the missile is.lost .. -Since the kinetic energyva,ries as 

the square of' the velocity and the heat absorbed is proporti01lalto 

the loss in .kinetic energy, it is apparent that nearly alLthe . aero-

·dyna.Tl)ic heating. takes place in. the portion.of.the trajectory. covered 

by the simulator. 

,Figures 9· and 10 are photographs of a. model before· and after test: 

in the simulator. ,This model is made of etbylcelllJ,lose plastic. It 

'Was teatedat an.entrance velocity of 18,000 feet par second •. The 

effects of a.blationcanbe seenclea.rly. and the total-weight -:Loss.mavr 

be o1;!tainedby weighing the .model.before .. and.a.fte.rthe test. In . fig-

urell. the proflle . of' a .model ·after test .iscompa.redwi th a template 

whicha,ccurately'fitted the model before the. test •.. This photograph 

··was . made wi tha .conto'U.l:' -projector at amagnificationo:f' lOX on the 

original·negative, peJ;'mitting.accura-remeasurement -of the distribution 

of loss 'QfmateriaL The loss of materiaJ.fromthecylindricaJ.por-

tion·of the model is believed to have occurred in·tJ:J.e.laUIlch.barrel.of 

the gun. .. The total .weight -loss must be corrected for this effect. to 
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o"Qtain . the loss due to· ablation. . ~oss of material. from the. sides . of 

the .model .in the launch barrel .may be. avoided .by the use of . a . usa'botlJ 

or1.aunching snoewhichsurrounds the mOdel during launching .but .faJ.ls 

.behind as soon .as the modelem.ergesfromthe gun •. 'This technique how­

. ever reduces the maximum diameter of missile ·which.canbesiIrlulated 

using a launch.barrelof given bore. 

,The above illustra.tions show how the simulator may .be . used to 

study missile heat shields of the ablation type. ·Shields of·the heat­

sink type may al.so be investigated. "figure 12 snows photomi,crographs 

of a coppe.r heat-shield.model before and after test •. This.model is 

.0.22 inch in diameter and was tested in thesma.J.J."6cal.esi~atorfirst 

constructed •. Themod.elcopper heat-shield is .. cem.entedto the fa.ae.·of 

a nylon cylinder which, being a poor conductor, shouJ.d.absorb 

.relati velyli ttl.ehea t. . .Although the model was launched at· aveloci ty 

of onl.y14 ,300 feet per second corresponding to a range of a.bou,t 

1,500mil.es, it will be' :noticed that the .s'\lI'f~eof the copper is.con­

siderably. aJ. teredafter traversing the simulator. . 'The concentric 

machinelllEl.rks·and .smaJJ.sc-ratches on .the face are nearlyoblite:)'."ated, 

indicating tha.ta portion of the outer surface.hasbeen.meltedor 

b\Irned.. D.iscoloration .near the, ou.ter ·edge indicates. that this. are-a 

.res.cheda. higher temperature than the-center 'whiCh is .in.accord .with 

theoretical. ~redictionof convective heat ·transfer to tp.eflat face or 

.a·cylinder •. The craters-which.a.re noticed in the.copper fa.ce after 
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te~t" AI'~ . peli~yec;l . to be ,. el:i.used . by impact wi th.min'\lte . p!3.rtic),.es . of 

'~inc;'chromate paint in the-air stream • 

. ! ·.spectrograph ... of ·light emitted .by the same .. copper f~ced .::mod~l 

d1;i.Ting i ts:passage through. the simu:J.atoris ·shpwn in .figt;Cre 13..! 

,·l.a,.rge number of lines are visible indicating .thepresellce ·ora ,number 

of e1em.ents, ,incl.uding I;>ever~.consti tu.ents of the -aforementioned 

zinc~c4roma.te paint. ,This spectro~aph probably does notcove:r the 

. most imllOrta;nt range, of'va,.ve-lengths., but is inclllded to indicate·. the 

possible use of spectroscopy in~onnection .vi th the' .simu1ator~ 

, CONcttIt!ING ~ 

.The ~esul ts·Of ini tia.l ,ex;perimellts with the atmosphere entry 

simulatorencoura.ge us to believe ,that it -;fill beauseMtoolfor 

inves.tigating the ~entry ,of'long .... ra;ngeballistiemissi~EJs into the 

atmosphere. ~t JIJB.y beusedase. flgo orno"'so gage:ff,; that is, if'a. 

model stU"Vives .thetra.verA3e throughthe,silJI4lator it mavr. be. concluded 

that :the full·s.calelldssUe',vill-survive .there-entl"1 traJectory 

.. simulat~. ,'rheappa,~tusma:y. also beused.tocomJilare· thepe:r.eo~ce 

Qf differenthe~t~$hield .materials and different .missUesha.)les'Yith 

'a fair d~~eeofquan:titatiye accuracy, 'With. the obJective.:of'minW-Z .. 

,ing .heat~shield. weight. 

,In conc~usi9n .it maybe weUto pointo\lit someof'the'~l~ta.t:Lons: 

,of' the simulator. ,Inviev of the. compressed timescale ,onyhichthe 



simulator ope~ws, processes'Wbich .q,e;pe:nd. dn ,.l"~tion times or 

reaction tates~ not be l?l'Operly. Sim~ted if ~ese: tilnes. are: 

appreciab.le' ;c~red.to the time of f'ldWaboutthemiss,UeorlllOd~. 

,Also the.effectof radiation to andfrolil the-surface ,isnotproper~ 

,simulated,..becaus~ of thefbreshortened ,time· scale. ,~se limita.tions 

l~ ',]!ggers"A" J,. ,Jr.:. A)(etl:J.odfor$imulating the-,A~s~l".1c'.Jntry 
Of4ong"Ra.:nge-~isticMissiles. NACA: J~M.··A55n5, 19". 

" 2. -m~,Ji,. ,Julian, and.Eggers, A.J. ,J:t:' .. : ~A;J:l,tu~·o.t th,e:;)lqt.:l.on 
.and.A~ro~a.DdclIeat.ing .,of:a~is.tic Xis$ile-s·~ ~te-rl;ng . the-
. Earth r s:AtnIO$i~e-re at:Hi~,:~uper$onic~peeds .lil\qA,\\~p,~ 1381,; 
1958. (.supersedesNAC,k'WN ,4·047) . . 
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ALTIT UDE- DENSITY RELATION : 

HEAT ABSOR BED PER UNIT MASS AT ALTITUDE, Y 

FOR SIMILITUDE-

SAM E ENTRANCE VELOCITY, VE 
GEOMETRIC SIM ILARITY-SAM E S/A 
SAME REYNOLDS NUMBER-SAME ct, CD 
SAM E VALU E OF f3y 
SAME VALUE OF CD PoA 

13m SIN Be 

Figure 1. - Theoretical basis for simulation. 
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Figure 2. - Schematic diagram of atmosphere entry s imulator. 
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Figure 3 .- Atmosphere entry s imulator: Compres s ed air r eservoir and nozzle. 

Figure 4.- View of noz zl e . 

NATIONAL AERONA UTICS AND SPACE ADMINISTRATION 
AMES RESEARCH CENTER, MOFFETT FielD, CALIFORNIA 



VACUUM 
LINE 

LAUNCH BARREL 
20 mm BORE 

MODEL:: 

LIGHT PISTON 

2nd SHOCK TUBE 
2f BORE 

~------------- 35 FEET--------------------~ 

Figure 5 .- Schematic diagram of two- stage light-gas gun. 

Figure 6 .- View of two - stage light- ga s gun. 
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VE = 19,900 ft /see 

v = 7,000 ftlsee 

AL T = 60,000 ft 

v = 16,000 ftlsee 

AL T = 90,000 ft 

Figure 7.- Shadowgraphs of model in f l i ght . 
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Figure 8 .- Compar i s on of theoretical and experimental t ra ject ories . 
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Figure 9 .- Ethyl cellulose model before t est . 
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Figure 10.- Ethyl cellulose model after tes t. 
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Figure 11.- Profile of model showing loss of material during test. 

AFT ER TEST 

Figure 12.- Copper face of model before and after test. 
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Figure 13.- Spectrum of illumination developed by copper-faced model at 
a simulat ed altitude of 103,000 feet and velocity of 11,400 f eet per 
second. 
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