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EFlFECT OF CONTROLLED SURFACE ROUGHNESS 


ON BOUNDARY-LAYER TRANSITION AND HEAT TRANSFER 


AT MACH NUMBERS OF 4.8 AND 6.0 


By Paul F. Holloway and James R .  S t e r r e t t  

An invest igat ion has been conducted a t  a free-stream Mach number of 6.0 t o  
determine the  e f f ec t s  of controlled three-dimensional surf ace roughness ( spheres ) 
on boundary-layer t r ans i t i on  and neat t r ans fe r .  Experimental data a re  presented 
f o r  a sharp-leading-edge two-dimensional f l a t -p l a t e  model over a loca l  un i t  
Reynolds number range of 1 . 2  x 106 t o  8 .2  x 106 per foot based on a loca l  Mach 
number of 6.0 and 9.8 x 106 t o  13.9 x 106 per foot  based on a l o c a l  Mach number 
of 4.8. 

The Reynolds number f o r  na tura l  t r ans i t i on  has been found t o  increase mark­
edly with increasing Mach number above a Mach number of approximately 3.7. It 
w a s  found t h a t  surface roughness of height l e s s  than the  boundary-layer thick­
ness can delay t r ans i t i on .  The c r i t i c a l  roughness Reynolds numbers determined 
experimentally i n  t h i s  invest igat ion a r e  l a rge r  than those found a t  lower super­
sonic Mach numbers. Roughness heights of  approximately twice the  calculated 
boundary-layer thickness a t  t h e  roughness posi t ion were required t o  t r i p  the  
boundary layer  completely. Calculations of t he  heat- t ransfer  d i s t r ibu t ions  based 
on simple f l a t -p l a t e  theory a re  shown t o  agree reasonably well  with the  exper­
imental r e su l t s .  

INTRODUCTION 


The nature of boundary-layer t r a n s i t i o n  and i t s  e f fec t  on associated problem 
areas such as surface heat- t ransfer  r a t e s  and aerodynamic charac te r i s t ics  has 
been the  mbjec t  of many studies,  ye t  there  i s  s t i l l  much t o  be learned about t he  
phenomena. The data  and theor ies  on boundary-layer t r a n s i t i o n  current ly  ava i l ­
able f o r  higher supersonic and hypersonic Mach numbers a re  l imited a t  bes t  and 
contain a grea t  deal  of s ca t t e r .  Indeed, t h e  designer of a high-speed configura­
t i o n  f inds  t h a t  it i s  d i f f i c u l t  t o  evaluate the  meaning of the  avai lable  con­
t rad ic tory  experimental and theo re t i ca l  results. 

One of t h e  most important fac tors  affect ing t h e  t r a n s i t i o n  of t h e  boundary 
layer  from laminar t o  turbulent i s  the  condition of t he  body surface. Surface 
i r r e g u l a r i t i e s  such as expansion s l o t s  envisioned as necessary i n  winged reentry 



vehicles ( f o r  example, t he  X-20), connecting rivets,' o r  d i s tor t ions  due t o  high-
temperature buckling of t h e  skin material  may w e l l  be prominent f ac to r s  i n  deter­
mining the  nature of t he  l o c a l  boundary layer .  Since it i s  possible t h a t  surface 
i r r e g u l a r i t i e s  may cause boundary-layer t rans i t ion ,  t h e  designer of winged 
reentry configurations must be able t o  estimate t h e  extent t o  which these i r reg­
ularities may a f f ec t  t h e  locat ion and length of t r a n s i t i o n  and, i n  turn, t h e  con­
sequential  e f fec t  on t h e  surface heat- t ransfer  rates. 

Surface condition i s  also of importance from t h e  experimental point of view 
since roughness may be u t i l i z e d  as a boundary-layer t r i p  i n  wind-tunnel o r  f ree-
f l i g h t  t e s t s .  A guide i s  needed f o r  determining t h e  s i ze  of roughness required 
at high supersonic and hypersonic Mach numbers t o  obtain f u l l y  developed turbulent 
boundary layers  which w i l l  duplicate fu l l - sca le  conditions. 

Considerable study has been devoted t o  boundary-layer t r ans i t i on  and the  
fac tors  affect ing t r a n s i t i o n  at subsonic and supersonic speeds. (See, f o r  
example, refs. 1t o  7.) I n  addition, recent work on t h e  e f f ec t s  of surface dis­
to r t ions  on the  heat t r ans fe r  t o  a wing at hypersonic speeds has been published 
i n  reference 8. 

The purpose of t h i s  report  i s  t o  present t h e  results of an experimental 
study of t he  e f f ec t s  of one type of surface d i s to r t ion  of importance, controlled 
surface roughness (spheres), on boundary-layer t r ans i t i on  and surface heat-
t r ans fe r  r a t e s  a t  Mach numbers of 4.8 and 6.0. The experimental invest igat ion 
w a s  conducted on f l a t  p l a t e s  with sharp leading edges i n  t h e  Langley 20-inch 
Mach 6 tunnel and i n  t h e  Mach number 6.2 blowdown tunnel of t he  Langley Research 
Center. The r e su l t s  are compared with the  avai lable  data, empirical resu l t s ,  
and theory f rom t h e  l i t e r a t u r e  f o r  supersonic and l o w  hypersonic Mach numbers. 
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CW 
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coeff ic ients  of T ' equation 

loca l  skin-fr ic t ion coeff ic ient  

average skin-fr ic t ion coeff ic ient  

spec i f ic  heat a t  outer  edge of boundary layer  

spec i f ic  heat of w a l l  material  

diameter of roughness elements 

heat- t ransfer  coeff ic ient  

v e r t i c a l  height of roughness above p l a t e  
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length of t r ans i t i on  region 


Mach number 


Prandtl  number 


Stanton number 


experimental heating rate 


recovery f ac to r  


Reynolds number based on f l u i d  conditions at top of roughness elements 


%?kkand height of roughness, ­
pk 


PoU,un i t  Reynolds number per  foot  a t  outer  edge of boundary layer,  -
PO 

POUOtt r ans i t i on  Reynolds number, -
I-lO 

l oca l  free-stream 
origin,  POUO+ 

P O  

l o c a l  free-stream 

edge, po'ox 

l o c a l  free-stream 

Reynolds number based on distance from v i r t u a l  

Reynolds number based on distance from leading 

Reynolds number based on distance from roughness 
l ocation, po'o* 

I-lO 

Reynolds number based on T '  conditions and distance from v i r t u a l  
origin,  p 'UOXV 

P '  

la teral  spacing of roughness 

distance from leading edge t o  t r ans i t i on  ( e i t h e r  at end of laminar 
flow or at beginning of turbulent flow) 

temperature 

reference temperature 

veloci ty  component of flow p a r a l l e l  t o  surface of p l a t e  
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X distance from leading edge 


xk distance from leading edge t o  roughness posi t ion 


XV distance from v i r t u a l  or ig in  

H distance from roughness t o  instrumentation locat ion 


Y v e r t i c a l  coordinate measured from p l a t e  surface 


P density 


P leading-edge thickness 


OW l o c a l  wall thickness 


7 time 

6 calculated boundary-layer thickness at roughness posi t ion based on 
veloci ty  

CL angle of a t tack 

7 r a t i o  of spec i f ic  heats  

P v i scosi t y  

Subscripts: 

1,2,3 denote r e l a t ive  roughness height 

c r  c r i t i c a l  

k conditions at top of roughness elements 

l E U I l  laminar conditions 

0 l o c a l  conditions a t  outer  edge of boundary layer  

r recovery 

T' based on reference temperature conditions 

t r ans  t r ans i t i ona l  conditions 

turb  turbulent conditions 

W wall 
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03 free-stream conditions 

Primes denote parameters evaluated at reference temperature T '  . 

APPARATUS AND TEST METHODS 

Wind Tunnel 

The t e s t  program w a s  conducted i n  t h e  Langley 20-inch Mach 6 tunnel and i n  
the  Mach number 6.2 blowdown tunnel.  The Langley 20-inch Mach 6 tunnel i s  t h e  
intermit tent  type exhausting t o  t h e  atmosphere through a d i f fuser  augmented by 
an a i r  ejector .  Tests were run with tunnel stagnation pressures of 365, 440, 
and 515 pounds per  square inch absolute with stagnation temperatures of 960° R 
t o  1,020° R. A more de ta i led  descr ipt ion of t he  tunnel i s  given i n  reference 9. 

I n  order t o  extend the  t e s t  Reynolds number range below that  obtainable i n  
the  Langley 20-inch Mach 6 tunnel, addi t ional  t e s t s  were conducted i n  the  Mach 
number 6.2 blowdown tunnel. The tunnel i s  a l so  of t he  intermit tent  type 
exhausting t o  a 40,000-cubic-foot sphere which can be pumped t o  pressures as low 
as, 1millimeter of mercury absolute. Tests were run with tunnel stagnation pres­
sures of approximately 65, 165, and 265 pounds per square inch absolute with 
stagnation temperatures of 8400 t o  1,020° R. A more de ta i led  description of t he  
tunnel i s  given i n  reference 10. 

Models 

The models t e s t ed  consisted of f l a t  p l a t e s  with sharp leading edges con­
structed from s t a in l e s s  s t e e l .  Each model assembly w a s  9 inches wide and approx­
imetely 11 inches long f o r  t he  t e s t s  i n  the  Langley 20-inch Mach 6 tunnel.  
P l a t e  1w a s  a continuous plate ,  a sketch of which i s  given i n  f igure  l ( a ) .  The 
remaining models consisted of p l a t e  2 with interchangeable leading edges (one 
f o r  each roughness he ight ) .  (See f i g .  l ( b ) . )  The instrumented p l a t e s  and the  
leading edges were mounted on a support p l a t e  as shown i n  f igure  1. The smaller 
s i z e  of t h e  Mach number 6.2 blowdown tunnel required t h a t  t h e  models be smaller. 
For the  t e s t s  i n  t h i s  tunnel, p l a t e  2 and the  leading edges were cut down so  t h a t  

t h e  model assembly w a s  7-	1 inches wide and 1C-1 
2 

inches long.
2 

For t h e  roughness t e s t s ,  t h e  leading-edge pieces were interchanged, each 
having a d i f f e ren t  s i ze  roughness mounted 2 inches from the  leading edge. F l a t  
p l a t e  2 and the  support p l a t e  completed t h e  assembly. (See f i g .  l ( b ) . )  The 
spheres were glued in to  s m a l l  spherical  indentations i n  t h e  leading-edge p l a t e .  
The location, spacing, height above t h e  plate ,  and diameter of t he  spheres are 
given i n  f igure  l ( b ) .  

The leading edge of a l l  t h e  models w a s  a 20° wedge t h a t  tapered t o  a cylin­
d r i c a l  leading edge with a radius of approximately 0.002 inch o r  l e s s .  Two models 
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of each p l a t e  were constructed- one being instrumented with 0.050-inch I D  pressure 
o r i f i c e s  and t h e  other  with 30-gage iron-constantan thermocouples. The instnunen­
t a t i o n  w a s  located chordwise along t h e  center l i n e  of t h e  p la tes .  The undersur­
face of each p l a t e  instrumented with thermocouples w a s  s lo t t ed  along t h e  center 
l i n e  t o  a width of 0.6 inch and a surface skin thickness of approximately 
0.020 inch t o  minimize the  l a t e r a l  heat conduction i n  t h e  skin. 

Test Methods and Techniques 

For t h e  t e s t s  i n  t h e  Langley 20-inch Mach 6 tunnel, t h e  free-stream Mach 
number outside t h e  boundary layer  of t h e  models w a s  varied by changing the  angle 
of a t tack of t he  p la tes .  This method gave a l o c a l  surface Mach number M, of 
6.0 a t  an angle of a t tack  of Oo and o f  4.8 at an angle of a t tack of 8'. The 
resu l t ing  un i t  Reynolds numbers per  foot  based on conditions outside the  boundary 
layer  were 5.82 x 106, 7.02 x 106, and 8.22 x 106 f o r  Mo = 6.0 and 9.84 x 106, 
11.86 x 106, and 13.92 x 106 f o r  Iv&, = 4.8 f o r  t h e  tunnel  stagnation pressures 
of 363, 440, and 315 pounds per  square inch absolute, respectively.  

The t e s t s  w e r e  run i n  the  Mach number 6.2 blowdown tunnel with the  p la tes  at  
an angle of a t tack of Oo, a nominal l o c a l  Mach number of 6.0 being obtained. The 
resu l t ing  l o c a l  un i t  Reynolds numbers per  foot  were approximately 4 x 106, 
2.6 x 106, and 1.2 x 106. 

Pressure t e s t s . - Pressure d is t r ibu t ions  along t h e  center l i n e  of the  plates 
were obtained i n  t h e  Langley 20-inch Mach 6 tunnel for & = 6.0 and 4.8 with 
free-stream Reynolds numbers per  foot  of 5.82 x 106, 7.02 X 106, and 8.22 x 106. 
The loca l  s t a t i c  pressures on t h e  p l a t e s  were measured by connecting the  o r i f i ce s  
t o  pressure-switching devices which i n  tu rn  connected t h e  o r i f i ce s  i n  sequence t o  
e l e c t r i c a l  pressure transducers. The e l e c t r i c a l  outputs from t h e  transducers were 
recorded on a d i g i t a l  readout recorder. Each pressure-switching device w a s  con­
nected t o  two transducers with ranges of 1and 5 pounds per  square inch absolute. 
The accuracy of t h e  transducers i s  approximately 1/2 percent of fu l l - sca le  
reading. All pressure t e s t s  were run on the  same support system as w a s  used f o r  
t h e  heat-transfer tests. 

Heat-transfer t e s t s  .-The aerodynamic heating w a s  determined by t h e  t rans ien t  
calorimetry technique by which t h e  r a t e  of heat storage i n  the  model skin i s  meas­
ured. The models, o r ig ina l ly  at room temperature o r  s l i g h t l y  cooler, were sud­
denly exposed t o  t h e  air flow by quick in jec t ion  from a shel tered posi t ion beyond 
t h e  tunnel w a l l .  In jec t ion  w a s  accomplished i n  l e s s  than 0.23 second and t h e  
model remained i n  t h e  tunnel f o r  only 4 seconds so  t h a t  t h e  model w a s  i n  a nearly 
isothermal condition, lateral  conduction i n  the  skin being kept t o  a m i n i m .  

t i c a l  methods.- During t h e  pressure and heat- t ransfer  t e s t s  i n  the  Langley 
shadowgraphs and schl ieren photographs were occasionally 

taken t o  a id  i n  determining the  type of boundary l aye r  ex is t ing  on the  p la tes .  
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DATA REDUCTION 

The e l e c t r i c a l  outputs from the  thermocouples were recorded on a high-speed 
d i g i t a l  readout recorder. The reading from each thermocouple w a s  recorded a t  
0.025-second intervals ,  converted t o  a binary d i g i t a l  system, and recorded on 
magnetic tape. The temperature-time data  were f i t t e d  t o  a second-degree curve by 
the  method of l e a s t  squares, and the  time derivative of temperature w a s  computed 
on a card-programed computer. 

The tunnel stagnation temperature range w a s  840' R t o  1,020° R and t h e  w a l l  
temperature of t he  p l a t e  w a s  approximately 550' R. Because of t he  short  time 
required f o r  t he  in jec t ion  of t h e  model, t he  p la tes  were considered t o  have been 
subjected t o  a s tep  function i n  t h e  applied heat-transfer coeff ic ient .  The thin-
skin equation used t o  calculate  t h e  l o c a l  surface heating r a t e  w a s  

The measured l o c a l  heat- t ransfer  coeff ic ient  w a s  then calculated by the  re la t ion  

i n  which conduction effects  a re  neglected, and where T r  i s  t h e  calculated 
, recovery temperature defined as 

Tw i s  t h e  measured w a l l  temperature, and M, i s  t h e  l o c a l  Mach number outside 
the  boundary layer  calculated from the  measured pressure d is t r ibu t ion .  For t h e  
t e s t s  i n  the  Mach number 6.2 blowdown tunnel, t he  pressure d is t r ibu t ion  w a s  
assumed t o  be t h e  same as t h a t  obtained i n  the  Langley 20-inch Mach 6 tunnel f o r  
a given configuration. The recovery temperature T r  w a s  calculated by assuming 
a recovery f ac to r  equal t o  0.830 i n  t h e  laminar region and 0.883 i n  the  turbulent 
region. For t h e  t r ans i t i ona l  region, T r  w a s  calculated by assuming a l i n e a r  
var ia t ion  given by 

AxTr,trans = T r , l a m  + i ( T r , t u r b  - T r J l a m )  (31 

where 

ax l i n e a r  distance from beginning of boundary-layer t r ans i t i on  

2 length of t r a n s i t i o n  region 

Finally, t h e  Stanton number, based on l o c a l  conditions outside of t he  boundary 
layer,  w a s  calculated by use of t h e  equation 
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NSt = 
h (4)

po'ocp, 0 

The experimental heat- t ransfer  parameters 6, h, and N S t  presented i n  
t h i s  report  were determined by reading the  slope of t h e  temperature-time curve at 
a time 0.05 second a f t e r  t he  model w a s  i n  posi t ion i n  the  tunnel. The maximum 
surface temperature increase a t  the  time f o r  which t h e  parameters were calculated 
w a s  always l e s s  than 25' and generally l e s s  than l 5 O .  This low temperature 
increase combined with t h e  thin-skin thickness kept t h e  conduction e r r o r  at a 
minimum. The inaccuracy of t he  d is t r ibu t ion  i s  thought t o  be l e s s  than 
-+lopercent. 

REVIEW OF HEAT-TRANSFER EQUATIONS 

There a re  many methods available for t he  theo re t i ca l  calculat ion of the  
Stanton number. (See, for example, r e f s .  11t o  16.)  I n  t h i s  analysis,  t he  T '  
method of Monaghan ( r e f s .  13 and 14)  has been employed. From reference 16, the  
T I  equation may be wri t ten as 

L ' J  

The Stanton number may be determined from t h e  modified Reynolds analogy 

n 

where t h e  Prandtl  number Npr i s  based on T I  conditions. 

Laminar Boundary Layer 

For t h e  case of a laminar boundary layer,  t h e  coeff ic ients  of equation ( 5 )  
(see r e f .  12)  become . 

By using the  Blasius equation f o r  laminar flow, equation (6) becomes 
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I 
: 

1 

11 where NSt i s  based on free-stream conditions f o r  d i r ec t  comparison w i t h  data, 
, 	 and the  conversion parameter from T I  reference conditions t o  free-stream con­

d i t ions  C '  i s  given by 

Turbulent Boundary Layer 

For the  case of a turbulent boundary layer,  t he  coef f ic ien ts  of equation ( 5 )  
( see  r e f .  13) become 

A1 = 0.54 \ 
A2 = 0.149 

The Karman-Schoenherr equations were used t o  determine the  l o c a l  sk in- f r ic t ion  
coeff ic ient  as follows. (See r e f .  15 f o r  a p lo t  of these  parameters and fu r the r  
discussion.)  

0.242 

JCF,T' 
= loglO(Rx,T')(%,T1) 

where 

and C f Y T l  may be converted t o  free-stream conditions as follows: 

Cf = 
' f ,T '  

T '/TO 

and f i n a l l y  Stanton number i s  determined by modifying equation (6), basing NSt 
on free-stream conditions so t h a t  

where Cf i s  determined by equation (14 ) .  The dis tance xv of equation (12) 
i s  defined as the  dis tance from t h e  v i r t u a l  o r ig in .  I n  t h i s  paper, t he  v i r t u a l  
o r ig in  f o r  t he  f l a t  p l a t e  with undisturbed flow w a s  defined as the  point a t  which 
laminar flow ends, as determined by t h e  surface heat- t ransfer  rates. (See 
r e f .  15 f o r  f u r t h e r  discussion.) For t h e  f la t  p l a t e  with roughness, t he  v i r t u a l  
o r ig in  w a s  found by determining t h e  length of t r a n s i t i o n  2 on t h e  smooth p l a t e  
f o r  a given free-stream Reynolds number, assuming ful ly  developed turbulent  flow 
t o  begin at  the  t r i p  posit ion,  and then defining t h e  v i r t u a l  o r ig in  t o  be located 
at  a dis tance 2 forward of the t r i p  posi t ion.  



For the lower Reynolds number tests, f u l l y  developed turbulent flow w a s  not 
obtained on t h e  smooth f l a t  plate;  therefore, t h e  length of t r ans i t i on  w a s  not 
known. I n  order t o  compare t h e  experimental r e s u l t s  with theory f o r  these t e s t s ,  
t w o  theore t ica l  d i s t r ibu t ions  w e r e  calculated by: 

Assuming t h e  v i r t u a l  or igin t o  be l ocat  ed at the  roughness posi t ion 
p o , v  = RO,*) 

( 2 )  Assuming t h e  Reynolds number based on t h e  v i r t u a l  or igin t o  be 
R0,v = Ro,* + 2.7 x 106, where 2.7 x 106 w a s  based on t h e  length of 
t r a n s i t i o n  f o r  t he  higher Reynolds number t e s t s .  

Transi t ional  Boundary Layer 

A simple semi-empirical method of predicting t h e  heat t r ans fe r  i n  the  t r ans i ­
t i o n a l  boundary-layer region has been presented. This method i s ' based  on the  near 
l i n e a r  increase i n  heat t r ans fe r  which begins at t h e  end of laminar flow and i s  
presented only f o r  general  comparison purposes. I n  t h i s  method, it i s  assumed 
t h a t  the  Stanton number increases l i nea r ly  from t h e  end of laminar flow t o  the  
point a t  which f u l l y  developed turbulent flow i s  f i rs t  obtained. The d i f f i c u l t y  
with the  re la t ion  i s  t h a t  t h e  beginning and end of t r ans i t i on  of t h e  boundary 
layer  must be determined before it can be applied. 

RESULTS AND DISCUSSION 

Determination of Transit ion 

A s  has been discussed by Probstein and Lin i n  reference 2, many f ac to r s  a re  
known t o  influence t h e  select ion of t h e  so-called " t rans i t ion  point" from laminar 
t o  turbulent flow i n  wind-tunnel t e s t s .  For instance, t he  t r ans i t i on  process 
occurs over a f i n i t e  distance covering a s igni f icant  range of Reynolds numbers; 
and the  type of instrumentation and method used t o  detect  t r ans i t i on  influences 
t h e  select ion of t h e  t r a n s i t i o n  point.  

An accurate method of detecting t r ans i t i on  i s  needed f o r  t he  proper evalua­
t i o n  of many wind-tunnel t es t  resu l t s .  I n  t h i s  report, t he  locat ion of t r ans i ­
t i o n  has been determined primarily by noting a change i n  t h e  l o c a l  surface heating 
rate along t h e  p la tes .  A t yp ica l  example of t h i s  e f fec t  i s  shown i n  f igure  2 
which gives t h e  d i s t r ibu t ion  of t he  l o c a l  heating r a t e  along the  p l a t e  a t  two 
l o c a l  Mach numbers and several  un i t  Reynolds numbers. A s  t he  laminar boundary 
layer  on t h e  forward end of the  p l a t e  thickens, t h e  l o c a l  heating r a t e  decreases 
u n t i l  t r ans i t i on  occurs. Once t r ans i t i on  of t h e  boundary layer  begins, t h e  l o c a l  
heating rate increases rapidly.  When f u l l y  developed turbulent f l o w  i s  obtained, 
t he  heating rate peaks and begins t o  decrease with increasing distance from t h e  
leading edge. The general  shape of t h e  surface-heating-rate d i s t r ibu t ion  is, of 
course, similar t o  t h a t  of t h e  usual shear d i s t r ibu t ions  f o r  a f l a t  p la te .  (See, 
f o r  example, r e f .  17.) The locations defined as t h e  beginning and end of t he  
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transition region are sketched on the  in se r t  of f igure  2 (a ) .  The beginning of 
t r a n s i t  ion (end of laminar flow) w a s  taken as tha t  region where the  heating r a t e  
begins t o  increase rapidly. The end of t r ans i t i on  (beginning of f u l l y  developed 
turbulent flow) w a s  taken as t h a t  region where t h e  l o c a l  heating r a t e s  begin t o  
l e v e l  off rapidly. An objection t o  the  surface-heating-rate method of deter­
mining t r ans i t i on  i s  t h e  e r ro r  introduced by l a t e r a l  thermal conduction i n  the  
skin. However, i n  these t e s t s  great  care has been taken t o  minimize the  thermal 
conduction i n  t h e  skin so t h a t  t h e  t r ans i t i on  data  presented herein are  thought 
t o  be accurate. 

Mach number, Reynolds number, surface roughness, leading-edge thickness, 
temperature of model, free-stream turbulence, and so  for th ,  all a f f ec t  t he  loca­
t i o n  of t r ans i t i on .  Also, t h e  method of detecting t r ans i t i on  influences t h e  
apparent experimental locat ion of t r ans i t i on .  Therefore, as might be expected, 
a compilation of t he  avai lable  t r ans i t i on  data  shows considerable sca t t e r .  These 
data  were obtained from references 18 t o  25 and t h e  present invest igat ion and a re  
presented i n  f igure  3 with t r ans i t i on  Reynolds number p lo t ted  as a function of 
Mach number. Reference 25 has indicated t h a t  two very important parameters f o r  
correlat ing the  data  from the  various in s t a l l a t ions  are  free-stream un i t  Reynolds 
number and leading-edge thickness. However, a fu r the r  correlat ion of t h e  data  
i n  f igure 3 i s  d i f f i c u l t  and out of t he  scope of t h i s  paper; ra ther  f igure  3 i s  
meant t o  show t h a t  t r ans i t i on  data  of t h i s  invest igat ion agree reasonably well  
w i t h  those found i n  the  l i t e r a t u r e  and t h a t  the  general t rends of t he  available 
data  indicate  t h a t  t he  s t a b i l i t y  of t h e  boundary layer  increases with increasing 
Mach number above Mach numbers of approximately 3.5 t o  4. Similar r e su l t s  have 
been found by Pot te r  and Whitfield i n  reference 26 where f o r  a given un i t  Reynolds 
number and leading-edge thickness, t h e  t r ans i t i on  Reynolds number w a s  found t o  
increase markedly above a free-stream Mach number of approximately 4.0. The 
t r ans i t i on  Reynolds number i s  shown ( i n  r e f .  26) t o  increase as much as 500 per­
cent i n  going from a free-stream Mach number of 4.0 t o  a free-stream Mach number 
of 8.0. 

To complement t h e  data  determined by the  heat- t ransfer  method, shadowgraph 
and schl ieren photographs (see, f o r  example, re fs .  9 and 27) were a l s o  employed 
t o  detect  t he  locat ion of t r ans i t i on .  A typ ica l  shadowgraph f o r  t h e  f la t  p l a t e  
i s  shown i n  f igure  4 ( a ) .  The beginning of a change i n  t h e  slope of t he  th ick  
white band represents t h e  beginning of t rans i t ion .  The end of t r ans i t i on  i s  
indicated when the  band converges t o  the  apparent p l a t e  surface. A t yp ica l  
schl ieren photograph of t he  flow over t h e  f la t  p l a t e  i s  shown i n  f igure  4 ( b ) .  
The beginning of t r ans i t i on  i s  assumed t o  occur a t  t h e  point on t h e  schl ieren 
photograph where the  boundary layer  begins t o  thicken more rapidly. (See 
r e f .  18.) A comparison of t h e  t r a n s i t i o n  data  from t h e  shadowgraph and schl ieren 
photographs with no roughness with t h a t  from heat- t ransfer  measurements ( f i g .  2) 
as given i n  f igure  3 shows reasonable agreement i n  t h e  loca t ion  of t r a n s i t i o n  
by t h e  several  methods when it i s  remembered t h a t  t h e  beginning of t r ans i t i on  
i s  not a point but ra ther  a s m a l l  region which may s h i f t  somewhat with time. 

A s  w a s  pointed out i n  reference 2, t h e  work of Coles ( r e f .  20) shows t h a t  
t he  Reynolds nbmber f o r  t he  end of t r ans i t i on  d i f f e r s  from t h e  Reynolds number 
f o r  t h e  beginning of t r ans i t i on  by a f ac to r  of 1.5 f o r  supersonic Mach numbers. 
It i s  in te res t ing  t o  note (from f i g .  3) t h a t  t h e  data  of t h i s  invest igat ion f i t  
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approximately t h i s  empirical r e l a t ion  f o r  a given free-stream Reynolds number 
a t  l o c a l  free-stream Mach numbers of 4.8 and 6.0. 

Ef fec ts  of Roughness on Boundary-Layer Transit ion 

One of t h e  governing var iables  i n  producing t r ans i t i on  by three-dimensional 
roughness elements i n  supersonic flow i s  t h e  height of t h e  roughness. Figure 5 
presents a sketch t y p i c a l  of t h e  t r a n s i t i o n  posi t ions f o r  various height spheres 
taken from t h e  data of references 5 and 6 f o r  supersonic flow with zero heat 
t ransfer .  The d i f f e ren t  regions of t r a n s i t i o n  as indicated by the  curves f o r  
various s ized roughness are labeled 1, 2, and 3. I n  zone 1, t h e  free-stream 
disturbances are predominant i n  es tabl ishing t rans i t ion ,  whereas t h e  disturb­
ances from t h e  roughness play t h e  predominant ro l e  i n  zone 3 and a fu r the r  
increase i n  sphere height has l i t t l e  e f f ec t  on t h e  locat ion of t r ans i t i on .  I n  
zone 2, both t h e  free-stream disturbances and t h e  disturbances created by the  
roughness have an e f f ec t  on the  pos i t ion  of t rans i t ion ,  and a fu r the r  increase i n  
t h e  height of t h e  roughness w i l l  cause t h e  t r a n s i t i o n  locat ion t o  move forward. 
The data of reference 5 a l s o  ind ica te  t h a t  t he  l a t e r a l  spacing of a single row 
of spheres has l i t t l e  e f f ec t  on boundary-layer t r a n s i t i o n  provided t h e  spheres 
a re  not so  close together  t h a t  they a c t  as a two-dimensional roughness element. 
The e f f ec t  of sphere spacing w a s  not examined i n  t h i s  test  program; however, a 
roughness element w a s  always located on t h e  center l i n e  of t he  model, forward of 
t h e  thermocouples ( f i g .  1)i n  order t o  minimize any e f f ec t  of sphere spacing. 

I n  t h i s  paper, a roughness t r i p  i s  defined as ef fec t ive  (or c r i t i c a l )  when 
a fur ther  increase i n  roughness height causes l i t t l e  change i n  the  forward move­
ment of t h e  loca t ion  of t h e  end of t h e  boundary-layer t r ans i t i on .  

I n  f igures  6 and 7, t h e  d is t r ibu t ions  of t h e  l o c a l  heating rates along the  
p l a t e  f o r  various height roughness are presented f o r  l o c a l  free-stream Mach num­
bers of 6.0 and 4.8, respectively.  I n  these figures,  t h e  data  given by the  c i r ­
cular  symbol represent t h e  heating r a t e s  obtained on p l a t e  2 w i t h  a sharp leading 
edge and no roughness. The dashed l i n e  represents t he  f a i r e d  data from f igure  2 
f o r  t he  continuous p l a t e  1. The discrepancy between t h e  two s e t s  of data  i s  
thought t o  result not only from s m a l l  var ia t ions  i n  t h e  leading-edge thickness 
(see, f o r  example, r e f s .  25 and 26), but a l s o  from a s m a l l  angle-of-attack varia­
t i o n  (less than 1/20) between t h e  two assemblies. However, t h e  angle of a t tack  
f o r  each s e r i e s  of roughness tests w a s  invar iant  since t h e  data represent a 
group of t e s t s  made without changing t h e  mounting. 

Examination of f igu res  6(a) and 6(c)  shows t h a t  t he  smaller diameter rough­
ness elements (k  = 0.0018 foa t  and O.OO3O foo t )  were ac tua l ly  found t o  delay 
t r ans i t i on  beyond t h e  t r a n s i t i o n  point found with p l a t e  2 and no roughness. 
Since these data indicated t h a t  s m a l l  roughness heights may delay t rans i t ion ,  
fur ther  l imited roughness tests w e r e  conducted with t h e  model assembly having 
t h e  same leading edge so t h a t  possible e f f ec t s  of slight var ia t ions i n  nose 
bluntness would be eliminated. (This work w a s  stimulated by the  comments of 
Po t t e r  and Whitfield i n  ref. 28 i n  regard t o  t h e  summary of t h i s  study published 
i n  r e f .  29.) Figure 6 ( f )  presents t h e  heat  flow rate d is t r ibu t ions  f o r  t h e  
model with t h e  same leading edge, and w i t h  various height roughness elements at  
a u n i t  Reynolds number similar t o  t h a t  of f igure  6(a). A schematic of t h e  model 
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f shown i n  the  f igure  i l l u s t r a t e s  t h e  new mounting technique, t he  roughness s t r i p s
! 	 being interchangeable and with t h e  same leading edge (thickness diameter Of 

0.0025 inch), being used f o r  a l l  da ta  of t h i s  f igure.  Comparison of t he  da t a  in 
figures 6(a) and 6 ( f )  ind ica tes  t h a t  although some of t h e  var ia t ion  i n  t h e  loca­
t i o n  of t r ans i t i on  with s m a l l  roughness and no roughness w a s  due t o  t h e  slight 
var ia t ions  i n  t h e  leading-edge thickness, under ce r t a in  conditions t r a n s i t i o n  i s  
apparently s l i g h t l y  delayed when t h e  surface roughness i s  l e s s  than t h e  boundary-
layer  thickness. 

The physical reasons f o r  these phenomena are not ful ly  understood; however, 
reference 19 has indicated t h a t  t h e  s t a b i l i t y  of a separated laminar mixing l aye r  
increases with Mach number more rapidly than the  s t a b i l i t y  of an attached laminar 
boundary layer .  This f a c t  has l e d  t o  t h e  speculation t h a t  t he  laminar separation 
t h a t  must ex i s t  near t he  s m a l l  roughness elements i s  a t  l e a s t  p a r t i a l l y  respon­
s i b l e  f o r  a delay i n  t h e  t r a n s i t i o n  a t  t h e  present Mach number. However, t h e  
pressure l o s s  at t h e  edge of t h e  boundary layer  caused by t h e  roughness elements 
may be a contributing fac tor .  These phenomena appear t o  warrant fu r the r  
invest igat ion.  

For the  higher Reynolds number tests at = 6.0 ( f i g s .  6(a), 6(b),  and 
6 (c ) )  as the  roughness i s  increased above k = 0.003 foot, t r ans i t i on  moves for­
ward u n t i l  a fur ther  increase i n  height i s  inef fec t ive .  For example, note t h a t  
i n  f igure  6(a) t h e  heating-rate d i s t r ibu t ions  f o r  t h e  roughness of height 
k 2 0.0054 foot  a r e  approximately the  same, and k = 0.0054 foot  i s  defined as 
t h e  roughness height s l i g h t l y  grea te r  than t h e  c r i t i c a l  roughness height f o r  
t h i s  free-stream Reynolds number. 

Similar t rends a re  evident i n  f igure 7 f o r  M, = 4.8, t h e  smallest s i ze  
roughness (k = 0.0018 foo t )  now causing a considerably grea te r  forward movement 
of t h e  beginning of t r a n s i t i o n  than w a s  found f o r  Mo = 6.0, since the  l o c a l  
Reynolds number i s  increased. However, t h e  smallest s i z e  roughness i s  s t i l l  
below t h e  c r i t i c a l  height as previously defined. 

Previous work has es tabl ished a c r i t e r ion  f o r  determining t h e  c r i t i c a l  
height of three-dimensional roughness elements f o r  subsonic and supersonic 
speeds. (See, f o r  example, r e f s .  4 and 30 . )  This c r i t e r i o n  s t a t e s  t h a t  t r ans i ­
t i o n  w i l l  occur when t h e  roughness Reynolds number exceeds a cer ta in  value which 
i s  approximately constant with the  Mach number. This c r i t i c a l  roughness Reynolds 
number is, by def ini t ion,  based on t h e  f l u i d  propert ies  a t  t h e  top of t h e  raugh­
ness element and t h e  height of t he  roughness element. The value of t h e  c r i t i c a l  
roughness Reynolds number w a s  not found t o  be affected appreciably by moderate 
surface cooling. (See ref. 30.) 

The var ia t ion  of roughness Reynolds number Rk with various assumed rough­
ness heights i s  presented i n  f igures  8 and 9 f o r  l o c a l  free-stream Mach numbers 
of 6.0 and 4.8, respectively.  These f igures  show the  value of Rk f o r  both 
adiabat ic  w a l l  conditions (Tw/Tr = 1.0) and t h e  ac tua l  w a l l  temperature 
(Tw/Tr = 0.66) of t h e  present t e s t s .  The roughness Reynolds numbers presented 
were determined from boundary-layer temperature and veloci ty  p ro f i l e s  calculated 
by the  Chapman-Rubesin method f o r  an x-distance of 2 inches from t h e  leading edge 
( the  roughness loca t ion) .  A complete discussion of t h e  va l id i ty  and assumptions 
of t h i s  theory i s  given i n  reference 31. me veloc i ty  p ro f i l e s  calculated by 



t h i s  method are  a l so  given i n  f igures  8 and 9. I n  addition, these f igures  show 
t h a t  t he  e f f ec t  of cooling the  boundary layer  i s  t o  cause a thinning of t h e  
boundary layer  and thereby increase t h e  Rk values f o r  a given height roughness 
provided t h e  roughness height i s  l e s s  than the  boundary-layer thickness. 

The c r i t i c a l  roughness Reynolds number has been obtained experimentally f o r  
lower supersonic Mach numbers by several  invest igators .  A summary of t h e  experi­
mental r e su l t s  from reference 4 (which included da ta  from other  sources, 
including r e f .  5 )  i s  presented i n  f igure  10 i n  t h e  form of t h e  var ia t ions of
p G  with Mach number. Also plot ted i n  t h i s  figure are  the  resu l t s  of t h e  

present invest igat ion where the  open symbol ind ica tes  t h a t  t he  roughness height 
i s  s l i g h t l y  less than t h e  c r i t i c a l  height and the  s o l i d  symbol indicates  t h a t  
t h e  roughness height i s  s l i g h t l y  grea te r  than t h e  c r i t i c a l  height.  This figure 
shows c lear ly  t h a t  t h e  c r i t i c a l  roughness Reynolds numbers determined experi­
mentally f o r  M, = 4.8 and & = 6.0 a re  much l a r g e r  than those observed i n  
reference 4 f o r  lower supersonic ve loc i t ies .  The c r i t i c a l  roughness height of 
t h e  present tests i s  a l so  much l a rge r  than t h a t  predicted by t h e  semi-empirical 
equation of reference 6, which w a s  determined from experiments conducted a t  
lower supersonic speeds. 

It should be mentioned t h a t  the  def in i t ion  and determination of t he  c r i t i c a l  
Reynolds number f o r  t h e  previous data shown i n  figure 10 from reference 4 are not 
exactly t h e  same as t h a t  used i n  t h e  present report .  Also, t h e  data  of refer­
ence 4 were taken under zero heat- t ransfer  conditions. Some possible values 
based on t h e  end of t r a n s i t i o n  from t h e  data  of references 26 and 32 are  a l so  
shown i n  f igure  10. I n  reference 32, t h e  end of t r a n s i t i o n  w a s  determined by 
the  shadowgraph method which i s  similar t o  t h e  present t r ans i t i on  detect ion 
method since both methods detect  permanent changes i n  t h e  boundary-layer pro­
f i les .  The data  i n  f igu re  10 show t h a t  basing t h e  c r i t i c a l  Reynolds number on 
t h e  end of t r a n s i t i o n  gives values which are higher than those given i n  
reference 4.  

A modification of t h e  c r i t i c a l  roughness cor re la t ion  parameter Rk has 
been given by Po t t e r  and Whitfield i n  references 26 and 33. The results of t h e  
present invest igat ion agree well  with the  extrapolated values given i n  these 
references where it i s  predicted t h a t  f o r  l o c a l  hypersonic Mach number and w a l l s  
a t  temperatures corresponding t o  the  conditions of t h e  present investigation, 
t he  Rk value needed t o  br ing about t r ans i t i on  a t  t h e  roughness elements would 
be approximately 2.4 X lo4.  The values of Rk of t h e  present invest igat ion 
were approximately 2 x 104 t o  4 x 104. 

The experimental var ia t ion  of t he  c r i t i c a l  roughness Reynolds number with 
free-stream un i t  Reynolds number f o r  a Mach number of 6.0 i s  shown i n  f igu re  11. 
Included i n  t h i s  figure a re  both the  data  taken with one leading edge with rough­
ness elements mounted on an interchangeable s t r i p  and t h e  data  taken with in t e r ­
changeable leading edges. The two s e t s  of da ta  do not coincide; however, t h i s  
condition may be due i n  pa r t  t o  a d i f fe ren t  loca t ion  Q of t h e  roughness ele­
ments. A n  increase i n  free-stream un i t  Reynolds number by a f ac to r  of approxi­
mately 8 w a s  found t o  result i n  an increase i n  c r i t i c a l  roughness Reynolds num­
ber  by a f ac to r  of approximately 4. Hence at a Mach number of 6.0, Rk,cr has 
been found t o  be sens i t ive  t o  t h e  free-stream un i t  Reynolds number. 
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For l o c a l  free-stream Mach numbers of 4.8 and 6.0, it has been shown herein 
tha t  t he  roughness parameter k/6 must be approximately 2 or grea ter  t o  move 
t h e  beginning of f u l l y  developed turbulent flow t o  t h e  region of t h e  roughness. 
A s  i s  pointed out i n  reference 26, t h i s  requirement of a roughness height of 
twice the  boundary-layer thickness may lead t o  l imi ta t ions  i n  t h e  use of three-
dimensional roughness t o  obtain turbulent flow i n  wind-tunnel t e s t s  because of 
t he  flow d i s to r t ions  created by t h e  roughness extending outside the  boundary 
layer .  O f  course, t h e  requirement of k/6 values of 2 or grea ter  i s  p a r t i a l l y  
responsible f o r  t h e  l a rge  var ia t ion  i n  Rk,cr with varying free-stream Reynolds 
number. 

Further work i s  warranted t o  give a b e t t e r  ins ight  i n t o  t h e  importance of 
t he  defining parameters i n  boundary-layer t r a n s i t i o n  work. It i s  in te res t ing  t o  
note t h a t  t h e  recent t heo re t i ca l  invest igat ion o f  Lees and Reshotho i n  refer­
ence 34 has a l so  indicated t h a t  t h e  minimum c r i t i c a l  Reynolds number f o r  t h e  
boundary layer  of an insulated p l a t e  would rise sharply with increasing Mach num­
ber  above a Mach number of 3 and indicates  a need f o r  t h e  reexamination of t he  
basic  assumption of t h e  theory of s t a b i l i t y  of t h e  laminar boundary layer  at 
high supersonic and hypersonic Mach numbers. 

Comparison of Heat-Transfer Distr ibut ions With Theory 

Distr ibut ions over smooth continuous p la te . - The experimental heat- t ransfer-
dis t r ibu t ions  i n  t h e  form of  t h e  var ia t ion  of Stanton number with distance from 
the  leading edge are shown i n  f igure  12. Also, given i n  t h i s  f igure  a r e  t h e  cal­
culated var ia t ions  of Stanton number with distance from t h e  leading edge f o r  t he  
laminar, t rans i t iona l ,  and turbulent  regions of t h e  boundary layer  obtained by 
the  methods presented i n  t h e  sect ion e n t i t l e d  "Review of Heat-Transfer Equations." 
This figure c l ea r ly  shows t h e  r e l a t i v e  values of heat t r a n s f e r  t o  be expected 
f o r  t h e  various types of l o c a l  boundary layers  with na tura l  t r ans i t i on .  The 
experimental Stanton number i s  seen t o  increase by a f a c t o r  of approximately 3 
from t h e  beginning of t r a n s i t i o n  t o  t h e  end of t r ans i t i on .  The calculations 
predict  an increase by a f a c t o r  of approximately 4; however, the  level ing of t he  
experimental heat- t ransfer  values i n  t h e  rearward port ion of t n e  laminar 
boundary-layer region and t h e  choice of t he  v i r t u a l  o r ig in  may eas i ly  account f o r  
t h e  differences between t h e  calculated and experimental values. 

Comparison of t h e  theory with t h e  experimental da ta  shows t h a t  t he  theory 
gives a reasonably good predict ion of t h e  magnitude of heat t r ans fe r  i n  the  lam­
i n a r  region, generally within 15 percent of t h e  experimental value except f o r  t h e  
rearward portion of t he  laminar flow where t h e  experimental heat t r ans fe r  w a s  
found t o  l e v e l  of f  p r i o r  t o  t h e  rapid increase i n  Stanton number associated with 
t h e  beginning of t r ans i t i on .  

The simple assumption of t h e  v i r t u a l  o r ig in  f o r  t h e  turbulent  flow being 
located a t  t h e  beginning of t r a n s i t i o n  y ie lds  a fair  predict ion of t h e  heat 
t r ans fe r  i n  t h e  f u l l y  developed turbulent boundary-layer region, t he  maximum 
deviation between theory and experiment being approximately 30 percent. Note 
pa r t i cu la r ly  i n  f igure  l2 (b )  t h a t  t h e  rate of decrease of turbulent  Stanton num­
ber  with increasing Reynolds number follows very closely t h e  r a t e  of decrease 
predicted by theory. 



The simple empirical r e l a t ion  f o r  t h e  var ia t ion  of Stanton number i n  t h e  
t r ans i t i on  region (given i n  eq. (15)) a lso  leads t o  a reasonably good predict ion 
of t h e  experimental r e su l t s .  (Note t h a t  t h e  end of t r a n s i t i o n  f o r  t h e  
Ro = 5.82 x 106 and & = 6.0 data  has been assumed t o  occur at 

x = 11.00 inches based on t h e  heat-transfer-ra%e d i s t r ibu t ion  of f i g .  2 i n  the  

calculat ion of t h e  Stanton number i n  t h e  t r a n s i t i o n  region.) Therefore, t h e  

di f f icuxty  i n  considering a region i n  which t h e  boundary layer  i s  t r ans i t i ona l  

i s  not i n  determining how t h e  heat t r ans fe r  associated with t h e  region w i l l  vary, 

but i n  determining where t h e  laminar flow will end and where the  f u l l y  developed 

turbulent flow w i l l  begin. 


The var ia t ion  of heat t r ans fe r  with l o c a l  Reynolds number f o r  t h e  case of 
pure laminar flow i s  shown i n  f igure  13 f o r  t h e  f u l l  tes t  range of free-stream 
un i t  Reynolds number. The comparison of t h e  experimental data  with the  theoret­
i c a l  d i s t r ibu t ion  shows t h a t  theory gives a good prediction, both of t h e  magni­
tudes of t he  da ta  and the  slope of t he  d i s t r ibu t ion  (up t o  the  rearward region 
of laminar f l o w  where t h e  experimental da ta  are observed t o  l e v e l  off p r i o r  t o  
t r a n s i t i o n ) .  

-__Variation of Stanton -n-gnber with R g o x s  rt-umberfor turbulent flow.- The 
var ia t ion  of t he  heat t r ans fe r  with Reynolds number (based on t h e  distance from 
the  v i r t u a l  o r ig in  f o r  t h e  higher Reynolds number tests of t he  Langley 20-inch 
Mach 6 tunnel)  f o r  t h e  case of f u l l y  developed turbulent  flow i s  compared with 
theory i n  f igure  14.  A l s o  i n  t h i s  f igure,  t h e  experimental turbulent heat-
t r ans fe r  data  f o r  t h e  p l a t e  with roughness ( f o r  values of k equal t o  o r  grea te r  
than t h e  c r i t i c a l  height)  are  compared with theo re t i ca l  predictions.  The theory 
i s  seen t o  predict  reasonably well  both t h e  magnitudes and t h e  slopes of data  f o r  
t h e  p l a t e  with and without roughness. 

Inspection of f igure  14 shows t h a t  t h e  highest  experimental Stanton number 
values occur near t h e  roughness posit ion.  These peak values of NSt decrease 
s l i g h t l y  as the  roughness height i s  increased above t h e  c r i t i c a l  height. 
Increasing the  roughness height apparently has t h e  e f f ec t  of increasing s l i g h t l y  
the  e f fec t ive  Reynolds number at any given posi t ion.  However, t he  overa l l  reduc­
t i o n  i n  Stanton number with increasing roughness height at any posi t ion i s  ra ther  
s m a l l  s ince t h e  Stanton number var ia t ion  i s  a weak function of Reynolds number 
f o r  turbulent flow. Therefore, it appears t h a t  roughness can be used as a 
boundary-layer t r i p  f o r  high-speed wind-tunnel t e s t s  designed t o  study heat t rans­
f e r  i n  a turbulent boundary l aye r  without ser iously a f fec t ing  t h e  heating 
d is t r ibu t ion .  

The turbulent Stanton number var ia t ion  with Reynolds number 'based on t h e  
distance from t h e  roughness locat ion f o r  t h e  complete t es t  range of free-stream 
uni t  Reynolds number at  a Mach number of 6.0 and roughness of c r i t i c a l  height o r  
grea te r  i s  given i n  f igure  15. A s  explained previously, f o r  t h e  low Reynolds 
number t e s t s ,  f u l l y  developed turbulent flow w a s  not obtained so t h a t  the  length 
of t r a n s i t i o n  2 could not be determined. The assumptions leading t o  t h e  two 
theo re t i ca l  d i s t r ibu t ions  of Stanton number i n  f igure  15 a r e  discussed i n  t h e  
section e n t i t l e d  "Review of Heat-Transfer Equations." Examination of f igure  15 
shows t h a t  the  assumption of the  v i r t u a l  o r ig in  t o  be located at  the  roughness 
posi t ion gives the  best  agreement with the  experimental data  over t he  complete 
t e s t  Reynolds number range. 
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CONCLUSIONS 

An investigation has been conducted i n  t h e  Langley 20-inch Mach 6 tunnel 
and i n  the Mach number 6.2 blowdown tunnel of t h e  Langley Research Center t o  
determine the  e f f ec t s  of controlled surface roughness on boundary-layer t rans i ­
t i o n  and heat t ransfer  f o r  l o c a l  free-stream Mach numbers of 6.0 and 4.8. Anal­
ys i s  of t he  experimental r e su l t s  and comparison with theory and previous r e s u l t s  
from the  l i t e r a t u r e  have l e d  t o  the  following conclusions: 

1. A compilation of t h e  current data  and the  da ta  available from t h e  l i tera­
t u r e  indicates  t h a t  t he  Reynolds number required t o  bring about natural  t r ans i ­
t i o n  increases markedly with increasing Mach number above a Mach number of 
approximately 3.7. 

2. For a Mach number of 6.0, surface roughness t h a t . i s  l e s s  than the  calcu­
l a t ed  boundary-layer veloci ty  thickness a t  the  roughness posi t ion can under cer­
t a i n  conditions delay t r ans i t i on .  

3. The c r i t i c a l  roughness Reynolds number required t o  move the  beginning of 
turbulent f l o w  t o  t he  region of t he  roughness i s  grea te r  f o r  higher supersonic 
and hypersonic Mach numbers than has been found a t  lower supersonic speeds. 

4. The high values of  t he  required c r i t i c a l  roughness Reynolds numbers f o r  
t he  Mach numbers of t h i s  invest igat ion l ed  t o  required roughness heights of 
approximately twice the  calculated boundary-layer thickness at the  roughness 
posit ion.  The e f f ec t  of the  la rge  required roughness on t h e  heat-transfer dis­
t r ibu t ion  downstream of t h e  roughness has been shown t o  be small. 

5 .  Theoretical calculations of t h e  heat- t ransfer  d i s t r ibu t ions  agree reason­
ably well with the  experimental data  obtained with the  smooth f l a t  p la te .  Also, 
theore t ica l  calculations of t he  turbulent heat- t ransfer  data  on the  p l a t e  with 
roughness of c r i t i c a l  height o r  greater  agreed reasonably well  when it i s  assumed 
tha t  f u l l y  developed turbulent f l o w  begins a t  t h e  roughness posit ion.  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hmpton, Va., October 9, 1963. 
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( b )  F l a t  p l a t e  2 with roughness elements. 

Figure 1.- Sketch of model assembly. A l l  dimensions are i n  f e e t .  
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Figure 2.- Heating-rate d i s t r i b u t i o n  on t h e  continuous f l a t  p la te .  
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(a) Interchangeable leading edges; R, = 13.9 x lo6. 

Figure 7.- Heating-rate d i s t r i b u t i o n s  on p l a t e  2 for various s i z e  spheres. M ,  = 4.8. 
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x = 0.167 f e e t .  

36 




.w1 


280 


240 I 

200 


160 


.J­
120 


Bo 

40 

0 


O,X = 2.32 x 106 

3,x - 1.64 x 106

" I  

.m .w3 .a .w5 .OM .w 
Y, fi 


(a) Velocity profiles. 


/ 

/ / 

i 
/' 

/ 

o,x = 1.64 x lo6 

.w3 
H 

.a .w5 .OM .04 

Y, rt 

Figure 9.- Calculated boundary-layer velocity profiles and corresponding Rk Values for &, = 4.8. 
x = 0.167 feet. 

37 




280 
1I 1 


00.0030 1.9 .66 1.64 x lo6 
.0&4 2.78 .66 1.64

240 U .0018 1.35 -66 2.32 
.0030 2.26 .66 2.32 

H­
200 

n .oo% 1.91 .66 .m 
h . a 7  2.38 .66 .fl 
0 .0&4 1.85 .66 1.37 
e .OO$ 2.27 e66 1.37 

160
 III-- I i 

Possible cr i t ical  roughness Reynolds‘d Rk,cr  tnumbers from refeRnce 26,. 

120 


Possible c r i t i ca l  roughness Reynolds
80 numbers based on end of transition 

f r o m  data of reference 30.­

1 2 3 4 

Mach number 

it 

roughness Reynolds number 

Tference 4 .

1 1 1 
5 6 

Figure 10.- Cr i t i ca l  roughness Reynolds number a t  several Mach numbers. Open symbols ind ica te  k 
s l i gh t ly  less than t h e  c r i t i c a l  value and so l id  symbols ind ica te  k s l igh t ly  greater than the  
c r i t i c a l  value. 

38 


7 



----------- 

---------- 

---------- 

0,. Interchangeable leading edge, Xk = 2.00 in. 
0,. One leading edge, interchweable 

roughness strip, Xk = 2.87 in. 

240 

0 

x 106 

Figure 11.-Variation of c r i t i c a l  roughness Reynolds number with free-stream uni t  Reynolds number f o r  a Mach number of 6 .  
(Open symbols indicate  roughness height l ess  than the  c r i t i c a l  value. Closed symbols indicate  roughness height i s  
s l i g h t l y  greater  than the  c r i t i c a l  value.) 

w 
v) 



.0010 

.m 9  

.oom 

.OOW 

.on06 

." 5  

.n& 

Nst 

.OOO) 

.nncn 

.on01 
0 


I I 

- _ _  Theoret ical ;  t u rbu len t  

Fmpirical, t rnns i  t i o n a l  

-R, = 5.82 x 106 

R, = 8.22 x IO&-

I 

1 

L 

2 3 4 9 6 

x, in. 

(a) & = 6.0.  

Figure 12.- Heating-transfer d i s t r i b u t i o n  on 

- 1I=-' 


/' 
I,/' 

0 o o  
I /

3 

( 
/ ' 

4
/' 

7 a 
JO 


continuous f l a t  p l a t e .  

40 


11 



.OOlC 

.ooog 

. O M  

.0 0 4  
/ 

,0006 i 
/ o  

,0005 
 / 
.0004 

84 x 106 
Nst 

.om', 
0 
0 

/ 

Ro = 13.92 x lo6 A' 
0002 

.0001 
0 1 2 3 4 5 6 

x, in. 

(b) % = 4.8. 

Figure 12.- Concluded. 

3 " 0 i"? 
0 

irical,transitional 


7 8 9 10 ll 

41 




0 1.26 X lo6 0 
ri 2.73 0 
0 4.37 0 
A 5.73 0e C b 5.82 0 
I3 8.22 0Q P.I -Theory1 

C 


4 

% @ 
n 
\ 

I 

105 2 4 6 8 106 2 Ir 6 8 0 1"7 

%: x 

(a) M, = 6.0. 

10-3 
Ro k,f 

8 	 0 9.84 x 106 0 
0 13.92 
-Theory 

6 

NSt 

4 


2 

10-4 

105 2 4 6 8 2 4 6 1.07 

(b) Mo = 4.8. 
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