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The Green's-function technique is utilized in the determination of the field distribution of an infinitely 
long current carrying conductor of arbitrary but constant cross section above a superconducting ground 
plane of finite thickness. It is assumed that the superconductor can be described by the phenomenological 
London equations. The integral expressions that are obtained are solved analytically for a few special cases 
of interest. Under conditions that are often encountered in a physical system, a modified image method can 
be utilized in order to calculate the field distribution to within 2% of the computer solution.,L.L.Z.,,, 

INTRODUCTION 

D
UE to the rapid advance of the technology of super-
conductive devices for computer applications, a 

great deal of interest has been expressed in developing 
high-speed switching components.' A device whose 
basic structure is that of a thin superconducting film 
above a superconducting ground plane exhibits the 
desired switching speed characteristics.23 The basis of 
any electromagnetic analysis of this type has been the 
assumption that the return current in the ground plane 
is localized under the current carrying film, effectively 
forming a strip transmission line whose characteristics 
are then calculated.' , ' The assumption (henceforth 
called the strip-line assumption) is made for materials 
whose film width is much larger than the separation 
between the film and ground plane. 

It is often necessary to determine the field distribu-
tion for materials that do not fit the requirement of the 
strip line assumption. In this paper, the Green's func-
tion technique is used in deriving a general expression 
for the field of a conductor that is carrying current 
above a superconducting ground plane. The strip line 
assumption is verified and a few cases of particular 
interest are examined. A modified image technique is 
developed that is useful for determining the field of the 
current carrying conductor if some geometrical condi-
tions that are often encountered in practice are satisfied. 

CHARACTERIZATION OF THE SUPERCONDUCTING 

GROUND PLANE 

It is assumed that the properties of the ground plane 
can be described by the London equations 

E"zo(13)2(aJ/01), (I) 

H=—(d)-2vxJ,	 (2) 
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where J3 is the reciprocal London-penetration depth and 
B=MOH. (The rationalized mks system of units is used 
throughout this paper.) It can be shown from Eqs. 
(1) and (2) that in the Coulomb gauge under static 
conditions

V x (A+1zo/J) ''O,	 (3a) 

v - (A+i_2J) = 0,	 (3b) 
and

V2J_fl2J	 (4) 

The following statements are considered to be valid 
in the following analysis (Fig. 1): (1) J in the ground 
plane has only one component (in the z direction); 
(2) J in the ground plane is bounded in space (this is 
justified later). It is assumed that the current density 
in S' is known. In a suitable gauge 

A=—@---J	 (5) 
and

VIA= 0 2A.	 (6) 

A straightforward argument can be used to prove 
that J is uniquely determined for a given total ground 
plane current.

STATEMENT OF PROBLEM 

Consider the situation in which a current carrying 
source of arbitrary cross section is placed above a super-
conducting ground plane (Fig. 1). A fraction E=I/Io 
of the current is returned through the ground plane and 
(1— E) of the current is returned through the wire above 

REGION 

('c -I ') - 
'-RETURN WIRE 

SOURCE S-\ FIG. 1. Current carry-
- — — — — — — ing	 conductor	 above 

superconducting ground 
iplane. 
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the conductor. It is assumed that there is no geometric 
variation in the z direction so that a/az of the field 
quantities are zero. 

The source current density Js(x',y'), which has only 
a z component, can be separated into a symmetric and 
antisymmetric part (with respect to y') called JR and Jo, 

respectively. 

J0(x',y') = [Js(x',y')+J(x', —y')1 	 (7a) 

Ja(X',y')[JS(X',y') — J(x ' , —y')],	 (7b) 

where

f J(x',y')dS'=Io.	 (8) 

The Green's function diagram, which corresponds to 
Fig. 1, is shown in Fig. 2. Due to the separation defined 
by Eqs. (7a) and (7b) symmetric and antisymmetric 
pairs of delta function sources are used to generate the 
Green's function of the system. For simplicity consider 
the case for = I first. Since free space can be described 
by the equation

V2A=_,J,	 (9) 

the solutions to Eqs. (5) and (9) in the regions shown 
in Fig. 2 are as follows (A _ (r/r ') and A (r/r ') are the 
symmetric and antisymmetric (Green's) vector poten-
tials, respectively). 

Region 1, 2: 

[Ao(r/!r)l.s] L [C:a(k)

CR(k) 
cosky1(lOa) 

i.2 	 sinkyj

REGION 
SYMMETRIC	 (2(I-)	 I, 0) 

AN TI SYMMETRICt 0 ] ----------
'-RETURN WIRE 

-SYMMETRIC 

	

±1 W k,-y')	 *1

3 .-ANTISYMMETRIC
LZ.. 	 - 

SYMMETRIC	 12(0 
ANTISYMMETRICI. 	 }o	 0	 0	 0	 4 

5 

FIG. 2. Green's function diagram. 

The solution e was rejected for x> x', and the solu-
tion was rejected for x< —d, since it is assumed that 
the current density in the ground plane is bounded (in 
the x,y plane) and that the Green's vector potential is 
zero at x,y = . This is reasonable since the ground 
plane in any physical situation is not infinitely wide 
but can indeed be very wide in comparison to the 
source conductor dimension and x'. A similar statement 
can be made regarding boundedness in the z direction. 
Therefore, the boundedness statement given in the last 
section is justified by the above physical argument. 

In order to evaluate the C's, it is necessary to realize 
that the x component of B is continuous at x=x', 0, 
—d, while the y component of H is continuous at x=O, 
—d and is discontinuous at x=x'. The five equations 
describing the continuity of field are simply algebraic in 
form and are not explicitly shown here. The discon-
tinuity of H5 at x=x' is not quite so obvious and is 
derived here. At x=' 

H5 (region 1, 2)— H5 (region 3) 
=ô(y—y')±a(+y'). (11) 

Region 3: 

r 4 
.(r/r')31- rx[COSky

') 3_fl./ o sinky 

x Je+I[C2,(k) i [CaS( k ) ]

}

e k dk; (lOb)


 C2o(k)	 C30(k) 

Region 4:

The signs on the right refer to the symmetric and anti-
symmetric cases, respectively. ô(y±y') is the Dirac 
delta function. Eq. (11) becomes 

1"	

( sinky) 
/ ([C 1 (k) - C 2 (k)]ke' "+C 3 (k) ke' ' ) 

cosky
dk 

./0

 

"iio[&(y—y')±(y+y')]. (12) 

Using the Fourier integral theorem yields 

[A 28(r/r')41 f[cosy

A za(r/r')4] 	 L sinky 

R
X 

C4) 
e	

(CooY(,V-+k2)J. '4+ 	 ]dk; (lOc) 
C4,, 

Region 5:

2Lo(coskY'\ 	
(13) 

k7r siny'i 
[C 1 (k) - C2(k)]e°'+Cs(k)' =  

Simultaneous solution of Eq. (13) and the five con-
tinuity equations yields the values for the C's. If S is 
defined as cosky' in the symmetric case and sinky' in 
the antisvmmetric case and 

ak±l/32+k2)ti 

	

4.,(r/r')s 	

fo

05(C68 COSkY)ekodk. (lOd) 	 =e±2)	 (13a) 

	

')s 	 sin ky	 âd:=' 1±e' IA.(rlr
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then

S 2,	 r at—k 
Cj=---e""—d1 (6_)—(7+0++'_cr—)


L	 k 

+ (+) (---
S 2po 

C2=— __e'_d)[(a_ (at) (y+ —y-) 1 	 (13b) 
kir 

(3 = (Sjo/kir)e' 

C= ± (4S,o/ir)er'_a±y± 

C6 = ( — S/z) (8j.io/7r)e'(a—k), 

where
z = +2e 1 (2')[(y) (a)2— e4 (a_)2]. 

Once the Green's potentials have been found, it is a 
simple matter to express the vector potential for the 
configuration shown in Fig. 1 (remembering that the 
case for = 1 is under consideration) 

Regions I, II, IV, V, VI:

In the above equations, r' and r are the source and field 
points, respectively. 

It can now be shown that the total current in the 
ground plane is — 10 From Eqs. (5) and (14) it is seen 
that the current in the ground plane is 

1=	
- 

ff ff[J(x'y')1(r/r') 4]dx'dy'dxdv (17) 

where the unprimed coordinates refer to a point in the 
ground plane. (It can be shown by direct integration 
that the antisymmetric current density does not con-
tribute to the net ground-plane current.) Integrating 
over y first yields 

1= _-2irf 
f f f, 6 (k)J(x'y') 

X [Ce' x C5e (±k2) i r1dkdrdyf dx (18) 

Integrating ovei k and x, respectively, yields 

I = —2f f J, (x'y')dx'dy' = _I0, 	 (19) 

..l z(x,y) = f f 1j" (x',y')A (r/r') 

+J(x'y')A (r/r')]dx'dy', (14) 

( IS' refers to an integration over the source area defined 
by y' >O) where the primed integration is over the 
source cross section. A 3 (r/r') and A(r/r') are the 
appropriate vector potentials for the region under 
consideration. 

Region III: 

A z (x,y) 
= 

+J(x',y').4 z ,(r/r') i]dx'dy'

which completes the proof. 

PARTIAL CURRENT RETURN IN THE

GROUND PLANE (O<<l) 

This case can be treated as the superposition of two 
situations. In the first situation, all the source current 
I0 is returned through the ground plane. In the second 
situation there is no source conductor, and the return 
wire carries current (I—Io), which is returned through 
the ground plane. 

Using this superposition the Green's vector potential 
can be found directly by considering the case for = 1. 

Define constants D(k) that are related to C(k) by 
the relations

D 8 (k) = —(1— )C(k)/2	 (20a) 

+ f f F.I., (x',y')A (r/r') 3 

+L(x',y')4 r(r'/r')a]dx'dy', (15) 

vhere S is the portion of the source region in which 

x
(16a) 

V>0, 

and 52 is that portion in which

(16b)

(and replace x' in the C 3 (k) expressions by x") 

Da(k)0.	 (20h) 

Thus, the Green's potentials are: 

Region 1: 

A - ( r , /r') I = A - (K Y)	 + f D 1 (k) coskyedk; (21a) 

Region 2:

+1 cosky[D2(k)e+D3(k)e]dk;
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Region 3: 

A(r/r')3=A(r/r')3l..i 

+r coskv[D2(k)e+D3(k)e]dk; 

Region 4: 

A(r/r') 4=A z (r/r) 4 ( ti+f cosky 

X [D 4 (k)e(+ 0) J x+Do(k)e_2+k2 X]dk; (21d) 

Region 5: 

Ajr ,/T%= Aj^ Y)5 1 Z=I+ 
f 

D6 (k) coskyedk. (21e) 

For many cases of practical interest, the return wire 
is far from the ground plane and the source conductor. 
It can be verified that 

lim D(k)= —C(0)(1—E)[(k)11(0)]

can be used to advantage in calculating the inductance 
of the structure. 

The Green's vector potential is now completely 

specified for arbitrary so that it is now appropriate to 

examine a few source conductor geometries of general 
interest (it is assumed that the return wire is essentially 
at infinity for the remainder of the paper). 

SPECIAL CASES OF INTEREST 

Case 1 

Js(x',y') =JLö(x'—a). 

This source distribution violates the requirement that 
10 be finite so that Eq. (22b) cannot be applied here. 
Although the fields from this distribution can be more 
easily obtained by a one-dimensional analysis, they can 
also be obtained from the above equations to demon-
strate the validity of the analysis. Using Eq. (14) with 
Eqs. [21 (a-e)] for the Green's vector potential and 
performing the curl operation yield the following 
relationships: 

n=2, . . , 6. (22a) x>a	 H=JL(t—E)/2,	 (23a) 
Therefore, 

limA (r/r'),, 1O	 < 1 = .1 (r/r') I	 n= 2,	 •, 6. (22b) 

The net current in the ground plane can be found in 
a manner identical to Eqs. (17) to (19) and can be 
shown to be —I i. This means that although the ground 
plane only returns a fraction of the source current, the 
vector potential is identical to the case for = I if the 
return wire is far from the source and the ground plane. 
If one remembers the superposition that is the basis of 
Eqs. (21a)-(e), it is apparent that if the ground plane 
carries a current —Ii, —jo of the current follows the 
distribution given by Eq. (17), while (Io — J) is uni-
formly distributed over the entire ground plane cross 
section. The current density of the uniform distribution 
is infinitely small so that it does not contribute to the 
vector potential, however, its integral over the cross 
section of the ground plane is still (I—I). It should 
also be noted that Eq. (22a) is valid only if 1 0 is finite. 
A geometry that violates this restriction is examined 
below. 

The above discussion is not as remote as it may seem. 
Consider a ground plane of finite width W 0. Assume 
that the source conductor has dimensions small com-
pared to W0 and is close to the ground plane surface. 
Also assume that the return wire is far from the source 
conductor and ground plane. However, stipulate that 
the perpendicular distance from the return wire to the 
ground plane is also much less than lU g,. For this case, 
Eq. (22b) is satisfied in the neighborhood of the source 
conductor. For certain geometries (discussed later) the 
fields in the neighborhood of the source are very large 
in comparison to the fields elsewhere so that Eq. (22b)

O<x<a	 Hy=—JL(1+E)/2,	 (23b) 

JL(1+) r(1—E)—(1+E) coshd 
—d<x<O 11=	 I 

2	 L	 (1+E) sinh$d 

X sinh/x— coshfx }, (23c) 

x<—d	 H, = —JL(l—E,)12.	 (23d)


Case 2 

JL(x — a)	 y'I<TV(24) 

0 

The current per unit thickness in the ground plane, 
which is contained in a width 21, is 

r' r 

f—.

'T
Jt(x)=---

	
/JLÔ(x—a)cosky 

/2	 0.0 

X [Cd , (k)e ( 1"+C5. (k)e_($22)dx'dy'dkdy. (25) 

Integration with respect to x', y', and y, respectively, 
yields

1200' C4

,fo 	

(k,x'=a) 

	

JLI	 e(202) 
/2o 	 L	 cosky' 

C(k,x'=a)	 -I sinkl sink It' 
+	 ---dk. (26) 

	

cosky'	 ] k	 k 

Introducing the change of variables k'=kd yields for
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Fin. 3. Ground-plane 

current density. 

/d 

the case 1V>>3 1, a 

- 41 WLILreP (d+x) + 
J1(x)	 I 

dir	 L ed_e_fld 

sin (0/d) sink'(W/d) 
X	 dk'. (27) f k'(l/d) k'(W/d) 

The current density is given by 

dJj(x)/d(21) 
so that for l<l[

re	 -	 1 
JZ(x)—/3JLI

L

	

	
I.	 (28')


e+_u J 
When l>Tl

J(x,y)O, (29) 

which verifies the strip-line assumption discussed in the 
introduction.

Fic. 4. Ground-plane

current density. 

0 
WW-

MODIFIED IMAGE TECHNIQUE 

There is a large class of problems that can be solved 
without resorting to manipulations such as were shown 
in case 1 and 2 by using a modified image technique 
that is now discussed. For simplicity, consider the 
Green's-vector potential that is generated by a single 
delta-function source of unit strength inside the source 
conductor at x'=a. There is no loss in generality by 
taking y'=0. 

If d (see Fig. 1) is much larger than 3' then a'j'>>l, 
since a is the x coordinate of an arbitrary delta-function 
source inside the source conductor. If a13>1 the 
Green's current density in the ground plane is [Eqs. (5) 
and (14) ; a factor of' must be introduced into Eq. (14), 
since here a single delta-function source is being con-
sidered (rather than a symmetrical pair)] 

10 cosh([(x/d)+ 1]$d) 
J(r/r') --- - -

d 	 sinh/3d

f ky 
x 	 cos—e-'dk, (30) 

 d 
which reduces to

1 a cosh[(x/d)+1]/3d 
--	 0-----	 -.	 (31) 

	

ir a2 +y2	 sinh$d 

The factor _ai !ir(a 2+y2) is the current per unit width 
at the x=0 surface of the ground plane which is found 
by replacing the ground plane by the image of the delta 

.036 

.032 

028 

.024 

.020 
N

.016 

.012 

.008 

.004 

0 

FIG. 5. Ground-plane current density.
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FIG. 6. Ground-plane current density 

function source. Since Eq. (31) is valid for every delta-
function source that makes up the source conductor, the 
following general rule can be established. Given a source 
conductor of arbitrafy cross section with the specifica-
tion that d1>>f1,the current density in the ground plane

can be found by first finding the current per unit width 
J00 (x=O) by using the method of images and then 
multiplying J,. (x= 0) by $ cosh{ [(x/d) + 1]j3d}/sinh/3d. 

Equation (31) reduces to the perfect conductivity 
limit (f3-' —* 0) as can be seen by considering the 
following:

urn— (l/.)0$x[a/(aI+yI)1	 (32a) 

It is interesting to note that

00 X=0 
limi3e==	 (32b) 

0 z<0, 
and

urn I /3eP"dx= 1.	 (32c) 
fl-.000 J_d 

Thus, for x<0

urn 3e=6(x)	 (33)


and

J. (r/r) = - (1/ir) [al (a2+y2)]ô(x),	 (34) 

which is the correct result if the ground plane is a 
perfect conductor. 

It is now instructive to examine the numerical solu-
tion to the Green's current density in the ground plane 
for the case of a unit delta-function source at x'=a and 
Y'= O. The - dimensionless expression for the current 
density [from Eqs. (5) and (14)1 is 

($d)	
, 

	

J(x,y)d2 = -	 dk-
2 
cos k (A ie[(x1d)+hl [ (fld)2+k2] +A 2e	 fd)+1] (9d)2+k2]	 (35a) ) 

J	 (d) 
where

(AA) =	 e_( b0(k±[(I3d)I+kh])
(35b) 

	

±
	 [(d)2+k2]1)2 

Although the left side of Eq. (35a) does not appear 
to be dimensionless, it should be remembered that a 
unit strength source is under consideration. Equation 
(35) was solved by a modified Simpson's rule and an 
IBM 7090 computer. It was found that the integrand 
converged rapidly to zero so that infinity could be 
replaced by a finite number N (the highest N that was 
used was 81). The results are given in Figs. 3 to 6. It 
should be noted by comparing Eq. (31) with Figs. 3 and 
5 that the modified image technique developed in this 
paper is valid to within 2 0/0. The numerical results for

the Green's current density can be used to evaluate 
the current density in the ground plane for an arbitrary 
source conductor by using approximation techniques 
for cases in which the modified image technique is 
not valid.
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