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ON THE STABILITY OF A LIQUID LAYER OF UNIFORM THICKNESS
SPREAD OVER A RIGID CIRCULAR CYLINDER SUBJECTED

TO LATERAL ACCELERATIONS
By Richard M. Beam

Ames Research Center
Moffett Field, Calif.

SUMMARY

The equations of motion for a liquid layer of uniform thickness spread
over a rigid circular cylinder subjected to lateral acceleration are derived.
The liquid is assumed to be inviscid and incompressible and the analysis is
restricted to the linearized (small deflection) equations of motion. The
effect of surface tension of the liquid is included.

A modal solution of the equations of motion is obtained and the stability
criterion for the liquid layer is derived. In addition, the criterion for
maximum instability, or droplet formation, is derived. Both of these criteria
are presented graphically as a plot of axial (along the axis of the cylinder)
wave length versus Bond number. Correlation between a previous approximate
theory and the present theory is presented. The available experimental data
are compared with the theories.

INTRODUCTION

The transportation, storage, and utilization of liquids under near zero
gravity conditions present many unanswered questions related to the operation
of spacecraft and space stations. As the effective gravity field is dimin-
ished, the static and dynamic behavior of a liquid free surface is drastically
changed since the interface surface tension forces become predominant.

Most investigators?t to date have considered only the hydrostatic or
equilibrium configurations of the free surface, while few have endeavored to
increase the quite limited knowledge of the stability and dynamic character-
istics of the free surface. The purpose of this report is to investigate in
some detail a geometrically simple three-dimensional hydrodynamic problem and,
thereby, to obtain gqualitative and gquantitative information which may lead to
a basic understanding of this and more complicated problems.

The physical problem may be likened to the droplets formed on the under-
side of a telephone wire during a rain storm. The -droplets appear to occur
in a regular distribution along the length of the wire. The same phenomenon
appears when the coolant tubes of a condenser are located in a horizontal
position. One might wonder what (if any) change would occur in the droplet

Extensive bibliographies are doﬁtained in references 1 and 2.




distribution if the condenser were in a reduced gravity field and, in fact,
if possibly under these conditions no droplets would form. Such a consider-
ation has significance in connection with condensers carried on space

vehicles.

This analytical work is an extension to three space dimensions of that
reported by Anliker and Beam (ref. 1) which presented the two-dimensional
analysis of the stability of a uniform liquid layer covering a rigid circular
cylinder. An approximate solution to the three-dimensional problem was
obtained by Lee (ref. 3) and a comparison will be made between his solution
and the one contained herein.

In the following analysis, the liquid is assumed to be incompressible and
inviscid and the flow is assumed to be irrotaticnal. The density of the
medium external to the liquid free surface is assumed to be negligible. The
anslysis is further restricted to the linearized (small deflection) equations
of motion, a rigorous derivation of which is given in reference 1. The accu-
racy of the assumption of an inviscid fluid in the investigation of the small
displacement stability seems to be validated in part by the work of Bellman
and Pennington (ref. 4). They have shown that for flat layers, viscosity
does not change the stability criterion but merely decreases the rate of
growth for unstable wavelengths and causes damping for the stable (oscilla-
tory) wavelengths. The essential discrepancy between the physical problems
mentioned above and the mathematical problem is that the physical layer will
not remain precisely at uniform thickness unless the appropriate external
nonuniform (variation around circumference of layer) pressure distribution is
applied. The applicability of this theoretical solution to the physical
problems is then determined by the deviation of the equilibrium configuration
from a uwniformly thick layer. The available experimental data indicate,
however, that the theory is applicable over a wide range of Bond number.

SYMBOLS

Agk constant defined by equation (28)

a radius of equilibrium free surface
ao radius of rigid cylinder

2
B Bond number, p% g

bmjgm. coefficients of Fourier series for antisymmetrical modes
em,Cy  coefficients of Fourier series for symmetrical modes
g effective gravity (lateral acceleration of rigid cylinder)

Hp constant defined by equation (23)
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Ber

Pmax

modified Bessel function of the first kind of order m
integers

modified Bessel function of the second kind of order m
wavelength corresponding to neutral stability of liquid layer
integers

matrix (eq. (42))

pressure in liquid layer

equilibrium pressure distribution applied at free surface
constant defined by equation (kL)

matrix (eq. (42))

constant defined by equation (43)

function introduced for separation of variables

radius of curvature of free surface

cylindrical coordinate (fig. 1)

bounding surface

surface tension coefficient

time variable

function introduced for separation of variables

cylindrical coordinate (fig. 1)

dimensionless wave number

value of B corresponding to neutral stability of liquid layer
value of B corresponding to maximum instability of liquid layer

. . . R ao
ratio of cylinder radius to free surface radius, —-

displacement of free surface from equilibrium configuration

function introduced for separation of variables



) cylindrical coordinate (fig. 1)

N axial wave number
N2 separation constant
o) liquid density

0,0 frequency parameter (eq. (31))

0] potential function
¥ potential function in terms of space variables
Q potential of body forces

ANATYSTS

The mathematical model is formulated by considering the motion of a
liquid layer of uniform thickness spread over a rigid nonporous circular
cylinder (fig. 1). The cylindrical coordinates will be denoted by x, the
distance along the axis of the cylinder; 6, the angular displacement measured
from the vertical; and r, the radial distance from the axis of the cylinder.
The radius of the rigid cylinder is a, and the radius of the equilibrium
free surface of the liquid layer is a. The radial displacement of the free
surface from its equilibrium position is denoted by €. The body forces act-
ing on the fluid (due to lateral acceleration of the cylinder) are normal to
the axis of the cylinder and parallel to the plane 6 = 0 as indicated in
figure 1. It is assumed that the liquid wets the rigid cylinder.

The potential equation for incompressible irrotational flow is, in
cylindrical coordinates,

1
V2o(r,x,0,t) = @y + = @ +TL2 gy + By = O (1)

where ¢ is the velocity potential of the fluid, t the time variable, and
a subscript represents partial differentiation with respect to that variable.
The dynamic boundary condition at the free surface (r = a + {) is

_pe=T<RLl+%> (2)

where p is the pressure in the liquid layer, pe the external applied
equilibrium pressure, T +the surface tension (force per unit length) and

Ri, Ro the principal radili of curvature of the free surface. The kinematic
boundary condition of a surface may be written

b
r=a+{




DS
= =0 (3)

with S = 0 the equation of the bounding surface. At the rigid cylinder
surface (Se = r - ag = 0) there is no flow through the boundary

DSe _ _ =
Do - g =0 (1)
Ir'=agp

and at the interface surface (S;y = r -~ a - { = 0) there is no flow across the
surface

D84
Dt 3t d8 r® dx

o) o}
ég + §§ 9 + —E oy =0

which after elimination of nonlinear terms becomes

CDI" ST % (5)

r=a

The pressure, p, is given by the linearized Bernoulli equation (ref. 1)

5=p@—j-> (6)

where p denotes the liquid density, and Q, the potential of the body forces,
is given by

Q = gr cos 6 (7

with g representing the effective gravity field coefficient (or the acceler-
ation of the rigid cylinder).

The linearized expressions for the principal radii of curvature Ri and
R are (see ref. 1)

2
1. 98¢ 8)
Ra 3%
11 ¢ 1%
CRHIGREREE )

The appropriate substitutions from equations (6), (7), (8), and (9) into
equation (2) lead to

2 2
p[§§ - gla + ) cos 9] = P = T[" %}é + % (? - é - % %5%)} (10)

>



which is a combination of the kinematic and dynamic boundary conditions which
must be satisfied at the free surface (r = a + {) or, to the first approxima-
tion, at the equilibrium free surface (r = a). From relation (10) one may
obtain the pressure distribution which must be applied to the equilibrium
free surface to maintain a uniform ligquid layer; namely
Pe = - g - pga cos 6 (11)

Differentiating both sides of equation (lO) with respect to time and

substituting O/t from expression (5) result in

az(b _ 1 )
pl =% + 8% cos 6 = T Oppye + 5 (o + Pggp (12)
at r=g, a8, =8,

The velocity potential ¢ must satisfy differential equation (1) and the
boundary conditions (4) and (12). With the separation of the time and space
variables by the substitution
wWot
Q(ryx)e:t) = ¢€ Y(r:X:e) (13)

into equations (1), (4), and (12), the stability problem is reduced to the
eigenvalue problem

1 1
Yy + 3 ¥ + 55 Ygp + ¥y = O (14)
_ 1
o <—c‘.’! + g¥. cos e> = T[‘.{/m +35 (¥, + YQQr):l (15)
=a r=a

@rz&o ~ o (16)

where o is the eigenvalue and ¥ the eigenfunction. If ¢ 1s complex, or
real and negative, then ¢ increases without limit as time increases and is
therefore unstable. If ¢ is real and positive, then ¢ 1is oscillatory
with time and the amplitude depends on the initial conditions or external
disturbances; thus the motion is stable. The stability criterion requires
that ¢ be real and positive.

Separation of the space variables by the substitution
¥ = R(r)X(x)0(6) (17)
into equation (14) leads to the following ordinary differential equations
X" +AX =0 (18)

O + 20 =0 (19)



A
R" + % R - <%1 + —g R=0 (20)
I

where Ay and Ay are separation constants. (The two-dimensional problem con-
sidered in reference 1 is obtained by setting Ay = 0.) The function Y
obtained in this manner will not, however, satisfy the free surface boundary
condition given by equation (15) because of the variable coefficient cos 6.
The following procedure will be used to construct ¥ as a Fourier series in
@. Each term of the series will satisfy equation (14) and the boundary con-
dition at the rigid cylinder wall, equation (16). The coefficients of the
Fourier series will be chosen so that the interface boundary condition (15)
will be satisfied. In this manner ¥ is chosen of the form

0 '

I, (A :

¥ = Zﬁm(-)\ll") - —M Km(Klrgleﬂ\lx (cy cos mO + by sin mo) (21)
= Km (Naao)

where Iy and Ky vrepresent the mth order modified Bessel functions of the
first and second kind, respectively, and cpy and by are constants to be
determined. The separation variable Az in equation (19) was replaced by the
integer m +to insure physical continuity at 6 = 0, 2x. A prime has been
used to denote differentiation with respect to the argument of the function.
The substitution of ¥ from equation (21) into the free surface boundary
condition (15) results in

p{— GZ[ImO\la) - %‘1—'%@% Km(kla)] l:cm cos(m@) + by sin(m@):lei?\lX
=0 11 1o

0

+ g cos 927\1[1111, (A12) -
m=0

In (M180)

Kp' (Maag) Km’(%la):l [cm cos(mb) + by Sin(m@):\ej-?\lx}

1 {Z-xl{xm'<ma> _ %ﬂl—%ﬁ—% Ko (m)] [Cm cos(m6) + by sin(me>]eihx
M=o 143 120

+-%EZE:A1[Im'(K1a) - Eg%ﬁlgﬁgl Km'(Kla)} [cm cos(m@) + by sin(m@)j\ei?\lx

& = Km (A1z0)
+ -}—Z—Klmz[Im'O\la) - Ln—,(?\—lai) Km' (7\1a):| f:cm cos(m8) + bp sin(me):lej‘?\lx}

a® Km (%lao)

m=0
(22)
With the definitions

B = In(M12)Kp' (Mao) - In'(Mi2o)Km(Naa) (23)

In' (M12)Kn' (M 180) - In' (M180)Kn' (A12)



Cp = [Im'(ha) - Im—,(?ﬂ Km'(ha)}m (2k)
Kp (A120)
o = 22 b (25)

equation (22) may be simplified to

[v)0]
0 {— GZHme:L?\lXI:Em cos(mé) + bp sin(me):l

m=0
o0
+ g cos GZ%lei?\lX[Em cos(md) + by sin(m@):l}
m=0
oo
=T {z_ 7\l3ei7\1x[5m cos(md) + bpy sin(m@):l
m=0

0]
+ inleﬂ‘lx[Em cos(md) + by sin(me)J

m=0

<«
+ ;‘—ZZ— %lmzei%lx[am cos(md) + by sin(e):l}

M=0
(26)
The equations for ¢y are obtained by multiplying equation (26) by
cos(k6)a® (k = 0,1, . . .) and integrating from O to m which produces
[o0]
p[— cheﬁ\lx g S + gZAleiklemkEm]= T {[— N> o+ -;% (1 - kz)] %—t elxlxék}
m=0
(2n)
where
Tt
Agik =f cos @ cos(mf)cos(k6)de =0 m#k*1
0 (28)
7t
= = m=%k=x 1
n

Since eciuation (27) is to be valid for all values of x, the common factor
elMaX may be omitted



[o0]
T 3 ?\l o~ = 2 - = =
{— oHy - 3 [—xl + 5 (1 -k ):]}ck += g?xlemkcm =0 k = 0,1,2, .
m=0
(29)
In a similar manner the equations for Bm are obtained by multiplying
equation (26) by sin(k6)dé and integrating from O to m thus,
(8]
{— oy - % [— A o+ 2—2% (r - kz)]}ﬁk +§ g?\lemk"Bm =0 k=1,2, ..
m=1
(30)

which are identical to those for cp except for the range of summation index.
The @€y corresponds to symmetrical modes (symmetrical about 8 = O) and the
bm corresponds to the antisymmetrical modes.

It is convenient to make equations (23), (29), and (30) dimensionless by
the following substitutions

G = EEE g (31)
T
B =Nia (32)
= 2o :
€= (33)
_ pa®g
B = (34).
and the final equations for ¢y and by are
{'6 % Hk(B) - [Be + (k2 - 1)]}61; -2 BZAmkEm =0 k = 0,1,2,
m=0 (35)
and
[29)
{3 % Hk(B) - [BZ + (k2 - 1)]}Bk - %BZAkam =0 k =1,2,3,
e (36)

For purposes of clarity equations (35) and (36) are displayed in the following
matrix form
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and

5 Hléﬁ)

the coefficients

5 Ho(B) _ [pz + (0 - 1)1

|
W

o

B2 + (1 -1)]

_ Hp(B)
° 78

|t

[e]

!
rojw

[
i

(o]

1
N1

- [p2 + (¥ - 1)]

|
oo

(=}

5 _Hléﬁ) - [+ (1-1)]

(e}

|
njw

e R SCRE}

o

Hy(B)
B

0
2
- [B2 + (9 - 1)]
__2_ améﬁ)

o

B
-
- [+ (9-1)]
|
o
0
B
T2
- (B2 + (16 - 1)]
_

g

.,

(38)

There are two sets of linear, homogeneous, simultaneous equations for
Cm and by; therefore a nontrivial solution exists only if

the determinants of the coefficients of equations (37) and (38) are equal to
The eigenvalue problem for

Zero.

10

5 Hol(aﬁ) _

[pR2 + (0 -1)]

N

|ty

[AM ke

(o]

a#—wzﬂl-ln

5 Ha(B)
B

0 has been defined

0 0
_B o}
2
- [+ (k- 1)] -2
B 5 BalB) g2 4 (g 1))
5 B




for the symmetrical modes, and

BngB) - [8% + (1 -1)] -2 ) 0
B GHZ_(B)._ [p2 +(’+—l)] B o
) B 2z
0 -5 a&fﬂ—[ﬁ+(9—nl -2 =0
0 0 _g o H*BB) - [B® + (16 - 1)]

(ko)

for the antisymmetrical modes.
Stability Boundary

The stability boundary will be defined as the boundary between regions
of the B - B plane which correspond to stable and unstable motion of the
liquid layer. The boundary will be denoted by Ber and the critical wave-
length by

Ler = %ﬂé (k1)
cr

Loy 1s the minimum length of cylinder for which the liguid layer will De
unstable. As will be shown in the next section, Leyr 1s not necessarily (and,
in fact, not usually) the distance between droplets.

The stability boundary is found in the following manner. Denote the
frequency determinants (39) and (40) by

Qe - P| =0 (42)

11



where Q and P are matrices whose elements d 3 and Pij are defined as

_ 4 Hi S s
T S (43)
=0 i
Pyj = +[B%+ (12 -1)B 1=
B .
= + = = * 1
= i=J (leke)
=0 i 3%1,1#

Since Q and P are symmetric matrices and @Q is positive definite, then all
values of o are real (ref. 5). The stability criterion that o be real
and positive may be replaced by the simpler criterion that & be positive.
The stability boundary is the maximum value of B (minimum value of L) for
Whic?u ? = 0. This is accomplished by substituting © = O into equations (39)
and 0

82 + (0 - 1) 2 0 0
B B
5 B2 + (1 - 1) 5 0
B 2 B
0 § B + ()‘" - l) ] .
0 0 g B2 +(9-1) .
' (45)
B
B” + (1 -1) 5 0 0 .
B 2 B
5 B2 + (4 - 1) 5 0 6
B B
0 5 % + (9 - 1) 5
0 0 2 82 + (16 - 1)
(46)

12



and evaluating B(B) by assuming values of B and finding the corresponding
values of B from these new eigenvalue problems. An 8 X 8 (eight rows and
eight columns) approximation® was used for the infinite determinants. The
results of this numerical exercise, which was performed on a digital computer,
are presented in figure 2. The even numbered pB's (By, Bz, - - .) correspond
to the symmetric modes and the odd numbered (Bi1, Bz, - - .) to the antisymmet-
ric modes. The stability boundary Ber 1is identical to Bp since above this
boundary (B > Bo), all values of o are positive or, correspondingly, P is
positive definite.

The symmetrical and antisymmetrical mode shapes (6 variation) corre-
sponding to the lowest ordered B (Bo and Bl,respectively) are plotted in
figure 4. These mode shapes were obtained by substituting the appropriate
values for P, B, and o (o = 0) into equations (37) and (38) to obtain the ecp
and bp. The 6 variation of the mode shapes was then obtained by the summa-

7

8
tions E Cn cos nf and E :Bn sin né.
n=o n=1

An appropriate experimental check on the stability boundary would be a
systematic increase of cylinder length (keeping the interface radius constant)
until droplets appeared. Another approach would, of course, be to keep the
length fixed while increasing the interface radius. Experimental data of this
type apparently have not been obtained.

Considering thin layers (ap/a ® 1) and assuming a symmetrical mode shape,
Lee (ref. 3) obtained an approximate expression for the stability boundary;
namely,

2

Ber ® -1 (47)

Lee's approximation and the present theory are compared in figure 5. For

B < 4 the character of the two solutions is quite different. Lee's solution
implies that if B < 1, the layer is stable. The present theory shows Ber
intersecting the B axis at B = 1 which is in agreement with Rayleigh's
(ref. 6, p. 473) solution for a liquid jet (no effective gravity, B = O, and
no rigid cylinder, ag = O) where the critical wavelength is Lor = 2ma.

Droplet Formation

Although the stability boundary, Ber, separates stable and unstable
values of B, it does not necessarily determine the wavelength at which drop-
lets will form. If the layer is unbounded in the x coordinate (i.e., the

2The convergence of the B's, as the size (n X n) of the approximating
determinant is increased, is illustrated in a plot of B wversus 1/n for the
symmetrical modes (fig. 3). The 8 X 8 approximation is equivalent to retaining
a sixteenth-~order polynomial for B or an eighth-order polynomial for BZ
The real roots of the polynomial are the desired f values and are, therefore,
those values plotted in figure 3.
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length of the cylinder is much greater than the radius of the interface
surface), there is a value of B, to be denoted PBpgx, for which G has a
maximum negative value (i.e., a maximum.instability).3 Theoretically this is
the value of B at which droplets will appear.? The validity of this linear
analysis in predicting the droplet formation must be ascertained by a nonlin-
ear (large deflection) analysis or by experiment. The experimental work of
Lee (ref. 3) has shown that linear theory is sufficient to predict droplet
formation for B > 4; however, for B < 4 experimental data are, at present,
insufficient for definite conclusions to be drawn.

The PBpax curve was evaluated numerically for two ratios of rigid
cylinder radius to interface radius (€ = ap/a). The values, € = 0.0, 0.9,
were chosen to be typical of the whole range O < e < 1. The negative maximum
value of © was obtained by taking an 8 X 8 approximation for the frequency
equations (39) and (40). The resulting PBmax, (d6/dB) = 0, curves are shown
in figure 5. In this same figure Lee's approximate curve is shown for com-
parison. The analytical expression for Lee's solution is

~NB -
Bmax “"jj?"‘i (48)

The experimental data presented by Lee are plotted in figure 5. For
B > 4, theory and experiment agree well,S however, for B < 4 the experimental
data are not so complete as to warrant final comparison; therefore, more
experimental data points are required in this region.

8For the purposes of clarity, a sketch of o (B) for constant B is
presented in figure 6. The Bey as well as the Ppgx value is indicated.
The sketch corresponds to B = 3.

4The argument is that if the response is proportional to a series of
exponential terms (eP?) and the system is given a general disturbance, then
the term with the largest exponential factor b will eventually predominate.

SLee's data was for thin layers. Although he did not specify the thick-
ness, photographs of the experiments indicate that € = 0.9 is a reasonable
assumption.

It should be noted that in his experiments, Lee used a wick at the top of
the cylinder (6 = 0) which provided a boundary condition not taken into
account in the theory. Conclusive experimental data should be obtained with-
out obstructions in contact with the cylinder. It should also be remembered
that the criterion for droplet formation (from the analysis of Lee and the
present analysis) is based on the assumption of an infinitely long cylinder.
Thus when the distance between droplets is of the same order of magnitude as
the length of the cylinder, the end effects may be important. It is interest-
ing to note that for the two data points corresponding to B = 1.2 and 1.6
(fig. 5), the ratios of test cylinder length to distance between droplets are
integer values (7 and 8, respectively). In order to meet the physical
requirements at the ends of the tube, the number of wavelengths must, of
course, be integer values.

1k



CONCLUDING REMARKS

The stability criterion for a liquid layer of uniform thickness spread
over a rigid circular cylinder subjected to lateral acceleration has been
established according to the linear theory. The criterion for maximum insta-
bility, or droplet formation, of the unbounded (infinitely long) liquid layer
has been determined. No experimental data are presently available for the
stability boundary. Experimental data for droplet formation are available for
Bond numbers 1 < B < 100. For B > 2, theory and experiment agree well for
droplet formation. Since the experimental data for B < 2 are quite limited
and somewhat questionable (because of the ratio of the test cylinder length to
distance between droplets), more experimental data on droplet formation are
required if the comparison of theory and experiment is to be conclusive. The
analysis contained in this report is readily adaptable to the study of a
liquid layer spread over the inside of rigid circular cylinders, such as space
vehicle propellant tanks exposed to low gravity environments. The stability
criterion (fig. 2) is directly applicable but the maximum instability crite-
rion (fig. 5) must be recalculated.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., June 2, 1964
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Figure 1.- Sketch of liquid layer and rigid cylinder showing coordinate system.
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(b) Antisymmetrical modes.

Figure 4.- Symmetrical and antisymmetrical mode shapes (6 variation) corre-
sponding to Po for various values of B. All modes are normalized to the
same constant at their maximum values.
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