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ON THE STABZITY O F  A LIQUID LAYER O F  UNIFORM THICKNESS 

SPREAD OVER A R I G I D  CIRCULAR CYLINDER SUBJECTED 

TO LATERAL ACCELEMTIONS 

By Richard M .  Beam 

Ames Research Center 
Moffett Field,  C a l i f .  

SUMMARY 

The equations of  motion fo r  a l i qu id  layer  of uniform thickness spread 
over a r i g i d  c i rcu lar  cylinder subjected t o  l a t e r a l  accelerat ion a re  derived. 
The l i qu id  i s  assumed t o  be inviscid and incompressible and the  analysis  i s  
r e s t r i c t ed  t o  the l inear ized  (small def lect ion)  equations of  motion. The 
e f f ec t  of  surface tension of t he  l i qu id  is  included. 

A modal solution of  the  equations of motion i s  obtained and the  s t a b i l i t y  
c r i t e r ion  fo r  the  l i qu id  layer  i s  derived. In  addition, the  c r i t e r ion  for 
maximum i n s t a b i l i t y ,  o r  droplet  formation, i s  derived. Both of these c r i t e r i a  
a re  presented graphical ly  as a p lo t  of axial (along the  ax is  of  the cyl inder)  
wave length versus Bond number. Correlation between a previous approximate 
theory and the present theory i s  presented. 
a re  compared with the theor ies .  

The avai lable  experimental da ta  

INTRODUCTION 

The t ransportat ion,  storage,and u t i l i z a t i o n  of l i qu ids  under near zero 

A s  the  e f fec t ive  grav i ty  f i e l d  i s  dimin- 
grav i ty  conditions present many unanswered questions re la ted  t o  the  operation 
of spacecraft  and space s t a t ions .  
ished, the s t a t i c  and dynamic behavior of  a l i qu id  f r ee  surface i s  d r a s t i c a l l y  
changed since the interface surface tension forces become predominant. 

Most investigators '  t o  date have considered only the  hydrostatic or 
equilibrium configurations of the  f ree  surface,  while few have endeavored t o  
increase the qui te  l imited knowledge of the s t a b i l i t y  and dynamic character- 
i s t i c s  of  the  f r ee  surface.  The purpose of t h i s  report  i s  t o  invest igate  i n  
some d e t a i l  a geometrically simple three-dimensional hydrodynamic problem and, 
thereby, t o  obtain qua l i ta t ive  and quant i ta t ive information which may lead  t o  
a basic  understanding of t h i s  and more complicated problems. 

The physical problem may be l ikened t o  t he  droplets  formed on the under- 
s ide of a telephone wire during a r a i n  storm. 
i n  a regular d i s t r ibu t ion  along the  length of the w i r e .  
appears when the  coolant tubes o f  a condenser a re  located i n  a horizontal  
posi t ion.  One might wonder what ( i f  any) change would occur in  the  droplet  

'Extensive bibliographies a re  contained i n  references 1 and 2 .  

The.droplets appear t o  occur 
The same phenomenon 
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d i s t r ibu t ion  i f  t he  condenser were i n  a reduced gravi ty  f i e l d  and, i n  f ac t ,  
i f  possibly under these conditions no droplets  would form. Such a consider- 
a t ion  has significance i n  connection with condensers car r ied  on space 
vehicles .  

This ana ly t ica l  work is  an extension t o  three space dimensions of t h a t  
reported by Anliker and Beam (ref .  1) which presented the  two-dimensional 
analysis  of t he  s t a b i l i t y  of a uniform l iqu id  layer  covering a r i g i d  c i r cu la r  
cylinder.  An approximate solut ion t o  the  three-dimensional problem w a s  
obtained by Lee ( r e f .  3) and a comparison w i l l  be made between h i s  solution 
and the  one contained herein.  

In  the  following analysis ,  the  l i q u i d  i s  assumed t o  be incompressible and 
inviscid and the  flow i s  assumed t o  be i r ro t a t iona l .  The densi ty  of  the 
medium external  t o  the  l i qu id  f r ee  surface i s  assumed t o  be negl igible .  The 
analysis  i s  fur ther  r e s t r i c t e d  t o  the  l inear ized  (small deflect ion)  equations 
of motion, a rigorous derivation of which i s  given i n  reference 1. The accu- 
racy o f  the  assumption of an inviscid f l u i d  i n  the  investigation of the s m a l l  
displacement s t a b i l i t y  seems t o  be validated i n  pa r t  by the  work of Bellman 
and Pennington ( r e f .  4 ) .  
does not change the s t a b i l i t y  c r i t e r ion  but merely decreases the r a t e  of 
growth fo r  unstable wavelengths and causes damping fo r  the  s table  (osc i l la -  
t o ry )  wavelengths. The e s sen t i a l  discrepancy between the  physical problems 
mentioned above and the  mathematical problem i s  t h a t  the  physical l ayer  w i l l  
not remain precisely a t  uniform thickness unless the appropriate external  
nonuniform (var ia t ion around circumference of l aye r )  pressure d is t r ibu t ion  i s  
applied.  The app l i cab i l i t y  of t h i s  t heo re t i ca l  solution t o  the  physical 
problems i s  then determined by the  deviation of the  equilibrium configuration 
from a uniformly th ick  l aye r .  The avai lable  experimental data  indicate ,  
however, t h a t  the  theory i s  applicable over a wide range of Bond number. 

They have shown t h a t  fo r  f l a t  l ayers ,  v i scos i ty  

SYMBOLS 

A d  constant defined by equation (28) 

a radius o f  equilibrium f r ee  surface 

a0 radius o f  r i g i d  cylinder 

w2g Bond number, - T B 

bm,bm coeff ic ients  of Fourier s e r i e s  fo r  antisymmetrical modes 
- 

Cm,Cm coeff ic ients  of Fourier s e r i e s  f o r  symmetrical modes 

g 

Hm 

e f fec t ive  grav i ty  ( l a t e r a l  acceleration of r i g i d  cylinder) 

constant defined by equation ( 2 3 )  



Im 

Km 

Lcr 

Pi j 

Q 

qi j 

R 

r 

S 

T 

t 

X 

X 

P 

Pcr 

PmaX 

E 

modified Bessel function of the first kind of order m 

integers 

modified Bessel function of the second kind of order m 

wavelength corresponding to neutral stability of liquid layer 

integers 

matrix (eq. (42)) 

pressure in liquid layer 

equilibrium pressure distribution applied at free surface 

constant defined by equation (44) 

matrix (eq. (42)) 

constant defined by equation (43) 

function introduced for separation of variables 

radius of curvature of free surface 

cylindrical coordinate (fig. 1) 

bounding surface 

surface tension coefficient 

time variable 

function introduced for separation of variables 

cylindrical coordinate (fig. 1) 

dimensionless wave number 

value of P corresponding to neutral stability of liquid layer 

value of p corresponding to maximum instability of liquid layer 

ao ratio of cylinder radius to free surface radius, a 

displacement of free surface from equilibrium configuration 

function introduced for separation of variables 
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cylindrical coordinate (fig . 1) 
axial wave number 

separation constant 

liquid density 

frequency parameter (eq. (31)) 

potential f unct ion 

potential function in terms of space variables 

potential of body forces 

The mathematical model is formulated by considering the motion of a 
liquid layer of uniform thickness spread over a rigid nonporous circular 
cylinder (fig. 1). 
distance along the axis of the cylinder; 8, the angular displacement measured 
from the vertical; and r, the radial distance from the axis of the cylinder. 
The radius of the rigid cylinder is a. 
free surface of the liquid layer is a. The radial displacement of the free 
surface from its equilibrium position is denoted by 5 .  The body forces act- 
ing on the fluid (due to lateral acceleration of the cylinder) are normal to 
the axis of the cylinder and parallel to the plane 8 = 0 as indicated in 
figure 1. It is assumed that the liquid wets the rigid cylinder. 

The cylindrical coordinates will be denoted by x, the 

and the radius of the equilibrium 

The potential equation for incompressible irrotational flow is, in 
cylindrical coordinates, 

where CJ is the velocity potential of the fluid, t the time variable, and 
a subscript represents partial differentiation with respect to that variable. 
The dynamic boundary condition at the free surface ( r  = a + 5 )  is 

- 
where p is the pressure in the liquid layer, pe the external applied 
equilibrium pressure, T 
R1, R2 the principal radii of curvature of the free surface. The kinematic 
boundary condition of a surface may be written 

the surface tension (force per unit length) and 
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with S = 0 the equation of the  bounding surface.  A t  the  r i g i d  cylinder 
surface (Sc = r - a. = 0) there  i s  no flow through the boundary 

r=ao 

and at the  interface surface (S i  = r - a - 5 = 0) there  i s  no flow across the 
surface 

which a f t e r  elimination of nonlinear terms becomes 

r=a 

The pressure, 5, i s  given by the  l inear ized  Bernoulli equation ( r e f .  1) 

( 6 )  

where p denotes the  l i qu id  density, and 52, t he  poten t ia l  of the  body forces, 
i s  given by 

R = g r  cos 8 (7) 

with g representing the e f fec t ive  grav i ty  f i e l d  coeff ic ient  (or  the acceler-  
a t ion  of  the  r i g i d  cyl inder) .  

The l inear ized  expressions f o r  the pr inc ipa l  r a d i i  of curvature R1 and 
R2 a re  (see r e f .  1) 

(8) 1 -  a2c - - - -  
R1 ax2 

The appropriate subs t i tu t ions  from equations (61, (71, (8), and (9) in to  
equation (2) lead t o  

2 
p [ g  - g(a  + 5 )  cos e ] - pe = T[- a25 + ; (1 - 2 - ; $)I (10) ax. 

5 



which i s  a combination of t he  kinematic and dynamic boundary conditions which 
m u s t  be s a t i s f i e d  a t  the f r ee  surface (r = a + c )  or, t o  t he  first approxima- 
t ion ,  a t  t he  equilibrium f r e e  surface (r = a ) .  
obtain the pressure d i s t r ibu t ion  which m u s t  be applied t o  the  equilibrium 
f r e e  surface t o  maintain a uniform liquid l ayer ;  namely 

T 

&om r e l a t ion  (10) one may 

(11) Pe = - - pga cos 8 

Different ia t ing both sides of  equation (10) with respect t o  t i m e  and 
subs t i tu t ing  from expression ( 5 )  r e s u l t  i n  

The ve loc i ty  poten t ia l  0 must s a t i s f y  d i f f e r e n t i a l  equation (1) and the  
boundary conditions (4) and (12).  
var iables  by the  subs t i tu t ion  

With the separation of the  time and space 

iGt 
o(r,x,e,t) = e y(r,x,@) (13) 

in to  equations (11, (41, and (121, t h e  s t a b i l i t y  problem i s  reduced t o  the  
eigenvalue problem 

(14) 1 1 Y r r  + r Yr + - Ye6 + Y n  = 0 
r2 

where (5 i s  the eigenvalue and Y t h e  eigenfunction. If (5 is  complex, or 
real and negative, then CP increases without l i m i t  as t i m e  increases and i s  
therefore  unstable. If a i s  real  and posi t ive,  then 0 is osc i l l a to ry  
with time and the  amplitude depends on the  i n i t i a l  conditions or external  
disturbances; thus the  motion i s  stable. The s t a b i l i t y  c r i t e r ion  requires 
t h a t  a be r e a l  and posi t ive.  

Separation of the space var iables  by the  subs t i tu t ion  

Y = R ( r ) X ( x ) O ( B )  (17) 

in to  equation (14) leads  t o  the  following ordinary d i f f e r e n t i a l  equations 
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where A1 and h2 are separation constants. (The two-dimensional problem con- 
sidered in reference 1 is obtained by setting A1 = 0.) The function Y 
obtained in this manner will not, however, satisfy the free surface boundary 
condition given by equation (13) because of the variable coefficient cos 8. 
The following procedure will be used to construct Y as a Fourier series in 
0 .  Each term of the series will satisfy equation (14) and the boundary con- 
dition at the rigid cylinder wall, equation (16). The coefficients of the 
Fourier series will be chosen so that the interface boundary condition (13) 
will be satisfied. In this manner Y is chosen of the form 

where 
first and second kind, respectively, and Cm and bm are constants to be 
determined. The separation variable h2 in equation ( 1 9 )  was replaced by the 
integer m to insure physical continuity at 0 = 0, 23~. A prime has been 
used to denote differentiation with respect to the argument of the function. 
The substitution of Y from equation (21) into the free surface boundary 
condition (15) results in 

Im and Km represent the mth order modified Bessel functions of the 

With the definitions 
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equation (22) may be simplified t o  

m=o 

m=o 

The equations f o r  
cos(kQ)d@ (k = O,l, . . .) and integrat ing from 0 t o  fi which produces 

Em are  obtained by multiplying equation (26) by 

where 

- f l  - -  m = k + l  
4 

Since equation (27) i s  t o  be va l id  f o r  a l l  values of 
e i h l x  may be omitted 

x, t he  comon factor  
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- 
In a similar manner the equations for 
equation (26) by sin(k8)d.Q and integrating from 0 to fl; thus, 

bm are obtained by multiplying 

- which are identical to those for Cm except for the range of summation index. 
The Em corresponds to symmetrical modes (symmetrical about 8 = 0) and the 
Em corresponds to the antisymmetrical modes. 

It is convenient to make equations (23), (29), and (30) dimensionless by 
the following substitutions 

p = Ala (32) 

( 3 3 )  

- 
and the final equations for cm and 5, are 

W 

{3 $ H k ( p )  - p2 + (k2 - 1) I}& - 5 BCA*& = 0 k = 0,1,2, . . . 
m=o (35) 

and 

{z 2 Hk(p) - p2 i- (k2 - 1) I> bk - gB:A*Em = 0 k = 1,2,3, . . . 
(36) 

m= 1 

For purposes of clarity equations (35) and (36) are displayed in the following 
matrix form 

9 



l11l1111llIIlI I1 Ill11 II Ill I1 I I 

B 
2 

- -  [pz + (0 - 1)l 

- _  B 3 H10 - [ P Z  + (1 - 
2 P 

B 
2 

- -  0 

0 0 

0 

B 
- 5  

t P 2  + (4 - 

B 
2 

- _  

and 

0 B 
2 
B 3 H20 - [ P Z  + (4 - 1)1 - 5  P 

_ -  

B 
2 

0 K(p) - [pz + (16 - 111 

_ -  B 
2 

Z H 3 0  - [pz + ( 9  - 1 ) l  
P - _  0 

- -  B , 0 0 2 P 

0 

0 

= 1.. 
There are two s e t s  of l i nea r ,  homogeneous, simultaneous equations fo r  

the coef f ic ien ts  
the  determinants of the  coeff ic ients  - of equations ( 3 7 )  and ( 3 8 )  a re  equal t o  
zero. The eigenvalue problem f o r  0 has been defined 

Em and bm; therefore  a nont r iv ia l  solution e x i s t s  only i f  

= o  
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f o r  the  symmetrical modes, and 

0 0 B 
2 

_ -  H d P )  
r - - [p2 + (1 - 1)I 

P 

0 B B 0 H20 - [p + (4 - 113 - -  - E  P 2 

B 
-2 -  

B 3 H,o - [P2 + ( 9  - 113 
- 2 -  P 0 

B 0 H4(a) - [p2 + (16 - 111 . 
2 P _ -  0 0 

= 0  

for t he  antisymmetrical modes. 

S t a b i l i t y  Boundary 

The s t a b i l i t y  boundary w i l l  be defined as the  boundary between regions 
of t he  P - B plane which correspond t o  s tab le  and unstable motion of the  
l i qu id  layer. The boundary w i l l  be denoted by Pcr and the c r i t i c a l  wave- 
length by 

Lcr 
unstable. As  w i l l  be shown i n  the  next section, Lcr 
i n  f ac t ,  not usually) the  distance between droplets .  

i s  the minimum length of cylinder f o r  which the  l i q u i d  layer  w i l l  be 
i s  not necessar i ly  (and, 

The s t a b i l i t y  boundar is  found i n  the  following manner. Denote the  
frequency determinants (397 and (40) by 

11 



where Q and P a re  matrices whose elements qi j  and p i j  are defined as 

H i  
q i j  = +-. P 

= o  
J 

B 
2 

= + -  

= o  

i = j + . 1  

J i # j 1, i # j 

(43) 

(44) 

Since Q and P a re  symmetric matrices and Q i s  posi t ive def in i te ,  then a l l  
values of  cr are  real ( ref .  5 )  . The s t a b i l i t y  c r i t e r ion  t h a t  5 be r e a l  
and posi t ive may be replaced by the  simpler c r i t e r i o n  t h a t  cr be pos i t ive .  
The s t a b i l i t y  boundary i s  the  maximum value of P (minimum value of  L)  fo r  
which 3 = 0. This i s  accomplished by subs t i tu t ing  (I = 0 in to  equations (39) 
and (40) 

- 
- 

- 

0 0 

0 B 
2 

B 
2 

B 
2 p2 + (0 - 1) 

- B p2  + (1 - 1) 
2 

B 
2 0 

0 0 
= o  

P2 + (4  - 1) - 

P2 + (9 - 1) ' B z 

B 
2 
0 

- 

0 

B 
2 p2 + (4  - 1) 

B 
P 
0 

0 

B 
P P2 + (9 - 1) 

p2 + (16 - 1) 

= o  
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and evaluating p(B) by assuming values of B and finding the  corresponding 
values of p from these new eigenvalue problems. An 8 X 8 (eight  rows and 
eight  columns) approximation2 was used f o r  t he  i n f i n i t e  determinants. The 
r e su l t s  of t h i s  numerical exercise,  which w a s  performed on a d i g i t a l  computer, 
a r e  presented i n  f igure 2.  The even numbered p ' s  (Po, p2, . . .) correspond 
t o  the  symmetric modes and the  odd numbered ( P I ,  p 3 ,  . . .) t o  the antisymmet- 
r i c  modes. The s t a b i l i t y  boundary Pcr i s  ident ica l  t o  Po since above t h i s  
boundary ( p  > Po), a l l  values of  0 are posi t ive or ,  correspondingly, P i s  
posi t ive de f in i t e .  

- 

The symmetrical and antisymmetrical mode shapes ( e  var ia t ion)  corre- 

These mode shapes w e r e  obtained by subs t i tu t ing  the  appropriate 
sponding t o  the  lowest ordered 
f igure 4. 
values f o r  p, B, and cr (0 = 0) in to  equations (37) and (38) t o  obtain the  Cn 
and bn. The 8 var ia t ion of the mode shapes w a s  then obtained by the  s m -  

p (Po and pbrespec t ive ly)  are p lo t ted  i n  

7 R 

t i ons  En cos ne and En s i n  ne. 
n= o n= 1 

An appropriate experimental check on the s t a b i l i t y  boundary would be a 
systematic increase of cylinder length (keeping the  interface radius constant) 
u n t i l  droplets  appeared. Another approach would, of course, be t o  keep the 
length fixed while increasing the interface radius.  Experimental data  of t h i s  
type apparently have not been obtained. 

Considering t h i n  layers  (ao/a 1) and assuming a symmetrical mode shape, 
Lee ( r e f .  3) obtained an approximate expression f o r  the  s t a b i l i t y  boundary; 
namely, 

Lee's approximation and the  present theory a re  compared i n  f igure 5 .  
B < 4 the character of the  two solutions i s  quite d i f f e ren t .  
implies t ha t  i f  B < 1, the  layer  i s  s table .  The present theory shows Pcr 
intersect ing the p axis  a t  p = 1 which i s  i n  agreement with Rayleigh's 
( r e f .  6,  p. 473) solution f o r  a l i qu id  j e t  (no e f fec t ive  gravi ty ,  B = 0, and 
no r i g i d  cylinder,  a. = 0) where the  c r i t i c a l  wavelength i s  

For 
Lee's solution 

Le, '= 2m. 

Droplet Formation 

Although the s t a b i l i t y  boundary, Per, separates s tab le  and unstable 
values of p, it does not necessar i ly  determine the  wavelength a t  which drop- 
l e t s  w i l l  form. If the  layer  i s  unbounded i n  the  x coordinate ( i . e . ,  t he  

p ' s ,  as the s ize  (n X n)  of t he  approximating 
determinant i s  increased, is  i l l u s t r a t e d  i n  a p lo t  of p versus l / n  f o r  the  
symmetrical modes (fig.  3 ) .  The 8 x 8 approximation i s  equivalent t o  re ta ining 
a sixteenth-order polynomial f o r  p or  an eighth-order polynomial fo r  p2.  
The r e a l  roots  of the  polynomial are  the  desired p values and are ,  therefore, 
those values p lo t t ed  i n  f igure 3. 

2The convergence of the  



length of t he  cylinder i s  much grea te r  than the  radius of the  interface 
surface) ,  there  i s  a value of p ,  t o  be denoted pmX, f o r  which 5 has a 
maximum negative value ( i . e . ,  a maximum i n s t a b i l i t y )  .3 Theoretically t h i s  is  
the  value of p a t  which droplets  w i l l  appear.4 The v a l i d i t y  of t h i s  l i n e a r  
analysis  i n  predicting the  droplet  formation must be ascertained by a nonlin- 
ear ( large def lect ion)  analysis  or by experiment. 
Lee ( r e f .  3) has shown t h a t  l i n e a r  theory i s  su f f i c i en t  t o  predict  droplet  
formation f o r  B > 4; however, f o r  B < 4 experimental data  are, a t  present,  
insuf f ic ien t  f o r  d e f i n i t e  conclusions t o  be &awn. 

The experimental work of 

The pmaX curve w a s  evaluated numerically f o r  two r a t i o s  of r i g i d  
cylinder radius t o  interface radius (E = ao/a) . 
were chosen t o  be typ ica l  of the  whole range 
value of 
equations ( 3 9 )  and (40). 
i n  f igure  3 .  In  t h i s  same f igure L e e ' s  approximate curve i s  shown f o r  com- 
parison. The ana ly t ica l  expression f o r  Lee's solut ion i s  

The values, E = 0.0, 0.9, 
0 < E <l. The negative maximum - 

CI w a s  obtained by taking an 8 X 8 approximation fo r  t he  frequency 
pmax, (d3/dp) = 0, curves are shown The resu l t ing  

- J' B - 1  
&"a- ./7 

The experimental da ta  presented by Lee a re  p lo t ted  i n  f igure 2. For 
B > 4, theory and experiment agree Well,5 however, f o r  
da ta  a re  not so complete as t o  warrant f i n a l  comparison; therefore ,  more 
experimental data  points  are required i n  t h i s  region. 

B < 4 t he  experimental 

3 For the  purposes of c l a r i t y ,  a sketch of 5 ( P )  fo r  constant B i s  
presented i n  f igure  6. The Pcr as well as the  pmax value i s  indicated.  
The sketch corresponds t o  

exponential terms (ebt ) 
the  term with the  l a r g e s t  exponential fac tor  b will eventually predominate. 

Although he d id  not specify t h e  thick- 
ness, photographs of t he  experiments indicate  t h a t  E = 0.9 i s  a reasonable 
assumption. 

It should be noted t h a t  i n  h i s  experiments, Lee used a wick a t  t h e  top of  
the  cylinder ( e  = 0) which provided a boundary condition not taken in to  
account i n  the  theory. Conclusive experimental data  should be obtained with- 
out obstructions i n  contact with the  cylinder.  It should a l so  be remembered 
t h a t  t he  c r i t e r i o n  f o r  droplet  formation (from the  analysis  of Lee and the 
present analysis)  i s  based on the  assumption of an i n f i n i t e l y  long cylinder.  
Thus when the distance between droplets  i s  of  t he  same order of magnitude as 
the  length of t h e  cylinder,  the  end e f f ec t s  may be important. It i s  in te res t -  
ing t o  note t h a t  f o r  t he  two data  points  corresponding t o  
( f ig .  ?), the  r a t i o s  of t e s t  cylinder length t o  distance between droplets  a re  
integer  values (7 and 8, respect ively) .  
requirements a t  the  ends of the  tube, the  number of wavelengths must, of 
course, be integer  values. 

14. 

f i  z 3.  
4The argument i s  t h a t  i f  the response i s  proportional t o  a se r i e s  of 

and the  system i s  given a general  disturbance, then 

?Gee's data  w a s  f o r  t h i n  layers .  

B = 1 .2  and 1.6 

In  order t o  meet the  physical 



p 

CONCLUDING l3NARKS 

The s t a b i l i t y  c r i t e r i o n  f o r  a l i qu id  layer  of uniform thickness spread 
over a r i g i d  c i r cu la r  cylinder subjected t o  l a t e r a l  acceleration has been 
established according t o  the  l i n e a r  theory. The c r i t e r ion  f o r  maximum insta-  
b i l i t y ,  o r  droplet  formation, of t he  unbounded ( i n f i n i t e l y  long)  l i q u i d  layer  
has been determined. 
s t a b i l i t y  boundary. 
Bond numbers 1 < B < l o o .  
droplet  formation. 
and somewhat questionable (because of t he  r a t i o  of the  t e s t  cylinder length t o  
distance between droplets)  , more experimental data  on droplet  formation are 
required i f  t h e  comparison of theory and experiment i s  t o  be conclusive. 
analysis  contained i n  t h i s  report  i s  readi ly  adaptable t o  the  study of a 
l i q u i d  layer  spread over the  inside of r i g i d  c i rcu lar  cylinders,  such as space 
vehicle propellant tanks exposed t o  low gravi ty  environments. The s t a b i l i t y  
c r i t e r ion  ( f ig .  2) i s  d i r e c t l y  applicable but the  maximum i n s t a b i l i t y  c r i t e -  
r ion  ( f ig .  5) m u s t  be recalculated.  

No experimental data  a re  present ly  avai lable  f o r  the  
Experimental data  f o r  droplet  formation a re  avai lable  f o r  

For B > 2, theory and experiment agree w e l l  f o r  
Since t h e  experimental data  f o r  B < 2 are  quite l imi ted  
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Figure 1.- Sketch of l iquid layer and r ig id  cylinder showing coordinate system. 
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Figure 2.- Stable region of layer as a function of dimensionless cylinder 
length and Bond number. 
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Figure 3.- Plot of dimensionless wavelength as a function of the size of the 
determinant approximating the infinite determinant in equation (45).  



(a) Symmetrical modes. 

(b) Antisymmetrical modes. 

Figure 4.- Symmetrical and antisymmetrical mode shapes ( 8  variation) corre- 
sponding to Po for various values of B. All modes are normalized to the 
same constant at their maximum values. 
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Figure 3 . -  Comparison of Per and PmX from theor ies  and experiments. 
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Figure 6.- Typical sketch of o(P) f o r  one value of  B and indicating Pcr and PWx. 
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