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ABSTRACT ! 9%

This report contains an extension of the results
presented in NASA Technical Memorandum X-53059, '"Space
Vehicle Guidance - A Boundary Value Formulation," by
Robert W. Hunt and Robert Silber, June 8, 1964, In that
memorandum, the control laws for space vehicle guidance
were formulated as a set of functions implicitly defined
by a set of boundary conditions. In this report the
domain of the control laws is augmented to contain
mission parameters. In this way, the control laws are
defined for a family of missions rather than for a single

mission. /567%3:
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INTRODUCTION AND SUMMARY

This report contains an extension of the results of
reflerence one. In reference one, the control laws for
space vehicle guildance are formulated as a set of functions
implicitly defined by a set of boundary conditions imposed
on the solutions of the differential equations of motion
and of optimal control. The boundary conditions them-
selves stem from two sources, the mission criteria and
certain conditions necessary for optimality. The implic-
itly defined control laws have for their arguments the
current state of the vehicle, vehicle performance para-
meters and, possibly, time. A numerical method for the
generation of ftruncated Taylor's series for the control
laws is presented in reference one.

The extension of the results of reference one consists
of augmenting the domain of the control laws to contain
certain "mission-parameters." In this way, the control
laws are defined for a family of missions rather than for
a single mission. Each mission 1s assumed to differ from
the others of the family by the alteration of one or
more mission parameters.

As an example, one might consider the mission of
injecting into an orbit with given orbital elements.,
Using the extended domain, the desired orbital elements
can be made to appear parametrically in the control laws
(and thus also in their Taylor's series) permitting a
change of mission either on the pad or in flight.

It is assumed that the reader is familiar with
reference one, and throughout this report reference is
made to particular sections and equations appearing
therein.



BOUNDARY CONDITIONS WITH PARAMETERS

In reference one, the boundary conditions are given by
equations (1.22) and later discussed in equation (2.1).
We repeat them here.

Fj(t,yl,yE)-oo’yn) = O, j = 1,2,.-.,1{-}'1 . (1.1)

We now replace these functions with the set (1 2)

Gj<t3yl’y2’""yn’cl’CQ-’""cp)J j 21,2,.oo,k+1

In part two of reference one, the set V 1s defined as the
collection of real n+l-tuples at which each of the functions
Fj(t,yl,yz,...,yn) is analytic. Correspondingly, we now
define W to be the set of all real n+l+p-tuples at which
each of the functions Gj(t,YJ,yg,...,yn,05,cz,...,cp) is
analytic.

The definition of the proper, real, analytic, non-singular,
controlliable solution is altered to read

(1) oi(t) is real valued on [1¥*,te*] for each
i=1,2,...,n and satisfies equation (2.2) of reference one
there;

(11) For each t ¢ [1¥,te*], the point (g, (t), o9, (t),

.>on(t),t) ¢ U, and there exists a set of parameters,

* * * ¥
(cl,cdy .. cp), such that (tF,e (tF),0 (tr), .. 0n(tr),
of,cj,...,cg) e W;

‘o *
(11i1) Gj(tf,cpl (t-)f(:),cpz(t}g),. . .,wn(t§),cf,c§,. ..,ng) =0
for each j = 1,2,...,k+1;
(iv) Gj(t,wl(t),mg(t),...,mn(t),cl,cg,...,cp) # 0
simultaneously for all J for t ¢ [T*,tff);
(v) A certain Jacobian J # O.

The Jacobian J ' 1is essentially the same determinant. One

forms the composite functions Gj(t,Yl(t,T,nl,ﬂg,..-,nm+k),...,

Yn(t:T:ﬂl:ﬂa:---:ﬂm+k):01:cz:-o-:0p) for each j = 1,2,...,k+1
. *

and denotes these functions by Gj(t,T,nl,...,nm,nm+1,...,ﬂm+k,

Cl JCQ"'-:Cp>-

2




The Jacobian J 1is then given by

*
B(GlgG’)z(-, .. .’G;+l)
Jd = 3
a(tﬁnm—i—l) . °)nm+k)

evaluated for arguments corresponding to t:tF, T=T%,

ni:n§ for each 1i=1,2,...,n and ci=c§ for each 1=1,2,...,p.

One now considers the system of equations

G?]f(t:TJﬂl:o' "nm’nm—kl’""nm+k501502""’0p) =0

for each j=1,2,...,k+l. These equations implicitly define

the functions

tr = BP(T,nl,...,nm,cl,...,cp), r=1,2,...,k

and t = tf(T,ﬂl,...,ﬂm,C1,...,Cp)

N

)

such that the functions are uniquely defined and analytic

in all their arguments in a complex neighborhood of

* *
(T*,nl,...,n%,cl,...,cg), such that

*
BP(T*,ﬁﬁ,...,n;,01,...,c;) =Nhyr » Tr=1,2,...

*
tf(ﬁ:nﬁ:o--:”f};}:cl:---:c—g) :t-)f(-‘ s

and such that

*
Gj [tf‘('r,nl,o.-_y'r)m}cl_’-ooycp),T_,nl_,o.o,T)m)
Bm+1(7,n1,..,,nm,01,...,cp),...,

Bm“‘"k(’r’nl’...’nm’Cl,'..’Cp)] = O

s K,

(1.3)

(1.4)



for each j=1,2,...,k+l1 and all arguments in a complex

*
neighborhood of (T*,”T,...,na,cf,...,cp).

Equations (1.3) furnish the control laws with augmented
domain. To reflect this augmentation in the Taylor's series,
it is necessary to determine, in addition to the partials
treated in reference one, the partials of f,. and ¢ty with
respect to ¢y for each r=1,2,...,k and for each
1=1,2,...,D.

The partlals of the control laws with respect to the
arguments TsN1sMNase..,Ny are found exactly as in
reference one. It is clear that the presence of the additional
parameters will in no way alter the methods of reference one,

pecause of the simple relation
Fj(t:yl:ye:---)yn) = (1'5)
* ¥
Gj(t)leyZJ .. 'Jyn)clﬁc2." . -:Cé)

for each j=1,2,...,k+1. The Fj are the mission criteria
of reference one, and since the partials are all to be
evaluated at the end polnt of t@e reference, the functions
Fj(t,yl,yz,...,yn) and Gj(t,yl,yg,...,yn,cﬁ,cé,...,c;)

are completely interchangeable as regards the first n+l

arguments.,

Once the computation described in reference one has
been carried out for the determination of the partials of
a given order of the control laws with respect to the
arguments fte,n...57, Very little additional computation
is needed to generate numerical values for the partials of
the control laws with respect to the mission parameters
(i.e., the c;).




If (1.4) is differentiated with respect to ci, there results

26% 3tp k 9G] Ofpg., OG]
+ +

e =0 (1.6)
dt dcey r=1 on, .. dcj dcy
and from the definition
%, \ (1.7)
Gj\t:T;ﬂ1,---:7m,ﬂm+1,---;nm+k:01;02:---:Cp) =

Gj(t,Yl(t,T,T)1,...,7’)m+k),...,Yn(t,T,T)1,...,ﬂm_’_k),C].,Qg,...

we have

* n
363 a¢ E: 3Gy dYg

— = — _— (1.8)
ot ot STy 9vg ot

* n
3G ) EBYS ’ (1.9)
OMmir  g-1 9Ys OTmsr
el
oGy oGy (1.10)
Bci Boi

:Cp):



Combining (1.6), (1.8), (1.9), and (1.10),

(1.11)

t sl oyg ot Jocy
K 2 3¢ 37, B e
N }: E: J S m+r J _ g
1 s Vs OMmyr OCH dcyi

Let 1 be fixed between 1 and p and let (1.11)
be written for each j=1,2,...,k+1. Then the result is a

linear system of k+1 equations in the k+1 unknown partials

ote aﬁm+r
2 3 r:132,oo.,k-

dcy dcy

In view of the methods of reference one, every other quantity
in the linear system can be assumed known. Further, the
Jacoblan of the system is exactly the determinant J assumed
different from zero at the end point of the reference trajec-
tory. Thus, a numerical determination of the partials of

the control laws with respect to the mission parameters can

be effected for first order partials. Subsequent differenti-
ations of (1.11) will yield linear systems which define higher
order partials, as well.
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