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INTRODUCTION TO THE APPLICATION OF

VON ZEIPEL'S METHOD

by

William J. Wickless, Jr.

INTRODUCTION

To understand the application of Von Zeipel's method in the case of

a satellite orbiting under the influence of a gravitational field plus small

perturbating forces, it is first necessary to summarize the development

of several concepts of classical mechanics. Therefore, the first portion

of this paper will be a brief resume of material which may be found in

greater detail and slightly modified form in Chapters 7-8 of Classical

Dynamics of Particles and Systems by Jerry B. Marion, Dept. of Physics,

University of Maryland. A good knowledge of ordinary differential and

integral calculus is assumed.
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I. AN INTRODUCTION TO THE CALCULUS OF VARIATIONS

The basic problem of the calculus of variations is determining the

unknown function y(x) describing a path between two fixed end points

we call y(x I) and y(x2) such that

I _ f [y(x), y' (x), x] dx



takes on a maximum or minimum, f is a given function of the functions

y(x), y'(x) and the independent variablex and the limits of integration

are fixed. That is, if we wish to minimize I (say), we wish to find a

function y(x) such that if Yl(X) is any other continuous function such

that Yl(Xl) = Y(Xl), yl(X2) = y(x 2) --any other path between Y(Xl) and

y(x2) - then:

i f _<
Xl

f [Yl(X)i y;(x), x] dx

Yl(X)

_y(x 2)

Y(Xl)" _ --

x 1 x 2

(All functions will be

assumed to be differen-

tiable to any needed
order)

Two possible paths between y(xl) and y(x2) are sketched above.

We will consider families of functions, giving possible paths between

two fixed pointsy(xl) and y(x2) , indexed by a parameter a, a running over

a suitable segment of the real line. That is, we will consider families

of the form

{y(a, x)}

x_ [×1' x2]

ae [a, b] with

o



y(a, xl) = y(x 1) = constant_

y(a, x2) Y(X2) constant)

for all

ae [a, b].

Then the integral I becomes a function of the parameter a:

I(a) =

x 2

f[y(a, x), y'(a,x), x] dx.

For example

I(a) = _ x (a sinx) dx

ae [1, 2]

where

y(a,x) = a sin x

fix, y(a, x), y' (a, x)] = xy(a, x3

x I = O, x 2 --2?7

y(x 1) = 0 y(x 2) = 0

w

NOTE: a sin (0) = 0; a sin 2_ = 0 for all ae [1, 2]; {a sin x} repre-

sents the family of paths between the pts (0, 0) -y(xl), (2_r, 0) -=y(x 2)

shown at top of following page.

i

z



y(3/2, x) 3/2 sin

Z x

y(x i )-------_ _f " "_ A ------_ Y(x2 )

o x

• "_y(2, x) = 2 sin x

Now if the integral so written is to have an extremum along some

path Y(ao' x)

then

This means

ao c [a, b]

3I(a)13_ = O.
_=_0

x 2

Xl

f [y(a, x), y'(cL, y), x] dx

a--s O

=0.

since x is independent ofc_, the partial may be taken under the integral

sign:
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x2

y ba+3y ' _aa'J
Xl

=0.

Now the above equation may be integrated by parts (see (I), Sec. 7-3) to

obtain

x 2

f d f] YdxL_y dx _ _--_
x 1 a--a 0

=0.

As f is assumed to be an arbitrary function of

the integrand itself must vanish:

y(a, x)y'(a, x) x,

for all xe [x 1, x2].

Also since {y(a, x)} is an arbitrary family of paths, in general

_y(a, x)l 4=0 along the curve

_a [ a=aO

y : y (ao, x)

xE Ix 1, x2]

I
!



Now if x(t) is the path followed by the particle, the Euler-Lagrange

equation must be satisfied, i.e.

Now

3L d 3L

bx(t) dt 3:_ (t)

3L _L
- Kx(t); _ m _(t)

3x(t) _(t)

• d
•".-Kx(t) =_-_ [m£(t)]

or

_(t) +w02 x(t) : 0 with wo =- E/_m.

This differential equation may be solved (see any elementary text)

to obtain

x(t) =A sin (w ot + 8)

where A + _ are constants of integration to be fitted to the initial data -

in this case A =h, S = _/2.

Now an important thing to notice is that the Lagrangian is a scalar

function (being the difference of kinetic and potential energies - both

scalar functions). Thus we can, if desired, transform one co-ordinate

variable x(t) to a new variable q(t) under some co-ordinate transfor-

mation _b and we have
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L(x(t), _(t), t) -L(q(t), _l(t), t).

(This is actually the defining property of a scalar function).

The Euler-Lagrange equation is still valid:

_L d "SL _ O.

_q(t] dt 3_(t)

Now as one final generalization, it is clear the original analysis

could have been carried out to treat the case of a particle with more

than one degree of freedom. The bagrangian then would have been a

function of several co-ordinate variables, their derivatives, and pos-

sibly the time, i.e.

L =L(xl(t) .... x (t), _1(t) .... _ (t), t).

We then could proceed in a similar fashion [see (I), Sec. 7-7] to obtain,

instead of the single equation

the system of equations:

bL d _L 0

3x dt Dx

___L_ d 3L :0

_xi dt _xj

j=l, 2 ..... N.



Now as this Lagrangian is still a scalar function, we may make if

desired, a co-ordinate transformation ¢ from the position variables

{Xl(t)''" x(t)} to some new set of variables {qa(t) .... qn(t)}

and we still have:

And also

..... qn' t) =L(x 1,..xn ' xl"''Xn' t).

d
_ _ _ °_qj dt _j = O. j = 1. .n (a)

It is important to note that the new variables may be chosen as a

set of any N functions ql(t) .... q,(t) at all as long as the Lagrangian

may be expressed as L = L(ql(t)...q,(t), c_l(t) . . .c]n(t ) t). In

a real problem, a set of variables ql(t ). . .qn(t ) are usually chosen

so that L may be easily expressed as L(ql " " " qn ctl " " " qn t). Then

the system (a) is integrated, givingqj =qj(t, constants of integration)

j : 1 "''n(b).

Finally the transformation ¢ is inverted and ¢-I is applied to (b),

yielding

xj :xj(t) j : 1 .... N.

The vector F(t)= (x_(t) .... Xn(t) ) is then the position

the particle under consideration.

vector of
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x2

y "_a+'_y' _'_]

Xl

=0.

Now the above equation may be integrated by parts (see (1), Sec. 7-3) to

obtain

x 2

Xl

dx

O. = 0,.0

=0.

As f is assumed to be an arbitrary function of y(a, x) y'(a, x) x,

the integrand itself must vanish:

a.--_z0

=0

for all x_ IxI, x2].

Also since (y(_, x)} is an arbitrary family of paths, in general

_y(a, x) I :]= 0

_o. ] _=aO

along the curve

Y : Y (ao' x)

xc Ix 1, x2]



therefore

bf d bf

_y(%, x) dx 3y'(a o, x)
-0

for all xE [x 1, x2].

This is known as the Euler-Lagrange equation.

II. APPLICATION OF THE EULER-LAGRANGE EQUATION

TO PHYSICAL SYSTEMS

It is known that if a particle is allowed to move between two fixed

pts in the plane x(tl) and x(t2) in the time interval

the possible paths given bythe family of curves {x(a,

[tI , t_] in any of

t)} t e [tl, t2]

ac [a, b]

it will actually move in the path x = x(%, t) for which

t2

f
tl

(T - U) dt is a relative extreme.

(Note that this is a local

condition.)

(see (l), Sec. 8.3)

Here T is the kinetic energy of the particle at the point x(_, t) -

T = I/2 m_2(a, t) - and U is the potential energy at the same pt

U = U(x(_, t)).



.'. along the path of the particle's motion x(t) : x(a 0' t), the Euler-

Lagrange equation must be satisfied by the quantity L =(T -U). L is

called the Lagrangian of the system.

Thus we have

_L d _L

3_(t) dt D_,(t)

-0.

If the Lagrangian of a system is known, the above equation may be

integrated giving the path of the particles motion x = K(t).

EXAMPLE: Determination of the Equation of Motion for a

Harmonic Oscillator

Let a particle of mass m be attached to a spring with spring constant

K and relaxed length O. Choose a co-ordinate system such that the point

of equilibrium of the spring is at x = O. Let the mass be pulled to a

distance h above the x = 0 level and released at a time t = O. Find x(t)

(the bar is hereafter dropped for convenience)

h

x=O

Now for any time t, we have T = 1/2 m_2(t) and U = 1/2Kx 2 (t).

so L =T-U= 1/2m£2(t) -1/2Kx2(t).



Now if x(t) is the path followed by the particle, the Euler-Lagrange

equation must be satisfied, i.e.

Now

3L d _L

3x(t) dt _(t)
-0.

_L :L
_ Kx(t);

_x(t) _(t)
_ m _(t)

• d
•". - Kxft) = _---_ Em _(t)]

or

x(t) =0 with w0 _ _._(t) + w 0

This differential equation may be solved (see any elementary text)

to obtain

x(t) :A sin (w 0t + 8)

where A + 8 are constants of integration to be fitted to the initial data -

in this case A = h, 8 = _/2.

Now an important thing to notice is that the Lagrangian is a scalar

function (being the difference of kinetic and potential energies - both

scalar functions). Thus we can, if desired, transform one co-ordinate

variable x(t) to a new variable q(t) under some co-ordinate transfor-

mation _ and we have
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L(x(t), _(t), t) =L(q(t), cl(t), t).

(This is actually the defining property of a scalar function).

The Euler-Lagrange equation is still valid:

3L d _ L

_q(t) dt _(t)
=0.

Now as one final generalization, it is clear the original analysis

couId have been carried out to treat the case of a particle with more

than one degree of freedom. The Lagrangian then would have been a

function of several co-ordinate variables, their derivatives, and pos-

sibly the time, i.e.

L = L(x1(t) .... xn(t), £1(t) .... :_n(t), t).

We then could proceed in a similar fashion [see (1), Sec. 7-7]

instead of the single equation

_L d 3L
=0

_x d t 3_

the system of equations:

to obtain,

=

_L d _L

_xj dt 3_j
=0

j =1, 2 ..... N.



Now as this Lagrangian is still a scalar function, we may make if

desired, a co-ordinate transformation qb from the position variables

{xl(t)''' Xn(t )} to some new set of variables {ql(t) .... qn(t)}

and we still have:

..... qn' -ql ..... qn' t) =L(x 1' xn' 1(1 x n, t).

And also

3L d hL

_qj dt _4J
=0. j = 1...n (a)

It is important to note that the new variables may be chosen as a

set of any N functions q1(t) .... qn(t) at all as long as the Lagrangian

may be expressed as L = L(ql(t)" • • qn(t), ql(t) " ' "qn(t) t). In

a real problem, a set of variables ql(t)" • "qn(t) are usually chosen

so that L may be easily expressed as

the system (a) is integrated, giving qj

j = I "''n(b).

L(ql " " " q, ql ' " "qn t). Then

= qj ( t, constants of integration)

Finally the transformation _bis inverted and q5-I is applied to (b),

yielding

=

= :

xj =xj(t) j = 1 .... N.

The vector F(t) = (xl(t) .... Xn(t)) is then the

the particle under consideration.

position vector of

IO



III. CONSTRUCTION OF THE HAMILTONIAN, THE

CANONICAL EQUATIONS OF MOTION

Now let us consider a system in which (1) the Lagrangian is not an

explicit function of the time, i.e. L =L(ql(t) .... q.(t), 41(t) " ' "qn(t))

and (2) the qj 's have been obtained from the x's by some transforma-
J

tion q_that does not explicitly involve the time.

Let us define N new quantities:

3L
P e ----r- j =1, 2 .... N. (I)

J _qj

Pj is called the conjugate momentum associated with qj.

Using this definition, the Euler-Lagrange equations for our system

may be rewritten in the form

i5 . 8L j 1, 2 N. (II)
J _qj

Now let us define a new quantity

H--- Z Pjqj -L.

J

H is called the Hamiltonian of the system, and under assumptions

(1) and (2) above, it can be shown that H is equal to the total energy of

the particle under consideration. H = T + U. (See (1), Sec. 8-8).

- E
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Now if H is considered to be a function of qj,Pj j = 1 • • "N, then

also since

dH = __ 3H3H dq J + -- dP.
J _q) _PJ J

(A)

dH = _ Pidq i +qidPj 3L 3L• --- dqj - _qj dqj?qj

using (I) and (II), the above becomes

dH -- [Pid_i -Pjd_i] +_lidP i -l_jdqj

_ _j dP i -l_jdqi.

i

(B)

Now identifying the coefficients of dPj & dq i in (A) and (]_) we have

3H j --1 2"" "N.
_H 4j = p__7

These are called the cyclic equations of motion• As in the case of

the Euler-Lagrange equations, they may be integrated to obtain the

equations of motion of the particle under consideration.
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We will now consider our problem--determination of the equations of

motion for a satellite orbiting under the influence of a gravitational field

plus small perturbations (e.g. the effects of the earth's oblateness.) The

following (sec. IV) is a summary of a portion of the material found in

the paper "Notes on Von Zeipel's Method" by Giorgio E. O. Giacaglia,

published at the Goddard Space Flight Center.

IV. VON ZEIPEL'S METHOD

In the case we are considering, the Hamiltonian may be expressed

as a function of six variables (L, G, H, _, g,h) where L,G,H are the

conjugate momenta associated with_, g, h respectively. These six

variables are called the Delaunay variables.

The equations to be integrated for our problem then are:

= _H _ "_H )_ 3H
_L _G )H

I_, _H (_ _H I':I _H

here we have just taken the cyclic equations of motion and set L = PI'

G = P2'H = Pa' _ = q*' g = q2' h = qs"

In many cases the negative of the HamiltonianF = - H is introduced;

the cyclic equations of motion for our system then become:

13



3F _ _F l_ 3F
3L _G 3H

I'__ _F 6- DF __ 3F
_ 3g _h "

Now in solving the above system, it would greatly simplify our

problem if we could transform our variables (L, G, H, _, g, h) to a new

set of variables (L' , G', H', _', g', h') in which the new function Fcould

be expressed in a form not explicitly containing one of the new variables

(_' say), i.e.

F' = F'(L', G', H' - g', h')

then

I_' 3F' 0' L' = constant

Here we must remember that, for the cyclic equations of motion to

be valid, the new variables must satisfy

_L _L _L
L' G' - H' -

- _, _, _,

i.e. L', G', H' must be the conjugate momenta with respect to _', g',

h' . (This assumption was used to derive the cyclic equations of motion).

z

If the above equations are satisfied, then (L °, G', H', _', g', h') are

said to be a canonical set of variables, and the transformation connecting

- 14



the primed and unprimed variables is called a canonical transformation

[assuming F(L, G, H, 4, g,h) = F'(L', G', H', - g', h') for all times t].

Now finding the desired canonical transformation connecting ( L,

G, H, _, g,h) to a new set of variables (L', G', H', _', g', h') for which

3F'/_Z' = 0 is equivalent to finding a function S-- S(4,g, h, L', G', H'),

called a generating function, satisfying:

3S _S H _S

Z, 3S g, 5S h' _S
_L' 3G' 3H'

This function S will determine an implicit transformation connecting

(L, G,H,6, g,h) and (L', G', H', _',

set of variables will be canonical.

Shook, sec. 5-3.)

g', h' ) and it is known that the new

(See Planetary Theory by Brown and

We now shall give explicit formulas for determining S and F'. Here

we first employ the assumption that our satellite is orbiting in a gravi-

tational field, subject to small perturbing forces. We assume the

function F (L, G, H, 6, g,h) can be expanded in a series

0o

F=F0+ _ F'_'Jj

j=l
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where F 0 is the negative of the Hamiltonian calculated in the case of a

body orbiting under the influence of gravity alone and N is a small

parameter. (For the calculation of F 0 = _z2/2L 2 where _ =K2M, with K

the Gaussian constant and M the mass of the orbited body; see any

intermediate textbook in celestial mechanics.}

We assume similarly:

G0

F' '=F 0 + F KjJ

i=I

S = S O + _ Sj XJ

j=!

where S o is the generating function determining the identity transforma-

tion, S O = L'_ + G'g + H'h. (In the Keplerian case the original set of

variables are the ones desired; no transformation is necessary.}

Now to any order in X,F(L, G, H, _, g,h) = F'(L', G',

(Remember F' is not to be an explicit function of _'.)

H' - g', h').

Look at this equation up to second order in X, i.e.

Fo + KF1 + X2F2 =Fo' + NF, 1 +N2F2, (A)

now

16



L __

bS
® US

3S° _-1 k) _A_

j=1

® US.

L' + ? . k j
_========a

j=1

CO

g, US 3So _ k ] 3S}

j=l

_ US.

g+ _ k }--2BG'
j=l

with similar expressions for G, H, h'.

_=

Substituting the above into (A), we have

Fo , + _.J _Sj kF1

_j=l -_-/ +

US.

£ _SjG' _XJ ',

j=l j=1

H' k i J 6, g, +
+ _-h-,

j=l

17



co

_S.
' L' G' H'- kJ-- F o , , , g +

_G'
j--1

3H' + k F G , - g +, h +

j;1

(B)

Now expanding the left side of (B) in a Taylor series around L, G,

P #

Hand F I and F 2 on the right hand side in a Taylor series around g', h'

and keeping only terms up to and including the second order in k, we

have

3Fo V3S1 _3S2 IN2F°(L') + "_ k +

+ k2 F I(L', G', H', _, g, h) + k 2
3F 3S 1 _F 1 3S 1 3F 1 3S1_

+ _G _g + _H %'h-J

+ k 2 F 2
o

[L', G', H', ,_, g, h] = Fo(L',G', H' - g', h')

D

18



#

+kF I(L',G',H' - g,h) +k 2

%

+k 2F'2 [L',G',H' - g,h] (C)

Now equating the coefficients of like powers of k in (C) we obtain

, U 2
F o(L' G',H' -- g',h') =F o(L') - (D)

, 2L,2

F I(L',G',H',_, g,h) + BL B$
3F o 3S, _ FI(L"G"H' - g, h) (E)

_F 0 _S 2 _F 1 3S 1 3F 1 3S 1 3F 1 _S 1

_L FZ + 3L _Z + bG _G '+ 3H _h

SF i 3SI DF i US,

+ F2(L', G', H', _, g, h) - _g, _G' + _-_ _H---7

i I

+ F 2 (L', G, H' - g, h).
(F)

#

Now F 0 is determined by (D) so (E) may be solved by putting F 1

part of F 1 independent of 4. This means F0/_ S1/b = - (F1 - F1 ) =

19



#

- (part of F I dependent one). Now F I and S I are determined with the

desired properties, and therefore (F) may be solved for S2 by putting

t

F 2 = part of F 2 independent of _.

!

This determines F 2 andS 2 with the required properties. This

process may be continued to determine F' and S to any desired order

, j

=%
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