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SUMMARY 63 033

By the use of the parabolic coordinate a general formula is derived
for ionization of the hydrogen atom by electron collision when the atom
is in any given initial state. Using this formula the total ionization cross
section and the ionization cross section per unit energy range of the
ejected electrons for all substates of the hydrogen atom belonging to the
principal quantum numbers n=1, 2, 3, 4, 5 are tabulated. In addition
the ionization cross section of one substate from each of the principal
quantum numbers n=6, 7, 8, 9, 10 are tabulated. These tables cover
the range of energies of interest in the plasma calculations. The approx-
imation used is the Born approximation in which the bombarding electron
before and after collision is described by a plane wave, and the ejected

electron by a Coulomb wave function. Comparison with experiment for

the ground state of the atom is given. : /&




I. INTRODUCTION

Apart from purely theoretical interest, ionization is one of the main
atomic processes in the stellar atmosphere. This process occurs also
in gas discharges and in plasma. Of the two competing forms of ioniza-
tion, photoionization and electron impact ionization, the photoionization
cross section of any excited state of hydrogen is known with good ac-
curacy; this, however, is not true of the electron impact ionization. It
is then desirable to know the electron impact ionization when atoms are
in highly excited states. Because of practical difficulties in the meas-
urement of the ionization cross section of excited states, the corres-
ponding calculation becomes more important.

We review briefly the developments of the theoretical and experi-
mental works on this particular form of ionization. The classical value
of the ionization cross section with the atom in any initial state has
been calculated by J. J. Thomson! (1912). Massey and Mohr2 (1933)
have calculated, within the Born approximation, the ground state
ionization of the hydrogen atom. Burhop3 (1940), extending the same
technique, formulated the ionization from substates of the first excited
state without giving any numerical results for the case of hydrogen.

B. Yavorsky4 (1945) has given the ionization of all S states of hydrogen
in a general way, in the form of a triple sum and triple integrations.
The results for 2S5 and 3S states are shown in this paper graphically.
MandlP® (1952), rederiving the equations of Burhop, has given the results

of ionization from the 2P, M = +1 states, again in graphical form. Later




on Swanb (1955), taking the equations of Burhop, has carried out the
numerical integrations which are tabulated for the 2S, 2P, M = 0, 1
states. Aside from a factor of 2, it will be shown later that his results
seem not too accurate.

Outside of the Born approximation, Geltman? (1956) has considered
the effect of the Coulomb field of the nucleus on the incident electron,
an effect which is neglected in the Born approximation. This effect is
obviously important at the threshold of ionization. He finds a law in
which the cross section near threshold is proportional to the excess
energy of the ionizing electron.

At this time the first measurement of the ionization of hydrogen
became available. Fite and Brackmann8 (1958) achieved this measure-
ment and, without much surprise, showed that the measurement agrees
with the Born approximation beyond 100 ev. This measurement was
followed by those of Boyd and Boksenberg? (1959), and Rothe et al.l
(1962).

The other theoretical works of interest include the inclusion of
exchange in ionization by Peterkopl! (1961), the ionization by the im-
pulse approximation by Akerib and Borowitz!? (1961), the ionizationby
close coupling approximation by Taylor and Burke ¥ (1963), and the
threshold law for ionizing collisions by Rudge and Seaton ¥ (1964).

Returning to the Born approximation, this approximation consists
in representing the ionizing electron in the quantum mechanical calcu-
lations by a plane wave, the bound electron by a hydrogenic wave

function, and the ejected electron by a Coulomb wave function. Physically,




this is to say that, when the ionization takes place, the ionizing elec-
tron is far from the nucleus, so that only one electron is in the field of
the nucleus. The approximation also consists of the exclusion of two
less important effects: the exchange of the two electrons, and the effect
of the polarization of the atom on the incident electron.

Application of the hydrogenic wave function in parabolic coordinates
in the expression for the ionization amplitude facilitates its evaluation.
This is because the final state in this expression, which is the eigen
function of the ejected electron, is easily expressed in parabolic co-
ordinates. In this paper génerating function in parabolic coordinates
is used to express in closed form the ionization amplitude involving
an arbitrary initial state.

With the nucleus fixed, the total ionization cross section involves
twelve integrals: six integrals over the spatial coordinates of the two
electrons, and the next six over the momentum coordinates of the two
electrons. For a given incident electron energy, the conservation of
energy eliminates one integrall> Of the remaining eleven integrations,
nine are carried out analytically, and two integrations—integrations
with respect to the magnitudes of the momentum transfer of the incident
electron, and the momentum of the ejected electron—are carried out
numerically by a computer.

In the calculation that follows the cross section for a givenn and
a particular bound electron orbital angular momentum ! is not available

anymore, although this can be obtained by a unitary transformation of



the ionization amplitude before the integration is carried out to find

the total cross section.
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II. FORMULATION

Born Amplitude for Ionization and Excitation

Consider a system of an electron and a hydrogen atom in an arbi-
trary state. Collision of the electron with the atom may result in the
excitation of the atom into a different state, or its ionization. Let l‘o
represent the propagation vector of the electron before collision, and
k, the same vector after collision; the equation for conservation of

energy will be

E = Ey+—5p = E +—5— (1)

where E, and E, are the energies of the ioslated atom before and after
collision, and E is the total energy of the system. The Born excitation
or ionization amplitude can then be writtenl!6 17, 18

z 1

—

T ;;) ¥, (rz) x dsrldaré.(Z)

2me 2 *
6, ¢1) = Z—ﬂ_ﬁ—zjexp[i(ko—kl) -rl]Lpf (rz)(
In this equation 6,, ¢, are the polar angles of k; with respect to k), as
the z-axis, m and e are the electronic mass and charge, Z the charge
number of the nucleus, r; and r, the position vectors of the incident
and the atomic electrons, y, (rz) and ¢f(r2) the initial and the final
eigenfunctions of the atom, and r; and r,, the distances of the incident
electron from the nucleus and the atomic electron, respectively. The

probability that an incident electron, after causing the transition




specified by ¢; and y, be scattered within a range of solid angles «,

to w, +dw, is given by

&y

2 .
I(91"#1) dwy = k, lf(91’¢1)' dw, , (3)

where I (91, qbl) is the differential cross section. It is convenient to

introduce the momentum transfer vector K through
K = k, -k, . (4)
Squaring and taking the differential with respect to &, of this equation
gives
KdK = kyk,sin€,d0, = kok; 5 ; (5)

the last equality follows from the axial symmetry of the problem. When
equation (Z) is substituted in equation (3) and note is taken of equation (5),

the orthogonality of Y, and Y, and the relation!®

Iexp [iK-r] 4or

., £ = gee[ikox,] (6)

we obtain

- _8m 2 K
I(K)dK = Y | V(K)| e (7)
V(k) = Jexp [iKz)y, (e)y. (r)d®r . (8)




In the above expression a; is the Bohr radius, and the direction of the
polar axis in the integral for V(K) is alongK; while for the defirition
of f(6,, ,) the polar axis was taken along k.

The total cross section for excitation is obtained by integrating the

above expression over all possible values of K:

dK
VK| 2 — » (9)

where the limits of integration are fixed by equation (4). In the case of
ionization, in contrast to excitation, the ejected electron may occupy
in the continuum any of the infinitely many energetically permissible
states; while in the case of excitation the bound electron occupies a
single final state. The cross section for ionization is obtained by in-
tegrating over all final states in addition to integration over K. If k is
the propagation vector of the ejected electron with polar coordinates

k, 6,, ¢, in a coordinate system whose z axis is along K, the ionization

amplitude becomes a function of k also. The cross section is then given

by
k dK
Q, = JIV(k K2 L%
k0 ky k2dk dx d¢de
) j J J j ek, 1% " | (10)
ky~ky



when we have written

cosf, = x .

(11)

Let n be the principal quantum number of the atom before ionization;

2 2 T2 K2
substitution of E, = - —Z——e-—2 » By = o in equation (1) gives
2a, n
22
k2 + k 2 = k 2 , 12
1 0 aoz 02 (12)
Z2
2 - 2 _ .
kmax kO ao2 n2 (13)

Use of the Generating Functions

To evaluate V, we have to specify the initial and the final states.

For the initial state we take the hydrogen eigenfunction in parabolic

coordinates,!9 20

1 1n
¢n1n2m &, m @)= ann2m exp [— 7 C’(§+T))il (Em? x Lo (af)Ln;,+m (am) cos me;

n m
1+

a =

Z
o npn, mo = 0,1,2,3, -0 0 (14)

The arguments of these functions are related to the Cartesian and

polar coordinates of the bound electron through

X = rsinfcos¢p = VYén coso

y = rsinfsing = Y&7n sing, (15)
1
z = rcosf = 7(5—77)




The quantum numbers n,;, n,, m are related to n by
n, +tn,+m = n-1, (16)

so that there are three independent quantum numbers only, corresponding
to the three degrees of freedom of the bound electron. n is the principal
quantum number similar to spherical coordinates, while m is the absolute
value of the magnetic quantum number defined in the latter coordinates.
To fix the normalization constant annzm, we first find the element of
volume in parabolic coordinates. If only £ of the three orthogonal co-
ordinates £, 7, ¢ is varied, the corresponding line element, with the

help of equation (15), may be written

2 2 2 +
N L N

Similarly,
ds 2 = é_i_ﬂ dn? ds 2 = f"’ld¢2
S 4n o ¢ '
Therefore,
dv = ds,ds_d - (£ + ) dédndg
v = dsgds,dsy, = F (£ * n)ldednde. (17)
annzm is found through an orthogonality and a recurrence formula for
the associated Laguerre polynomials,?!
_ _ , m+n)!
s z"e *L%  (z)L7 (z)dz = 38(n,n’) x [g_n_‘_)] ’ (18)

0



n+l
zZL% (z) = (m+2n+1)L" (z) g+ Ilattm (2) (m +n)? Lr, (z).(19)

Normalization of equation (14), with the help of the last three equations,

gives
R [y tn, 1]17
b = (2 (2] ,
nynym 277) X \n x x [(nl +m) | (n2 +m) ']3/2 (20)
2, m#Z 0
€m {1 0 : (21)
, m =

Equation (14) can be expressed as a linear combination of the hy-
drogenic eigenfunction in spherical polar coordinates, and the two
representations are related through a unitary transformation. As an
example, ¢, and ¢;,, are the two zeroth order eigenfunctions of the
hydrogen atom in a weak external electric field, used in the first order
Stark effect.

The final state in V should describe the ejected electron in the

Coulomb field of the nucleus. Let us designate it by y(k, r); then it

is justified?.22 to write

ylk, r) = ezL(n) , (22)

where L(7) is a function of the parabolic coordinate 7 only. Substitution

of equation (22) in the Schrodinger equation for y(k, r) gives

z
gL + (1-ikn) L' + BkL = 0, B = - (23)
0

10




It can be verified, by direct differentiation, that a solution to the above

differential equation is given by

L(n) = Nei‘"'f e"vu ih g, [27Tokn] du (24)

0

where J, is the Bessel function of the zeroth order and N is the normali-

zation constant whose value is given below and is found elsewhere?:

N - i_[ 3 ]1/2 1
T 27 L1 - exp(-2nB) r1-ig) ° : (25)
Equation (22) can now be written
B 17 e
Yl r) = [T = expl-2781  TT1-38)
x'f e " u'i'B JO (R) du ’ (26)
0
where
R = 2[iulke-k-r)] "%, (27)
with the appropriate asymptotic form?23
Ylk, r) ~ (27)"372 gikr (28)

11




Having fixed the initial and the final state in the matrix V, we

proceed with its evaluation. By equation (15),

kr —k - r = k[r—xsinﬁkcosqﬁk-ysin@ksinqbk-zcosel;]

0 0, an 0,
k[ sin? T+ncos2 5 -2vY%n sin T cos 7 cos (¢—¢k):| ;

then we can write

R* = I:’OZ +o2 - 2 po cos (¢_¢k):| V2 s (29)
where
e = 2¢y-1iuk sin y’_ l
(30)
o = 2y-1uk cos 5
Equation (8) can now be written
N 1/2
o mmpm B 1
Vik, X) = <1_e~27rﬁ> AT(1 + 1)
1 .
xJJJJexp[‘ja(§+U) K(£=m) = 5 Kl +m) - u]
x (én)m/2an+m- ag) L, (an) cos (me)
1
x uff (R*) (£+7) dudédndy . (31)

12




We first carry the integration with respect to¢. Aside from cos (mp) the
only term in the integrand of equation (31) which is a function of ¢ is

J, (R*). By the addition theorem for the Bessel functions,24

©

T, (R*) = Z €. J,p) ], (o) cos n(¢-¢k) , (32)

n=0

where € is defined in (21), we get

f Jo (R*)cosmc;bd(f) = 2y (p)J (o)cosme, . (33)
0

It is convenient to introduce the function I(m n, n, lk Kek) by

1/2
- 1 B
v(k, K, 6, ¢) = -;,;(1—_?—,,;) cos (m¢,) I{mn, n,|kK6,) ; (34)
then, through equation (33),
n nzm
I(mnln2|kK8k) = 2T +i8) xJ‘J‘Jexp - —'(a+ ik) (£+7) +5 K(f n) - ]

x (n)™2 x L™, (af) L' n+a (a7) uP

n+m

x Jolp)J (o) (£+7n) dudédy . (35)

The cross section, equation {10), can be expressed in terms of

I(m n;n, ikK 6k>by integrating over¢, , changing now to atomic units

13




by putting a, = 1, and suppressing i for simplicity:

kmax k0+k1 +1
2Z (27 2
Q(nmnlnz) = ﬂkz(E:)J J' II(mn1n2|kK9k)|
0 0 kooky V-1
k dk dK dx
XKa(l__e—zwz/k) ) (36)

Below I(m n, n2) is evaluated by means of the generating functions

of the associated Laguerre polynomials. These arel

= anl+m(a§) o tm (—s)"‘exp[-fi.ss]
P —— 1 =
Z; (nytm)t ® ) (1-s)m1 ’
nl=
L (37)
o L™, (an) —g)m - ont
Z n,+m 7 natm (-t) exp]: 1—t:|
(np tm)! (1-¢)m*
n2=0 y,
If we introduce
a ik _ iK
P 7*72 a7 -7 (38)

14




in equation (35), we see that

s~n‘ tn2 _ 1 ) 1
inl +m) P X (n2+m) !I(mnan) - (1"S)m+l x (l_t)l!!‘l’l
Nyl
"1"2 aé ant
x 2F(1+1ﬁ)JerxP p(§+77) qlé-7n)-u- 75 - ‘——l_t]
x (£mIm2 i J. p) I, o) (£+7m) dudédy
- _ 1 1 Wanan aU (39)
(1-s)nf1 < (1-g)=*1 * 2T(1+1iB) 3p ’
where

U = Juiﬁe_“du xJJm (p) £™2 exp [— (ptq) - la_ss]fdg

t
XJJ.,, (U)n“‘/’exp[‘(p-q) ~‘1aTt‘]ndn . (40)

The last two integrals are given by Watson?’ in the following form:

@ m a2
j]m(az)e"’zzzz’“”dz = (;;?),,,—ﬂexp [— 4—p;] (41)
0

Let z = V¢, Introducing

as at
P = (p+q) +Tf:, Q = (p"q’ +1—_'—t-, (42)

15



6 6,
p02 = - iku sin2<2>, 002 = - iku cosz<—> (43)
we obtain
~
as Po €XP ~ TP
JJm (p) ™2 exp {‘ [P+q+ T-_s] f} g = — 1 ’
> (44)

qQ

0

|

at 99 €XP " o
JJ,,, (o) ™2 exp{-[p-cﬁ 1—_‘{] 77} dn = Q™1 ’

When equations (44) are substituted in equation (40), o, and o, are

eliminated through equations (43), and the integration is carried out

with respect to u, we obtain

- iksind, \"
U = \——5— Mm+1+iB)

(pQ)i8

X

[PQ* ikQsin? 5 - ikPcos? &

By definition of equations (42),

ou U  au - ik sin g, \"
gp - P Taq T <—2—— P+ 1+m)
(m)iﬁ"l
X 6, 6, m¥2+if
[PQ- ikQ sin? 5 - ikPcos? -2—}

6

% .
><|:,8k<P2 cos? ’2—k“+Q2 sin? —215'>— (m+1)PQ(P+Q—ik):| .

16

6, @k} mFIFiE

(45)

(46)



Equation (39), with some modification in equation (46), can now be

written

snltnzl(mnlnz)l B m)! (—iksinﬁ)‘“
_;_ (fp+m) T [y +m)! ~ -3 N xLl*é'_m.Lx —

n1n2

-« 2 k
sin® 73 cos

x [(1-s) (1-t)PQ] (™) x |1-ik Pt o

6 6
x d(1- s)2(1-t)2[/3k <P2cos2 — +Q? sin? —25)- (m+ 1)PQ(P + Q- ik)}
(47)

Expansion In Terms of s and t

Since I(m n, nz) is independent of s and t, we can regard it as the

coefficients of expansion of the right-hand side of equation (47) in

powers of s and t. The expansion of the right-hand side is accomplished

by a combination of the binomial and Taylor expansions.

Let us introduce a new complex variable a by

a = K- ia , a* = K+ ia . (48)

In terms of the new variable (cf., equations (38, 42)),

_ i (a*-k) - (a-k)s _ i (atk)-(a*tk)t
P o= -7x T=s ’ Q = 7« T-¢t '

(49)

17




It follows that

i \~(n+3)
[(1-s)Pp|"(*3) = (——12-) [(a* -k) - (a~k)s] "(*3)

m+3 m+2+3 (34 R .
4)" )Z < ) (a1 W iyt

(50)

(12)—("]+3 [(a+k) - (a* + k) t]

[(1-t) QI (=)

m+3 + 2+ ot ,
('12')( )Z<m j2]2>(a+k) (3192 Cax 4 1) "2 ¢ 2

1270 (51)
Next, we introduce
\
o,
25in27 a* -k
ap = a-k ’ a; ~ "a-«k
o (52)
2 %
- 2cos’ 5 atk
b, = a* + k ’ b, = a¥* +k
J
then, if we set
=(m+2+j
6, 6, ( A)
Sil’]2 _—2— COS2 _2 (53)
y(s, t) = 1-ik P + 0 ’

18




through equations (49, 52) we can write

1-s 1-¢ (e 236)
y(s. t) = jl+k{a, 37 =5 *by § ¢

1,

14
where on the right-hand side we have made a Taylor expansion,y ' 2 (0,0)

representing the €, and the £, deviratives of y(s, t) with respect

to s and t, evaluated at s = t = 0. It is convenient to introduce two

variables u and v given by

1-5s 1-¢

u = a3 -5’ v = bop =t (55)
Then
y(u, v) = [l+k(u+v)] (=*2+i) (56)
It is also convenient to introduce
a, = ag(l-a,), b, = bo(l-b,) , (57)
g = (a,-s)7!, h = (b,-t)7? (58)

Then, making note of the relations

du dv _

ds - a e’ It = byh?,

d d

E g“ — ngn+1 , d_{. h* = nhn*‘l ,

19



it follows that

yP0(s,t) = a,g?y’ (u,v),
y20 (s, t) = 322 g?y?(u, v) + 2a, gy’ (u, v) ,
vy (s, t) = algbyd(u,v) t6alegiy?(u,v) + 6a,ety’ (u, v),

where y” (u, v)is the v'" derivative of y(u, v) with respect to the
arguments u or v. Inspection of the above equations shows that we

can write in general

L
v (s, 1) = ZC(v, 2yay €™y (u, v) . (59)
v=1

with C(v, 4) some undetermined constants. The C(v, 1) are found by

differentiating equation (59) with respect to s:

A+1
y’£+1,0 (S, t) - Z C(V, /E.{_ 1) a2y g/ﬂ+l+z/ yV
v=1

4
Z [(,{?/+ V)C(V, ,ﬂ) aZV g'{),+1+v yv
v=1

¥ Clv, 4) a2”+1 g/€+2+u yv+1:| .

20




Comparison of the coefficients of a; g'f’”“’y”shows that
Cv,t+1) = (L+1)C, L) + Cv-1,4) . (60)

Equation (60) gives the required recursion formula for C(v, £). In-
spection of the first few derivatives of y(s, t) shows that C(v,{) = 0
when v = 0 or v >4, This condition, the fact that C(1, 1) = 1, and
equation (60) allow all the values of C(v, 4) to be determined. The
values of C(v, 1) for the first few values of 1 are given in Table I.

Let us now write

y’{lo (S, t) - ZC(VI, {1) a2V1 g’ﬁl""vl yVl (u’ V) .

21



For the combined derivative of y(s, t) we then obtain

2 d L 30
V, V. v
y (s, t) = C(Vv’f'l) a, g '’ X,y '(u, v)
v,=1 dt
1
4
_ - vy ’El-h/l aVl 6/{)/2
- Clvi %)) a,'e o T, v(u V)
o1 du " Jt
1, v
v 'ﬁﬂ/ 9 1 0’{)/
- Clvy. £y) a,'e " v, Y 2 (s, t)
v,=1 du
1
£, 1,
v, A+ £
= Z C(vl, '{7’1) a21 g ! " X § C(Vz, /E2) b:z h 2" yylw2 (u, v) .
v =1 v,=1
By introducing
c(0,0) = 1,

and the fact that C(0, ) = 0 for 4 # 0, the above equation may be

written

) 4, 1,
y V(s t) = Z Z C(Vl, ’{7’1) C(VZ, /52) a2vlb2y2 gfﬂlw1 1’1{2W2 yylhj2 (u, v) .

u1=0 v2=0

(61)
This equation is also valid when4, =4, = 0. By equation (56),
vty (i18+m+1+V1+V2)! vty )
y' i(u,v) = (B +m+ 1)! (k) x [1rk(urv)] @ity

22




Through this equation and equations (55, 58) we obtain

4 ('1,3+m+1+v +y)‘. Y
y (0,0) = Z Z C(v1’£l)c(v2’£2) x (i,3+m+ll)!2 (k) ' ?

1 1

| A1) (£, +v;) 3 )| FTTET
v - +v v - 2 +v _0 _i
><az’al o b22b1 27 % 1+k(a +b>

The useful form of this equation is obtained when ag, a;, a,, b,, b,, b

0 Y1 2

are eliminated through equations (57, 52), and by putting cos 6, = x

(cf., equation (11)). The result is

4, 4 .
2,4 - (iB+m+1+v, +u,)! v +v
y' ?(0.0) = 2 2 C(v,. £,)Clv,. £;) x iB+m+il? x (ky'?
V]:O V2=0

('ﬁl TV, )

]iB+m+2 » (a_k)'ﬁl—vl . (a*—k)—

x (a-ax)1""? x [(a*-k) (a+k)

vy)

« (a +k)_(£2_ x (a*+k){2w2 x (1=x) 1(1+x)"2

—(m+2+v 4v,)

x [aa* +k? —kx(a +a*)] - (62)

This completes the expansion of equation (53).

23




Finally, for the last s, t dependent term in equation (47), through

equation (49) it follows that

6 6
(1-s)2(1-1t)2 [ﬁk(PZ cos? 7“ +Q2 sin? 7“) - (m+ 1)PQ(P+Q—ik)}

1 O\ 2
- 7 Bkcos? o [(a*—k) - (a-k) s] (1-1t)2

O

'%,BkSin2 2 [(a+k) - (a* tk) t]z(l—s)2

- % a(m+1) [(a*-k) - (a-k)s][(a+k) - (a* +k) t](1-st)

2 2

H1  H2
Z A"‘Ll"‘z)s t ' (63)

,“»1=0 ,LL2=0

where it is desirable to find the coefficients A}L1 To accomplish this,

Myt

we introduce two angles ¢, and ¢, such that

¢, = tan'lk?K, ¢, = tan’lkiK, 0 < ¢, p,<m . (64)

24




In this way we get

9

Hikg

0
1 k i
—Z,Bksinz D) (a*-k)z[l—e2 ?2 t]2(1—s)2

2 a(n+1) (a* k) (a ri [1-es][1- e ] (1 -5

g 2 2 .
~ 1 Y% pyte, f 2\ /2 2ip ¢, g
a7 3 (@)
Ky=0 py=0
8 2 2

b | et

/'1'1 =0 #2=0

1 2 2
4 a(m+1) (a*-k) (a +k)

Ky=0 py=0

2 2

_— ﬁksin2 —23 (a+k)2 Z Z (_)ﬂ'l T, (2)(2>e2i#2¢2 Slu.l

By Mg _ 1 k 2i¢ 2
E A“l*‘zs Te2 = —Zﬁkcosz P (a*—k)z[l—e ls:l (1-1)2

I
t 2

Ha

[1-8¢u, 2][1- 5k, 2] ()

.+“2

< ezi(ﬁ"1¢1+“2¢2)s“l tp'i’ - Z Z [1-5(#1, 0)] [1'—8(/‘2’ 0)] (_)MI e

#y=0 K,y =0

2i [(py-1)8, +(ry"1)] 0, by,
X e s t
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< . Ky K .
By equating the coefficients of s ' t % we obtain

: . 0 . 0
, B 1 wotu, [ 2\ 2 2ipp k 2ip, b, . k
AMI#Z = -7 M) 2<u1>(,u2>|:(a* “k)2e” "Tlcos? 5 +(atk)?e "??sin? *2{|

- 3 am+1) ()™ (ar k) (a+ k)[§(#1 by 22y e’ (191t 92D

- g(#l Hq» 00) ezi[(“1_1)¢l+(“2“1)¢'2]] ,

(65)
where we have defined
5 (1 Hyo mymy) = [1— 5(ky, nl)] x [1 =5 (1g n2)] : (66)
When x = cos 0, is introduced and we set
My My - Bﬂl Moy * XCMI% ’ (67)

we obtain, since Sk = Z,

_ Z py thg [ 2 2 [ g L2img Py 2 2i"2¢2:]
3#1#2 = -5 </J‘1 <#2> (a* -k)? e t+(a+k)? e

-F ey

3

(a*—k) (a +k)|:_8_(lu1 /“L2v 22) _ g(MI /le, 00)6_2 i(¢1+¢2)}82i<#14216+§)2¢2)

_ YA By te, (2Y[2 _ 2ipy by 2ip, P,
C"'lf‘z = -3 (-)! 2(/~¢1>(#2)|:(a* k)2e !'"'-(atk)re ? } . (69)
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Returning to equation (47) and referring to equations (50, 51, 53,

54, 63), we can write finally

s'te2 I(mnln) i8+m)! —ik\®
Z T rmt = 2@ N, SEE s () (1-x0) 2

ﬂl n2

m+2+]1 m+t2+j, . j
;7 7 7( >( P )(a*-k)'“’*“”x(a—k)‘

—o i, =0 0 /f,z =0 4 =0 p,=0

atk, -

x (a +k)-(m+3+j 2) x (a* +k)32 % [,{7/1 !'£2 !]_1 y/ﬁl{2(0, 0) A Sil""fqﬂl-lxti o+

g d']
(70)

I(mnl n2) is found by equating coefficients of equal powers of s and t
14
on both sides of this equation, and substituting the values of y ' 2 (0, 0)

and A/J'I”'Z from equations (62, 67):

; (if+m)!  (-ik)® .
I(mnlnz) = _l21 (4)m 3(n1+m)! (n2+m)!ann2m I(IB) x ( 2 ) (1 x ) &
) _ m+2+j, mt2+j,
x [(a*-k)(a+k)]‘5'l Z [Jcl!{z!] 1( i >( i )
iy{lﬂl
igfom,
£,
-k V! a*+k\2 2
x (a ) x (E+—k-) x [B('“l fa) * XC(py /1'2)]
4 4, (B+m+1+v, +v )! ' Yty
=0 v, =0

Y1 * =1\ 2 ~(m+2+v +v,)
x (a+k) x(";—*j%) (l—x)vl(l +x)v2x[aa* +k2-kx(a+a*)] R
(71)
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where the summation over j,4,n, , and i, 4,1, is subject to the

conditions

Y +'£1+f11 RS T
) _ (72)
ja vy ey T o,

Let us designate the set of integers j, 4, v, u, i, ¥, v, 1, by,

Y- (jl’f’l vy kg gty VzF‘z) ’ (73)

and introduce the angle ¢, through

2ak
KZ + a2 — k2 ’

0 < ¢y <7 . (74)

Taking note of 8 = Z/k and equations (48, 64), the I(mn1 nz) — neglecting

an arbitrary phase factor — reduces to
= m 3 -1
I{mn; n,) = ()" S7(a; +m)! (ny+m)!N, (iZ+(m+1)k)
-1/
X l:(K2 +a? +k2)2 - 4k? Kz] 2 emhs Z G(y) H(y) (75)

Y

m+2+j m+ 2+ j Yy
G(y) = ( i l>< i, 2> (&1%2!)‘10(71,{1)c(yz,/&z)(2ia) '

m+1+v, vy Kk Y1 * —k Y2
[ 7 (i2+wk)] (2 ik) x (§;+—k) exp 2i [(31 +4) ¢+ (i, +/F’2)¢2] ’
w=1
(76)
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H(y) = (1 _x2)m/2 (I—X)Vl (1 +X)V2 [B('U’l /*‘2) +xC(,u1 /1,2)]

-(mt2+v,+v,)

x [aa* +k2-kx(a+a*)] . (77)

Substitution of equation (75) in equation (36) and elimination of N aym
1

through equation (20) give

! k max

_ mB8 (2a)m™ n, !y k dk
- y .
Aoem ) kg (P (P2 ) )l (22 + (m+ 12 k2] [1 - 2]
Ko+ -226,/k
< J ° dK «S(k, K) (78) -
kok, K3[(a2 +K2 +k2)2 - 4k2 K?]

where

2

+1
J Z G(y)H(y)| dx

-1 ”

S(k., K)

- o
G(y) G*(v' H(y)H*(y')dx .
Zy:z; ) G*(y') f_l (M R*() (79)

The integration over x can be carried out by ordinary methods. Let

us call the integral with respect to x, d(yy') ; then, through binomial
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expansions,

+1 +1 . ’
d(yy') = J H(y)H¥(y')dx = j (l‘x2) (1"x)vl+vl (1+X)V2 v,

-1 -1
x [B(;Ll ,u2) + xC(,LL1 ;,L2)] [B* (,ul' ;12') + xC* (,ul' p:,')} (A+Bx) 8dx

m 1 1
= Z (—)ml ([:1) ZZ B(/“Ll #2)1_t C(/“Ll #Z)t B*(/'Lll ’u’2’) 1-t C*(/J-ll /JZI)t
m1=0 =

t=0 t =0

I

! 2 v, tu v, +v,\ [T}
hy (71 t 2 2 -
T T () | e g

where we have expressed

aa* + k2 = K% + a? + k? B

>
I

-k(a ta*) = -2kK ,
(81)

] 7

2(m+2) t v, tw, Ty vy, M

2ml+t+t +h1+h2

The integral with respect to x in equation (80) is evaluated in Appendix
I and is designated by J(M, g). For future reference the key equations

in ionization are listed below.

Summary of the Equations'

Suppose the initial state of the atom with a nucleus of charge Z
be specified by nmn, n, , the magnitude of the momentum of the ionizing

electron before collision by k, , the magnitude of the momentum transfer
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by K, and the magnitude of the momenturmn of the ejected electron

by k; the total ionization cross section is then given by

k max
Q(nmnl n2) = ZJ q(nmnl nzlk) kdk , (S1)
k=0
( 'k) _ 7727 (2a)2m+4 nl! n2! 1
q(nmn, n = X X —
P kg’ (nytm)t (np+m)! " [z2 4 (m+1)2k2][1-e 77¥]
kot kg -2Z% fk
x f e dk x Sk, K) ,
K-k, K3[(a2 +K2 +k2)2 - 4k2 K s2)
where
S(k, K) = Z Z G G*(y ) v, v") - (S3)
y v
Inthis equation 7y stands for 8 integers,
Y - (jl'ﬁlvlﬂljz'ﬂzvz/“‘z) . (54)
which combine according to
ig v A e T o igo4 T 00,1,2,3, 00 )
(S5)
’LLl = 07 1 2 ’ Vl = 0 1 29 ’ '{,Il ’
>
.12 +’£2 +,L‘L2 - n2 ; j2’{2 01 1’ 29 3’
#2 = 0, 1, 2 N V2 = 01 11 2’ 3 /E’2 )
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The explicit forms of G(y) and d(y, ¥') are

m+2+jl m+2+j2 _ v, ty,
A < 3y >< 1P (11421) 71 C(vy 41) C(v, 4,) (2ia)* 2

w=1

m+1+‘lll+'l/2 k 1/1 " __k 1/2
XI: 1 (ika)} (:fk> (2*+k> exp 2i [(jl+£1)¢1+(j2+£2)¢2],(56)

m
ry o= E N 5 1-tCt 1-t! ¢,
") ) (m1> Z Bf‘lf‘2 C“l“z B*'U’l ) C*“l'“z
m, = t=0 t =0
EMCIIR R b (V1 +u,"\ v, v, y
<)o", h, )M e . )
h =0 h,=

J(M, g) being given in Appendix I.
The parameters a, ¢,, ¢,, ¢;, a,C(v, 1), Bpl#z » and C/J,lp,z are
defined in the text.

We recognize q(nmn1 n, |k) as the ionization cross section per unit

rydberg energy of the ejected electron.

Symmetry Considerations

6, 6,

Equation (31) shows that, when {, n; K, -K; n;, n,; and sin3, cos 75
are interchanged, V(k, K) remains invariant. Since { and 7 are the
variables of integrations, the interchange of { and 7 does not change
V(k, K) in any case. By puttingcos 8, = x, this means that V(k, K) does

not change under the following interchanges




We consider the integral

+1
I |V(k, K, n)|2dx ,

-1

which is the form that appears in the expression for the cross section.
The integrand can be written as the sum of odd and even functions of x.
The integral with respect to the odd function is zero. The integral
with respect to the even function does not change when x . -x. Then
the above integral is invariant under the interchanges K _ -K, n, s n,.

Or, by equation (10), the interchange of the quantum numbers n, and n,

1

is equivalent to the change of sign of Kin the expression for the in-
tegrand with respect to k and K of the cross section. Formally, through

equation (78) this can be written
S(n,n; |[KK) = S(n, n,|k-K) .
A further symmetry exists with respect tok. By equation (35),
I(mn, n,| -k-K9,) = I*(mn n,|kK6,)
Through equations (75, 79) it also is true that
S(n;n,| -k-K) = S(n;n,|kK) .

Combining with the previous result, it follows that

S(n,n, |k, K) = S(n nylk, -K) = S(n,n,| -k, K) . (82)
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A case of particular interest is the ionization with zero momentum
ejected electron, k = 0; this corresponds to the excitation of the
hydrogen atom to the state n~®. Equation (S2) shows that this cross

section does not change with the interchange of n, andn,:

a(nmn, n,[0) = q(nmn, n,|0) . (83)

Multiplicity of States and the Total Cross Section

Sincen, +n, = n-m-1, n, can take the values 0, 1, 2, -+, n-m-1;
or n-mvalues. The same is true of n,. Then the total number of
combinations of n; andn, for a given n andm isn-m. The average

value of cross section for a givenn and m is therefore

Q(nm) = (n-m)’! ZQ(nmnlnz) . (84)

n1n2

For a given n the total number of states with different m is 2n -1,

The average cross section for a given n is therefore

n—1
Q(n) = (2n—1)"126mQ(nm) ,

0

(85)

m

€, defined in equation (21). Notice that the total number of states for a

given n is
n-1
N = ) [2-5m 0)(-m) =+ 2[na) -3 @-D] = a7,

m=0

as it should be.
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III. RESULTS AND DISCUSSION

We have calculated, using Eqs. (78, 79), the ionization of all sub-
levels of hydrogen belonging to the principal quantum numbersn = 1, 2,
3, 4, 5. We also have computed the ionization of one sublevel for each of
the principal quantum numbers n = 6, 7, 8, 9, 10. Since the ionization
cross section of all sublevels of any principal quantum number is ap-
proximately the same in parabolic coordinates, the latter calculation
gives an indication of the ionization cross sectionofn = 6, 7, 8,9, 10.
Thus we have at our disposal the ionization cross section of the first 10

levels of the hydrogen.

To test the accuracy of our results we have compared them with
those of the spherical coordinates. For the ground state, the wave
function in the two coordinates is the same. Table I compares the re-
sults in the two coordinates. The ionization cross section in spherical
coordinates was first calculated by Massey and Mohr2. Here it has
been recalculated. The agreement between the results of the two coor-

dinates is excellent.

The results of n = 2 levels, again in both coordinates, are given
in Table II. For m = 1 the wave function in both coordinates is the
same. The agreement is shown in this table and Fig. 1. For m = 0 the
wave function of hydrogen in parabolic coordinates is related to the

wave function in spherical coordinates through
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$(20 10y = % [¢(2s) +(2p0)]
(86)
$(2001) = —},17[¢(2s)—¢(2p0)]

These are incidently the wave functions used in the first order Stark
effect. Substitution of these as the initial wave functions in Eqgs. (8, 10)

shows that we must have
Q(20 10) + Q(2001) = Q(2s) + Q(2p0) , (87)

Q(nmn, n,) being the ionization cross section of the state specified by
nmn,; n,. Table II shows that the above equation is numerically satis-

fied; this is further shown in Fig. 2.

Originally the ionization of the 2s and the 2p,m = 0 states was for-
mulated by Burhop3 and computed numerically by Swan®. Swan's results
are larger approximately by a factor of 2 due to being unduly multiplied
by a factor of 2 and being obtained by a cruder method of numerical
integration. Boyd?2®, and McCrea and McKirgan?’ in determination
of the ionization with zero velocity ejected electrons of the 2s and the

2p, m = 0 states find similar discrepancies.

At the moment, aside from the Born approximation, the most im-
portant calculation of ionization with applicability to higher states is the
classical calculation. J. J. Thomson! in 1912, following his model of

atoms with stationary electrons, considered the collision of a moving
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electron with an electron at rest caused by their mutual coulomb inter-
action. When the energy imparted to the electron at rest exceeds its
bound energy, the ionization takes place. Since the imparted energy
decreases as the impact parameter increases, an integration with re-
spect to the impact parameter between zero and a fixed limit gives the

ionization cross section. The result is

o hf ).
where Q, is the cross section in units of 7Ta02, E, the impact energy in
rydberg, and n is the principal quantum number of the atom. The
result of this simple classical calculation is in fair agreement with
experiment and the elaborate quantum mechanical Born calculation,
although it gives a smaller cross section and the position of the maxi-
mum cross section is displaced. A major improvement in Thomson's
calculation is to take the motion of the bound electron into account.
This has been done by Gryzinski28. Let us introduce a = (n? EO)"I,
then according to Gryzinski Eq. (88) should be replaced by

Q; = oon*g(n, Ep) , (89)

where o, = 4.0307 77a02 and

) /2 (%_28)’ a_<_%

g\n, E = a(l+a)™¥2 x

e AVL e L 0
3 (1-a) ) a>%y .

It should be noticed that in both Eqs. (88, 89) the cross section falls off
asymptotically as Ej! while in quantum mechanical Born calculation

the corresponding asymptotic form is logE /E, 29 .
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For comparison, in Fig. 3 the Born, classical and experimental
curves are drawn. It is seen that close to the threshold the experimental
curve agrees better with the classical but asymptotically it favors the
quantum mechanical calculations.

The ionization of then = 3, 4, 5 levels are given in Tables III, IV
and V. Table VI gives the ionization of the sublevel with the greatest
magnetic quantum number for each of the levelsn = 6, 7, 8, 9, and 10.
Fig. 4 corresponds to the ionization of the n = 2 while Fig. 5 gives the
ionization cross sections of all sublevels of then = 3. Figs. 6, 7, 8
give the ionization curves for the levels n = 3, 4, 5. The cross section
for each level is in units of n* 77302, which is the geometrical cross
section of the level concerned. Along each level ionization curve the
classical curve is also drawn for comparison. Fig. 9 gives the ionization
of one component of each of the levelsn = 6, 7, é 9, 10. Itis interesting
to note that with increasing n, the cross section does not increase as
rapidly as the fourth power of n.

Table VII gives the partial ionization cross section, i.e., ionization
cross section per unit rydberg energy of the ejected electron, for the
five levels n = 1, 2, 3,4, 5. Finally Figs. 10-14 give the corresponding
curves for these cross sections. The maxima of the partial cross
sections occur when the velocity of the ejected electron is half its velocity
before ejection. The reason for this is not understood yet.

With regard to numerical integration, when the number of values of
v given by Eq. (73)is small, the closed form has been used while the inte-
gral form has been more convenient when the number of values ofyis

large.
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APPENDIX I

Integration with Respect to x

Let us set
+1
JM, ) = j xM (A +Bx) € dx
-1
M = 2m +t+t' +h +hy, g = 2m+2) +v, +tv, +v' +1v,)
A = K2 +a2 + k%2 | B = -2kK .
Introducing X = A +Bx, we obtain
A+B M M A+B
J(M, &) = B‘<"+1>J (X-AMX7edx = B (M*1) Z(S)(-A)SJ XM-s-g dx
A-B s A-B
1 N N’
" N [(A+BY-A-BN] ., N # o0
o M
= p(M*1) Z <S> (-A)* x \
- +B
<=0 | nz=g§. N = 0 ,
N = M-s-g+ 1, (A1)

When k-0, an alternative form can be found. Noticing that

(A+BO)® = Ae (1 +BA5)-E - A Z (571%) (‘B_AX)S ’

s=0
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we get

R R R 1 AR

s=0

TABLE 1
The C(v,_ £)values.

N o 1| 2] 3| a|s
0o |1 ol ol o o] o
1 | o 1 ol o oo
2 | o 2 | 1 0 0| o
3 o 6| 6] 1 o | o
4 o | 24| 36| 12 1 | o
5 | 0o |120 240 [120 | 20 | 1
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Table I. Cross sections in units of wa(z) for the ionization of the
hydrogen atom in n = 1 level by electron collision, calculated in the
Born approximation. Q(ls) is the calculated cross section employing
the spherical coordinates while Q(1000) is the same cross section
employing the parabolic coordinate.

Impact Energy
Q(1000) Q(1s)

ryd ev

1.00 13.6 0.0 0.0

1.44 19.6 0.57555 | 0.57502

1.96 26.7 1.0016 0.99797

2.00 27.2 1.0168

2.56 34.8 1.1691 1.1691

3.24 44.1 1.1931 1.1931

4.00 54.4 1.1449 1.1449

6.25 85.0 0.93696 | 0.93660

9.00 | 122.4 0.74243 | 0.74244

12.25 | 166.6 0.59375 | 0.59367

16.00 | 217.6 0.48282 | 0.48283

20.25 ] 275.4 0.39959 | 0.39959
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Table VI. Cross sections in units of 7 a? for the ionization of the

hydrogen atom inn = 6,7,8,9, 10 levels by electron collision, calculated

in the Born approximation and employing the parabolic coordinates.
For each level, the component with the greatest magnetic quantum

number is computed. Since in parabolic coordinates all components of
a given level have approximately equal values, the following table gives
an indication of the cross section of the level considered.

Impact Energy
Q(6500) | Q(7600) | Q(8700) | Q(9800) | Q(10,900)

ryd eV
0.0121 § 0.16 3869
0.0144 | 0.20 3488
0.0225 | 0.31 3651 7894 6367
0.0256 | 0.35 ‘1286 4645
0.0400 | 0.54 1135 2584 4483 6685 5064
0.0900 1.22 1326 1993 2794 3556 2748
0.1600 | 2.2 873 1288 1714 2121 1564
0.3600 | 4.9 448 608 788 990 725
0.6400 | 8.7 262 341 437 564 416
1.0000 |13.6 170 227 290 362 268




Table VII. Ionization cross sections of hydrogeninn =1,2,3,4,5
levels by electron collision per unit energy range of the ejected electron.

k2 is the energy of the incident electron and k?is the energy of the

ejected electron, both in rydberg units. The elements of each matrix
are the averaged partial cross sections in units of 7 al/ryd.

a. n*=

ki K o 1/256 | 1/64 1/16 1/4 9/16 1 9/4 4 25/4

1.0 0 0

1.44 | 2.6148 }2.5828 |2.4881 | 2.1419 | 1.1175

1.96 | 2.7376 }2.7085 |2.6235 | 2.3166 | 1.4642 | 0.72071

2.00 | 2.7304 |2.7014 |[2.6169 | 2.3121 | 1.4667 | 0.73398

2.56 | 2.5614 |2.5350 |[2.4578 | 2.1796 | 1.4150 | 0.77583 | 0.37420

3.24 | 2.3216 |[2.2976 |2.2277 | 1.9763 | 1.2886 | 0.72091 | 0.37786

4.00 | 2.0844 [2.0627 {1.9995 [ 1.7724 | 1.1537 | 0.64715 | 0.34517 | 0.09409

6.25 | 1.5942 |1.5772 |1.5277 | 1.3502 | 0.87048 | 0.48371 | 0.25764 | 0.07860 | 0.02710

9.00 | 1.2473 [1.2337 |1.1941 | 1.0525 | 0.67209 | 0.36901 | 0.19443 | 0.05890 | 0.02160 | 0.00903
b. n=2

i K? 0 1/256 | 1/64 | 1/16 1/4 9/16 1 9/4 1 25/4

0.25 0 0 0 0

0.36 | 185.57 |176.71 |153.00 }81.580

0.50 | 181.29 |173.99 |154.36 | 99.479

0.64 | 163.10 |156.70 [139.50 |91.868 |25.550

1.00 | 124.59 [119.67 [106.49 |70.321 |21.952 | 6.2833

1.44 96.202 | 92.338 |81.996 |53.796 |16.729 | 5.2963 | 1.7677

3.24 51.072 | 48.929 |43.214 |27.835 | 8.3166 | 2.6025 |0.98032 | 0.21475

5.29 34.098 | 32.631 |28.731 |18.310 | 5.3338 | 1.6404 | 0.61314 [ 0.13612 | 0.04431

7.29 26,044 | 24.907 [21.888 |13.858 | 3.9717 | 1.2085 | 0.44913 | 0.09937 | 0.03261 | 0.01334




Table VII (continued)

c. n=3
k2
k2 0 1/256 1/64 1/16 1/4 9/16 1 9/4
0.11 0 0 0
0.16 | 22410 | 2008.2 | 1438.2
0.22 |2149.2 | 1962.4 | 1365.6 | 610.43
0.36 | 1638.6 | 1501.0 | 1175.1 | 534.86
0.64 | 1068.1 976.72 | 761.47 | 346.41 | 60.976
1.00 740.07 | 672.27 | 522.27 | 234,56 | 40.253 | 9.5063
4.00 226.90 | 203.61 | 154.30 | 64.973 | 10.047 | 2.2718 | 0.7043 | 0.0987
d. n=4
k2 ko 1/256 1/64 1/16 1/4 9/16
0.0625 0 0 0
0.09 12978 10597 5494.2
0.125 (12418 10529 6758.3
0.16  |10904 9337.0 | 6164.5 | 1688.2
0.36 5948.9 | 5061.3 | 3344.9 | 1048.1 | 101.79
0.64 3655.4 | 3106.2 | 2032.4 627.86 | 68.228| 7.7489
1.00 2481.0 | 2096.1 | 1358.9 407.37 | 42.138| 7.9390
e. n=5
k2
K2 0 1/256 1/64 1/16 1/4 9/16
0.04 0 0 0
0.0625 49804 37189 13924
0.09 46099 35829 18886
0.16  [31466 24743 13604 2977.0
0.36 15768 12181 6498.2 | 1414.6 | 105.37
0.64 9415.8 | 7087.4 | 3705.6 794.02 | 60.879 | 6.8241
1.00 6303.3 | 4711.1 | 2437.5 505.32 | 38.238 | 5.1182
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