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COMPUTATION OF ELECTRON DIODE CHARACTERISTICS BY MONTE CARLO
METHOD INCLUDING EFFECT OF COLLISIONS
by Charles M. Goldstein

Lewis Research Center
Cleveland, Ohio

Abstract . \&:“915\ ~,/”/—4'

A consistent-field Monte Carlo Method is presented for the calculation of electron (and/or
ion) diode characteristics including the effect of collisions. The method is applied to two
cases of electron flow through a perfect Lorentzian gas - monoenergetic emission, and thermionie
emission. Hard sphere elastic collisions are assumed between electrons and neutral gas mole-
cules. Electron density distributions, potentisl distributions, and current-voltage character-
istics are presented for both cases. The effect of increased mean-free-path on the aforem J
tioned characteristics is discussed. i Lt%/f/

AT

Introduction -

This paper presents a new method for determining the effect of collisions on diode charac-
teristics and discusses the application of this method to determine the effect of elastic, hard
sphere electron-neutral collisions for both monoenergetic and thermionic emissiocn. The method
is, essentially, a consistent-field computor similation (Monte Carlo method) of the physical
model. The Monte Carlo Method has, in recent years, been employed with considerable success to
a wide variety of problemsl, most notably in the area of nuclear shielding problems (viz.,
neutron transport). These latter problems are linear in the sense that the transport of neutrons
is independent of the particle density. More recently, the method has been extended to certain
nonlinear problems in radiation transportz. Other computor-simulated solutions of nonlinear
problems in molecular dyna.mics5 and plasma physics4 approximate the physical model by a large
number of particles or current sheets, which are then followed deterministically through all
mutual interactions by the computer. For many problems such methods are not practical because
of computor storage and speed limitations.

Just as the nonlinearity in the radiation transport problem is characterized by a single
parameter, the temperaturez, s0 the nonlinearity in charged-particle transport problems is
characterized by a single parameter, the potential. Unlike the photons in the former problem,
however, the charged particles experience a body force proportional to the first derivative of
the potential.

The electron transport problem is solved herein in the following manner. An initial poten-
tial distribution is assumed. A large number of independent electrons are then followed through
their trajectories under the influences of both the potential field and collisions. The con-
tribution to the charge density made by each electron is tallied at preassigned data points in
the interelectrode region. In addition, the number of electrons reaching the collector is
tallied. At the end of one iteration, a density distribution is cbtained by fitting a curve to
the densities at the data points. A new potential distribution is obtained by solving Poisson's
equation for the given density distribution. The procedure is then repeated for a given number
of successive iterations. Convergence is obtained in the initial iterations; succeeding itera-
tions are then employed as independent trials. The final step is to obtain the mean and standard
deviation of the collector currents resulting from the independent trials.

Langmuir5 published the first correct solution to the effect of space-charge and initial
velocities on the potential distribution and thermionic current between parallel plane elec-
trodes. He also studied the problem of diffusion of electrons back to the emitter for the case
of very small mean-free-paths®. The Monte Carlo solutions presented herein are an extension of
these results to the case for which the mean-free-path is not necessarily small with respect to
the interelectrode separation.
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Monte Carlo Calculations

The following equations and dimensionless variables will be employed in the subsequent dis-
cussion:

?"(y) = Can(y) (1)
¥y = x/L (2)
n = fi/ng (3)
1= s/L (4)
a = L/A (5)

_ 2eV
Q= ;32 (6a)
® = % (6b)
C = 8rel?J /mv3 (72)
C = 16(n/znT)3/2 /2 eT I (7p)
u = vx/v0 (8a)
u = Vx/vth (8b)
vV = VT/VO (9&)
V = vp/vey (op)

where equation (1) is Poisson's equation in dimensionless variables, x is the distance along the
normal to the emitter, L is the interelectrode spacing, N is the electron density, n, 1is the
emitted electron density at x = 0O, mvz/Ze is the initial energy of monoenergetic emission,
kT/e is the thermionic emitter temperature, Jo 1is the emitted current demsity, s 1is the dis-
tance along a trajectory, A 1is the mean-free-path, v, 1is the velocity component in the
x-direction, vp 1s the velocity component transverse to the x-direction, and vgp = +/2kT/m.
Equations (a) and (b) refer to moncenergetic and thermionic emission, respectively.

Initial Conditions

For monoenergetic emission, each test particle is emitted with the same energy and vector
velocity (normal to the plane of the emitter). For thermionic emission, the initial velocities
must be chosen from the distribution of flux in velocity space

/7 uf(u,V)du av (10)

where

£(u,V)du av = (4/:1)Ve_(u2 * Vz)du av (11)

is the half-Maxwellian distribution of the emitted electrons. (Note that, although one speaks
of test "electrons," the statistics are obtained for units of flux - not units of charge den-
sity.) In applying the Monte Carlo technique, two random numbers, Ry and Ry, are chosen from
a uniform distribution, and the following equations are used for u and V7.
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2 = -1n(Ry)
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Distance to Collision

The assumptions of hard sphere collisions and a perfect Lorentzian gas of target particles
imply a constant mean-free-path A and isotropic scattering in the laboratory system®. Hence,
the probability of an electron suffering a collision in distance 1 is

1-eol (13)

The distance to collision along the trajectory of a given test particle is obtained by choosing
a random number R and solv:.ng

1, = -(1/a) 1n (R) (14)

For monoenergetic emission, no collision will occur if the initial distance to collision lo is
greater than one. This is not true, in general, for thermionic emission, since 1, 1is then the
non-dimensionalized path length along a curvilinear trajectory.

The actual computation of distance along a tra liectory was accomplished by a combination of
Gaussian quadratures with weights onelO and 1/~/x,11 and Simpson's Rulel®. The 1/-/x-weighted
Gaussian quadrature was employed for numerical lntegrations past a turning point (where the
u-component of velocity beccmes zero), since such integrations involved a singular integrand of
strength l/

Scattering Angle

After a collision occurs, the cosine of the random scattering angle is obtained from
cos 8 =1-2R (15)
where R is, once again, a random number chosen from a uniform distribution.
Density

The contribution to the demsity at each data point y; of a unit of flux of velocity
u(y;) is

n(y;) = 1/ u(y;)

u(y;) = VU@ +oly;) - oly,) (16)

vhere y, is the dimensionless position of the last "event" (emission or collision) and u, is
the dimensionless velocity component at the start of the new trajectory.

The sample density at data point y; for a total of N, histories is then

(yi) = —= 1 (17)
e ﬁNoZuk(Yi)
k

vhere the sum over k may be greater than, equal to, or less than N, because of collisions
and turning points in the trajectories caused by the potential field.

Current to Collector

The ratio of current density to the collector J to the emitted current demnsity J, for




each iteration is computed from the relation
J/3, = N /N, (18)

where N, 1is the number of test electrons reaching the collector.

Results

Thermionic Emission

The effect of mean-free-path on the current-voltage characteristic is shown in Fig. 1. The
s0lid line, L/A = 0, represents the collisionless solution of langmuir®. The Monte Carlo calcu-
lations indicated along this curve were undertaken as a check on the computor program. These
particular results were obtained with 5000 histories per iteration, and ten iterations. The
execution time for each point on the curve varied between 2.5 and 4.0 minutes.

The two solid data points on the curves for L/A = 1 and 5 represent the conditions where
the slope of the potential is zero at the emitter. The X's on the curve L/% =1 indicate
the results of an independent solution of Boltzmann's transport equation for this problem (pre-
sented in the paper by P. M. Sockol).

The effect of potential on the electron density distribution for IL/A =5 is shown in
Fig. 2. TFrom the emitter out to about one mean-free-path, the density of the higher energy
electrons is less than that of the lower energy electrons as would be expected under conditions
of no collisions. Beyond one mean-free-path, however, the situation is reversed. This is
caused by the increase in the number of collisions suffered by the higher energy electrons;
increased collisions result in a slower drift velocity even though the accererating potential is
higher. High-energy electrons undergo more collisions than low-energy electrons because they
will, in general, travel longer distances parallel to the electrode surfaces. (This also implies
a greater loss rate out the sides in a finite-dimension system.)

The effect of mean-free-path on the density and potential distributions for constant collec-
tor potential are shown in Figs. 3 and 4, respectively. As expected, the effect of collisions is
to increase the charge density and, therefore, decrease the potential in the interelectrode
space.

Monoenergetic Emission

The corresponding diode characteristics for monoenergetic emission are shown in Figs. 5
to 8. The author has, at present, no hypothesis regarding the inflections observed in the
current-voltage characteristics (Fig. 5) for L/A = 0.5 and 1.0. The points calculated are re-
producible, and each point, as plotted, spans at least plus or minus two standard deviations
about the mean J/J,.

The other most noteworthy feature of the monoenergetic emission characteristics is the
buildup of charge density in the interelectrode region as the potential is decreased (Fig. 6).
This increase in charge density is considerably enhanced by the appearance of a potential mini-
mum (cf. upper curve in Fig. 6). The potential minimum causes more turning points to occur in
the trajectories of the scattered electrons. Since the u-component of velocity becomes zero at
a turning point, the contribution to the charge density of electrons undergoing reflections in
the potential field is exceptionally high.

Discussion

Some typical statistics are presented in Table I. The standard deviation about the mean
J/Jo taken over the given number of iterations is represented by oy. Most striking is the
effect of the consistent-field constraint (Poisson's equation) on the number of histories needed
for reasonable statistics. In the last two rows of the table, it can be seen that the effect of
sample size (number of histories) on the standard deviation is significantly less than would be
expected in a linear problem.
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The present computor program is optimized for small L/?\. In the third row from the bottom
in Table I, it is apparent that any additional increase in L/?\ would be very costly in computor
time with the present program. In addition to optimizing this program for large values of L/?\
there exist other techniques, such as the introduction of "weight parameters, "4 which show great
promise of reducing the necessary execution times. The computations presented in this report
were done on an IBM 7094 Model II computor, and the programs were written in FORTRAN IV.

Although the results presented in this paper employed a simple hard sphere collision model,
the great advantage in this method lies in its inherent ability to provide similar solutions for
any given collision-model, theoretical or experimental. This includes inelastic, charge ex-
change, and ionizing collisions. This method 1s limited, however, to those cases where avalanche
ionization does not occur.
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TABLE I. EFFECT OF VARIOUS PARAMETERS ON STANDARD DEVIATION AND EXECUTION TIME,

U oD | J1, 0 SAMPLE | NUMBER OF | COLLISIONS | EXECUTION
SIZE | ITERATIONS | (FOR ONE TIME,
ITERATION) MIN
B |01 0.7510.961 | 0.001 5, 000 10 483 2.4
20 | .972 .0012 5,000 10 503 2.46
20 | .971 . 0019 2,000 5 213 .51
4.0 | .98 . 0005 10, 000 10 1,079 5.28
B| .5 40 | .918 . 0015 2,000 10 1,257 2.48
B|1L0 40 | .83 . 0015 1,000 10 1,483 209
T 50320 | .672 .003 1,000 18 16, 367 37.65
T|.110.2 | .942 . 0016 1,000 10 147 149
10.2 | .942 .0008 { 10,000 10 1,198 14.18
CS-33966

B = ELECTRON BEAM
T = THERMIONIC EMISSION
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Fig. 1. Effect of mean-free-path on current-voltage characteristics for thermionic emission. C = 50.
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Fig. 2 Effect of anode potential (1} on electron density distribution for therm-
ionic emission, C=50; L/A=5.
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Fig. 3. Effect of mean-free-path on electron density distribution for thermionic emission. C = 50; (1) = 32,
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Figure 4, - Effect of mean-free-path on potential distribu-
tion for thermionic emission. C = 50.
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Fig. 5. Effect of mean-free-path on current-voltage characteristics for electron beam, C = 10/ .
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Fig. 6. Effect of anode potential on electron density distribution for electron beam.
C-10/mur=0.1.
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Fig. 7. Effect of mean-free-path on electron density distribution for electron beam.

ply)

C = 10/~/m ) = 4.

. | | | | ]
0 .2 4 .6 .8 1.0

Figure 8. - Effect of mean-free-path on potential distribu-
tion for monoenergetic emission. C = 10/~r.
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