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RENDEZVOUS CAPABILITY O F  

HORIZONTAL-TAKE-OFF LAUNCH vEHICI;E WITH 

AIR-BREATHING PROPULSION 

By Charlie M. Jackson, Jr. 
Langley Research Center 

SUMMARY 

An investigation w a s  made t o  determine the rendezvous capabi l i ty  of a 
horizontal-take-off launch vehicle with an air-breathing propulsion system. A 
simplified closed-form analysis was made i n  order t o  calculate the of fse t  launch 
capabi l i ty  and allowable launch-time e r ro r .  Although a more detai led invest i -  
gation would undoubtedly indicate additional improvements i n  the rendezvous 
capabili ty,  it i s  believed t h a t  the  present analysis gives an indication of t h i s  
capabi l i ty  which i s  consistent with the accuracy of current component perform- 
ance estimates fo r  such a vehicle.  

The r e su l t s  of the  invest igat ion indicate large increases i n  of fse t  launch 
capabi l i ty  f o r  a vehicle with aerodynamic l i f t  and air-breathing propulsion i n  
comparison with t h a t  of a vehicle u t i l i z i n g  an orbital-plane-change maneuver. 
The maneuver associated with t h e  improved of fse t  capabi l i ty  of the  air-breathing 
launch vehicle i s ,  however, not without problems. Aerodynamic heating i s ,  as 
indicated by t h i s  investigation, a serious constraint  inasmuch as the most e f f i -  
cient cruise ve loc i t ies  a re  consistent with the  most severe heating conditions. 

Influence coeff ic ients  were determined f o r  the s ignif icant  parameters 
assumed for t h i s  analysis,  and none were found t o  be  so important t ha t  reason- 
able var ia t ions would a f f ec t  t he  consideration of o f f se t  capabi l i ty  a s  an advan- 
tage f o r  the  horizontal-take-off launch vehicle with air-breathing propulsion. 

Investigation of the allowable launch-time er ror  with respect t o  reduction 
of t he  maximum time i n  the parking o rb i t  indicated t h a t  for a ta rge t  orb i t  a t  
an a l t i t ude  of 300 naut ical  miles, a reduction of only a few houf-s w a s  possible 
with an o r b i t a l  phasing maneuver o r  a combination aerodynamic-orbital phasing 
maneuver. A comparison of t he  two types of maneuvers indicated no d i s t i n c t  
advantage for e i the r .  

INTRODUCTION 

The subject of near-earth rendezvous has received considerable a t tent ion 
i n  the  past  few years both ana ly t ica l ly  (using the techniques of o rb i t a l  
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mechanics) and experimentally (using simulators t o  determine the usefulness of 
a p i l o t  i n  the control loop). 
e r a l  methods of increasing the rendezvous capabi l i ty  of b a l l i s t i c  launch vehi- 
cles;  the use of rendezvous-compatible s a t e l l i t e  o r b i t s  (ref. 1) i s  one such 
method. Another approach t o  rendezvous i s  the  phasing o r  chasing method ( r e f .  2) 
with which launch-time e r ro r s  can be corrected by remaining i n  a parking orb i t  
u n t i l  t ransfer  t o  the t a rge t ' s  o rb i t  and posit ion can be made. 
increase rendezvous capabi l i ty  f o r  t h e  b a l l i s t i c  launch vehicle without incur- 
r ing s ignif icant  f u e l  expenditures. However, t o  e f fec t  a s ignif icant  increase 
i n  the launch-time window (time period i n  one ear th  day during which the in te r -  
ceptor may be launched in to  an orb i t  co-planar with the ta rge t  o rb i t )  the  launch 
vehicle must be capable of placing the payload i n  an o rb i t  which i s  of fse t  from 
the  launch point.  One method of obtaining t h i s  of fse t  a t  near minimal fue l  
cost (described i n  r e f .  2) i s  by launching in to  an o r b i t a l  plane with minimum 
incl inat ion t o  the ta rge t  o r b i t a l  plane and by applying an impulse a t  the in te r -  
section of the planes (90" from launch). 

The analyt ical  investigations have indicated sev- 

These techniques 

The concept of a recoverable winged launch vehicle with some aerodynamic 
l i f t  capabi l i ty  of fe rs  the poss ib i l i t y  of obtaining of fse t  range (perpendicular 
distance from launch s i t e  t o  orb i t  plane) with an aerodynamic assis ted turn.  
The low specif ic  impulse associated with an all-rocket propulsion system pre- 
cludes i t s  use f o r  an of fse t  maneuver. However, an air-breathing horizontal- 
take-off launch vehicle ( r e f .  3 )  offers  re la t ive ly  good specif ic  impulse, and 
i f  the f u e l  i s  available it can e f f i c i en t ly  perform the cruise-turn maneuver 
required fo r  of fse t  launch. Another possible advantage of the air-breathing 
launch vehicle i s  the  correction (by l o i t e r  maneuver) of launch-time error  when, 
due t o  operating problems, the interceptor i s  launched before the time for  
d i r ec t  rendezvous (subsequently referred t o  i n  t h i s  report  as "lead time"). The 
l o i t e r  capabi l i ty  of the air-breathing vehicle eliminates the need t o  correct 
s m a l l  in ject ion time e r ro r s  by the  chasing orb i t  technique and therefore has the 
poten t ia l  of reducing the maximum time from launch t o  rendezvous. These consid- 
erat ions indicate  the poss ib i l i t y  of an increased rendezvous capabili ty fo r  the 
air-breathing launch vehicle compared with t h a t  of a b a l l i s t i c  launch vehicle 
or  a rocket-propelled winged launch vehicle. 

The present report i s  a preliminary analysis  of several  possible combina- 
t i ons  of f i r s t - s tage  cruise and cruise-turn maneuvers (including subsonic l o i t e r  
and/or cruise,  high-speed cruise,  and high-speed turn  segments) required t o  
place the second stage i n  an of fse t  o r b i t a l  plane. A n  e f fo r t  i s  made t o  point 
out some of the  more important design problems and compromises associated with 
an of fse t  launch mission composed of the par t icu lar  f l i g h t  segments considered. 

SYMBOLS 

a 

b 

2 

range during acceleration from take-off veloci ty  t o  offset-maneuver 
veloci ty  (BC i n  f i g .  l), f t  

subsonic cruise range (OB i n  f i g .  l), f t  



cD, i 

cD, min 

cI 

CL 

D 

Di 

g 

h 

ISP 

L 

M 

m 

Qoffset 

Qaccel 

Q 

Induced drag 
qs induced-drag coefficient, 

Minimum drag 
qs minimum-drag coefficient, 

nondimensional influence coefficient, percent change of offset dis- 
tance during high-speed cruise and turn divided by percent change 
of parameter 

Lift lift coefficient, - 
qs 

1 lift-curve slope, - 
rad 

total drag, lb 

induced drag, lb 

acceleration due to earth's gravitational field, 32.174 ft/sec2 

altitude above earth's surface, ft 

installed specific impulse, sec 

lift, lb 

Mach number 

vehicle mass, slugs 

total heat input at stagnation point for off set maneuver, Btu/ft2 

total heat input at stagnation point for acceleration from take-off 
to stage separation, Btu/ft2 

convective heat-tranfer rate, Btu/ft2-sec 

dynamic pres sure, lb /f t2 

earth radius, 20.89 X lo6 ft 

turn radius, ft 

reference area, ft2 

thrust, lb 
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t time, sec 

time lapse from end of off s e t  maneuver t o  100-nautical-mile o rb i t  , 
se c 

t 2  

time f o r  t a rge t  s a t e l l i t e  t o  t raverse  q, sec (see f i g .  4) tq  

V 

w 
w 

X 

velocity,  f t / s e c  

vehicle weight, lb 

f u e l  flow ra te ,  lb/sec 

distance from launch point t o  rendezvous measured pa ra l l e l  t o  
t a rge t  o rb i t ,  f t  (see f i g .  4) 

Y perpendicular distance from launch point t o  ta rge t  o rb i t ,  f t  
(see f i g .  1) 

a 

P 

angle of attack, deg or  rad 

atmospheric density decay parameter, 4.2553 X 10-5 1 

7 f l ight-path angle measured posi t ive up from horizontal, deg 

distance along o r b i t a l  path from point nearest the launch s i t e  tc 
t a rge t  s a t e l l i t e  a t  time of  launch, f t  

P atmospheric density, po exp( -Ph), s lugs/f t3  

QI bank angle, rad 

If heading angle or  turn angle, rad (see f i g .  1) 

Subscripts : 

O,A,B,C,D,E,F points along f i r s t - s tage  t r a j ec to ry  a s  described i n  f igure 1 

bank banked 

cruise  high- speed cruise 

UlaX maximum 

min minimum 

0 sea l eve l  o r  take-off 

opt optimum 

S 
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tu rn  

1 

2 

high- speed turn  

on-time launch path 

general launch path 

Average values are  indicated by a bar .  

ANALYSIS 

I n  order t o  delineate some of the problems associated with an of fse t  cruise 
and turn maneuver, a boost t ra jec tory  with the  simplified of fse t  maneuver 
described by f igure 1 w a s  analyzed f o r  a winged air-breathing f i r s t - s t age  vehi- 
c l e  with an in te rna l ly  stored b a l l i s t i c  rocket second stage. I n  f igure 1 the 

vehicle i s  launched a t  point 0. A 
subsonic l o i t e r  (path OAO) involving 
a 360° turn,  the turn  radius being 
defined by the desired l o i t e r  time, 
w a s  considered i n  addition t o  a sub- 
sonic cruise phase (path OB). 
acceleration t o  high-speed cruise 
veloci ty  i s  represented by the  segment 
BC, high-speed cruise by CD, tu rn  in to  
the  o rb i t a l  plane a t  cruise a l t i t ude  

Y and velocity by DE, and f i n a l l y  accel- 
erat ion from cruise veloci ty  t o  stage- 
separation velocity by EF. 
present investigation the velocity a t  
stage separation i s  assumed t o  be 
8000 f t / sec .  The performance f o r  a l l  
cruise and turn  porti'ons of the f l i g h t  
path i s  calculated from steady-state 
analysis which assumes average values 
of weight, aerodynamics, and propulsion 
character is t ics .  Acceleration phases 
are analyzed by stepwise integration 

of the two-dimensional equations of motion. The best  o f fse t  distance ( m a x i m u m  
with respect t o  the  f u e l  consumed) i s  obtained f o r  a specified amount of f u e l  
available f o r  the necessary cruise and tu rn  maneuver. The return maneuver i s  
not considered i n  this investigation. However, it can be of considerable impor- 
tance i f  t he  of fse t  distance i s  la rger  than the glide-range capabi l i ty  of the  
vehicle and i f  no a l te rna te  landing point i s  available.  

Target orbit plane 

The 

For the 

---- 

Interceplm path 

A 

Figure 1.- Geometry of offset maneuver. 

Aerodynamic Maneuvers 

Cruise f l i g h t  segments.- The f u e l  consumption associated with a cruise 
maneuver w a s  obtained by assuming a constant f u e l  flow rate:  
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For the subsonic cruise  (OB), a veloci ty  of 900 f t / s e c  and a dynamic pressure 
of 900 l b / f t 2  were used. For the high-speed cruise ( C D ) ,  constant ve loc i t ies  
which varied over the range from 2000 t o  8000 f t / s e c  and a dynamic pressure of 
1300 l b / f t2  were used. 

Turn f l i g h t  segments. - For t u r n  maneuvers a t  constant velocity, a l t i tude ,  
and turn radius the  approximate t o t a l  f i e 1  required consists of the fue l  used 
f o r  a cruise with range equal t o  a rc  length and the f u e l  used t o  maintain the 
banked condition of the vehicle. (The increased th rus t  required t o  overcome 
the increase i n  drag due t o  l i f t ,  which may be as much as 50 percent, i s  
assumed available.)  I n  order t o  calculate the additional f u e l  due t o  the banked 
condition, consider the following sketch i n  which it has been assumed t h a t  the 

negligible.  
I angles of a t tack a r e  small enough such t h a t  the  v e r t i c a l  th rus t  component i s  

L 
L + A L  

- Flight  path mV 
r 
- 

Turn center 

/ V 
" W  

The assumptions of s m a l l  angles of a t tack and constant velocity allow the fo l -  
lowing expression : 

where AT and AD are the increments i n  thrus t  and drag due t o  the banked 
condition. By using a parabolic drag polar, equation (2) can be writ ten as 
follows : 

( 3 )  
c D , i  L2 + 2L AL + A L 2  T + aT = % i n  + c D , i  - ( L  + AL)2 =kn+- 

CL2 Gs CL2 GS 

Since the cruise thrus t  T and cruise drag D a re  equal, the thrus t  increment 
can be expressed: 

6 
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m=%L(2L+L%) 
L2 

Substi tuting L(sec # - 1) f o r  AI, i n  equation (4a) gives 

For a constant bank angle and constant velocity (constant t u rn  radius) ,  equa- 
t i o n  (4b) can be used t o  approximate the additional fuel consumed due t o  the 
banked condition i n  terms of the  specif ic  impulse, tu rn  t i m e ,  and angle through 
which the  f l igh t  path has turned. The resul t ing expression i s  

where w i s  the average weight during the  maneuver. 

Combining the equations f o r  cruise and bank fue l  r e su l t s  i n  the following 
equation : 

t he  
and 

Optimization of high-speed cruise and tu rn  maneuvers.- The f u e l  used fo r  
hi-&-speed cruise and t6 rn  maneuvers (CDE), obtained from equations (1) 
(6) and the  geometry of f igure 1, i s  

where the  first braced term represents the f u e l  weight f o r  the high-speed cruise  
(CD) , the  second braced term represents the f u e l  expended t o  maintain a normal 
cruise f o r  the  a r c  length of the  turn  DE, and the l a s t  braced term represents 
that addi t ional  fue l  required t o  maintain the  banked condition during the turn.  

Since equation (7) indicates  t h a t  the f u e l  required f o r  the  high-speed 
. c r u i s e  and turn  maneuvers i s  a strong function of the turn radius and i n i t i a l  
heading angle I), it would be in te res t ing  t o  invest igate  the values of these 
parameters with respect t o  obtaining a mission with minimum fue l  expenditure 
fo r  a fixed of fse t  distance y. The expression f o r  values of r which yield 

minimum f u e l  expenditure can be obtained mathematically by se t t ing  - am 
ar 
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equal t o  zero. The resul t ing equation is: 

r 

The best of fse t  distance w a s  calculated by replacing r i n  equation (7) 
by rapt a s  given i n  equation (8) and solving f o r  y where 0 < Jr < qlimit 
and the l imit ing value of Jr w a s  determined by the available fue l  AW. The 
high-speed cruise and turn  maneuvers were examined f o r  the range of 
determine the  bes t  value of 

q t o  
y consistent with the  present analysis.  

Acceleration segments.- Calculation of the t ra jec tory  parameters f o r  the 
acceleration segments of the  boost mission (BC and EF i n  f i g .  1) was accom- 
plished by stepwise integrat ion of the two-dimensional equations of motion. The 
bas ic  assumptions associated with these equations are:  
earth,  exponential atmosphere, and inverse square var ia t ion  of the gravi ta t ional  
f i e l d .  The equations of motion with attendant auxi l iary equations a re  as 
follows : 

spherical  nonrotating 

- =  d y  T s in  a + cLqs g cos 7 1  - V2 ] 
d t  mV mV V + h) 

( 9 )  

- -  dh - v s in  y 
d t  

CL 
CL=O + - 

cLU 
a = (a) 

8 
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For the acceleration segments of the  mission, a typ ica l  t ra jec tory  f o r  a 
horizontal-take-off launch vehicle with an air-breathing propulsion system w a s  
simulated by stepwise integrat ion of equations ( 9 )  t o  (15) with the estimated 
aerodynamic and propulsion character is t ics  presented i n  f igure 2. The f l i g h t  
path consisted of maintaining a constant dynamic pressure of 1500 lb / f t2 .  
r e su l t s  of these calculations,  presented i n  f igure 3, provide the  necessary 
input parameters (weight and range) fo r  the  steady-state cruise and turn  
calculations.  

The 

.03 F 

3 r  

I sec sp I 4000 I-------\ 
2 r  

Figure 2.- Assumed aerodynamic and 
propulsion characteristics of 

, typical launch vehicle. 

300 r 

.a' ' I I 1 

Velocity. W s e c  

Figure 3.- Trajectory for typical launch 
vehicle. 

Aerodynamic heating considerations.- Since consideration i s  given t o  high- 
speed cruise maneuvers, t he  question of aerodynamic heat input must be evaluated. 
I n  the present investigation only the  convective heat input i s  considered f o r  
the  stagnation region on a sphere of radius equal t o  1 foot .  These conditions 
were imposed i n  the  in t e re s t  of general i ty  and simplicity.  A more detai led 
calculation of heating charac te r i s t ics  involves a knowledge of the vehicle shape 
and heat-transfer charac te r i s t ics  as well  as a stepwise integrat ion of the  heat 
input ( t o  determine surface temperature rise). Basing the  analysis on only the  
convective heat t ransfer  i s  considered ju s t i f i ed  because reference 4 indicates  
that f o r  constant surface temperature the radiation component of heat t ransfer  
i s  small compared with the convective heat t r ans fe r  f o r  the small-diameter 
leading edges of high L/D configurations such as the horizontal-take-off 
launch vehicle. A simple calculation indicated t h a t  f o r  a leading edge with 

9 
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ac t ive  cooling t o  a temperature of 1000° R t h e  radiation-heat-transfer r a t e  
would amount t o  a small percentage of the convective heating r a t e .  For example, 
a t  a cruise veloci ty  of 4-000 f t / s e c  and a dynamic pressure of 1500 l b / f t2  the 
radiat ion heating r a t e  w a s  2 percent of the convective heating r a t e .  

The semi-empirical equation used i n  the present analysis  t o  compute the  
stagnation convective heat-transfer r a t e  f o r  laminar flow over a sphere of 
radius equal t o  1 foot  i s :  

and i s  discussed i n  reference 5 fo r  heating r a t e s  a t  near s a t e l l i t e  ve loc i t ies .  
A comparison of t he  heating r a t e  given by equation (16) was made with the  more 
rigorous methods of reference 6. For the  f l i g h t  conditions of i n t e re s t  i n  the  
present analysis the  r e s u l t s  indicated tha t ,  although the  heating r a t e  was i n  
e r ror  by as much a s  an order of magnitude, the var ia t ion with f l i g h t  veloci ty  
was i n  general agreement. 
y s i s  should be used only f o r  the purpose of indicating trends i n  the coolant 
requirements f o r  var ia t ions i n  o f f se t  distance and velocity.  

Therefore, the heating r a t e s  presented i n  t h i s  anal- 

Space Maneuvers and Comparisons 

Space maneuvers.- A cursory evaluation of the  rendezvous capabili ty of a 
boost system with o r b i t a l  maneuver capabi l i ty  can be obtained by allowing off-  
s e t  distances t o  be corrected by orbital-plane changes. 

If the  orbital-plane change desired i s  assumed t o  occur goo down range from 
the  launch point ( a  near optimum condition), the  f u e l  cost can be expressed: 

where the  o f f se t  range i s  expressed i n  naut ica l  miles and AW/W 
f rac t ion  required a t  the  plane change. 

i s  the f u e l  

Launch-time e r ro r s  can be corrected by the  parking-orbit technique. For 
example, i f  t he  launch i s  l a t e  then the  interceptor  goes in to  an o rb i t  a t  an 
a l t i t u d e  lower than the  t a rge t  o rb i t  ( o r b i t a l  period l e s s  than that of the t a r -  
g e t ) ,  makes up the time misalinement with an  appropriate number of o r b i t s  
(periods),  and then t r ans fe r s  t o  the ta rge t  o r b i t  f o r  rendezvous. In  the pres- 
en t  analysis  the  lower a l t i t u d e  l i m i t  f o r  a parking o rb i t  was assumed t o  be 
100 naut ical  miles i n  order t o  avoid the problems of o r b i t  decay due t o  atmos- 
pheric drag. 
technique used i n  t h e  present analysis,  u t i l i z i n g  a parking o rb i t  a t  a l t i t ude  
lower than the  t a rge t  o r b i t  requires the same energy o r  f u e l  a s  does d i r ec t  
launch t o  the t a rge t  o rb i t .  
than that of the t a rge t  o rb i t  (conditions necessary t o  correct launch lead time) 

It i s  of i n t e r e s t  t o  note that with the  impulsive change i n  energy 

However, f o r  parking o r b i t s  a t  higher a l t i t udes  
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the  energy requirements are  more than those f o r  a d i rec t  launch since the inter-  
ceptor must achieve a higher energy parking o rb i t  and then expend additional 
energy t o  reduce the  parking o rb i t  t o  the energy l eve l  of the ta rge t  orb i t .  For 
the present analysis the nominal mission i s  assumed t o  be a Hohmann t ransfer  
from c i rcu lar  o r b i t a l  conditions a t  an a l t i t ude  of 100 naut ical  miles t o  the 
ta rge t  o r b i t a l  a l t i t ude  of 300 naut ical  miles. The f u e l  requirements f o r  
o r b i t a l  maneuvers, including t ransfer  t o  parking o rb i t s  above and below the t a r -  
get  o rb i t s ,  have been calculated with the use of equation (17) and an assumed 
specif ic  impulse of 430 seconds. 

Method of comparison of space and aerodynamic maneuvers.- One way t o  com- 
pare the o f f se t  efficiency of space maneuvers with tha t  of aerodynamic maneuvers 
i s  t o  examine the  reduction of o r b i t a l  weight f o r  a boost system with constant 
gross take-off weight. 
f o r  the  of fse t  by a space maneuver as a function of specif ic  impulse. 
the  e f f ec t  of the f u e l  consumed ear ly  i n  the boost phase on the o r b i t a l  weight 
i s  dependent on the boost-system performance and weights. 
the change i n  o r b i t a l  weight f o r  the aerodynamic maneuvers, consider the booster 
weight a t  the  points on the ascent path defined by the  following sketch: 

Equation (17) d i rec t ly  gives the f u e l  f ract ion required 
However, 

In  order t o  evaluate 

h x 
0 
0 
rl 

- First-stage ,I 

Upper- stage 
maneuver 

maneuvers 

i n e r t  
weight 

Decreasing weight 

where points 0, C ,  E, and F correspond t o  f igure 1, point G re fers  t o  conditions 
a f t e r  stage separation, and point H r e fe r s  t o  conditions a t  o r b i t a l  inject ion.  
By assuming constant weight r a t i o s  during the  acceleration segments, 

WF/WE, and 
Wc/Wo, 

WII/WG, and a constant i n e r t  weight r a t i o  fo r  the f i r s t  stage, 

, the  weight a t  o r b i t a l  conditions can be expressed i n  terms of these 'F - 'G 
WO 

constant r a t i o s  and the  f u e l  r a t i o  available f o r  the aerodynamic of fse t  maneuver (" wo - 'E =E) as 

Equation (18) gives the  weight a t  o r b i t a l  conditions f o r  
path when AW/Wo becomes zero; thus, the expression f o r  

the  nominal ascent 
t he  r e l a t ive  orb i ta l  

weight due t o  a f u e l  expenditure, AW, i n  the f irst  stage can be writ ten: 
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Relative o r b i t a l  weight = 'HIw, 

R)nominaI  

= 1  

For the  present analysis the r a t io s  WE/WG and WF/WE were obtained from f ig-  

ure 3, and (WH/Wo)nominal w a s  assumed t o  be 0.132. 

Launch-Lead-Time Correction Maneuver 

The launch-lead-time er ror  can have a large e f fec t  on the  time required t o  
rendezvous i f  the  low-parking-orbit technique i s  used t o  compensate f o r  the 
resul t ing in te rceptor -sa te l l i t e  phase misalinement. The low-parking-orbit tech- 
nique r e su l t s  i n  m a x i m u m  time t o  rendezvous fo r  s m a l l  lead-time errors .  ( In te r -  
ceptor i s  j u s t  ahead of optimum rendezvous posit ion i n  a lower orb i t  and must 
chase the  t a rge t  s a t e l l i t e  t o  make up nearly $0' phase misalinement.) 
present analysis t he  m a x i m u m  time t o  rendezvous i s  defined as the  time required 
t o  maneuver the  interceptor  from a circular  o rb i t  a t  an a l t i t ude  of 100 naut ical  
miles and co-planar with the s a t e l l i t e  orb i t  ( a l t i t ude  of 300 naut ical  miles) t o  
a posit ion coincident with the  s a t e l l i t e  and i n  the same orb i t  regardless of the 
s a t e l l i t e  posit ion i n  the o rb i t  a t  the time of interceptor launch. Small lead- 
t i m e  e r rors  can be corrected with s m a l l  parking-orbit time a t  considerable f u e l  
expense by parking i n  an o rb i t  with a longer period (higher orb i t )  than that of 
t he  ta rge t  orb i t .  From the  standpoint of system design it i s  important t o  know 
the  m a x i m  t i m e  t o  rendezvous and the f u e l  cost of reducing this time. The 
philosophy of the present analysis considers t ha t  a specif ic  amount of f u e l  i s  
available i n  order t o  enhance the rendezvous poten t ia l  of the horizontal-take- 
off launch vehicle with an air-breathing propulsion system. 
investigated which uses the available fuel  t o  increase the  of fse t  capabi l i ty  of 
t h e  vehicle. It i s  also i n  order t o  investigate the use of some o r  a l l  of t h i s  
f u e l  t o  reduce the  m a x i m u m  time t o  rendezvous, especial ly  f o r  those cases of 
of fse t  which do not require a l l  the available fue l .  

I n  the 

A maneuver has been 

The l a t e r a l  maneuver considered f o r  correction of launch-lead-time er ror  
A s  previously mentioned, f o r  a given f u e l  available i s  represented i n  f igure 4. 

and of fse t  distance a range of possible heading angles e x i s t s  f o r  the of fse t  
maneuver. 
Path 1 represents t he  on-time launch condition and i s  assumed t o  be the path 
f o r  minimum f u e l  consumption; hence, there i s  no subsonic cruise (0  and B 1  coin- 
cide) and no subsonic l o i t e r  (vehicle accelerates d i r ec t ly  t o  cruise  veloci ty  
a t  C 1 ) .  Path 2 on the  other hand incorporates the subsonic l o i t e r  (OA20) and/or 
subsonic cruise (OB2) and therefore requires more f u e l  than path 1. The time 
in te rva l  between t h e  d i r ec t  rendezvous f o r  path 1 (on-time launch) and the  
d i rec t  rendezvous f o r  path 2 ( l a t e  launch) i s  t h e  launch-time correction capa- 
b i l i t y  available f o r  the difference i n  fue l  expenditure between the two paths. 
Since only the correction capabi l i ty  i s  of i n t e re s t  here (not a specif ic  prob- 
l e m ) ,  an ear ly  launch can be corrected by simply designating path 2 as the 

1 2  

Two such maneuvers are represented by paths 1 and 2 i n  figure 4. 



on-time path (retaining the  subsonic cruise and l o i t e r )  and using the d i r ec t  
path (path 1) f o r  correction. 

Target position Target orbit path 
' 

a1 launch 

Interceplor paths 

I I 

Figure 4. - Geometry of launch-lead-time correction maneuver. 

I n  order t o  determine the  time differences f o r  two such paths and the 
respective fue l  expenditures, consider the time in t e rva l  required fo r  the  tar-  
get s a t e l l i t e  t o  cover the distance ,, indicated i n  f igure 4. 

The bracketed term on the r igh t  of equation (20) i s  the  summation of the times 
f o r  the respective segments of the boost maneuver where t 2  includes the  seg- 
ments from the end of the o f f se t  maneuver t o  a 100-nautical-mile orb i t .  The 
second term represents the time required f o r  the  ta rge t  s a t e l l i t e  t o  move the 
distance x. For a specif ic  of fse t  distance and quantity of fue l  there e x i s t s  
a path fo r  maximum time and one f o r  minimum time required f o r  the t a rge t  sa te l -  
l i t e  t o  cover the  distance 7. The allowable launch lead (or lag) time i s  the  
difference between these extremes. The use of equation (20) t o  determine these 
extremes involves the assumption of a nonrotating earth' (launch point has not 
moved during the time At,,). The reason f o r  t h i s  assumption i s  tha t  of gener- 
a l i t y ,  since the ac tua l  veloci ty  of the s a t e l l i t e  re la t ive  t o  the launch point 
i s  dependent on o r b i t a l  incl inat ion and launch point coordinates. 

The additional f u e l  expenditures f o r  subsonic l o i t e r  and cruise  were cal-  
culated by the techniques previously outlined. 
65  l b / f t 2  w a s  assumed for  the  maneuver. The aerodynamic and propulsion charac- 
t e r f s t i c s  presented i n  f igure 2 were assumed t o  be average operating conditions 
a t  a f l i g h t  veloci ty  of 900 f t / s e c  and a dynamic pressure of 900 lb / f t2 .  
f u e l  cost  of t he  subsonic cruise w a s  calculated by assuming a constant f u e l  

An average wing loading of 

The 



Geometrical constraint 
(CDZO), f ig .  I 

_ _ _ - _ _  Loiter moneuver with 
avoiloble fuel 
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Figure 5.- Method of determining m a x i m  acceptable launch-lead-time error. 
VCruise = 4000 ft/sec; offset range = 400 n. mi. 
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flow ra t e  (eq. (l)), and the  l o i t e r  f u e l  w a s  calculated,from equation (6) with 
the  assumption that + = 3 6 0 ~ .  

.06 

.03- . 05  .04 

.02 

.01- 

An example of the method used t o  determine the combination of subsonic 
l o i t e r ,  subsonic cruise,  and high-speed cruise-turn segments f o r  the  la rges t  
allowable lead-time e r ro r  i s  represented graphically i n  f igure  5 f o r  an of fse t  
maneuver veloci ty  of 4000 f t / s ec  and an of fse t  distance of 400 naut ical  miles. 
Similar f igures  a re  necessary t o  complete the investigation of t he  range of 
of fse t  distances considered i n  t h i s  analysis.  The f u e l  cost of the o f f se t  maneu- 
ver i s  presented i n  f igure 3(a) as a function of heading angle f o r  various values 
of subsonic range. 
0.06 a t  take-off then f o r  a large range of heading angles the offset  (even with 
subsonic cruise) does not require the  t o t a l  f u e l  f rac t ion .  The time, t,, - t Z ,  

i s  increased considerably by using the f u e l  ( f i g .  5(a)) fo r  a l o i t e r  
maneuver increasing t,, - t z  by tOA0, f i g .  5(b)) .  Figure 5(b) shows that 

t h e  of fse t  maneuver can be accomplished f o r  a range of heading angles and from 
a minimum time, t,, - t2, of about 950 seconds ($ = 80°, no subsonic cruise 

o r  l o i t e r )  t o  a maximum of about 2850 seconds ( J I  = 5 5 O ,  subsonic cruise f o r  
340 naut ical  miles and no l o i t e r ) ,  which r e su l t s  i n  a lead-time-error correction 
capabili ty,  

If the  t o t a l  f u e l  f ract ion available f o r  the maneuver i s  

AWoAo 

( 

At,,, of about 1900 seconds f o r  t h i s  s i tua t ion .  

2000 4000 6000 8000 
r t he  aerodynamic heating r a t e  are  strong functions 

of velocity.  The f u e l  cost f o r  best  o f fse t  dis-  
tances obtained a t  ve loc i t ies  from 2000 t o  
8000 f t / s ec  i s  presented i n  f igure 6 f o r  a typ ica l  
launch vehicle with air-breathing propulsion and 
aerodynamic l i f t  capabili ty.  Consideration of the 
e f f ec t s  of maneuver veloci ty  on the  of fse t  capa- 
b i l i t y  of the system with aerodynamic cruise indi-  

( y  >> a) the maneuver eff ic iency increases with 
velocity.  This increase i s  due to :  f i r s t ,  a gen- 
e ra1  increase of the cruise  efficiency o r  range 

- - pi/ / 

- cates  tha t  for large values of of fse t  distance 

A' , 
/ 

1 -  

RESULTS AND DISCUSSION 

Off s e t  Capability 

Aerodynamic maneuver capabi l i ty . -  The techniques outlined i n  the section 
en t i t l ed  "Analysis" were used t o  analyze the fue l  cost of  the of fse t  maneuver 
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increased cruise veloci ty  ( fo r  y >> a the  heading angle 9 w a s  near 90' i n  
a l l  cases). 
decreases (y  approaches 
i t i e s  increases because the increase i n  acceleration range with cruise velocity,  
now a disadvantage, requires the heading angle 9 t o  depart from 90'. "his 
e f f ec t  of maneuver veloci ty  i s  a r e su l t  of the framework of t he  present analysis 
and probably would not ex i s t  with a more p rac t i ca l  integrated maneuver ( turn  
during acceleration) . 

A s  the  available f u e l  (hence bes t  o f fse t  distance obtainable) 
a) the  maneuver efficiency a t  the lower cruise veloc- 

- 4000 f t / s e c  exceeds 2g, and the 
th rus t  requirements, which f o r  
high ve loc i t ies  amount t o  about 
a %-percent th rus t  margin. 

- 
- 
- 

.04 
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- 
- 

I 
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Figure 7.- Effect of maneuver velocity on 
poten t ia l  l imiting parameters. 

In tu i t ive ly ,  one might 
expect aerodynamic heating t o  be 
a serious operating constraint  
since the vehicle i s  required t o  
cruise  a t  near peak heating con- 
d i t ions  as Vcruise approaches 
8000 f t / s ec .  The simplified 
heating analysis described i n  the 
section en t i t l ed  "Analysis" w a s  
applied t o  the o f f se t  maneuvers 
considered thus far and the 
resul t ing r a t i o  of t o t a l  heat 
input during of fse t  maneuver t o  
t o t a l  heat input without of fse t  
maneuver (a measure of the  addi- 
t i o n a l  cooling capacity required) 
i s  presented i n  f igure 8 as a 
function of offse t  distance f o r  
the cruise ve loc i t ies  considered 
and three f u e l  fractions required 
f o r  o f f se t  range (0.013, 0.030, 
and 0.060). According t o  the  
r e su l t s  of the  present analysis 
( see f i g .  8 ) ,  the  coolant require- 
ments f o r  hypersonic cruise 
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Figure 8.- Effects of cruise 
velocity and fue l  f rac t ion  on 
of fse t  distance and aerody- 
namic heat input. 
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Figure 9.- Offset-distance 
influence coefficients.  
vCMse = 4000 ft /sec;  
AW/wo = 0.03. 

( Vcrui se > 4000 f t / s e c )  a re  s ign i f icant ly  
increased with l i t t l e  increase i n  o f f se t  range. 
These e f f ec t s  are due primarily t o  increased 
heating rates a t  the higher ve loc i t ies  and t o  
the  decreased air-breathing propulsion e f f i -  
ciency. A s  a re su l t  of this cursory heating 
analysis an of fse t  maneuver velocity of 
4000 f t / s ec  w a s  chosen fo r  fur ther  analysis.  

Since the  aerodynamic and propulsion char- 
a c t e r i s t i c s  ( f ig .  2) used i n  the investigation 
thus f a r  have been typ ica l  of the  state-of-the- 
a r t  estimates, it i s  i n  order t o  investigate,  
a t  least t o  a l imited extent, the e f f ec t s  of 
deviation from these estimates. Nondimensional 
influence coeff ic ients  a r e  presented i n  f ig-  
ure  9 f o r  the  offset-range e f f ec t s  of the tra- 
jectory, aerodynamic, and propulsion parameters 
associated with the  best  o f fse t  maneuver a t  a 
veloci ty  of 4000 f t / sec ,  with an average wing 
loading of 59 1b/f t2  and f o r  a f u e l  cost  of 
3 percent of the gross take-off weight. The 
var ia t ion of these parameters w a s  assumed t o  
take place only during the  high-speed cruise 
and turn  maneuvers and i s  compared with the off-  
s e t  distance obtained by these segments. Fig- 
ure 9 indicates  t h a t  the dynamic pressure o r  
maneuver a l t i t ude  has considerable influence on 
the  portion of the of fse t  range due t o  high- 
speed cruise and turn.  For example, an increase 
of 1.0 percent i n  dynamic pressure r e su l t s  i n  a 
decrease of cruise-turn of fse t  distance of about 
1.22 percent. This e f fec t  i s  due t o  the reduc- 
t i o n  i n  operating L/D. Although a l l  of t he  
parameters considered have a s ignif icant  e f f ec t  
on the of fse t  distance,  for  the case considered 
none i s  so important t h a t  reasonable var ia t ions 
would a f f ec t  t he  consideration of the improved 
of fse t  capabi l i ty  as an advantage f o r  the  hori- 
zontal-take-off launch vehicle with air-breathing 
propulsion. 

A comparison of the simplified method of 
calculating high-speed cruise-turn performance 
used i n  the  present analysis  w a s  made with the 
more complete r e su l t s  of a stepwise integrat ion 
of the d i f f e r e n t i a l  equations of motion. 
using t h e  d i f f e r e n t i a l  equations of motion, the  
additional th rus t  and fue l  consumed due t o  the  
turn  were evaluated with consideration of t he  
e f f ec t s  of angle of a t tack  on the  th rus t  vector. 

By 

, 
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The l a t e r a l  displacement was computed by stepwise integrat ion of the l a t e r a l  
acceleration. The following t ab le  presents a comparison of some of the per- 
formance parameters f o r  a high-speed cruise-turn maneuver ( typ ica l  of those pre- 
sented i n  the present report)  computed by the  two techniques under discussion: 

Stepwise 
integrat ion of 

d i f f e r e n t i a l  eauations 

vCE, f t / s e c  . . . . . . . . . . . .  4000 
WD/W, . . . . . . . . . . . . . . .  0.8380 
wE/wo . . . . . . . . . . . . . . .  0.8498 
Jr, deg . . . . . . . . . . . . . . .  90 
$, deg . . . . . . . . . . . . . . .  60.9 
Time, sec . . . . . . . . . . . . .  111.0 
Latera l  range, n. m i .  . . . . . . .  465.8 
Longitudinal range, n. m i .  . . . .  . 455.2 

Closed- 
form 

equations 

, 4000 
0.8580 
0.8486 

90 
60.9 

108.7 

455.2 
472.0 

This comparison indicates  t h a t  the closed-form equations overestimate the  amount 
of f u e l  used during the  cruise-turn maneuver by 14.0 percent, probably a r e su l t  
of the neglect of centr i fugal  e f f e c t s  and the  th rus t  component normal t o  the 
f l i g h t  path. 
between the  simplified closed-form analysis  and the more complete stepwise in te -  
grat ion of the equations of  motion, the  closed-form method appears t o  be ade- 
quate f o r  the scope of this investigation. 

Although t h e  typ ica l  example chosen showed some discrepancy 

Space maneuvers and- comparisons.- The r e s u l t s  of the  o f f se t  efficiency 
analysis presented i n  f igure 6 f o r  the air-breathing launch vehicle a re  com- 
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Figure 10.- Offset capability 
fo r  orbital-plane-change 
maneuver and aerodynamic 
cruise maneuver. 

pared i n  f igure 10 w i t h  an orbital-plane-change 
maneuver. 
o r b i t a l  weight f o r  a vehicle with constant 
take-off weight. The r e s u l t s  of f igure 10 
indicate  a s igni f icant  increase i n  o f f se t  capa- 
b i l i t y  with t h e  use of an aerodynamic maneuver 
(obtainable with horizontal-take-off a i r -  
b r e a t h h g  launch vehicle) compared with an 
orb i tal-plane - change maneuver ( obtainable with 
any vehicle) .  

The bas i s  of comparison i s  r e l a t ive  

Launch-Lead-Time Correction Capability 

The launch-lead-time correction capabi l i ty  
i s  presented i n  figure 11 as a function of 
a t ta inable  off s e t  distance f o r  different  f u e l  
f ract ions.  Figure 11 indicates,  f o r  example, 
with an avai lable  Are1 f rac t ion  of 0.03 and an 
o f f se t  requirement of 300 naut ical  miles, t he  
vehicle can be launched as much as 750 seconds 
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Figure 11.- Lead-time 
correction capabili ty.  
Vcruise = 4000 f t l s ec .  

before design launch t i m e  and complete the 
rendezvous maneuver without the use of a 
parking o rb i t .  The shape of the curves of 
f igure 11 (characterized by a knee) r e f l ec t s  
t he  advantage of using a subsonic cruise t o  
obtain the of fse t  distance. The subsonic 
cruise,  although not the  most e f f ic ien t  range 
maneuver, r e su l t s  i n  l i t t l e  loss  of available 
lead time a s  indicated i n  f igure 11 by the 
portion of the curve t o  the l e f t  of the knee. 
However, as y increases beyond the range 
available a t  subsonic cruise conditions f o r  
the specified f u e l  expenditure ( t o  the r igh t  
of t he  knee), it i s  necessary t o  use a high- 
speed cruise i n  order t o  meet the  range 
requirement although the available lead time 
decreases rapidly. 

Lead-time correction capabili ty has 
obvious operational advantages by providing a 
margin of e r ror  f o r  the design launch time of 
a specif ic  launch. I n  addition, it poten- 
t i a l l y  reduces the time spent i n  parking orb i t  
f o r  the  launch conditions consistent with max- 
i m u m  parking-orbit time. Since the maximum 

possible interceptor-target misalinement i s  s l igh t ly  l e s s  than one ta rge t  
o r b i t a l  period and the  lead-time correction d i r ec t ly  reduces this misalinement, 
it follows that the  lead-time correction w i l l  have a profound e f f ec t  on the 
parking-orbit t i m e  necessary t o  correct the  misalinement. 

maneuver I 
1 -- 'A 2 b  4& 600 800 1000 

Offset distance, n. mi. 

Offset distonce. deg 
6 5 IO 1'5' 

Figure 12.- Use of available fuel t o  
reduce m a x i m u m  parking-orbit time. 
Target orb i t  a l t i t ude  = 300 n. m i .  

Figure 12 compares the effective- 
ness of correcting launch-time e r ro r s  
by using the  parking-orbit technique 
i n  two d i f fe ren t  ways when an aerody- 
namic of fse t  maneuver i s  required a s  
well. I n  each case the excess maneuver 
fue l ,  above tha t  required fo r  the off-  
s e t  maneuver, has been employed t o  
reduce the parking-orbit time from the 
calculated maximum. 

For the first case (sol id  l i nes  
i n  f i g .  12) the  excess f u e l  i s  employed 
fo r  an aerodynamic l o i t e r  and then a 
d i rec t  ascent i s  made t o  a 100-nautical- 
mile parking o rb i t .  The reduction i n  
maximum t i m e  t o  rendezvous shown i s  
the decrease i n  the time spent i n  the 
100-nautical-mile parking orb i t  p r ior  
t o  ascent t o  the ta rge t  o rb i t  of 
300 nautical  miles. For example, i f  a 
300-nautical-mile of fse t  i s  required 



and a f u e l  f rac t ion  of 0.03 i s  available f o r  of fse t  and the parking-orbit-time 
reduction, then figure 11 indicates  a lead-time capabi l i ty  of 750 seconds t o  be 
available f o r  reduction of the maximum possible interceptor-target misalinement 
(note tha t  this i s  about 14 percent of the  parking-orbit period, 5230 seconds 
a t  100 nautical  miles) , which must be corrected by a parking orb i t .  
viewpoint, f igure 12 indicates t ha t  the maximum time t o  rendezvous (consistent 
with a misalinement of s l i gh t ly  l e s s  than one o r b i t a l  period) i s  17.8 hours and 
t h a t  the reduced parking-orbit time, which is  due t o  the available lead time of 
750 seconds, i s  15.3 hours, again resul t ing i n  a reduction of about 14  percent. 
For the  second case considered (dashed l i n e s  i n  f i g .  12) a d i rec t  ascent t o  a 
high parking o rb i t  i s  made after the of fse t  maneuver, with no aerodynamic cor- 
rect ion avai lable  f o r  in te rceptor -sa te l l i t e  misalinement. The excess fue l ,  
above tha t  required f o r  the  of fse t ,  i s  used t o  obtain a parking orb i t  a t  an a l t i -  
tude above the t a rge t  o rb i t  and then t o  descend t o  the ta rge t  o rb i t  for rendez- 
vous. A s  an example, consider again an of fse t  distance of 300 naut ical  miles 
and an available fue l  f rac t ion  of 0.03 f o r  cruise ve loc i t ies  of 4000 f t / s ec .  
Figure 6 indicates  t ha t  a f i e 1  f rac t ion  of 0.018 i s  required t o  get in to  the 
o r b i t a l  plane (correct  t he  o f f s e t ) ,  which leaves an excess of 0.012 f o r  o r b i t a l  
maneuver. T h i s  f u e l  excess w i l l  permit ascent t o  a parking orb i t  of 326 nauti- 
c a l  miles and return t o  the  ta rge t  o rb i t .  From f igure 12 it can be seen t h a t  
this technique w i l l  give a reduction i n  maximum time t o  rendezvous of 2.0 hours 
(17.8 hours minus 15.8 hours). 

From another 

The results of t h e  investigation of the reduction i n  maximum rendezvous 
time by an o r b i t a l  phasing maneuver and a combination aerodynamic-orbital 
phasing maneuver indicated tha t  a time reduction of a few hours i s  possible 
with s m a l l  offset  required. No d i s t i nc t  advantage of e i the r  system w a s  evident. 

CONCLUDING REMARKS 

A n  investigation was made t o  determine the  rendezvous capabi l i ty  of a 
horizontal-take-off launch vehicle with air-breathing propulsion. 
closed-form analysis  w a s  made i n  order t o  calculate the  o f f se t  launch capabi l i ty  
and allowable launch-lead-time er ror .  
would undoubtedly indicate additional improvements i n  the  rendezvous capabili ty,  
it i s  believed that the  present analysis  gives an indication of t h i s  Capability 
which i s  consistent with the  accuracy of current component performance estimates 
f o r  such a vehicle. 

A simplified 

Although a more detai led investigation 

The r e su l t s  of the  investigation indicate  large increases i n  of fse t  launch 
capabi l i ty  f o r  a vehicle with aerodynamic l i f t  and air-breathing propulsion i n  
comparison with that of a vehicle u t i l i z i n g  an orbital-plane-change maneuver. 
The maneuver associated with the improved of fse t  capabi l i ty  of the air-breathing 
launch vehicle i s ,  however, not without problems. Aerodynamic heating is, a s  
indicated by this investigation, a serious constraint  inasmuch as t h e  most e f f i -  
c ient  cruise ve loc i t ies  a re  attended by the most severe heating conditions. 

Influence coeff ic ients  were determined f o r  t h e  s ignif icant  parameters 
assumed fo r  t h i s  analysis,  and none were found t o  be so important that reasonable 

20 



var ia t ions  would a f f ec t  t he  consideration of o f f se t  capabi l i ty  a s  an advantage 
f o r  the  air-breathing launch vehicle. 

Investigation of t he  allowable launch-time e r ro r  with respect t o  reduction 
of t he  m a x i m  time i n  parking o rb i t  indicated t h a t  f o r  a ta rge t  o rb i t  a t  an 
a l t i t u d e  of 300 naut ical  miles, a reduction of only a f e w  hours w a s  possible 
with use of a n  o r b i t a l  phasing maneuver o r  a combination aerodynamic-orbital 
phasing maneuver. 
t i n c t  advantage f o r  e i the r .  

A comparison of t he  two types of maneuvers indicated no dis- 
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