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WITH PARALLEL GENERATING LINES
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SUMMARY ’7,3—\
\ >

The role of the view factor in radiation heat-transfer calculations is

discussed. A general formula is derived for the view factor between differ-

ential strips of finitely or infinitely long general cylindrical surfaces

having parallel generating lines. A comparison between the equation for finite

length and that for infinite length is given. View factors using the general

formula are presented for various pairs of differential strips of six different

systems of circular cylinders and planes characteristic of space-radiator fin-

tube geometries. The limits of visibility from each surface to all visible

surfaces of each system are also presented. }:}\J—T’b @E{

INTRODUCTION

Radiant heat transfer has received increased attention in recent years
because of space applications and because of the use of higher operating tem-
peratures in nuclear reactors, fufnaces, turbines, and so forth. The only
means of rejecting waste heat or controlling surface temperatures in space is
by thermal radiation. In high-temperature systems, thermal radiation is in-
volved as a major factor in the heat transfer within the system. There is a
continual interchange of radiant energy between all surfaces that view each
other. 1In many cases this interchange is a significant factor in the overall
radiant heat transfer between the system and its environment. A discussion of

the particular heat-transfer problems that arise in the study of space radia~
tors can be found in reference 1.

In general, radiant interchange between two isothermal gray surfaces de-
pends on the temperatures, the surface optical properties, and a geometrical
relation between the surfaces. The geometrical relation is variously called
view factor, configuration factor, angle factor, shape factor, and form factor.
The term view factor will be used in this report.

The view factor from one surface (Aj) to another surface (As) is defined
as that fraction of the total radiant energy leaving surface A; that strikes




surface Az. (Surfaces A} and Ap are not necessarily separate surfaces;
they may be parts of one surface that are visible to each other.) The general
equation for the view factor from surface A; to surface A involves a
quadruple definite integral that is a function of the geometry of the surfaces
and their relative orientation.

Most of the view-factor literature is concerned with evaluating the qua-~
druple integral for various pairs of surfaces that are likely to occur in
practice. This consists of two main steps: (1) formulating the integrand and
limits of integration and (2) integrating the resulting expression. For some
pairs of surfaces, both steps are readily accomplished and the result is a
relatively simple formula. Several such formulas are given in reference 2.
For other pairs of surfaces, either the formulation and the integration are
extremely tedious or the resulting formulas are relatively complex so that
approximate methods of evaluating the view factor are more practical.

Several approximate methods (numerical, mechanical, and optical) and ex-
tensive tabular and graphical results are presented and discussed in refer-
ence 2. Reference 3 presents formulations of the integrand and limits of
integration for several pairs of surfaces likely to arise in heat-transfer
analysis of spacecraft. These formulations are presented in such a way as to
facilitate thelr incorporation into a computer program for numerical evalua-
tion. View factors for circumferential elements of a pair of parallel tubes
are given in reference 4. These view factors are useful for calculations of
radiant interchange between longitudinally separated elements of parallel tubes
that are circumferentially isothermal.

In reference 5, the specific formula is obtained for the view factor from
an infinitely long differential strip on a tube to a similar strip on a fin
parallel to the tube. This formula, which is applicable to the calculations
for a particular fin-tube geometry with a centrally located fin, is only one of
several (e.g., tube to tube) required to calculate the radiant interchange in
a central-fin radiator.

A general formula is derived herein for the view factor between differ-
ential cylindrical strips. The general formula is used to obtain specific
formulations of the differential view factors for all possible pairs of sur-
faces for a wide range of proposed space-radiator fin-tube configurations. The
view factor formulas are given for strips of both finite and infinite length.
A comparison between the formulas for the finitely and infinitely long strips
is given as a function of a length parameter. This comparison can be used as
an aid in determining a reasonable segment length when dividing a longitudi-
nally nonisothermal radiator into longitudinal segments that are assumed to be
isothermal. The limits of visibility for the various pairs of fin-tube sur-
faces are also formulated. These formulas for view factor and limits are also
applicable to the heat-transfer calculations in other geometrically similar
configurations, such as those that may occur in furnaces or reactors.




ANALYSIS
Formulation of Problem

A typical fin-tube
radiator using a con-
densing vapor for space
applications is shown
in figure 1. The prob-
lem is to obtain an ac-
curate prediction of
the net heat rejected
by such a radiator con-
figuration so that an
optimum, say minimum-
weight, geometry can be
found. The problem
(fig. 2) includes the
heat transferred from

CS-24691 the fluid to the tube
by condensation or con-
vection, the conduction
in the fin and tube,

and the radiation from the fin and

Figure 1, - Fin-tube radiator,

Q:EL” Solar tube surfaces. The radiation part of
component radiation the problem includes the radiant in-
n»»»»»ﬁ»»i 4} terchange between fin and tube sur-
| \ // faces that are visible to each other

and incident radiation, such as that
which might come from the sun or
planets.

The radiator of figure 1 is a
A direct-condensing radiator, which for
LArmor CS-28967 design purposes, is essentially iso-
Figure 2. - Cross section of fin-tube radiator showing two-dimensional thermal along the tube axis. The
heat-transfer paths. radiator geometry is a central fin-
tube configuration. Other fin-tube
geometries under consideration are shown in
figure 3. For all geometries, the tubes
are long compared to the distance between
them; therefore, it is reasonable tc assume
that end effects can be neglected through-
out most of the length. Since the tubes
are long and isothermal, the radiator can
be characterized by a two-dimensional cross
section as shown in figure 3 and two-
dimensional formulations of the heat-
transfer equations can be used. Radiant
@ interchange in the third dimension 1s taken
CS-25583 care of by the view factor. When the rad-
Figure 3. - Fin-tube geometries for space radiators. iator is not assumed to be infinite, the
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actual length of the radiator (or a segment of the radiator as will be dis-
cussed in the section APPLICATIONS) appears in the view-factor formula.

This report is concerned only with the radiant interchange between the
various fin and tube surfaces of the radiator and not with the conduction or
convection that will also be part of the problem. In the following develop-
ments, the temperature at each point is assumed to be known. In actual radia-
tor calculations, however, it will probably be obtained by solving the conduc-
tion and convection equations simultaneously with the radiation equations. For
simplicity, the development is given in terms of gray surfaces.

The radiant interchange between elements of surfaces is formulated in
terms of the radiosity, which is defined as the total radiant energy per unit
time and per unit area, both emitted and reflected, leaving an element on a
surface. (See ref. 6 for a discussion of radiosity.) The radiosity will be
formulated for the three-dimensional case and will then be reduced to two
dimensions by making appropriate assumptions. Consider first the general case
of two cylindrical surfaces with parallel and equal-length generating lines as

Surface 27
nz //
,Surface 1 /
/
/ /
+ 3 652
X2
n ;7
1 Al Y P‘dA de
v 2 J 2
/X r S/
zJ2 Py, ;
X A Z
dz, “dAy (I //

Figure 4, - Geometry for radiant interchange between two cylindrical surfaces with parallel and equal-length generating lines.

shown in figure 4. The radiosity B(Sl,Zl) leaving an element dA; = dSq dZ
located at (87,27) of surface 1 (fig. 4) is given by (All symbols are defined
in the appendix.)

B(S1,Z71) = €oT*(S1,21) + pH(S1,Z7) (1)

where € 1s the emissivity of the surface, ¢ is the Stefan-Boltzmann con-
stant, T(S1,Z1) is the temperature of the surface at (S;,Z;), p is the reflec-

tivity of the surface, and H(Sy,Z7) is the total energy per unit time and per
unit area incident upon dA; and is given by

Sou(87) z/2
H(S7,27) =/ / B(SZ,ZZ)dFd_Al_d_AZ + g(51,27) (2)
Soq(81) J-z/2




where B(Ss,Z2) is the radiosity from a differential element dAps = dSp dZp of
surface 2, dFdAl-dAz is the view factor from dA; to dAp which will be dis-
cussed in the section Derivation of General View Factors, SZZ(Sl) is the lower
limit of visibility of surface 2 as viewed from (S1,Z7), Sou(81) is the upper
limit of visibility of surface 2 as viewed from (S1,Z;), and g(51,Z3) is the
radiant energy per unit time and per unit area incident upon dAl from ex-

ternal sources such as the sun or planets. The limits -Z/2 and Z/2 are

based on a total length Z of the surface and are constant. The limits of in-
tegration are functions only of S and not of Zj.

Combining equations (1) and (2) yields

'1'4 /SZu(Sl) Z/2 ( )
B(Sy,77) = €oT*(Sq,Z7) + / B(S5,Z5)dF 5, _ + Sq,2
1,41 oltiLy,21) + P 5,,(8y)  J-z/2 2022/ qp —qan, T PEVPLo0

(3)
If surfaces 1 and 2 are assumed to be of constant temperature, constant

radiosity, and constant incident radiation in the Z-direction, then equa-
tion (3) can be written

Sou(8y) z/2
B(S,) = eoT*(51) + p B(S5) / dFdAl_dAz + pg(87) (4)
S5;(81) -z/2
7./2
integral is the view factor from element dA; to a
The integr oy dFdAl_dAz i e Vi men 1 n

elemental stri Z das and is written as dF . Puttin dr into
n P 1 n dA;~dS, & *aa;-ds,

equation (4) and integrating over Zy to get the radiosity per unit width per

z/2
unit time f B(S)dZ = ZB(Sy) from strip Z dS; gives
-z/2

S5, (81) z/2
ZB(8) = €oZT*(8) + p / B(S,)

Sp1(87) -7./2

Dividing by Z results in

Sou(81) z/2
B(8,) = ecT4(sl) + %f B(S5) / dFd_Al_dSZ dZ + pg(S1) (5)
S51(81) -7/2

z/2
vhere the quantity 1/Z f

~2./2

dFdAl—dSZ dz, 1is usually written dFdSl-d52



and is the view factor from strip Z dS; to strip Z dS, and will be dis-
cussed in the section Derivation of General View Factors.

Putting dFdSl~d82 into equation (5) results in

Sau(S1)
B(8)) = eoT#(Sy) + D/ B(SZ)dFdSl-dSZ + pg(Sq) (6)
Sz1(81)

Equation (6) is two dimensional in that the quantities appearing in it are
functions only of the two coordinstes in the plane of the cross section and not
of the longitudinal: coordinates. However, the radiant interchange in the lon-
gitudinal direction is included in the view factor dFdSl-dSZ’ and the total

longitudinal length Z will appear in the wvarious particular formulations of
dFdsl-dSZ' Although the above development has been limited to two surfaces,

any number of surfaces can be handled. For each additional surface another

Szu(81)

integral, say p / B(SS)dFd.Sl-dSS: would appear on the right side of
S37(81)

equation (6). The development has also been limited to gray surfaces. Nongray

surfaces can be approximated by breaking up the energy spectrum into two or

more regions with different gray surface properties for each region.

For a numerical solution of equation (6), the surfaces would be divided
into small increments so that the condition of isothermal and constant-
radiosity elements can be approximated. The differential view factors are
assumed to apply to the small increments. As an illustration, consider the
radiant interchange between one surface of the fin and the adjacent tubes of
a central-fin configuration as shown in figure 5. Equation (6) written for
increment S*i,j of surface 1 of this figure would become

J
* * . *
B(Si,j) = €0T4(Si,j) +p :if B(Sk,a)dFsﬁ)j—Sk,j + e85 5) (7)
J=J1

where n is the number of surfaces visible to Sf)j, J; 1is the number of the

increment of each surface corre-
S1,-514 sponding to the lower limit of visi-
/ > .

53
& S, 3 42 bility from S* ;o end J, is the
2
f 12,3,4,5,6,7.89 i number corresponding to the upper
limit. In particular, for increment
Si 4 on the left tube, equation (7)
s

Flgure 5. - Surface Increments for numerical solution. becomes




9
* - * .
B(Sl’é) = ecT‘L(Sl’LL) +p Z B(SZ’J)dFsie,4_Sz,j

J=2

5]

+ 0 Z B(Sx :)dFax _ %
= 3, 81’4 SS,j + pg(Sl’é)

Equation (7) is written in a similar manner for each increment J of each
surface 1 and this results in a number of equations in as many unknown B's.
In equation (7), however, the differential view factors and the limits of visi-
bility for each pair of surfaces must first be formulated in terms of the geom~
etry of each particular configuration.

Derivation of General View Factors

The view factor from one surface to another is a function only of the
geometry of the two surfaces provided that the directional distribution (see
ref. 2) of the radiation from the surface is diffuse. Diffuse radiation is
distributed according to Lambert’s cosine law, which states that the intensity
of radiation in a given direction is propcrtional To the cosine of the angle
between that direction and the normal to the surface. In this report, all sur-
faces are assumed to radiate diffusely.

The basic equation for the view factor from a point on a differential sur-
face dA; to a differential surface dAp 1is (see, for example, ref. 7) the
following:

&F gy —an, = 5 c0s Xy do (8)

14

where Xl is the angle between the normal to dA; and the line joining dAy
and dAp, dw is the solid angle subtended at dA; by d4dAs, and, for the geom-
etry of figure 6, is given by dw = (cos Xz)dAz/gfz. Substituting for dw in
equation (8) gives

cos X cos Xo dAs (9)

dFgp; -aAp =
1 -aA2 ngia

Equation (9) is the expression for the

differential view factor most commonly

found in the literature.

Consider now the case of a differ-
ential area dA; on a cylindrical sur-
face and a differential area dA2 that

Figure 6. ~ Geometry for view factor between differential surfaces, =~ 1is located on a cylindrical surface whose




generating line is parallel to surface dA; (fig. 4, p. 4). Writing equa-
tion (8) in terms of the geometry of figure 4 gives

1
dFdAl_dAz = - cos X1 day (10)
where

r cos @
V2 + (2g - 27)2

cos Xl =

and, as given in reference 8,

do. = r dp dZo cos ¥ = r d¢ dZo r
wz—r2+(z-z)2 T 22 4+ (2o - 77)2 4.2 2
277 2 -4 re + (Zg - Z9)

where 1r 1is the shortest distance between strips A] and Ay and ¢ is the
angle between r and the normal to Ay. Substituting for cos X; and duap,
equation (10) becomes

r3 cos ¢ do de
2
[rz + (Zp - zl)z}

The view factor dFdAl-dSZ from dA; to strip A; = Z d5, 1s obtained by

al-

dF = 11
ahy-aa, (11)

integrating equation (11) from Z, = ~Z/2 to Zp = Z/2

z./2

aF _ r3 cos ¢ 4o dZg

(Z5 - 21)2]2

(12)

+

—Z/2 [rz

Angle ¢ and distance r are measured in the cross section and are indepen-
dent of Zp. Performing the integration in equation (12) and putting in the
limits yield

Z z
2 -7 Z -
rd cos @ a9 1 (2 l) 1, afz &
AFap. g8, = 5 + = tan | S——
1=z S R CE 2) i
2

_ (—% - Zl))2 } gl:_ tan~L <'%_:_Z_{> (13)

r
e +("% - 29

The view factor dFgg _gg, from strip Ay = Z d5) to strip Ap = Z dSy is




obtained by taking the integrated mean of dFdAl-dSZ over Al

1
Fag) -as, = & [ Fan -as, 1 (1¢)
1

where

Substituting for A and dA) in equation (14) and canceling Sy, which is
independent of Zj, result in

z/2
aF3s,-a8, = 7 -[z Fap, -as, %1 (15)

Putting equation (13) into equation (15) and integrating yield

3 ] . 7, 1 7, 2
~ L cos 9apj L 2 G.- )2 = 2 G—-- )
dFdS _332 5 .{ > loglr“ + > Zn + > log |r® + |-3 Zq

(7, z
4.7 L -7
( 1) 1 2
2 -1z ") L1 2 . (2.
...___r_._tan ( T >+Zlog[r +(2 Zl
7/2

+(—§ ; Zl) an-L (-_%_;_Zi> - 2108 [142 + (.% - zl> ﬂ} (16)

~7/2

z/2
+1& tan"l \—T—— (17)
r -z/2
Putting in the limits and simplifying result in
_ cos @ 4o =1({Z
dFdSl_dSz = — tan (r) (18a)

or, eguivalently,



_ d(Sin (P) -1 E 18b
dFd.Sl"'d.Sz = _—1[—_ tan (I‘) ( )

Equation (18b) is the formula for the view factor between differential
strips of length Z on cylindrical surfaces whose generating lines are par-
allel to each other. Angle ¢ and distance r are functions of the geometry
of the surfaces and the coordinates of the strips in a cross section perpen-
dicular to the length Z. When 2Z is infinite, equation (le) becomes

d(sin o)
dFdSl-dSZ(“) = —— (19)
This is the equation used in reference S5 to obtain the view factor from an in-
finite strip on a tube to an infinite strip on a fin. To facilitate comparison
of equations (18b) and (19), the ratio

-1(2
Fasy-asp _ 0 )

Fag,-as,(=) % (20)

is plotted against Z/r in figure 7. It can be seen from figure 7 that, for
a value of Z/r greater than about 10 the difference between the infinite and
finite cases is less than five percent. On the other hand, 1f Z/r is less

than 1, the difference between the infinite and finite is greater than 50 per-
cent.

L0

View-factor ratio, dF/dFico

.1 1 10 100
Length parameter, Z/r

Figure 7. - View-factor ratio as a function of length paramefer,

APPLICATIONS

The view factors presented herein are derived for several systems of par-
allel fins and tubes shown in figure 8. These are applicable primarily for

10




Tube 1~ < Tube 2 v\Tube 2
in2
FFin1 yFin
! J [ LOZ
=\ ¢
t
2 ]
(a) Configuration A; tube with tapered fin, {b) Configuration A*; fin and tube.
—
N \ Alfx r—’ 1 t
~ Upper strut 1 \\\ Upper strut 2— 2 —-I r—
-Bumper 1 : v
~~Tubel Tube 2 ~.
— ™ \ a4
~——Tube 1 Tube 2 ~~ - R o1 - Bumper 1 8 R
Bumper 2 Bumper 2
// w2 \
_—Lower strut 1 // Lower strut 2 ~_ f v, |
s |
Yo (d) Configuration C; closed sandwich. |
c ~Outside bumper 1 |

Inside
bumper 1

Rip

(c) Configuration B; full sandwich with struts.

T Sk

™~ 4] 1 o = —

(e) Configuration D; open sandwich,

Tube 1~
\

{f) Configuration E; fin and tube with cylindrical bumper.
Figure 8, - Configurations.

heat-transfer calculations in fin and tube radiator configurations that are
assumed to be longitudinally isothermal. Proposed direct condensing fin-tube |
radiators of Rankine cycle powerplants are longitudinally isothermal, and the |
view factors of this report can be used.

Proposed sensible heat radiators such as gas radiators of Brayton cycle
poverplants and liquid radiators of Rankine cycle powerplants will not be lon-
gitudinally isothermal, and therefore the view factors presented herein for
isothermal strips would not seem to be applicable to calculations in such rad-
iators. In reference 9, however, it is shown that a radiator of this type can
be divided into longitudinal segments that can reasonably be assumed to be lon-
gitudinally isothermal. Further, it was shown that the interchange from one
segment to another can be neglected. For example, in figure 9, the interchange
between the strip on the tube in segment 2 and the strips on the fin in seg-
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ments 1, 3, and 4 can be neglected.
Thus, the heat flow in each segment
can be treated as if it were two
dimensional, and the view factor pre-
sented herein could be used in the in-
terchange calculations. The conclu~
sion of reference 9 was based on the
actual geometry of a practical radi-
ator configuration of the central-fin
type (as in fig. 9) with radiating
Figure 9. - Division of radiator into longitudinally isothermal segments.  surfaces that were assumed to be
black. It is not immediately apparent
how widely this coneclusion could be applied to the other configurations. If
the longitudinal segments could each be assumed to be isothermal and of con-
stant radiosity in the Z-direction, however, the view-factor ratio (fig. 7,
p. 10) could be used in the following manner as a measure of the applicability
of the quasi-two-dimensional treatment. Divide the radiator into segments of
length Z; determine the largest value of r between two elements in a segment
that see each other (this can be done simply by scaling a cross section sketch);
compute Z/r and read the view-factor ratic from figure 7. If the ratio is
greater than, say, 0.95, then the interchange between segments can certainly be
neglected; if the ratio is less than 0.95, then further investigation should be
made. Figure 7 can also be used as an aid in determining what the length of
each segment should be in a longitudinally nonisothermal radiator calculation
by first choosing a value of the view~fagtor ratio and using figure 7 to
find 2.

To summarize, the results presented herein are applicable to two-
dimensional heat-transfer calculations of longitudinally isothermal radiators
and should also be applicable to quasi-two~dimensional calculation of noniso-
thermal radiators.

RESULTS

In this section, the expressions for the view factors and the limits of
visibility are presented for the base surfaces of all the configurations of
figure 8. (Base surfaces are indicated by heavy lines in fig. 8.) The view
factors from the balance of the surfaces on the same configuration can be ob-
tained from the base surface view factors by symmetry. For example, the view
factor from dStz to del is equal to that from dStl to dez for the

locations of dS shown in figure 10, For
@%1 st this reason, view factors and limits are

given only from base surfaces to any sur-
4 dsﬁi:;EE:fE;:i“E:?ig;:\\\\ faces visible to the base surfaces.

'——‘XF*J ‘ The format of presentation is as
L follows: First, the general formulas for

Xy * 2L - X view factors dFdSl-dSZ and dFdSl—dSZ(m)

are given in terms of quantities a and

Figure 10, - Example of geometric symmetry. r and their differentials Then each

12




configuration is divided into cases. A

case consists of a base surface and a
— single surface visible to it. The latter
surface may be part of the base surface
itself, another base surface, or a nonbase
surface. For each case, a sketch of the
configuration is given, and the quantities
a, da, r, and dr for the view factor are formulated where 1r 1s the distance
between differential strips and a is the projection of r onto the plane
perpendicular to the normal to strip 1 (see fig. 11). The limits of visibility
are then given for each case in terms of the coordinates of the configuration.
For purposes of clarity, a table format is used.

Figure 11. - View factor quantities a and r.

In each case, the first step in formulating the limits of visibility is
t0 determine the critical values of the independent variable. A critical value
is a value of the independent variable for which the equation for a limit
changes because of the geometry of the configuration (e.g., in configuration B
(fig. 8(ec)), tubes partially block the view of bumper 2 from some locations on
bumper 1). In some cases there are no critical values, and in others there may
be either one, two, or three. If there is only one critical value, a sub-
script ¢ is used; however, when there are two or three, the subscripts 1Ic,
mc, and uc are used, meaning lower, middle, and upper critical, respectively.
The equations for the limits of visibility are derived subject to the limita-
tions impesed by these critical values.

The range of the independent variable is divided up by the critical values
of the independent variable, if any exist. In each table, numbers are given
for the upper and lower limits of visibility for the different ranges. These
numbers refer to items in the list below each table.

Extra restrictions are sometimes placed on the limits in certain cases
when some dimension of the cross section is unusually large or small. Methods
to check on this possibility are included in the cases where this problem could
arigse. Because of the cocordinate system chosen, in some cases the upper limit

is an angle greater than 90°. 1In-these cases, absolute value signs are used

in order to avoid concern about determining the quadrant in which the angle
lies.

General Formulas

The formula for the view factor for strips of infinite length is
dFdSl_dSZ(m) = % d(sin o)
while the formula for the view factor for strips of finite length is
AFas, a5, = 5 &(sin cp)tan'J'(%)
where

13



sin ¢ =

Kl

and

r da - a dr

d(sin @) =
r2

These quantities a, da, r, and dr are formulated for each case. The
strip length Z will be known by the user. In some cases, the formula given
for d(sin @) may result in a negative number; therefore, the absolute value is
used to avoid concern over the sign.

Case Al: Tube 1 to Tube 2

ds
ty,

View-factor quantities
a = 2L sin 6 - R sin(6; + 63)
da = =R cos(el + 05)d6,

2 1/2
r = {2R [} + cos(67 + 92{] + QLEL - R(cos 81 + cos Qzﬂ
2LR sin 6, - RZ sin(0; + 65)

dr = déo
r
Limits of visibility
Limit of Range of independent variable 91
visibility 1 to "
Item numbers for limit equations
(62), 4 4

14




1. (el)c is the value of 0, such that a tangent to tube 1 at this point
will hit the point where fin 2 meets tube 2

|8t + 2<2L - yEE - tg) Vi - VE° - 42)

4L( - Rz-t§>+32

(Ql)c = sin”

2. The lower limit is the minimum possible value of 65, that is, the
point where fin 2 meets tube 2

(62)1 = sin'l(%g)

3. The lower limit is determined by a tangent to tube 1

_n _ ain=lf2L cos 01 - R
(92)2_2 61 - sin ( R )

4, The upper limit is always determined by a tangent to tube 2

2 3 . on
(6,), = aint R® sin 61 + 2(2L - R cos 61) YL(L - R cos 9;)
u 4L(L ~ R cos 67) + R2

Case A2: Tube 1 to Fin 2

e

da = (sin 6, - cos 61 tan p)dX,

r = [x% + R2 + ml - 2R(X2 cos 61 + m sin Gli]l/z
where m = (Xz ] L)tan B + tl

Xp - R cos 61 - (R sin 07 - t;)tan B + (Xp - L)tanp

dr = T dXz

15



Limits of visibility

Limit of Range of independent variable 6

visibility

uc

-3 n
sin~\gz) <61 < (el)Zc (el)Zc <61 < (69) (el)uc <6 <2

Item numbers for limit equations

(XZ)Z 2 4 6

(xz)u 5 5 . 6

1. (91)Zc is the value of 6, such that a tangent to tube 1 at this
point will hit the point where fin 1 and fin 2 meet

2 2 2
-1 Rtl + L ‘/L + tl - R

(el)lc = sin 2 2
L= + tl

2. The lower limit is the minimum possible value of Xé, that is, the
point where fin 1 meets fin 2

3. (el)uc is the value of 67 such that a tangent to tube 1 at this

point will hit the point where fin 2 meets tube 2; at values of 6
than this, tube 1 occludes the view of fin 2

1/2
_ o-1[Rbo ¥ 2(en - VE - tZ \/LZ - L(R® - t2 /

(61) 4o =
uc
41? - 4L ¢R? - tZ + R?

4, The lover limit is determined by a tangent to tube 1

. . ‘/ 2 2
(XZ)Z _ R - t5 sin 69 + sin 61 tan B(ZL - R - to)

- cos 67 + sin 01 tan B

S. The upper limit is the maximum possible value of X2, that 1s, the
point where fin 2 meets tube 2

- - 2 . 42
()(2)u = 2L R® - t5

6. Fin 2 1s not visible from tube 1 for this range of 01.

16
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Case A3: Tube 1 to Fin 1

View-factor quantities

a = X; sin 69 - I}L - X;) tan B + ti]cos 61
da = (sin 61 + cos 07 tan B)dXy
1/2
r = [XJZ‘ + R® 4+ mé - ZR(XJ_ cos 67 + m sin 91)] /
where m = (L - Xj)tan B + ¢

X1 - R cos 67 + (R sin 67 - t;)tan g + (¥X; - L)tanp

dr = - axy

Limits of visibility

Limit of Range of independent variable 67
visibility

o150 < o <(67).1(67) <oy <Z
S1in _R— > 91 1 c 1 e 15 >

Item numbers for limit equations

(X1), 2 4

(Xi)u 3 4

1. (el)c is the value of 64 such that a tangent to tube 1 at this point

will hit the point where fin 1 meets fin 2; at values of 67 greater than
this, tube 1 occludes the view of fin 1

2
(Rt + L Yi2 + t; - RE

2 2
L +t1

(Ql)c = sin”

2. The lower limit is determined by a tangent to tube 1

R ~ (to + VRZ - tg tan B)sin 61

cos 61 - sin 67 tan B

(X]_) 1 =

17



3. The upper limit is the maximum possible value of Xy, that is, the
point where fin 1 meets fin 2

(Xl)u =L

4. Fin 1 is not visible from tube 1 for this range of 61

Case A4: Fin 1 to Tube 1

View-factor quantities
This case is related to case A3 by
dSe

= dS
, -ty ty ey opy

R as6

1
dar = cos dF
£1-tq 3 ( B) tp~f
or

a = cos BE&l - R cos 91 + R s8in 61 tan B - tZ tan B - (L - Xi) tanzé]

da = cos B(R sin 67 + R tan B cos 6,)ds,

1l/2
r o= {(Xi - R cos 91)2 + [R sin 61 - t; ~ (L - Xy)ten é]z} /

X{R sin 6, = R cos 64 |t; + (I = X;)tan B
dr = X 1 1[2 1 ]d%_

r

Limits of visibility

Limit of Range of independent variable Xj

visibility vqgrtfzg's X <L

Item numbers for limit equations
(61)3 1

(61),

18




1. The lower limit is always the minimum possible value of 61, that is,
the point where fin 1 meets tube 1

(67), = Sin~l<:oR£)

2. The upper limit is always determined by a tangent to tube 1

Cq[tR+ X VX32_+t2-R2
(Gl)u = sin
where t =t - (X - VRZ - tg)tan B

Case A5: Fin 1 to Tube 2

2 2
X7+ t

View-factor quantities
a = cos B{ZL - X; - Rcos 65 - tan B[R sin 6o - t; - (L - Xi)tan B]}
da = cos B(R sin 6, ~ R tan B cos 6,)d0,
T = [xf + R% + m® + aL(L - X] -.R cos 6p) + 2R(X] cos 65 - m sin 92)] 1/2

where m = tan B(L - X3) + t3

R sin 6,(2L - X1) - R cos 6, [tan B(L - X)) + t;]
- r

dr

déo

Limits of visibility

Limit of Range of independent variable Xj
visibilit
1sibility ‘/§é - tg <X <L

Item numbers for limit equations

(92)Z 1

(eg)u 2

19




1. The lower limit is always the minimum possible value of 0o, that is,
the point where fin 2 meets tube 2

(92)Z = sin"l(§§>

2. The upper limit is always determined by a tangent to tube 2

_1|tR + (2n - Xl)‘/(ZL - %)% + t% - B2

(Qz)u = sin > >
(ZL - Xl) + t

where t = t, - tan B(Xl - Y& - t§)

Case A6: PFin 1 to Fin 2

View-factor quantities

(X% - x1) - 2 sinZB(XZ - 1)
cos B

da = S98 2B gy,
cos B

T = [(XZ - %)% - 4 sin8(L - X7) (X, - Li]1/2

cos BB

| e (Ko - %) -2 sin?p(L - X7)
' r

dXo

20




Limits of visibility

Limit of Range of independent varisble X7
visibility
‘/RZ -t <X <L
ITtem numbers for limit equations
(Xg)u 2

1. The lower limit is always the minimum possible value of Xp, that is,
the point where fin 1 meets fin 2

(Xz)z =L

2. The upper limit is always the maximum possible value of XZ’ that is,
the point where fin 2 meets tube 2

(Xz)u = 2L - ‘/RB - t5

Configuration A': All Cases

This configuration is a special case of configuration A with a rectangular
fin instead of a tapered fin. The view factors and limits of visibility can be
obtained from those for configuration A by setting B =0 and t5 = t; = t.

Case Bl: Tube 1 to Bumper 2
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View-factor quantities

a=7Y, cos 01 +L sin 6

2

da = cos 91 dYB

1/2
r = [Y2 + 12 + B® + 2R(L cos 61 - Yp sin 61)] /

Y> - Rsin 6
dr = _Z L gy,

r

Limits of visibility

Limit of Range of independent variable 67

visibility T K
sin'l(ﬁ) <62 (1), | (61), <61 25

Ttem numbers for limit equations

(YZ)Z 1 3

(Yz)u 1 4

1. Bumper 2 is not visible from tube 1 for this range of 61,

2. (el)c is the value of 64 such that a tangent to tube 1 at this point

will hit the point where lower strut 2 meets bumper 2; at values of 61 less
than this, tube 1 occludes the view of bumper 2

RS - t) +1 V12 - 8% 4 (5 - )2

(61),. = sin”
¢ 12 + (8 - t)2

3. The lower limit is determined by a tangent to tube 1

L cos 67 + R
(Yz)z = 1

sin 61

4. The upper limit is the maximum possible value of YZ’ that is, the
point where lower strut 2 meets bumper 2

(Yp),=8-t%

It is possible that in some cases the dimensions of the configuration could be
such that tube 2 could interfere with the upper limit of visibility. In order
to determine if such is the case, compute the following value of (Yz)c:

2z




(S - R sin 6 S¢ - 2RS sin 67 - R2 cos 6
(3{2)c = R sin 67 + (L + R cos 6q) y V L 1

R(S - R sin 0,) + R cos 6, YS2 - 2RS sin 67

If (Yz)c >S5S -% vhere S -1t is the maximum possible value of Y5, then

tube 2 does not interfere with the view of bumper 2 and (Yz)u is given by item
number 3. If (Yz)c < S - t, however, then the upper limit is determined by
a tangent to tube 2 and (Yz)u = (Yg)c.

Case B2: Tube 1 to Lower Strut 2

dSl.Sz_."

View-factor quantities
a = (L ~ Wp)sin 01 + (S - t)cos 01

da = =sin 01 dwWs

1/2
r= [(s - t)2 + (L - wg)2 + R% - 2R(S - t) sin 61 + 2R(L - Wp) cos el] /

Wo = I - R cos 6
r

Limits of visibility

Limit of Range of independent variable &5
visibility N B
o=l n
sin (ﬁ) <01 < (01) e | (69)ye <61 < (01);,](01)7, 26153
Item numbers for limit equations
W 1 3 3
(W),
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1. Lower strut 2 is not visible from tube 1 for this range of 067.

2. (6),, 1s the value of 67 such that a tangent to tube 1 at this

point will also be tangent to tube 2; at values of 07 less than this, tube 1
occludes the view of lower strut 2

(el)uc = sin"l(%§)

3. The upper limit is determined by a tangent to tube 2

) R(S2 + R% - 2SR sin 0) —tR(S- R sin 6 +‘62- 2SR sin 67 cos el)
W = IL-
2’y

(S - R sin 6,) ¥s? - 25R sin 6, - B2 cos 61

4. (el)lc is the value of 6y such that a tangent to tube 1 at this
point will hit the point where lower strut 2 meets bumper 2

-1{R(8 - t) + L VLZ-R2+(S-t)2
L2 + (8 - t)2

(Gl)zc = Sin

5. The lower limit is determined by a tangent to tube 1

L cos 67 + R - (S - t)sin 6;

W =
( 2>1 cos 07

It is possible that in some cases the dimensions of the configuration could be
such that tube 2 could completely occlude the view of lower strut 2 for some
values of 6. 1In order to determine if such is the case, compute the value of
(Wg)u as given by item number 2 and call it (wz)c. If (wz)C < 0 where 0O is

the minimum possible value of Wy, then tube 2 occludes the view of lower
strut 2 and (WZ)Z = 0 and (Wg)u = 0. If (WZ)C > 0, however, then lower

strut 2 is not occluded by tube 2 and the limits are those given in the table.

6. The lower limit is the minimum possible value of W,, that is, the
point where bumper 2 meets lower strut 2

(W), = 0
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Case B3: Tube 1 to Tube 2

: «d
' \§¥

View-factor quantities
a =85 cos 07 - R sin(9; + 65)

da = -R cos(61 + 65)d05

RIR sin(8y + 6 - S cos 6
dr:[ (61 + 82) os 5]

do,
r
Limits of visibility
Limit of Range of independent variable 67
visibility + N
sin"l(ﬁ) <612 (01)q0 | (61)3, <61 < 2
Item numbers for limit equations
(92)1 2 3
LIimit Range of independent variable 65
of t
s — _ T
ngiil_ sin (R) <6 < (el)mc 61 = (el)mc (91)mc <6, < (el)uc (el)uc <6 <3

it
- v

Item numbers for limit equations

(62), 6 7 8

1. (Ql)Zc is the value of 67 for which the following equation will hold

true; it is the wvalue of 61 such that a tangent to tube 2 from this point
will hit the point where upper strut 2 hits tube 2 e

R[(RZ - 28t) sin 61 + R Y52 - 2RS sin 63 cos 91] = SRZ - t(S2 - R2)
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2. The lower limit is the minimum possible value of 6,, that is, the
point where upper strut 2 meets tube 2

(92)Z = sin'l(%)

3. The lover limit is determined by a tangent to tube 2

1 R(S - R sin 67) - R cos 69 VSE - 28R sin 69

(65), = sin”
! 82 + R? - 28R sin 6y

4. (Gl)mc is the value of 67 such that a tangent to tube 1 at this
point will hit tube 2 at 6, = x/2

(61), = sin'l(s R R)

5. (61)uc is the value of 6; such that a tangent to tube 1 at this

point will also be tangent to tube 2
s =1f2R
(67)yc = 8in (E?)

6. The upper limit is determined by a tangent to tube 1 and is less
than 90°

6.) 1|R%8(sin%6y + 2) + (RE - S%) VYS(2R - 5 sin 61)sin 61 cos 61 - (B3 - 83 sin 6; + 35%R) sin 6;
e = sin”
Zu R(RE + 8% - 2RS sin 67)

g. The upper limit is determined by a tangent to tube 1 and is equal
to 90
=X
(05), = 2

8. The upper limit is determined by a tangent to tube 1 and is grester
than 90°

(92)u= T - =

sin_l[(s sin 61 - R)sin 61 - ‘/S(ZR - S sin 6;)sin 63 cos 6%]

9. The upper limit is determined by a tangent to tube 2

_1|R.cos 61 ¥S? - 23R sin 6] + R(S - R sin 61)

(60) = x - |sin
2’u R
S¢ + R® - 2SR sin 61
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Case B4: Tube 1 to Upper Strut 2

View-factor quantities
a = (S - t)cos 67 - X, sin 6y
da = -sin 67 dX»

]1/2

2R(S - t)sin 6; - 2RX, cos 67

H
Il
—
w
1
ct
s
+
N
+
>
oo
1

X5 - R cos 6
2 1 X,

r

Limits of visibility

Limit of Range of independent variable 67
visibility

=1L x
sin 1(R) <6 2(o) | (8), <6123

Ttem numbers for limit equations

(X2), 2 3

(Xg)u 4 4

1. (el)n is the value of 91 for which the following equation will hold
true; it is the value of 91 such that a tangent to tube 2 from this point
will hit the point where upper strut 2 hits tube 2

VR2 - t2 [RZ cos 67 + (S - R sin 6;) Y82 - 28R sin 91] =

R(SZ + RZ - 2R sin 6q) - Rt[S - Rsin 6y - (Vs2 - 2SR sin el)cos el]
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2. The lower limit is the minimum possible value of X,, that is, the
point where upper strut 2 meets tube 2

3. The lower limit is determined by a tangent to tube 2

R(S2 + RZ - 2SR sin 6y) - Rt(S - R sin 6y - cos 6, Y82 - 25R sin 91)

(Xz)z =

(8 - R sin el)VSZ - 25R sin 67 + RZ cos 01

4. The upper limit i1s the maximum possible value of X5, that is, the
point where upper strut 2 meets bumper 1

(X2), =1L

It is possible that in some cases the dimensions of the configuration could be
such that tube 2 could completely occlude the view of upper strut 2 for some
values of 67. In order to determine if such is the case, compute the value of
(Xz)Z as given by equation (3) and call it (Xz)c' If (XZ)C >L vwhere L is

the maximum possible value of Xp, then tube 2 occludes the view of upper
strut 2 and (Xp); = O and (Xg)u»= 0. If (Xz)c < L, however, then upper

strut 2 is not occluded by tube 2 and the upper limit is given by item number 4.

Case B5: Tube 1 to Bumper 1

View-factor quantities
a =1L sin 91 - Y7 cos 91
da = -cos 67 d¥y

r = [Y% + 1% + R% - 2R(L cos 61 + Yp sin eli]l/z
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Limits of visibility

Limit of Range of independent variable 01
visibility

— 7
sin 1(§) <61 < (el)c (91)0 <6, <3

Item numbers for limit equations

(Yl)l 2 3

(Y 4 4

l)u

1. (el)c is the value of 07 such that a tangent to tube 1 at this
point will hit the point where upper strut 1 meets bumper 1

(6, = sin-l Rt + L Y12 + t° - R®
¢ 12 + t2

2. The lower limit is the minimum possible value of Yy, that is, the
point where upper strut 1 meets bumper 1

(Yl)Z =t

3. The lower limit is determined by a tangent to tube 1

R-Lcos 6
() = e
1

4. The upper limit is the maximum possible value of Yl, that is, the
point where upper strut 2 meets bumper 1 ’

(Yl)u= S -t

It is possible that in some cases the dimensions of the configuration could be
such that tube 2 could interfere with the upper 1limit of visibility. In order
to determine if such is the case, compute the following value of (Yl)c:

RZ cos 61 - (R sin 6 - S) ‘/Sz - 2RS sin 64
(v _ D a3+ A , T
\ 4 -

]/C nosill o7 o+ (L=

2}

cos 97)

RS - R® sin 91 - R cos 91 ‘/SZ - 2RS sin 01

If (Yl)c >8 -t where S -t is the maximum possible value of Yj, then

tube 2 does not interfere with the view of bumper 1 and (Yl)u is given by

item number 4. If (Yl)c < 8 - %, hovwever, then the upper limit is determined by

a tangent to tube 2 and (Yl) = (Yl)
u

c
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Case B6: Tube 1 to Upper Strut 1

View-factor quantities

This case can be obtained from Case A3 by making the following substitu-
tions:

B=0 (tz) = <t)B6

A3

where the subscripts denote the case to which the symbol belongs. Then
a = Xi sin 91 -t cos Ql

da = sin 6, dXj

r = [Xf + RZ + t2 - 2R(X] cos 67 + t sin Qli]l/z

Xi - R cos 67
dr =

ax
r 1

Limits of visibility

Limit of Range of independent variable 01
visibility

. =1(t 7
sinl(g) 01 < (01, [ (o) S 0 <%

Item numbers for limit equations

(%), 2 4

(%), 3 4
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1. (el)c is the value of 64 such that a tangent to tube 1 at this point
will hit the point where upper strut 1 meets bumper 1

(6.) = sia-l (Rt +1n V12 + 42 - R2>
e ™

12 4+ ¢

2. The lower limit is determined by a tangent to tube 1
R -t sin 67
cos 67

(Xl)l =

3. The upper limit is the maximum possible value of Xi, that is, the
point where upper strut 1 meets bumper 1

(%), =L

4. Upper strut 1 is not visible from tube 1 for this range of 67.

Case B7: Upper Strut 1 to Tube 1

View-factor quantities

This case is related to Case B6 by
dSuSl dFuSl"'tl = dstl dFtl—uSl

R d@l aF
PFus -ty = Tax; Ttyusy

or
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a = Xi - R cos Gl
da = R sin Gl del

R(Xy sin 67 - t cos 0,)
dr = 1 1 1 d@l
r

Limits of visibility

Limit of Range of independent variable Xy
visibility
Vr2 - t2<x <L
Ttem numbers for limit equations
(61), 1
(el)u 2

1. The lower 1limit is always the minimum possible value of 61, that is,
the point where upper strut 1 meets tube 1

(61), = sia(§)

2. The upper limit is always determined by a tangent to tube 1

2 _ 2
1 RXl+t‘/X:2L+t - R
2

x_L+t2

Case B8: Upper Strut 1 to Bumper 2

(Gl)u = cos

ds

USl -

X}

1

-dS
by
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View~-Tactor quantities
a=L+Xl

da =0

Limits of visibility

Limit of Range of independent variable Xl
visibility 5 5
R* -~ ¢ <X
} SH<E) (X)), <X <L
Item numbers for limit equations

(YZ)Z 1 3

Y 1 4

( 2)1_1
1. Bumper 2 is not visible from upper strut 1 for this range of Xi.
2. (X;) is the value of X, such that a line drawn from this point

c
tangent

to tube 1 will hit bumper 2 at the point where bumper 2 meets lower
strut 2; at values of Xj less than this, tube 1 occludes the view of bumper 2

(%) = -(8 - 2t) R(S't)+LVLZ+(s_t)2_RB
© RL—(S-t)‘[LZ.;.(S_t)Z_RZ

3. The lower limit is determined by a tangent to tube 1

ROZE + 42 +1X) - 1t Vi + £2 - R?

Rt + % VX2 + % - BE

FAY

4. The upper limit is the maximum possible value of Y5>, that is, the
point where bumper 2 meets lower strut 2

(Yz)u=8—t
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Case B9: TUpper Strut 1 to Lower Strut 2

'/—ds us 1

3

V&z SlSz
View~-factor quantities
a=L-W2+Xl
da = -dW,
1/2
r = [(L+Xl - Wo)? + (S - 2t)2] /
Wo - (L + Xq)
dr = 2 L dws
r
Limits of visibility
Limit of Range of independent variable Xj

visibility
Ve - t2 <x < (x1) | (%), <X < (X),, | (X))o £% <L
uc 1/uc lc lc

Ttem numbers for limit equations

(Wa), 1 5 6

(Wz)u 1 3 3

1. Lower strut 2 is not visible from upper strut 1 for this range of Xj.

2. (Xl)uc is the value of Xi such that a line drawn tangent to tube 1

from X on upper strut 1 will also be tangent to tube 2; at values of X;
less than this, tube 1 occludes the view of lower strut 2

R(S - 2t
(Xi)uc = _ig___g_l_
g2 . 4R?
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3. The upper limit is determined by a tangent to tube 2

R(s-t)2+Rx§-t[Xl \/(s-t)2+xf-RZ+R(s-t):|
(s-1t) V(s -4)2 + % - 8% - RY

4. (Xl)z is the value of Xy such that a line drawn tangent to tube 1
c

(wg)u =L -

from X; on upper strut 1 will hit the point where bumper 2 meets lower
strut 2

2 2 2
(Xl)Zc=-(S-2t)R(S't)+L‘[L + (s - )% - R

- L
RL - (S - t) Y12 + (8 - %)% - R°

5. The lower limit is determined by a tangent to tube 1

R[t(s - 2t) - Xﬂ v X (8 - t) Y2+ 42 - B

(WZ)Z =L -

2, .2 _ g2
XlR-t‘/Xl+t - R

6. The lower limit is the minimum possible value of Wy, that is, the
point where lower strut'2 meets bumper 2

(WZ)Z =0

Case B10: Upper strut 1 to Tube 2

%

ml

?

e

View-factor quantities
a = Xi - R cos 65

da = R sin 92 sz
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r = [RZ + 82 + x% + t2 + 2t(R sin 65 - 8) - 2R(X) cos 0, + S sin 92511/2

R[&l sin 9o -~ (S - t)cos 92] a

dr O2
r
Limits of visibility

Limit Range of independent variable Xy

of

isi- 2 . g2 < X = (X X <X;< (X X <X <L
riet (V- 62 <3 < ) [ = ()| (B), << () J08) <%
ity Item numbers for limit equations

(92)Z 1 1 1 1
(6,) 4 5 6 7

u

1. The lower limit is always the minimum possible value of 0o, that is,
the point where upper strut 2 meets tube 2

(62)Z = sin"l<%)

R (X’l)mc is the value of X; such that a tangent to tube 1 from this
point will hit tube 2 at 6, = n/2

(Xl)‘ _ R(S - R) - tR

me '/SZS - 2R)

3. (Xl) is the value of Xi such that a tangent to tube 1 from this
uc
point will also be tangent to tube 2
R(S - 2%t)

(X7),. . =
uc
s2 - 4R

o 4. The upper limit is determined by a tangent to tube 1 and is less than
90

|
o4

(92)u =

o 5. The upper limit is determined by a tangent to tube 1 and is equal to
90

(82),,

1
A
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6. The upper limit is determined by a tangent to tube 1 and is greater

than 90°

(9,),

Yor items 4, 5, and 6,

Il

T - |3

R -~ S sin €)cos

where

M
1
wm
j=s)
[6)]
I
=
m
L~
[av]
e
O
m
I

and

cos € =

R - t VI + 2 - B2

2 2
Xi +t

7. The upper limit is determined by a tangent to tube 2

(92)u = - |sin

2
4% ‘/(s - t)f + % - BZ +R(S - t)

(8 - )2 + Xf

Case Bll: Upper Strut 1 to Upper Strut 2
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View-factor gquantities

. a=X - X
da = dX2
r = [(X2 - X2+ (s - zt)z]l/z

Limits of visibility

Limit of Range of independent variable X3
visibility 5
YRZ - t2<x <L
Item numbers for limit equations
(Xé)z 1
2
(%),

1. The lower limit is always the minimum possible value of X5, that is,
the point where upper strut 2 meets tube 2

(%), = YR? - +Z

2. The upper limit is always the maximum possible wvalue of X5, that is,
the point where upper strut 2 meets bumper 1

(%), = L

Case Bl2: Upper Strut 1 to Bumper 1
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View-factor quantities
a=L-Xl
da =0

r=[(L-m)%+(x - t)"’]l/2

Yy -t
dr = T le

Limite of wvisibility

Limit of | Range of independent variable Xi

visibility
‘/RZ -t2 <X <L

Item numbers for limit equations

Y 2
(1)),
1. The lower 1limit is always the minimum possible value of Y, that is,

the point where upper strut 1 meets bumper 1
Y =1t
(%),

2., The upper limit is always the maximum possible value of Y., that is,
the point where upper strut 2 meets bumper 1

(Yl)u—_— S -1

Case B13: Bumper 1 to Upper Strut 1

-
w
o
bt
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View~-factor quantities
This case is related to Case BlZ by

s
Woy-usy = Fyy © usy-by

or
a=Yl—'t
da = 0

r = [(Yl - )2 + (L - Xl)z]l/2

Xy - L
=l aX

dr —

Limits of visibility

Limit of Range of independent variable ¥y
visibility
t <Y <8/2
Item numbers for limit equations
X 2
(%),

1. The lower limit is always the minimum possible value of X;, that is,
the point where upper strut 1 meets tube 1

(%), = R - t2

2. The upper limit is always the maximum possible value of Xjp, that is,
the point where upper strut 1 meets bumpsr 1

(Xl)u =L
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or

Case Bl4: Bumper 1 to Tube 1

View-factor quantities

This case is related to Case B5 by

r = [Y%

W) TFpy-ty = B4y Feypy

R del
dr = ——= dF
b=ty 7oAy Tty-by
a = Yl - R sin 61
da = =R cos 91 del

+ R2 + 12 - 2R(Yy sin 6] + L cos 6;

R(L sin 61 - Yy cos 6q)

dr =

r

Limits of visibility

ﬂ 1/2

déy

Limit of Range of independent variable Y
visibility
<Yy < (Y), | Yy = (W), | (Y1), <Yy <8/2
Item numbers for limit equations
(91)1 1 1 1
(61), 3 4 5
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1. The lower limit is always the minimum possible value of 6;, that is,
the point where upper strut 1 meets tube 1

(el)Z = sin-l(%)

2. (Yl)c is the value of Yy such that a tangent to tube 1 from this
point will hit tube 1 at 91 = 90°
Y = R
(1),

3. The upper limit is determined by a tangent to tube 1 and is less than
90°

2,12 _ o2
1 L‘/Y1+L - R® + RY;

(6,) = sin~
1w Y2 + 1

o 4. The upper limit 1s determined by a tangent to tube 1 and is equal to
90

I

(el)u g

5.0The upper limit is determined by a tangent to tube 1 and is greater
than 90

2 ;12 _ g2
L Y¥§ + 1% - R + Ry

(1) == - sin~1
u v8 + 12

Case Bl5: Bumper 1 to Lower Strut 1
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View-factor quantities
8.=Yl-t

da = 0O

Wi - 2L
dr = —I‘_— dWl

Limits of visibility

Limit of |Range of independent variable Y
visibility
t <Yy < (), | (¥), <1y <8/2
Item numbers for 1limit equations
(Wl)z 1 3
(wl)u 1 4

1l. Lower strut 1 is not visible from bumper 1 for this range of Y.

2. (Yl)c is the value of Yl such that a tangent to tube 1 from this

point will hit the point where lower strut 1 meets bumper 2; at values of Yy
less than this, tube 1 occludes the view of lower strut 1

R(212 + t2) - 14 Y42 + 12 - R2
Rt + L Vt2 + 12 - R®

3. The lower limit is the minimum possible value of Wy, that is, the
point where lower strut 1 meets bumper 2

(1))

(W), = 0

4, The upper limit is determined by a tangent to tube 1

2 2 2 L v2 _ g2
R(Y] - Y3t + L%) - Lt \/L + Y] - R

2 2 2
Yl ‘[E + Yl - R® - RL

(Wl)u =L -
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Case B16: Bumper 1 to Bumper 2

Y1
'———

[\esp,

'3

-ds
{7k

/
/7
T

[ Yy
View=-factor quantities
8.=Y2-Yl

da = dY,

r= [(Y2 - Y7)% + 4L2]l/2

Y, - Y

Limits of visibility

Limit of Range of independent variable ¥Yq

visibility
t <Yy <(Yy)y, | (¥y),, S Yy £8/2

Item numbers for l1imit equations

(Yz), 2 3

Limit of Range of independent variable Y;

visibility
b <Yy < (Yy)ye |(Yg) <Y1 £8/2

Item numbers for limit equations

(Yz) 5 6




1. (Yl)ZC is the value of Y; such that a tangent to tube 1 from this
point will hit the point where lower strut 1 meets bumper 2

_R(212 + t2) - 1t P42 + 12 - R2
Rt + L Yt2 + 12 - R

(Yl)Zc

2. The lower limit is determined by a tangent to tube 1

R(212 + Y2) - 1y, VY5 + 12 - 2

(YZ)Z =

RY1+L‘/Y§+L2-R2-

3. The lower limit is the minimum possible value of Y,, that is, the
point where lower strut 1 meets bumper 2

(YZ)Z =1

4. (Yl)uc is the value of Yl such that a tangent to tube 2 from this

point will hit the point where lower strut 2 meets bumper 2

(Y,) = R[t(S - t) - 2L2] + L(S + t) m

e Rt + L Pt2 + 12 - B2

5. The upper limit is the maximum possible value of Yp,, that is, the
point where lower strut 2 meets bumper 2

I

(1{2)u S~-t

6. The upper limit is determined by a tangent to tube 2

R[Y, (s - ¥3) - 212] + L(2s - ¥3) PL? + (8 - 11)2 - 2

(1,)
. L‘/L2+(S-Yl)2—R2+R(S—Yl)

It is possible that in some cases the dimensions of the configuration could be
such that tube 1 could completely occlude the view of bumper z for some values
of Y;. In order to determine if such is the case, compute the value of (Y2)Z

as given by item number 2 and call it (YZ)C. If (YZ)C.E S -1t where S -t

is the maximum possible value of Yy, then tube 1 occludes the view of bumper 2
and (YZ)Z =0 and (Yz)u = 0. If (YZ)c <8 - t, however, then bumper 2 is not
occluded by tube 1 and the limits are those given in the table.
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Case B17: Bumper 1 to Lower Strut 2

View-factor quantities

a=S-t-Yl
da =0
1/2
r = [(S -t - Yl)z + (2L = Wz)z] /
. Wz - 2L
dr = — sz
r

Limits of visibility

Limit of Range of independent variable Yy
visibility
Py < (), | (¥), <Y < s/2
Item numbers for limit equations
(Wz)z 2 4
W) 3 4
(W .

1. (Yl)c is the value of Yl such that a tangent to tube 2 from this

point will hit the point where lower strut 2 meets bumper 2; at values of Y1
greater than this, tube 2 occludes the view of lower strut 2

(1)) =R[t(S-t) -2L?:| +L(s +t) V12 + 2 - ®?
¢ Rt + L Y18 + 2 - B
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2. The lower 1limit is the minimum possible value of Wo, that is, the
point where lower strut 2 meets bumper 2

1
(@]

(Wg)z =

3. The upper limit is determined by a tangent to tube 2

2 - 2 _ Re _

(8 - 17) VL2+(S-Y1)2-RZ-RL

4. Lower strut 2 is not visible from bumper 1 for this range of ¥;.

Case B18: Bumper 1 to Tube 2

View-factor quantities

a=8~-7Y - Rsin 63

da = ~R cos 92 dez

z'l 1/2

2 .
r = !;L -~ R cos 92) + (8 -Y; - R sin 65)

- 6 in 6o - S -Y7 - R sin 89)cos 6
i = (L - R cos 62)R sin 62 - R( 1 2) 2 aoy
T
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Limits of visibility

Limit of Range of independent variable Yl

visibility
1< < (Yl)

ue | Y1 = (Yl)mc (3{1)mc <Yy < (¥q) (3{1)uc <Yy <8/2

uc

Ttem numbers for limit equations

(92)Z 1 1 1 1

4 5 6 7

1. The lower limit is always the minimum possible value of 92, that is,
the point where upper strut 2 meets tube 2

- sin-1(E
(62)Z = sin (R)

2. (Yl)uc is the value of Y7 such that a tangent to tube 1 from this
point will also be tangent to tube 2

SR - L ¥s2 - 4r?
(Yl)uc B

2R

3. (Yl)mC is the value of Yl such that a tangent to tube 1 from this
point will hit tube 2 at 6, = x/2

(Y. ) R(S - R) - L v/3(S - 2R)

1’ me R

o 4. The upper limit is determined by a tangent to tube 1 and is less than
90

(62) =% - 19|

5. The upper limit is determined by a tangent to tube 1 and is equal to
90°

(o), = 4

6. The upper limit is determined by a tangent to tube 1 and is greater
than 90°
T
(e2), =5 + |3]

For items 4, 5, and 86,

2 2 2
8 = sin-1 S sin w~R\[LR - Yl‘/Yl + L% - R . Vs sin w(2R- S sin )
= sin R > + sin w R
Y§+L
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where

YR + L Y¥§ + 12 - B

v5 412

sin w =

7. The upper 1limit is determined by a tangent to tube 2

R(S - Y1) +L Y12 + (S - 11)2 - BE

(Gz)u = - |sin~1
2 2
LS + (8 - Y;)

~

™,

Case B19: Bumper 1 to Upper Strut 2

View-factor quantities
a=S-Yl-t

da =0

r = [(L-X2)2+(S-Y1-t)2]l/2

L - X

L

dr =

dXs

Limits of visibility

Limit of Range of independent variable Y7
visibility t <Y < S/Z
Item numbers for 1limit equations
(%), 1
(Xz)u 2
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1. The lower limit is always the minimum possible value of ZXo; that is,
the point where upper strut 2 meets tube 2

(%), = VR? - 2

2. The upper limit is always the maximum possible value of X,, that is,
the point where upper strut 2 meets bumper 1

(Xz), = L

Configuration C: All Cases

= s i

e

This configuration is a special case of configuration B where L = R. The
view factors and limits of visibility for this configuration can be obtained by
substitution into the corresponding equations of the cases of configuration B.
Note that t may vary from zero to R. (When t > R, then the tube surface no
longer contributes to the radiant interchange.)

Configuration D: All Cases

N > -

This configuration is a special case of configuration C where bumper 2 has
been removed. The view factors and limits of visibility for this configuration
can be obtained from the corresponding equations of the cases of configura-
tion C that apply here.
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Case El: Tube to Inside of Bumper

View=-factor quantities

a = Ry sin(6y - 61p)

da = -Rqyp cos(6¢ - 61p)doT1p

1/2

o= [R%b +»RE - 2RyRry, cos(6y - Gfbﬂ

R
i - _RtrIb

sin(6y - Op,)doqy

Limits of visibility

Limit Range of independent variable et
of
visi-

. =1(t
pil- |sin <§;> < 6t‘<(9tlu:9t = (et)uc (et)uc < 8¢ S(Gt)lc (et)lc‘< Oy <
ity

WSTEY

Item numbers for limit equations

(61p), 2 2 2 3

(6ry,) 5 6 7 7

1. (et)lc is the value of et such that a tangent to the tube at this
11 hit the point where inside fin 1 meets inside of the bumper

2. The lower limit is the minimum possible value of 6yy,, that is, the
point where inside fin 1 meets inside of bumper

(GIb)Z = sin'l<§§g>
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3, The lower limit is determined by a tangent to the tube

_1|Rt sin oy - cos oy YEE, - BE

Rtp

(GIb)Z = sin

4, (Gt)uc is the value of 6y such that a tangent to the tube at this
point will hit the inside of the bumper at 6 = n/2

R
=X o o5t _t
uc 2 R1p

5.0The upper limit is determined by a tangent to the tube and is less
than 90

(64)

(er)u =0

o 6. The upper limit is determined by a tangent to the tube and is equal to
90

7
(or), = 2

7. The upper limit is determined by a tangent to the tube and is greater
than 90°

(6 =7 - |3

),

For items 5, 6, and 7,

L, V% - K. cos 0y + Ry sin 64

Ry

d = sin”

Case E2: Tube to Inside Fin 1
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View-factor quantities

The view factor for this case can be obtained from Case A3 by making the
following substitutions:

(61) 42 = (6g)p, (Rps = (Redg, B =0 (%), = (t)p,
where the subscripts denote the case to which the symbol belongs. Then

a =Xy sin 6 - t cos 6
da = sin 64 dXy

2
r = [Xg + Ry + t% ~ 2Ri(X] cos 6 + t sin Qti]l/z

dr

Xy - Ry cos 6
- 1 t t ax;
- ]

Limits of visibility

Limit of Range of independent variable 6y
visibility

L -1f T 7
sin l(’ﬁ;‘) S0 <(og), [(Bg) <65 <3

Ttem numbers for limit equations

(%), 1 4

(Xl)u 3 4

l. The lower limit is determined by a tangent to the tube

Rt - t sin &¢

X =

( l)z cos 64

2 (9 ) is the value of 6 such that a tangent to the tube at this
t/a t

point will hit the point where inside fin 1 meets inside of bumper; at values
of 6t larger than this, tube 1 occludes the view of inside fin 1

2 ?2 2
(Q.t) = Sin'l ‘[(RIb - Rt)(RI-b - tZ) + Rt
(¢4

2
Ry
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3. The upper limit is the maximum possible value of Xj, that is, the
point where inside fin 1 meets inside of the bumper

(Xl)u = Ry

4. Inside fin 1 is not visible from the tube for this range of 0.

Case E3: Inside Fin 1 to Tube

View-factor quantities

This case is related to Case E2 by
dStp, AFrpi-t = A5t AFp_1ry
Ry do4

dFIfl-t = Tax dFt-Ifl
or

a = X7 - Ry cos 64
da = Rt sin 6t d6y

r = [xf + RE + 12 - 2Rg(t sin 6y + X; cos et)}l/2

_ Rg(Xp sin 64 - t cos 6y)
B T

dr

a6y,

Limits of visibility

Limit of |Range of independent variable Xi
visibility
V- Fan < Vi -
Item numbers for limit equations
(Qt)z 1
(o),
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1. The lower limit is always the minimum possible value of 64, that is,
the point where inside fin 1 meets the tube

. -1/t
(Qt)Z = sin l(g;)
2. The upper limit is determined by a tangent to the tube

-1[Rem -t Vi + % - RS

2 2
Xi + t

(et)u = C

Case E4: 1Inside Fin 1 to Inside of Bumper

-XdS1h

b

L~—4r—*

View-factor quantities

a

RIb cOoSs GIb - Xi

da

|

—RIb sin er der
r = [Xf +t% + RE, - 2Rpy(X; cos O, + t sin er)]l/2

_ RIle sin er nd RIbt [el0}] er

dr de
" Ib
Limits of visibility
Limit of Range of independent wvarisble Xj
visibility
z 2 z
VR,t -t < (X[ X= (X)), | (), <X < VRIbE -t
Item numbers for limit equations
(o), 1 1 1
4 5
(QIb)u 3




1. The lower limit is always the minimum possible value of 61y, that is,
the point where inside fin 1 meets inside of bumper

(er)Z = sin’l<§§g>

2. (Xl)c is the value of X; such that a tangent to the tube from this
point will hit the inside of the bumper at O1p = n/Z

_ Re(Brp - t)
Vih - &

3. The upper limit is determined by a tangent to the tube and is less
than 90°

(%1),

I
o4

(6p),,

4, The upper limit is determined by a tangent to the tube and is equal to
900

(om), = 5

S.OThe upper limit is determined by a tangent to the tube and is greater
than 90

(6rp), = 7 - |3

For items 3, 4, and 5,

1 R_t<th +x Vif o+ 2 - R2> + VRG, - B (XlRt -t YxE o+ 42 - RE)
RIb(Xi + t2>

d = sin

Case E5: Inside of Bumper to Inside Fin 1

81b

—x
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View-factor quantities

This case is related to Case E4 by
dBrp Frp-1ry = Brry Frey-10

axy
Fp-1£1 = Ryp aoqy S Lf1-Ib

or
= Xl sin el_b ~ t cos GIb

da = sin QIb Xm

r = [R:%b + le + tz - ZRIb(Xl cos QI-b + t sin QIb)]l/Z

Xl - RI‘b cOoSs QI'b
dr =

dX
- 1

Limits of visibility

Limit of Range of independent variable @y
visibility

1t
sin (gfé) < 01 < (0) | | (0mp)_ < oy,

Item numbers for limit equations

[\)l.‘:\

(%), 2 3

(Xl)u 4 4

>

1. (GIb)c is the value of 061, such that a tangent to the tube from
this point will hit the tube at the point where inside fin 1 meets the tube

s V& - (R, - B
1|5 * Rip - R

RtRIb

(er)C sin”

2. The lower limit is the minimum possible value of X;, that is, the
point where inside fin 1 meets the tube

(Xi)z = 'R% - tz



3. The lower limit is determined by a tangent to the tube

, 2 2
RIbRt_ t(Rt sin er - CcOoSs QIb RIb - Rt)

(xl)Z =
Ry cos 61p + sin 61y R%b - R%

4. The upper limit is the maximum possible value of Xp, that is, the
point where inside fin 1 meets inside of bumper

(%), = Vrgp - ¢

It is possible that in some cases the dimensions of the configuration could be
such that the tube could occlude the view of inside fin 1 for some values
of 61p. In order to determine if such is the case, compute the value of

; . : ‘/ 2 .2
(X1), as given by item number 3 and call it (Xi)c. If (Xl)c > YRy, - b

‘/ 2
where R%b -t~ is the maximum possible value of X;, then the tube occludes
the view of inside fin 1 and (X1); = O and (xl)u = 0. If (x:l)c <

V:R%b - tz, however, then inside fin 1 is not occluded by the tube and the
limits are those given in the table.

Case E6: Inside of Bumper to Tube 1

o\

>t O1h

View-factor quantities
This case is related to Case El by
dStp dFrb-t = dS¢ dFg-Ib

Rt d@t

Rrp 4011 dFt'Ib

dFrp-t =

or
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a = Rg Sin(@t - QIb)
da = Ry cos(6y - 61p,)d6

r = [R?C + R%, - 2R Rpy, cos(6y - er)]l/2

RtRIb sin(Gt - er)

dr do
T t
Limits of visibility
Limit of Renge of independent variable 61y
visibility /% 2
sin (ﬁ) < 01 < (Omp) e 010 = (8100 | (81b) e < 811 < () |(B10) ), < 01D < %
Item numbers for limit equations

(6y), 2 2 2 3

6 5 6 7 7

( t)u

1. (61p);. 1is the value of 6y, such that a tangent to the tube from
this point will be tangent at the point where inside fin 1 meets the tube

ret + V(& - t2)(&2, - R2)
ReRrp

— adp=l
(er)lc = sin

2. The lower limit is the minimum possible value of 64, that is, the
point where inside fin 1 meets the tube

(o0), = st ()

3. The lower limit is determined by a tangent to the tube

. ‘/ 2 2
-1 Rt sSin QIb - RIb - Rt cOos er

Rth

(Gt)Z = sin

4. (er)uc is the value of 671, such that a tangent to the tube from
this point will hit the tube at 6y = n/2

5. The upper limit is determined by a tangent to the tube and 1s less
than 90°

(60),, = |
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6. The upper limit is determined by a tangent to the tube and 1s equal
to 90°

T
(et)u 2

7. The upper limit is determined by a tangent to the tube and is greater
than 90°

(et)u =7 - |9]

For items 5, 6, and 7,

-1 Rt sin erb + 'R:%b - R% cos GIb

Ry

® = sin

Case E7: Inside of Bumper to Inside Fin 2

®Ib

Xz————‘
View-factor quantities
a = Xz sin er + t cos GIb
da = sin QIb dX2

r= [R%b + % + t2 - 2Rp (¢ sin Orp - Xp cos erill/z

_ XZ + Rrp cos er

dXo
r
Limits ot wvisibility
Limit of Range of independent variable Or1p

L sibilit .
visibility Sln_l(ﬁ%g) < 61p < (QIb)c (el_b)c < f1p S%

Ttem numbers for 1limit equations
(XZ)Z 1 3
(X2)y 1 4
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l. Inside fin 2 1s not visible from the inside of the bumpeér for this
range of Orpe.

2. (er)c is the value of 61 such that a tangent to the tube from this

point will hit the point where inside fin 2 meets inside of the bumper; at
values of 61} less than this, tube 1 occludes the view of inside fin 2

2 2 2 2 >
t(2Ry - Rip) + 2Ry ‘/(RIb - t2)(Rrp - Rg)

3
Ry

(elb) o = sin~1

3. The lower limit is determined by a tangent to the tube

‘[ 2 2
(XZ) _ RtRIb - t( Rip - Rt cos O1p + Rt sin 9Ib>
. =
2 .
VR%b - Ry sin &p - Rg cos OTb

4. The upper limit is the maximum possible value of X, that is, the
point where inside fin 2 meets inside of bumper

(%), = YEE, - t2

Case E8: Inside Bumper to Inside Bumper

v

This is the only case considered thus far in which a surface can view
itself. To avoid confusion in terminology, the independent variable will be

Ve ot m e o~ It e A
subscripted for this case only.

View-factor quantities

a = Rrp sin(6mm - OIby)

da = Brp cos(6p - erl)der
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= {ZR%b[l - cos(6m, - oy ) }1/2

2 .
_ RIb s:.n(GIb o erbl)

dr 46
- Ib
Limits of visibility
Limit of Range of independent variable 9Ibl

visibility 17t »
o < < <._.
sin (_Rl'b> < O,y < (6my) | (0my) < Omp) <3

Item numbers for limit equations

(GIb)Z 1 1

(er)u 3 4

1. The lower limit is the minimum possible value of 611, that is, the
point where inside fin 1 meets inside of bumper

(QIb)Z = sin‘l(ﬁig)

2. (QIbl)c is the value of elbl such that a tangent to the tube from

this point will hit the point where inside fin 2 meets inside of bumper

[ Y - B, - o) + sl - )

R2p

o = sin
(6mp,)
3. The upper limit is determined by a tangent to the tube
R
e = 6 + 2 cos~l{=—
(Oro), = Om, (RIb

4. The upper limit is the maximum possible value of 61p, that is, the
point where inside fin 2 meets inside of bumper

t
(6r). == - sin"l<—)
Ib u RI_b
It is possible that in some cases the dimensions of the configuration could be

such that the tube could interfere with the lower limit of visibility. In
order to determine if such 1s the case, compute the following value of (er)c:
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R¢
= - =1{__t .
(9Ib)c = QIbl 2 cos ( Ib)

If (er)c < sin~1(t/Brp) where sin"l(t/Ryp) is the minimum possible value of
GIE, then the tube does not interfere with the lower limit and (GIb)Z is given
by item number 1. If (GIb)c > sin~1(t/Rpp), however, then the lower limit is

determined by a tangent to the tube and (QIb)z = (GIb)c.

Cases E9, E10, E1l, and E12

%0bp} {°0by \

2L 1

The view factors and limits of visibility for these cases can be obtained

from the corresponding cases of configuration A' by making the following sub-
stitutions:

(61) a1 = (60b1) g (R)ar = (Rob) g
(92)A1 = (GObZ)E (Xi)A' = (X)g

where the subscripts denote the case to which the symbol belongs. Then
Case E9: Outside bumper 1 to outside bumper 2 (use Case A'l).

Case E10: Outside bumper 1 to outside fin (use Case A'3).

Case E11l: Outside fin to outside bumper 1 (use Case A'4).

Case E12: Outside fin to outside bumper 2 (use Case A'S).

CONCLUDING REMARKS

The role of the view factor in radiation heat-transfer calculations is
discussed. A general formula is derived for the view factor between finitely
or infinitely long differential strips of general cylindrical surfaces having
parallel generating lines. The view-factor formula for finite length is not
significantly more complicated than that for infinite length and can be just
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as readlly used. View factors obtained by the general formula are presented
for various pairs of differential strips of six different systems of circular
cylinders and planes characteristic of radiator fin-tube geometries. The
limits of visibility from each surface to all visible surfaces of each system
are also presented.

Lewis Research Center
National Aercnautics and Space Administration
Cleveland, Ohio, October 6, 1964
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APPENDIX - SYMBOLS
ares
projection of r onto plane perpendicular to normal to strip 1

radiosity, total radiant energy per unit area and per unit time leaving
surface ’

view factor, fraction of total radiant energy that leaves one surface and
strikes another

view factor between differential elements

incident radiant energy per unit area and per unit time on surface from
external sources, such as sun or planets

total incident energy per unit area and per unit time on surface
index of surface
index of increment of surface

half distance between tube centers for configurations A, A', and E; dis-
tance between tube center and bumper for configurations B, C, and D

number of surfaces visible to certain surface

tube radius for configurations A to E

distance between differential elements dA; and dAs
distance between differential strips

general surface; distance between tube centers for configuration B
particular point on surface

temperature

fin half thickness for configurations A to E

mid-fin half thickness for configuration A

fin half thickness at tube for configuration A

lower strut coordinate for configurations B and C

fin coordinate for configurations A, A', and E; upper strut coordinate for
configurations B, C, and D

bumper coordinate for configurations B, C, and D
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Z longitudinal length of radiator segment

B taper angle of fin for configuration A

€ emittance

o] tube coordinate for configurations A to E

X angle from line normal to area element 1 to line joining this element and

area element 2

o} reflectivity

o] Stefan-Boltzmann constant
) angle between normel to strip 1 and shortest line joining strip 1 and
strip 2

s angle between r and X
dw solid angle subtended at dA; by dAp

Subscripts:

dA differential element of area

b bumper

c critical value
f fin

i surface 1

Ib inside cylindrical bumper, configuration E
If inside fin

J increment

I/ lower limit of visibility or integration

lc critical value on lower limit

s lover strut, configurations B and C

mc middle critical value

Ob outside cylindrical bumper, configuration E

t tube, configurations A to E
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uc

us

upper 1imit of visibility or integration
critical value on upper limit

upper strut, configurations B, C, and D
surface 1

surface 2

surface 3
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