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SUMMaRY

A group of problems involving time-dependent discharge of
inviscid liquid from a reservoir is examined. Two geometries are
treated in detail: the slender conical reservoir, and the cylin-

drical reservoir.

The differential equation governing free-surface motion
during discharge is non-linear and cannot be integrated egactly
except for fhe special geometry of a cylindrical reservoir. How-
everlit is shown that it is possible, in the two specific cases
treated, to neglect the freefsurfaée acceleration. This is called
the approximate unsteady solution. This is compared to a numeri;
cal solutioﬁrof the’exact equation, the quasi-steady soiutiOn5 and
experiment. It is highly probable ihat free-surface accéleration

plays no role in the flow regardless of the reservoir geometry.

For the cylindrical reservoir it turns out that only with an

exit nozzle is it possible to make meaningful comparison with ex-

periment, and even then special precautions must be taken to

avoid free-surface collapse. The correction to the discharge time
even for short nozzle lengths may be a significant fraction of the

total. Experiments indicate that when the length/diameter ratio of

the nozzle is large, friction in the nozzle is important. When the

ratio is small the inlet shape must be carefully designed in order
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to avoid flow separation of the jet from the nozzle walls.

Other theoretical work is discussed briefly. 1In particular
the work of Stary is considered who employs momentum and kinetic
energy correction factors to account for the lack of uniformity
cf the flow acrcss.any cross-section normal to the axis. [t is
shown for a particular geometry that the introduction of these
correction factors is superfluous and it is concluded that their

significance even for steady flows should be reexamined.
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SYMBOLS

cross-sectional area

inverse of velocity coefficient
diameter

defined in eq. (1Y)

gravitational constant

Stary's correction factors

constant |

indices or exponents

pressure

time, dimensional -

vertical vélocity compouent.

dummy vafiabie‘

free-surface ioo:dinate, dimensionlgss
vertical coordiéate. dimensional
Ay/A

defined by eq. (13)

z9/z1 for cylindrical reservoir
free-surface coordinete, dimensional
zo/zy for conical reservoir

fluid density

dimensionless time
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Subscripts

1,2

denote exit and initial free-surface
respectively

denotes diccharge time

denoes starting time

denotes discharge time corrected for nozzle

height

stations,
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INTRCDUCTION

The subject of unsteady liquid flow tharcugh ducts has not
been greatly developed. For exampie, in the recent ''Handbook of
Fiuid Dynamics'", reference 1, no mention is made of the su>ject.
It is possible to deal with flows with negligible viscous eifects
by standard methods cf potential theory invoiving superposition
of singularities. Roudebush and Pinkel, reference 2, treat the
unsteady flow cut of a cylindrical tank by this method but it is

toc complicated to have much promise except in specizl cases.

One reads the standard works in vain for an adequate treat-
ment of the subject. In their famous work Prandtl and Tietjens,
reference 3, approach the subject by means of the uns teady |
Bernoulli equation. They point out (correctly) for one situation
that the g6verning differential equation is of second order but

no details are given.

Kozeny, reference 4, in a work available only in German,
cevelops the theme outlined by Prandtl. In a short note Stary,
reference 5, applies the development of Kozen& to the problem of a
cylindrical tank with a horizontal bottom which is provided with a
discharge hole. Neglecting viscosity he obtains a solution for
the disckarge time in terms of the Area ratio, the original free-
‘éurface height, and certain momentum and kinetic energy correction

factors which have to be determined empirically. Bird, Stewart and

e e e I e
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Lightfoot, reference 6, page 239, pose as an exerci:2, the same
problem considered by Stary; their expression (taking into account
what appears to be a misprint) for the di;charge time agrees with
that of Stary when his correction factors are put cgual to unity.
We shall also give the solution to this problem by an alternative

épproach.

Bird =t al. also consider, page 226, the unsteady discharge
from a conical tank, which is a special case of a class of flous
considered in the present work. By neglecting the kinzetic energy
they obtain a result which is equivalent to a quaéitsteady fLow

whose exit velocity is given by the‘Torricelii value ‘based on the

instantaneous free-surface height.

Figere 1 illustrates the conical reservoir. Assuming a

fluid of negligible viscosity Vdnder action of gravity.we ask:
If at time t = O the valve at the exit is opened, what is the

discharge time ty required to empty the reservoir?

The quasi-steady soiution. According to Torricelli's law -

the exit velocity at station (:) is o ‘ : <
“ =T SpERE) 2 ey, @

if zy « Ef ;' From the continuicy équation for an incompressibleu

B i -7 L 4y
T ML s S W 4 : g
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fluid the velocity of thAe free-surface_f--_;(t) is w(XZ) = d3/dt -

wlzlzégz, and thus the discharge time is

2 3 s 2,22\ 2
&=L o = FENG) *

2

It is convenient to work with dimensionless quantities, Putting

7= (g/zz)%t, A= zzlzl, then

“r

It is noted that according to quasi-steady theory the discharge

. speed depends only on the free-surface height. Thus the discharge

veioc1ty theoretlcally becomes zero as the free surface reaches the

~exit, Oa the other hand in a non-steady 1ncompre551b1e flow the

-entire body of flaid must be accelerared from an initial velocity

- of zero. 1In a non-diésipative flow the free-surface velocity ought
to increase in time and he a maximum at the exit. Therefore it is

not ebvlous in advan"e whether the quasi-steady or ncn-steady

- .thecries ought to predict the lesser discharge»times.

Comparison of the solution of the unsteady flow equations with
the quasi-steady solution will provide a convenient measure of the
imPoﬁtaﬂbe of non-steady phenomena. It will be shown that in some

.ases use of the quasi-steady result can lead to significant error,.

THE UNSTEADY EQUATIONS

- We assume that the flow can be treated as one- dlmen51ona1

There is no partlcular dlfflculty, initlally, in generallzwng te

e S Lo T
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inciude flow geometries involving ducts with area distributions
following the law A = kz". For axially-symmetric ducts n = 2
designafes a conical boundary, whereas n 2 2 correspond to convex
and cencave interiors respectively (see Figure 2). Furthermore,
it is simple to include in the initial analysis the effect of a
pressurized reservoir such that the free-surface pressure-reﬁains

constant.

For unsteady incompressible flow the continuity equation is

wiz ) Hlz) = w(2,)Ak) = w(%)Az). (4)

" Thus, specification of the velocity at any station automatically

- specifies the entire flow field.

The dynamical equation is .

or o 92 -

Owr _ _ [ =P _‘;. 7 o ()

Specifying a constant discharge pressure Py, and constant

free-surface pressure p,, the boundary conditions are
rE )= , P3O =72. ®
Initial conditioné are

Flo) =z, , 45(22',0) = w[30)] =0, - D

i

R i T Lt TN TR -
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Equation (5) can be rearranged and integrated from the dis-

charge station to the free surface at an arbitrary time

/J“"Jz # / (f+ +/z)az =0
2=7,

3 - _
P |
2oz + B %) P p5-2)=0.®
z S
From (4) N
. , s _
wzd)=wd)s/c7 = F7727, o
where,_:f?a d¥/dt. Therefqre
L, e Lt o2 | -
¥ = (F5Tens" S )27, (10)
“and
) /fc)“" | =l - -1y ~(n-1)
/ 532 = [j; +773‘ f)[ } 5 //;qu\ (i)
Z

for n#1,

Combining (8) and (11}, we- obtain the following differential

-equation for the -free surfac’:’e motion:

i ;"(”’/) (3’3*?73‘ )[(-i) -—/] [/—(5) ]5’ + .2 102/5-2) =0,

(12)

<0 g
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Now we define

7

A= 2,/2, 7= £z, , 7 = (//zz)zz‘) (13)
and equation (12) becomes |
n n-1 5 01 an .2 Ay -/

29 [09) 1] +{ 200" 1] - 4 -,']}i 1wtz 0, a6

with ‘
P R as

For the.conical duct of Figure 1, n - 2, and equation (1l4) reduces

to

., 32 D2 -
g B[00 -0 - ) ]i # N By =0. (6)
For n = 1 the intégration of (16) introduces a logarithmic

term, The final differential equation for this case is
2 .2
FAn )G+ 2[1-0p)+ 240 |37+ 87 Gy-fs =0, an)

Note that (16) and (17) are independent of the constant k; i.e.

"in the case n = 2, the flow does not depend on the actual cone

angle, and similéfly'for other shapes.
The governing initial conditions inhall cases are
gl =/, ;[o) = 0. - (18)

The solution terminates at ylg,X'l,»when the free surface reaches

.
1
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the exit station.

Equations (14) through (17) aré surprisingly formidable
for what is apparently a simple flow situation, i.e., a flow
which is one-dimensional, incompressible and inviscid. A general
solution to (14) has not been 6btained. Therefore we focus

attention on the conical duct of Figure 1, for which n - 2, which

is governed by equaticn (16).‘

INTEGRATION OF (16)

' A variety of attempts to integrate (16) Qere notreﬁtirely
successful. It is useful to meﬁtion some of rhese briefly be-
cause rhey pornt ug the mathéﬁatical difficulties. Furthermore,
it was in the attempr of trying toiévaluate the utility of one

of these approaches that the clue to a successful approximate

scolution was obtained.

Quadrature. Equation (16) can be integrated by quadrature.

Putting

Fly) = *(/_’[ 3- (/}77)3~ (Aoy)z- iy
-0 = Ay 0r) 5 |

and noting tii:t §f= d(%&z)/dy, then (16) becomes

i

6(;)
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Multiplying by the integrating factor exp_/,F(y)dy, then a

first integral gives

;
£ 4 . expo [- //:/s)c/§] / 5(3) exp| [F(s)] A5, (21)

and finally / g

A’/
- / 4 - (22)

/ Z( exp[- [Fs)ds] / 76 expl [F(5)d3]dE
/ y :

O\

Evaluation of (22) depends on the integration indicated

4n (21) which has not been achieved. A numerical integration

looks possible using a digital computer although great care
must be employed because, in practical cases where values of

2 <AL 100 might be encountered, extreme vériatiéns of the
integrands can be expected. For this reason it was decided to

investigate other possibilities first.

Series solutions. Frobenius' method in which y(Z) is repre-

sented as an infinite series in 7 fails because the number of

terms required for adequate accuracy (values of 74 as large as

. 2000 are encountered) would be very large. And then there is no

guarantee that the series would be convergent.

Asymptotic expansion in powers of a small parameter, An

attempt was made, for/<?= 0, n = 2, to put

;{(Z‘) = Z,,(z') + A-'Z}z) + /\—L;"/Z')f e *’\”}mﬂ’)"‘ o
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substitute in (16), and solve for the resulting sequence of
differential equations in y,. Unfortunately these differen-
tial were .ncompatible with each other and the method failed.
It seems likeiy that some variation of this technique ought to

work but it remains to be discovered.

THE METHOD OF SUCCESSIVE APPROXIMATIONS,

Equation (20)- is particularly suitable in form for employ-
ing a well known approximate method for solving non-linear

differential equations. One of the lower derivatives is re-

.placed initially by an expression which allows the resulting

equétion to be integrated for the term which was originally
replaced. This expression is then put into the original differ-

ential equation and, hopefully, the succeeding differential

equaticn can be integrated. The process, if convergent, can be

repeated until :he actual solution is approached to any accuracy

Thus equation (20) can be rewritten and approximated as

follows:

. ¥ - |
X ‘2 ! —,- oa . _
45" = / [66)- 45 FDIds, @

where the subscript m denotes the order of the approximation.

For n = 2 and/4?= 0 this becomes

e —————
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F 4, = -Aby- / E ,M,/—*ffjdf. (24)

In principle we are indifferent to the choice of y, as
long as the process converges. Expecting that the exit velocity
capidly builds up it seems reasonable to try the Torricelli
value. based on the initial free-surface height. as the zercth

approximation. However, substitution of this value, which is

‘;',. = ~-[§/\'—2, in
JJ v v

-~

- 1 [y . - o ]
24) leads to imaginary valves feor Y1 This

‘indicates that the procedure is very sensitive to the choice of

the zeroth approximaticn.

Un the other hand, choosing y, = 0 lIeads to

e

’ -/
g:‘;f = -\ /Zﬁyy : T (25)

Substitution of (2%) to obtain the next approximation yields

e

2
e Py 2

-é - 137-— ._>‘- ‘3,/27’ e 7
4, = gl g ]Sty e ]

/ 3 \‘? L
o - + — = . — . )
[glyti-g]+ 3 [2(by) ~4y]. 6
Unfortunately equaticn (26) also predicts imaginafy values
for &2 and the method again fails. Furthermore .he ccmplexity
of (26) indicates, even if a satisfactory zeroth approximation

could be found, that if convergence were slcw, requiring several

iterations, the method might still be unwieldy. Furthermore, if



an expression for the velocity could be obtained with adequate
accuracy, evaluation of the discharge time would still require
an integration in which the last approximatibn appears as a

radical in the denominator of the integrand. Integration, ex-

cept by a numerical procedure, of such a result appears unlikely.

This infelicitous behavior is not without some redeeming
consequences, however. It is seen from (16), for/Q:z(L that
. .
initially, since y = 0, the second order term is dominant. How-

ever, as the free-surface speed builds up, the magnitude of §

"must decrease rapidly from its initial value of )\'l because the

2 is initially of order 23, Since ¥ cannot

coefficient of v
change sign this suggests that the second order term may in fact
be negligible throughout most of the discharge. Before investi-

ating this point a criterion for the time to ''start'' an unsteads
g g p ‘ v/

flow is propounded.

THE STARTING TIME

There is no unambiguous way to define a starting time for
an unstéady flow. At the exit the velocity is initially zero.
Intuitively we expect that the velocity rapidly bnriilds up until
it reaches or sur;asses the Torricelli value. When this condition

is reached the free»surface velccity is § = -/5 A’z,for ns=2

and/e = 0. Ve define the starting time 7 as the time to reach

this value.

s v

B v gk

A
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An approximate lower bourd on Z; can be obtained as follows.
Expecting that the frée—surface build-up is attained rapidly we
put y~ 1, y= 0 in (16), and obtain ¥ ~ -)-1, which is integrated
to give y = —A"lz’\ This is equated to the Torricelli value for

y = 1 and solved fur the starting time which is

-/ .
., = V2. , (27)

Values of Z;, according to (27), turn out to be of order
h) -3 times the discharge time for the same configuration, which
is ar insignificant fraction of the total. Similar expressions

can be derived for arbitrary n and//3,

AN APPROXIMATE RESULT FOR THE DISCHARGE TIME

For n = 2 and- /3 = 0 the free-curface acceleration is
initially;§ = —,X'l. As &2 increases, y decreases rapidly in
magnitucde and remains small for most of the discharge run. As
the free surface approaches the exit, however, the volume >f

-1

liquid decreases at a rapidly increasing rate until for y = ) ,

& = -1, which corsesponds to the acceleration of gravity,

This suggests that in (16) it is possible tc ignore the
acceleration of the free surface, reducing the problem tn the

integration of the following first-order equation:

/

3 2 L é -
£/3- (A;) - (Ay) - \;7; +4 = 0. (28)
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It was first pointed out by Prandtl, whecse discussion is
reproduced by Schlichting, ref. 9, page 63, tnat it is not
generally possible to neglect the highest order dJzrivative in a
differential equation because this means that one of the initial
conditions cannot be satisfied, 1In the present case, however,
the approximation leads tc reascnably accurate discharge times.
It is conjectured that from (28) although §(0) 2 -/5):2, which
is the Torricelli value, it is nevertheless sufficiently close
to the exact requirement y(0) = 0 that the resulting error for
the discharge time is negligible. Equivalently, use of (28) is
tantamount to neglectirg the time to start the flow as giyen by

(27).

. On the other hand (28) breaks down when the free surface
reaches tﬁe exit, yielding an infinite velocity at that point.
Since the time for the free surface to cover the last small
fraction of jts total displacement is small i; any case, the
singular behavior at the exit hés no great effect on the dis-

chargce time.

Solving (28) for the negative root of7§ and integratirg

ives
& /

3 > /7- )
z - /’,\72'4[(/\;)1‘{/\;) * 11 -3] dy (29)

or, equivalently,

%
B Rert bbb et &) b vne

R o n v e s
» wrir

g e o, R
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/
2 2 a5
u = WA foplosreT o= pilld. oo
A_/ .

Since the second term in brackets is small compared to the first,

except near the exit, we ignore it to obtain the explicit result

2 /. .
= - = [ L 2 /5 - . - (J.
4 A /Z/a , /\/:‘/2_, (31)
AY
keeping cnly terms in A to the first power or greater.

The first term of (31) is the same as the quasi-steady ex-
pression of équation (3). Consequently the solution for the full
unsteady flow problem is a seccnd-crder cerrection to the quasi-

steaay soiution. This is borné out by Figure 3 in which are
plotted equation (3), equation (31), a numericsl integration of .

3

(29), and experimental values -- all for n = 2 -- and for n = 1
a numerical integration of equation (17) for/A?: 0, neglecting

the term in §:

* During the preparation cf this paper equation (16) was pro-
grammed for the Philco '"Transac' digital computer and several.
runs were made. For the case ) = 40, /” 0 the result
differed only by.one part in 900 from that cof equation (31).
For )= 10, /3= 10 the digital computation yielded '7h = 7.24,
which is about 1% greater than that of a numerical 1ntegration

PRy

YT v TR

&

computation the function ¥ oscillated irregularly -in sign all
the way to the exit although its magnitude averaged only about
10~ This behavior caused only a few wiggles in the velocity
>term y, and can be taken as another 1nd1catlon that ¥ can be
safely neglected. -

PN S RGN

T RTINS, S AU SV U S Y i v 25 - e A7 P

of (16). with ¥ = 0. It is amusing to note that in the digital

v
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There is no significant difference between the values given
by (29) and (30) except for'A-C 5. For ) = 10 the value given by
(31) is about 8% higher than the quasi-steady value, for ) = 40

this drops to 27 and to 0.8% at A= 100.

Experimental data were >btained on equipment, described in
the Appendix, which permitted use of any one of three different
orifices. By varying also the liquid height, the range of values

6 £ A% 50 was obtained. Experimental values for ‘Zﬁ were slightly

‘higher than predicted by (31) varying from 3% in most cases to 10%

for a few. It is reasonable .to expect that a part of the differ-

eﬁée between. theory and experiment is due to the neglected acticn

FENUERL 00 e e et ot vome o -

-0f viscosity.

' THE CYLINDRICAL RESERVOIR

Theory. Thezflow from a cylindrical reéeryoir with a small
_nbzzleiat the exit has been posed as an exercise by Bird, Stewart ’i
—andiLightfoot to be treated by one-dimensional theory. Their

) ;esult,fcr th discharge time is given in the form of an unevaluated?

’vintegfal.‘ Stary in reféfénce 4 tackles the same problem using the. ,i_
thgory developed by\Kozen;, in which the unsteady Bernoulli_quation *
.for:a,streamlipelin a general potential flow is integrated first

tfansversely and then streamwise, yielding a differential equation

., for the free-surface motion which is integrated to give an expression
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for the discharge time. His expression involves certain empiri-
cal factors intended to correct for the non-uniform distributiorn
of kinetic energy and momentum flux when integrating over a cross-
gection. Surprisingly, no experimental results appear to be extant
for this flow, so that it is not possible to evaluate either treat-

ment.

1t is desiragle to compare the one-dimensional treatment with
that of Stary to evaluate the,impoftance of his correcticn factors.
A schematic is shown in Figure 4aﬁ; We commence with a concave in-
tericr;connecting the fixgd cross-section area Aé, 1ocatgd at
z = 29, with an outlet afga A; at z = 0. For the initial area

distribution we choose

v

.= ﬁ/[/% (oz-))(z/fz)n]’ ' : - (32)

- where of = Ag/Ay. Omlttlng consideration of a pressurl zed reservoir,

we repeat essentially the same proceduré by which (14)’was derived

and are led to the following equation for arbitrary n:

Zr[/"("(—/);]? f??é:(/); 7_/(///-(0( /)X"7

+é[/—[,u¢-/)/]/;+ f"d"» (33)

o ot . . - .. - R : o
‘s - wh 4 i o ke’ SRS, M5 5 ST N MBI b iy, = b 4 b ¥ v F gl -y amre - AL (e o2 1. 5 e o .,_@_..‘L '_H
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Taking the limit as n-»0 produces the desired cylindrical

contour, for which the governing differential equation is
. 2, -2 ‘ 7 ' :
Y +2’ (7-~ )f +/’ = 0, (34)

with the same initial conditions given by (18). Equation (34)

can be integrated as it stands in terms of gamma functioas. We

2 - T
define s = o -1 and then, employing the transformation y - u2,

' we obtain a form whose integral is given by Dwight, reference 9,

formula No. 857.1:

7 = [el(s-) / _—,
| d [ | ] O?[/— “25—4] /2

(35)

fbr s ) 1l; for s =1

7z, = J& (36)

An éxpreSSidn similar to (35) is obtainable for s < 1, but this

case is of little practical interest except to note that in a free

" fall which is the limit as of >1, T4 —»/2. We have verified that

. the expression of Bird, Stewart and Lightfoot, taking into account -

a misprint, produces these same results«assuming a negligible nozzle

length. , ‘.
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i *
The approximate unsteady solution, neglecting the second-

order derivative in (34), is

PR 2
7; = [2=/)] a, (37)

which for o ® 1 reduces to the approximation
7, = /2ol | | (38)

Equation (38) is also the result obtained from quasi-steady theory.
Obviouslj, the approximate theory of (37) breaks dcwn for area

ratios near unity since it predicts Zti—aO w.ien £->1. For area

'ratiQS~ufZ'1Q, equations (39), (37) and (38) are indist{nguishable

for practical purposes. Fo: example when o = 10 exact thecory
gives Z:i.z 14.10, while the approximate and quasi—steady values
are ‘14.07 and 14.14 respectively. We conclude that for all area

ratios of practical interest, unsteady effects are negligible.

The quasi-steady theory starts to diverge-sqﬁewhat from the
exact theory below ol = 5 but curiously, for free fall, whenyl = 1,
they both‘yield. f;y= \/E, This is all the more remarkable when

we consider that-the free-surface velocity according to quasi-steady

* After completion of this analysis it was brought to our attention
that Kaufman, in a book reference 8, recently translated from the
German, has also treated the problem of reservoir discharge. For a
general area distribution he obtains a quadrature similar to equation :
(22), and then for a cylindrical container he puts ¥y = 0, and obtains
eq. (38) modified by a velocity-coefficient currection factor..

S SRR W ¢4 1S e ol e o v eaCRG R, Mg St 5 R T ity
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theory is wrong at every instant except one, and that it varies in
the wrong sense with respect to time., The reason it yields the
same discharge time is that, if in the free-édrface velocity func-
tion, according to quasi-stealy theory, we substitute -fa -7 for
Z we obtain the correct history in a free fall. Integration of

- either function of course must yield the same discharge time.

Discussion of Stary's soluticn. By neglecting the free-

Vsurface acceleration Staryvobtains [eq° (4) of his note rewritten
in the present notation] Z3 = [jZ(kloéz - kzil%éz k3¢r§}é: where
:kl, kz,'ks are{gorrectiqp-factors, and where l.Oé:é'ks £.1.68. He
does not explain hownto,choose the appropriatg'valﬁe for kg. Stary

| terms this the quasi-steady solution. If wé:pué R3 = 1 then his |
1: . reéult reduces tpﬂ(38), which werhave called,the apprdkimate un-
steady solution. Of course for the.cylindrical reservoir there is
'iittle distinction befween the two. However for the conical reser-
voir the quasi-é%eaﬁy solution underestimates the actual discharge
time\which, on the other hand, is given quite accurately by the'

approximate theory. In other words neglecting the free-surface

acceleration is not equiValent to the quesi-steady approximation.

Stary also obtains a solution of the complete equation which
gives the .ratio of the exact discharge time to the approximate

‘dischargé time. The ratio is less than 1.02 for £ =10 and approaches

P S - itz i e s dia St 0 - - Fd o
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unity as the area ratio becomes large. If the correction factors

ol PR s u v e TR Ry L w Nomas e

are set equal to unity then his solution reduces to equation (35).

Y ene

Thus except for the correction factors the unsteady Bernoulli

equation and the one-dimensional theory are equivalent.

SRV e L ARSI

The sharp-edged orifice. So far we have said nothing regard-

r ing flow conditions at the exit. For the conical reservoir, as
long as the cone is slender, the contraction effect of the jet is

small as' our experiments show. For the cylindrical reservoir how-

: ever,with a sharp orifice at the exit -- the problem considered by
i Stary -- the jet leaves with a significant radial component of velo-
i city inward which causes a radical contraction of the jet area

downstream of the exit. The effect on the discharge time is emnor-
mous as shown by Figure 6 in which Stary's approximate solution,

with k3 = 1.08, is compared with experiment for an initial free-

B

surface height of 2y = 11.25 in. The discrepancies are too great

e L O O g

to be attributable to lack of precision in . the correction factor

[N S

kg. Instead, followingrthe usual procedure, it might be better
to puf"Za = Cvfioé where C is the inverse of a velocity coeffici-

ent, and is evaluated from the experimental data. Whether or not -

e i s ARG FSENVEC PN

it is valid to employ a non-time-dependent velocity coefficient

in an unsteady fiow- is not known.

e ot 2o Kaen B

Whether or not to treat an unsteady flow situation by quasi-

PRI

"steady theory depends on factors which are not easy to pinpoint.
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Sabersky and Acosta, in a recently published text book reference
10, treat the flow out of a cylindrical reservoir by quasi-steady
theory and conclude rightly that unsteady effects are negligible
for area ratios o Z10. On the other hand their analysis is
equally applicable without alteration to a reservoir of arbitrary

geometry, a conical reservoir for example. As we have shown, even

for area ratios up to 40, quasi-steady theory for the conical

reservoir predicts dis;harge times from two to eight pcicent less
than the gpproximatg theory which itself is iess than experiment.
%hus it is our opinioﬁ‘that ;heir method for determining a crite-
rion for neglecting:unsteédyieffects is ﬁaulty and should be used

only with caution.

Theoretical correction for the nozzle length. Rather than

introduce the additional complexity of a velocity coefficient we

have elected to deal with the configuration of Figure 4b where a
short transition section and straight nozzle enabie the jet to be
emitﬁed without any radial component of<velocity at the exit. The
velocity coefficient of a well-shaped, smooth nozzle éan be ex-
_pected to be near\uniﬁy éxcépt when the lgns 1/diameter ratio be-
comes large. In this event viscous effects may become non-negligible
as can be visualized infthe limit of decreasing diameter as the

nozzle becomes a capillary tube.
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For a short nozzle-plus-transition-section length the asso;
ciated volume of liquid is negligible with respect to the whole.
Therefore for analytical purposes the flow terminates effectively
whenn z = z7. By subtracting the dimensional discharge times for
two flows of original heights z, and zj, and then non-dimensionaliz-
ing using z, as the reference iength, we obtainvthe discharge
time, denoted 2;' , for the nozzle configuration

7= /Eo((/—e/é), | (39)

where € = 21/22, Equation (39) is based on quasi-steady theory
but it is easy to show that it is also valid for exact theory to

a close approximation, for values of € not too near unity.

EXPERIMENTAL RESULTS FOR THE CYLINDRICAL RESERVOIR

Although measureuent of the discharge time for a cylindrical
reservoir appears almost trivial to carry out there are several
surprises for the unsuspecting., It is possible that failure to
cope with these unforeseen effects accounts for the dearth of

published data for this flow.

Effect of nozzle shape. Early measurements with a straight

exit preceded by a transition section which was simply a 90°
circular arc section of 3/8 in. radius, resulted in discharge
times substantially greater than predicted by theory, presumably

due to flow separation from the nozzle wall. We then went to the
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nozzle thown in Figure 4b 1in which the inlet was shaped to contour

- A of Figure 5. This contour, which is not based on a theoretical

design, was employed for all of the runs with the exception of a
few at d = 32 in. We shall return to this pcint shortly. Details

of the apparatus are given in the Appendix.

| e

Free-surface collapse. Another phenom2non occurs for che

smaller area ratios (for d - 1 in. and above). As the free-surface
height decreases, a point is reached where the center is visually
lower than that of the liquid adjacent (o the walls. This is a i
cogsequence of the pressure gradient normal to the streamlines,

near the transition secﬁion, as the fluid makes a turn more or less
parallel to the nozzle boundary. When conditions are favorable the

free surface,rwhich remains at atmospheric pressure, pops fhrough

ﬁbe nozzle forming a long finite cavity inside the jet. This des-

trdys the almost one-dimensional nature of the flow, decreases the %

effective jet cross-sectional area, and consequently increases the

- discharge time drastically.

To eliminate this interesting but unwanted effect we employ a
thin balsa wood disc, a little smaller in diameter than the reser- %
voir, and which floats on the free surface. Surface tension ''seals"

the free surface and eliminates the poppin_ through entirely.

Although this phenomenon does not occur for the smaller holes

(dp = 0.25 and 0.5 in.), use of the disc is helpful there also.

TR L e i
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As the free surface apprcaches the terminal level zj, surface ten-
sion and friction become more important. The result is that,
without the disc, instead of the flow terminating in & sharp cutoff
it tails off gradually into a dripping process. With the disc
however, there is a distinct transition from a continuous jet to
the discrete droplet stage, which was taken to signal the end of
the flow., We have not heard of this device heing exploited else-
where but if there are industrial processes where cavity formation =

is a problem (such as in tke draining of a large tank of molasses)

it may have some potential usefulness.

Turbulence in the jet. Even with the improved nozzlie the flow ]

in each cise is initially turbulent on the jet boundary. This is

under ndable since the Reynolds' number, based cn the initial
quasi-steady velocity, and for water at 75°F, is 24,000 for the
one-quarter inch hole, which valie exceeds the minimm® critical
Reynolds number 2300 and is great enough almost t» guarantee the
appearance of turbulence. To the eye the scale of turbulence in-
creases as the exit‘diame:er is increased. As the free-surface
level falls the outflow Reynolds number decreases. Eventually a
point is reached where the jet suddenly becomes laminar. The

smaller the hole the sooner this occnurs.

¥ Ref. 7, page 35,
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Experimental results. Experiment and theory are compared in

Figure 7. Runs were made for an overall nozzle-plus-transition
length of z; = 1.25 in. and a height of 2z, = 25.15 in., which corres-

5

pond to € = «.0497 and 1-€ ° = 0.778. Each experimental point is
“he average of two runs. In no case does the deviation of any run

exceed one percent of its corresponding average. Because a log-log

" plot tends to obscure the magnitude of error, a summary of our re-

sults appears as Table I.

TABLE 1
Experiment and Theory for the Cylindrical Reservoir
L | m e lal % te | % | oev.]
(in.) |(in.) Eq. (39)| (sec.) | (exp.) (%) | Contour
; 3080 ZS,iS 0.0497 | 0.25 | 3384 939.1 | 3679 8.7 A
% . 770.1 f f ‘0.50 846.1 227.8 892.5 5.5 f
192.5 | 1.00 | 211,5 | s4.6 | 213.9 | 1.1
85.56 1.50 94.00 24.6‘ 96.38 | 2.5
48.13 2.00 52.87 | 13.63 53.40 | 1.1
30.80 - 12,50 33.84 9.25 36.24 | 7.1 v
21.39 3,00— 23.50 | 7.90 30.95 | 31.7 A
21.39 ! ! 3.00 23.50 | 6.60 25.86 [ 10.0 B
21.39] 25.15 | 0.6497 { 3.00 23.50 6.60 25.86 {10.0 C
3080 13.25 ] 0.0943 | 0.25 | 3018 511.3 | 3309 9.3 A
i92.5 13.25 | 0.0943 | 1.00 | 188.6 35.1 189.5 0.0 | A

Zl = 1.25 in. dz = 13.88 in.
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There is some disagreement petween theory and experiment on
both ends of the curve. For large values of the area ratio (small
diameter holes) it was foreseen that viscous effects would be great-
est. A crude idea of the magnitude of the viscous contribution can
be obtained as follows: for an initial Reynolds number of 24,000,
and a nozzle lengtn of 0.75 in., theory of turbulent flow through a
smooth pipe predicts a head loss of 1.9 in., this from an initial

head of about 25 in. For the three-inch hole the corresponding

-Reynolds number is 290,000 and the head loss 0.09 in. A theory for

variable Reynolds number is not developed, but Kaufman, reference 8.

page 123, gives an approximate scheme to handle it.

As the initial Reynolds number becomes larger the deviation of
experiment from theory becomes almost negligible and continues so
over most of the central region .of thé:curve. Thus wé:conclude that
viscous effects are of importaﬁée only for the smaller nozzles,; more
specifically when the length/diameter ratio exceeds unity. We also
conclude that there is no need to incorpérate the kinetic energy andi
momentum correction facéors of Kozeny and Stary in the analysis.
Only by putting k3:= 1 would Stary's solution agree closely with ex-
periment for values of the area ratio near G<y= 200. Furtherﬁore,
as we have indicated, for large values of o the deviation is)dqé

to viscous effects and not the failure of the one-dimensional theory

to account for variations of the kinetic energy and momentuam flux in

—_— - - e i it s e e e e men e S
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the transverse direction.

For d1 = 3 in., the largest diameter nozzle tested, uncorking
the hole results in a rather startling gush of water. The theoreti-
cal rqnning time is only about six seconds. For contour A the
actual discharge time was 307 above theovy. For this configuration
the jet was initially turbulent but turned laminar much soonérrthan
for any»other‘diameter. it is probable that the flow separated from
the transition section wall although no attempt was made to verify

this.

Instead, another run was made using contour B, which has a

‘slightly more;gradual transition terminating in a one-half inch long

straight nozzle. This bfdhght.the experimental time to only 10%

“ -, -

above theory. A third run, using coﬂtour C, resulted in no addition-

al reduction in the discharge time. Since theitheory_must be right

in the limitimg case of free fall, and since the experimentél devia-

tion frbm'theory is‘appareptly increasing with decreasing of -- the

_ trend can also be deteqped for d; = 2.5 in. -- we conjecture that

separation still occurs for contours B and C although these runs re-

. mained turbulent much longer than for contour A. No elementary

theory can account for this as it involves séparation of either or
both turbulent and laminar unsteady boundary layer on a curved wall.

It mighf ke possible by a better nozzle design. e.g., adapting the

MR Vi i S s
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the run.

Several runs were made for the nozzle of contour A with
2z, = 13.15 in., € = 0.0943. The agreement with theory was essen- -
tially the same as for €& = 0.0497, and the data are omitted from
the graph. It is important to note, however, that even for a
relatively short nozzle the factor 1 —65% 4y be significanély less

than unity.

CONCLUS IONS

From the two configurations investigated there is strong evidence
‘that unsteady, inviscid, liquid flow from a reservoir, with a free -
surface, should be treated by quasi-steady theory only when varia-
tions in the cross-sectional area of ghe reservoir are restricted

essentially to the neighborhood of the exit station.

On the Othef hand it appears that the discharge time of such a
flow can be determined quite accurately by one;diménsional theory if
the acceleration of the free surface is ﬁéglected.s Integration of
the resulting equation:is called the approximate unsteady solution.
The apﬁfoximate solution is foundJnot to difféf significantly_from a
numerical solution 6f the exact equation for the conical reservoir,
Qhefeas-for certain ranges of the height ratio it may deviate con-
siderably from the quasi-steady solution. Agreemenf betéeen experiment

and theory for a slender conical reservoir is good.

Theoretical discharge times for the cylindrical reservoir
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éonfiguration are about the’same for all three theories as long as
the area ratio is ten or above. For a cylindrical reservoir certain
precautions are essential if meaningful measurements are to be obtain-
ed. in the first place to avoid collapse of the free surface it is
necessary to use a thin, balsa wood disc which rides on the free sur-
face. Furthermore to eliminate the jet coﬁtraction at the exit a short
transition-section-plus-nczzle must be employéd. I1f the length/dia-
-meter ratio of the nozzle is large compared to unity, and if the Rey-
nolds number based on the ins;antanébus outflow velocity is not too
high, frictional effects may be important. If thé ratioc is small,
there appears to be a tendency of the jet to:separate from fhe nozzle
w;il which results in largerexperimental discharge times than pre-
dictablé from fhebry.' It‘oughp to be possibig by suitable désigp toe
avoid this Separation. Inﬁroductioh of the nozzle requires a corréc-
ftion to the éheqretical discharge timetwhiéh‘ma§ be large even for
short:nozileg.
riOﬁ the question of oue-dimensional theory versus the non-steady
Bé;noulli equa;ion,‘with weighting factorsvto accOuﬁt for non-uniformi-
ties,_we éohéiude that ﬁhe forme? is the more accurate. 1In one extreme,
where experiments  deviate from the one-dimensional theory, the- error
s due to*neglebﬁed fluid viscosity which néither theorv pretends to
4acdoﬁnt for. The other indications are that the discrepancy is due
- to ;naéequate design of the nozzle contraétiqn; Thﬁs'we‘do not believe

that the use of the Kozeny-Stary correction factors can be justified

fq; unsteady flows. Inifact we.suggesﬁ that their validity even in

_ Steady flbwsﬂshould be re-examined.
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APPENDIX

THE CONICAL RESERVOIR

The conical reservoir, Figure 1, was made in two sections. The
lower part, Figure 8, which»consists of three separate pieces bolted
together, was machined from aluminum round stock, and provided with
O-ring seals at the horizontal joints. To the upper end of this
section is attached an extension (ﬁot shown) fabrirated from 0.060
inch sheet metal, rolled to the.conical shape. Spot/check*gcf‘the
extension show t@at the maximum deviation is lesgifhan onéApercent

" across any diameter at the upper station. The total height of this

reservoir from the apex of the cone, extended is 37 inches.

* To restrain the fluid and to start the flow we usc a simple

‘hinged arm sgppofting a rubber-pad-which is pressed against the ori-

fice lip. The device is held in place by a ﬁrigger prior to“stérting.

'This arrangement works well enough since it does not seem to contri- -

bute any transients of its own.

THE CYLINDRICAL RESERVOIR

For the cylindrical reservoir, Figures 4a and 4b, an empty
120 1b. commerical grease drum is employed. The sharp-edged orifice

' is obtained by machining a hole in the drum bottom.

The nozzleé configuration uses the same drum with the nozzle of

“
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Figure 9 bolted to the bottom. The nozzle is enlarged by machining
as we proceed from the one-quarter-inch to the three-inch hole.

Rubber stoppers are used to cork the supply.

i
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Fig. 3 Discharge times for n = 1, 2
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Fig. 5 Nozzle contours
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Fig. 6 Discharge times for sharp-edged orifice
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Fig. 7 Discharge times for cylindrical reservoir
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Fig. 9 Dimensions of cylindrical nozzle




