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SUM_i,_.RY

-_ A group of problems involving time-dependent discharge of i

inviscid liquid from a reservoir is examined. Two geometries are

treated in detail: the slender conical reservoir, and the cylin-

dricai reservoir.

rU

The differential equation governing free-surface motion i

,_ during discharge is non-linear and cannot be integrated exactly i

- except for the special geometry of a cylindrical reservoir. How-

ever it is shown that it is possible, in the two specific cases

treated, to neglect the free.2surface acceleration. This is called
2

'= the approximate unsteady solution. This is compared to a numeri-

cal solution of the exact equation, the quasi-steady solution, and i

'_,. experiment_ . It is highly probable that free-surface acc&leration i.

plays no role in the flow regardless of the reservoir geometry. _

i-

- For the cylindrical reservoir it"turns out that only with an

exit nozzle is it possible to make meaningful comparison with ex- _

._ periment, and even then special precautions must be taken to _,

avoid free-surface collapse. The correction to the discharge time

, even for short nozzle lengths may be a significant fraction of the _:

total. Experiments indicate that when the length/diameter ratio of !o

the nozzle is large, friction in the nozzle is important. When the _

-_ ratio is small the inlet shape must be carefuily designed in order "

l

'm

iii

| | i | • n-
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t

to avoid flow separation of the jet from the nozzle walls.

' Other theoretical work is discussed briefly. In particular

the work of Stary is considered who employs momentum and kinetic

energy correction factors to account for the lack of uniformity

of the flow across any cross-section normal to the axis. it is

shown for a particular geometry that the introduction of these
!

' correction factors is superfluous and it is concluded that their}

i significance even for steady flows should be reexamined°

¢,

t

iv :

| | m i |
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i A cross-sectional ares
5

C inverse of velocity coefficient

'I : d diameter

l F, G defined in eqo (19)
g gravitational constant

i kl,2, 3 Stary's correction factors _

l k constant

m,n indices or exponents

! :p press ure

t time_ dimensional _

w vertical velocitv compouent

x dummy var iab I.e. -

1 '• y free,surface _.oocdinate, dimensionless ._''

z vertical coordi_,aate, dime_siona! i

o_ A2/A I : i

I ,_ defined by eqo (15) " )

E z2/z I for cylindrical reservoir ._!
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• _ fluid density

dimensionless time

t
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Subscripts

1,2 denote exit and initial free-surface stations,
respectively

d denotes discharge time

s denotes starting time

6 denotes discharge time __orrected for nozzle

height ,_
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!NTrRODUCT ION

The subject of unsteady liquid flow through ducts has not

been greatly developed. For example, in the recent "Handbook of

Fluid Dynamics", reference I, no mention is .made of the subject.

It is possible to deal with flows with negligible viscous effects

by _=tandard methods of potential theory involving superposition

of singularities. Roudebush and Pinkel, reference 2, treat the

unsteady flow out of a cylindrical tank by this method but it is

too complicated to have much promise except in special cases.

One reads the standard works in vain for an adequate treat-

ment of the subject. In their famous work Prandtl and Tietjens,

reference 3, approach the subject by mea_s of the unsteady

Bernoulli equation. They point out (correctly) for one situation

that the governing differential equation is of second order but

no details are given.

Kozeny, reference 4, in a work available only in German,

_evelops th_ theme outlined by Prandtl. In a short note Stary,

reference 5, applies the development of Kozeny to the problem of a

_ cylindrical tank with a horizontal bottom which is provided with a

discharge hole. Neglecting viscosity he obtains a solution for

the discharge time in terms of the area ratio, the original free-

surface height_ and certain moment_a and kinetic energy correction

factors which have to be determined empirically. Bird, Stewart and

I
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Lightfoot, reference 6, page 239, pose as an exercize, the same

problem considered by Stary; their expression (taking into account
2

what appears to be a misprint) for the discharge time agrees with

that of Stary when his correction factors are put equal to unity.

We shall also give the solution to this problem by an alternative

approach.

Bird et al, also consider, page 226, the unsteady discharge

from a conical tank, which is a special case of a class .of flows

considered in the present work. By neglecting the ki.netic energy

they obtain a result which is equivalent to a quasi:steady flow

whose exit velocity is given by the Torrice!li Value "based on the
z

instantaneous free-surface height,
2

Figure 1 ..illustrates the conical reservoir, Assuming a

fluid of negligible viscosity., under action of gravity,we ask:

If at time t,= 0 the valve at the exit is opened, what is the
T

discharge time td required to empty the reservoir?
l'

The quasi-steady solution. According to Torricelli's law

the exit velocity at station is _:

i

if ZldZ _ ._ From the c,ontinai=y equation for an incompressible

i 3

- _ O • .

!_ ,
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r

fluid the velocity of the free-surface _ =_(t) is w(_) = dJ'Idt =

2 2 f
_ WlZ I /_ , and thus the discharge time is

%
v

It is convenient to work with dimensionless quantities, Putting

(g/z2)_t _ t,enZ'= /_ -- z2/zl, ",

a ."

L..z, . (3)

It-is noted that according to quasi-steady theory the discharge

• sl_ed-depends only on the free-st_rface height. Thus the discharge
- 2

velocity theoreticaily becomes zero as the free surface reaches the

_exit. On the other hand in a non-steady inco_-ressible fIow the

:-:- .entire body of:f-iu_,d must be acceierated from an initiai velocity

of zero. In a non-dissipative flow the free-surface velocity ough_
c

t;o increase in time and-Ne a _e-lximum at the exit. Therefore it is

not obvious in advance :_hether the quasi-steady or non-steady

_the0ries-ought to predict the lesser discharge times.
$. -

"- L

, -: Comparison of the solut_ion of the unsteady flow equations with

- the quasi-steady solution will provide a convenient measure of the

_- importance of non-steady phenomena. It will. be shown that in some ;i

_ases use of the quasi-steady result can lead to significant error.

THE UNSTEADY EQUATIONS ,

_ We assume ,that the flow Can be treated as one-dimensional If
" "J 2

_.j 2 .,
°J

. ' There-is no particular, difficulty, .%nitially, in generalizing tc

I
!.
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include flow geometries involving ducts with area distributions

following the law A = kzn_ For axially-symmetric ducts n = 2

designates a conical boundary, wheress n_2 correspond to convex

and cencave interiors respectively (see Figure 2). Furthermore,

it is simple to include in the initial analysis the eflect of a

pressurized reservoir such that the free-surface pressureremains

constant:

For unsteady incompressible flow the continuity equation is

{ _- /.__C_Z?/A_I,'_)-- /.,o-C"_._ZL)/_(e/) ----z.,s-('._,.z_CsJ" (4)

Thus, specification of-the velocity at any station automatically
2

; fieldsnecifies the entire flow -' -

: r

: The dynamical equatkon is

o_ = / ,:,_ _ _. (S}-

Specifying a constant discharge pressure PI' and constant

free-surface pressure P2' the boundary conditions areL

s _

i

Initial conditions are

t

!
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1

Equation (5) can be rearranged and integrated from the dis- <
Y

charge station to the free surface at all arbitrary time

f = f

c,r
i

J ;
_- _ --//

,1

- From (4) ":

:i = r +: i,

i • 2 _.

L : where _-: dr/dr. Therefore
l

L

. _ (lO) i

_ : and ;i

f _

= :, = �_s_ j j/co-,4 <_ ;=
y-

: for _n_l : ._• i

c ?

Combining (8) and (II), we-obtain the following differential _:

-equation for-the-free-surfade motion:

' W,

-' " I
,- Lt--i#/ . j ,, _1¢_ ,

• 1I f
. Y

b '

J
_ D

t
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! Now we define

?

and equation (12) becomes

io=i°-'---_ -'-,]+ or, ,] _,c,_"_'-
with

f

i . %

For the conical duct of Figure i, n = 2, and equation (14) reduces
z --

to

{ %

For n = i the integration of (i0) introduces a logarithmic

_ term. The final differential equation for this case is
_ J

: . +A*@")_--c,c1,_

i Note that (16) and (17) are independent of the constant k; i.e.

in the ease n .-2, the flow does not depend on the actual cone

.; angle, and similarly for other shapes.

?

The governing inltialconditions in all cases are
%

, The solution terminates at y = _-i, when the free surface reaches
'I J

'c "

.. " • ,

] 965003953-0 ] 5
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; the exit station.

Equations (14)through (17) awe surprisingly formidable

for what is apparently a simple flow situation, i,eo, a flow ,

whirh is one-dimensional, incompressible and inviscid. A general

solution to (14) has not been obtained. Therefore we focus

attention on the conical duct of Figure I, for which n = 2_ which

is governed by equation (16).

INTEGRATION OF (16)

'[ A variety of attempts to integrate (16) were not entirely

successful° It is useful to mention some of these briefly be-

cause they point up the mathematical difficulties. Furthermore,

_i it was in the attempt of trying to evaluate the utility of one I

_ of these approaches that the clue to a successful approximate _,
2.

solution was obtained.

Quadrature. Equation (16) can be integrated by quadrature. _

Putting _;

d ,Ls ',,.i ' FcZ)..- ....

._ _S -= - -_ -) " i-
f

i 00 _and rioting th:t y = d(_2)/dy, then (1.6) becomes ,,

" -. * = . c o>

I

1965003953-016



0

Multiplying by the integrating factor exp /F(y)dy, then a

first integral gives

; and finally /
} •

_ -/

, !

: Evaluation of (22) depends on the integration indicated

:in (21) wtlich has not been achieved. A numerical integration

looks possible using a digital computer although great care

must be employed because, in practical cases where values of

2 _ _ i00 might be encountered, extreme variations of the

integrands can be expected. For this reason it was decided to

investigate other possibilities first°

i Series solutions. Frobenius' method in which y(_ is repre-

sented as an infinite series in "ff fails because the number of

) terms required for adequate accaracy (values of _'d as large as

2000 are encountered) would be very large° And then there is no

guarantee that the series would be convergent.

! As>uaptotic expansion in .powers of a small parameter. An

¢

' attempt was made, forp= 0, n - 2, to put .Y_,j

J

] 96500S95S-0 ] 7
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!

substitute in (16), and solve for the resulting sequence of

differential equations in ym o Unfortunately these differen-

tial were incompatible with each other and the method failed° i

I It seems likely that some variation of this technique ought to I

: work but it remains to be discovered.

THE METHOD OF SUCCESSIVE APPROXIMATIONS°

Equation (20)is particularly suitable in form for employ r

ing a well known approximate method for solving non-linear

alfferentlal equations° One of "t_helower derivatives is :re-

_ placed initially by an expression which allows the resulting

equation to be integrated for the term which was originally [_

replaced. Thls expression is then put into the original differ-

ential equation and, hopefully, _he succeeding differential [i

equaticn can be integrated° The process, if convergent, can be !

repeated until the actual Solution is approached to any accuracy I"2

des ired. i_
L

Thus equation (20) can be rewritten and approximated as

follows:

-i .. b
l t

where the subscripg m denotes the order of the approximation. }

For n = 2 andp- 0 this becomes

1965003953-018
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' 2 _ 2

• I _ / _: F(i) _/_ ° (24)
$ -- " ' O'
: !

, In principle we are indifferent to the choice of Yo as

: long as the process converges. Expecting that the exit velocity

i
"- rapidly builds up it seems reasonable to t-r_ the Torriceili ,
i

value:, based on the initial free-surface height; as the zeroth

approximation,, However, substitution of this vaiue_ which is

._-_._.-_. .o4,o = - .. , in (-) leads to imagi.nary vaic.es for YI" This

-indicates that the procedure is very sensitive to the choice of
i

i l"

the zeroth approximation..

4
=. -

: On the other hand,, choosing Yo = 0 leads to .,
I

_f_ -- - _ I.-_0._" t25)

Substitution of (2._) to obtain the next approximation yields

" - ----rsji._. d_. _i 7.-
7
L

" f7 @7;._ -[ys_j _<,-17 + ;/. - (26)
}; Unfortunately equation (26) also predicts imaginary values

i for Y2 and the method again fails° Furthermore _he complexity

_. of (26) indicates, even if a satisfactory zeroth approximation

., could be found, that if convergence were slow, requiring several

i

i_erations_ the method might still be unw_e!dy. Furthermore,- if

1965003953-019
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an expression for the velocity could be obtained with adequate

accuracy, evaluation of the discharge time would still require

an integration in which the last approximation appears as a

_ radical in the denominator of the integrando Integration, ex-

cept by a numerical procedure, of such a result appears unlikely°

This infelicitous behavior is not without some redeeming

" consequences, however° It is seen from (16), for/_ = 0, that• i

Q

._ initially, since y = 0, the second order term is dominant° How- .:

oo

ever, as the free-surface speed builds up, the magnitude of y

_- must decrease rapidly from its initial value of _-1 because the

_r oo _

_! coefficient of _2 is initially of order _3o Since y cannot

. change sign this suggests that the second order term may in fact

_" be negligible throughout most of the discharge° Before investi-
o

gating this point a criterion for the time to "start" an unsteady f
.J.

flow is propounded-

THE STARTING TIME

There is no unambiguous way to define a starting time for

an unsteady flowo At the exit the velocity is initially zero. i
c

Intuitively we expect that the velocity rapidly b,_ilds up until !

" it reaches or surpasses the Torricelli value° When this condition

_. is reached the free-surface velccity is y = __ %-2,for n = 2 i

_| andS= 0o Ve define the starting time _ s as the time to reach
I!

' _ this value°
!

1965003953-020
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An approximate lower boupd on _s can be obtained as follows°

Expecting that the free-surface build-up is attained rapidly we

put y _ i, y _0 in (16), and obtain y'_ __-I, which is integrated

to give y_ __-i_ , This is equated to the Torricelli value for

y = 1 and solved for the starting time which is

-!
---- _ (2"I) '

Values of _s, according to (27), turn out to be of order

-3 times the discharge time for the same configuration, which

: is an insignificant fraction of the total° Similar expressions

can be derived for arbitrary n and Wo

AN APPROXIMATE RESULT FOR THE DISCHARGE TIME

For n = 2 and/_ = 0 the free-qurface acceleration is

•- .2
initia!lyly = -_-i. As y increases, _ decreases rapidly in

magnitude and remains small for most of the discharge run. As

the free surface approaches the exit, however, the volume :)f

\-I
liquid decreases at a rapidly increasing rate until for y = m ,

y = -i, which cor_-esponds to the acceleration of gravity,

This suggests that in (16) it is possible to ignore the

; acceleration of the free surface, reducing the problem to the

integration of the following first-order eqa_tion:

• • mm m m n n m

1965003953-021
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It "_as first pointed out by Prandtl, whese disc_ission is

reproduced by Schlichting, ref. 9, page 63_ that it is not -

generally possible to neglect the highest order derivative in a
i

/

differentiaI equation because this means that one of the initial

conditions cannot be satisfied, In the present case, however,

the approximation leads to reasonably accurate discharge times.

It is conjectured that from (28) although y(0) = __-2, which

is the Torricelli value, it is nevertheless sufficiently close

to the exact requirement y(0) = 0 that the resulting error for

the discharge time is negligible, Equivalently, use of (28) is

tantamount to neglectieg the time to start the flow as given by

(27).

On the other hand (28) breaks down when the free surface _!
io
i-

reaches the exit, yielding an infinite veiocity at that point. _-
g _

Since the time for the free surface to cover the last small i_

fraction of its total displacement is small in any case, the }_

singular behavior at the exit has no great effect on the dis- i_

chargc time. _I

-I

Solving (28) for the negative root of y and integrating i

gives "__.

' - . [
i

or, equivalently, i,_'.,

1965003953-022
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= +,/'z)+3 - . (3o)

Since the second term in brackets is small compared to the first,

except near the exit, we ignore it to obtain the explicit result

\

keeping cnly teens in /I to the first power or greater.

The first term of (31) is the same as the quasi-steady ex-

pression of equation (3). Consequently the solution for the full

unsteady flow problem is a second-order cerrection to the quasi- ?

steady solution. This is borne out by Figure 3 in which are

. -

plotted equation (3), equation (31), a numerical -integration of.
" 1

7

(29), and exp6rimental values -- all for n - 2 -- and for n = i,

a numerical__ _ integration of equation (!7) for/3= 0, neglecting
$o

the term in y°

i
7

* During the preparation of this paper equation _(16) was pro-
_2 Jgrammed for the Phiico "Transac"'-digital computer and several_

runs were made. For the case _ = 40, ,/3= 0 the result
_ differed only by:one part in 900 frnm that of-equation-(31).

For _ _-I0, _= i0 the digital computation yielded _-d = 7.24,
_ which is about 1% greater than that of a numerical _ integration

} of (16)with )" = 0, It is amusing to note that in the digital :
computation the function _ oscirlated irregularly _in sign all

i the way to the exit although its magnitude averaged only about
10-4 . This behavior caused only a few wiggles in the velocity

_term y, and can be taken as another indication that _ can be
safely neglected.

1965003953-023



There is no significant difference between the values given

by (29) and (30) except for _ _ 5. For _ = I0 the value given by
l

(31) is about 8% higher than the quasi-steady value, for _ = 40 _
f r

this drops to 27.and to 0,8% at _ = i00.

Experimental data were ,btained on equipment, described in

the Appendix, which permitted use of any one of three different

orifices. By varying also-the liquid height, .the range of vaiues

6 _,_z 50 was obtained_ Experimental values for _"d were slightly
?

-_ higher than predicted-by (31) varying from 3% in most cases to 107

" for a few.- It is reasonable ,to expect:that a part of the differ-

ence between_theory and experiment is due to the neglected action

5

of viscosity.
L

:
= q

-THE CYLINDRICAL RESERVOIR
!

' Theory, The flow from a cylindrical reservoir with a small • =

nozzle at the exit has been posed as an exercise by Bird, Stewart

: and Ligfitfoot to be treated by one-dimensional theory. Their !

= result for t-he discharge time is .given in the form of an unevaluated .
L

integral. Stary in reference 4 tackles the same problem using the, i

theory developed by. Kozeny, in which the urqteady Bernoulli equation

for a streamline in a general potential flow _.s integrated first

transversely and then strea._ise, yielding a differential equation

, for the free-surface motion which iS integrated to give an expression

J

i d
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?

)
for the discharge time. His expre_°sion involves certain empiri-

: cal factors intended to correct for the non-uniform distribution

of kinetic energy and momentum flux when integrating over a cross-

section. Surprisingly, no experimental results appear to be extant

i for this flow, so that it is not possible to evaluate either treat-

i ment.

£

It is desirable to compare the one-dimensional treatment with
c

• that of Stary to evaluate the importance of his correction factors. :

A sche:_tic is shown in Figure 4a._ We commence with a concave in-
L

tericr connecting the fixed cross-section area A2, located at1 ;

;., z = z2, with an outlet aiea A I at z = 0. For the initial area
i J

distribution we choose •

where _ _=A2/A I. Omitting consideration'of a pressurized reservoir,

we repeat essentially the same procedure by which (14)was derived

and are led to the following equation for arbitrary n:

u, O -

+J[, + _ = O. (331

-J

1965003953-025
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Taking the limit as n-_0 produces the desired cylindrical

contour; for which the governing differential equation is

.2

!

!

_ith the same initial conditions given by (18). Equation (34)

can be integrated as it stands in terms of gan_na functions. We :

define s _ de-1 and then, employing the transformation y = u 2,

we obtain a form whose integral is given by Dwight, reference 9,
L

formula No. 857.1: "

2

L

2(ST/)
for s ) I; for s = i

r -

-t
2

An expression similar to (35) is obtainable for s < i, but this _i

_- case is of little practical interest except to note that in a free i.

fall which, is the limit as- _-_ i, _-d "_¢]2"" We have verified that !

. the expression of Bird, Stewart and Lightfoot, taking into account i)

a misprint, produces these same results assuming a negligible nozzle |
Z

length_. _ jl-

1965003953-026
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i

' The approxi_%_te unsteady solution, neglecting the second-

order derivative in (34), is

i which for _)I reduces to the approximation

"_ = _ o(i. (38)

%

Equation (38) is also the result obtained from quasi-steady theory. ,

Obviously, the approximate theory of (37) breaks down for area

ratios near unity since it predicts _d-_0 "' " ;__en og-_l. For area __._

ratios _-_ i0, equations (35), (37) and (38) are indistinguishable

for practical purposes. Fo:: example when o_ : I0 exact theory
i _

i gives _-d : 14.10, while the approximate and quasi-steady values

areal4.07 and 14o14 respectively. We conclude that for all area

,_ ratios of practical interest, unsteady effects are negligible°

The quasi-steady theory starts to diverge somewhat from the '
_, .

_ exact theory below o_. 5 but curiously, for free fall, when o_- i, :

they both yield _._ = _o This is all the more remarkable when

•= we consider that the free.surface velocity according to quasi-steady

,'_ * After completion of this analysis it was brought to our attention
_ that Kaufman, in a book 'reference 8, recently translated from the
: German, has also treated the problem of reservoir discharge° For a

general area distribution he obtains a quadrature similar to equation
_ (22), and then for a cylindrical container he puts _ _ 0, and obtains

.. eq. (38) modified by a velocity-coefficient _orrection factor.

7'
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theory is wrong at every instant except one, and that it varies in

the wrong sense with respect to time, The reason it yields the

same discharge time is that, if in the free-surface velocity func-

tion, according to quasi-stea_y theory, we substitute .-_ -Z-for

_ we obtain the correct history in a free fall. Integration of

either function of course must yield the same discharge time,,

L

_' Discussion of Stary's solutic.n° By neglecting the free-

surface acceleration Stary obtains l eq° (4) of his note rewritten

• in the present notation_ _d = l 2(kI°62 _ k27_ ½_ k3 _o_: where :, '

=kl, k2, k 3 are correction factors, and where 1.04 _k 3 _ 1.08. He

does not explain how to choose the appropriate-valae for k 3, Stary

terms t_is the=quasi-steady solution. If we put k3 = i then his
- 5

_ result reduces to (38), Which we have called the apprdximate un-
U

steady solution. Of Course for the.cylindric_al reservoir there is

little distinction between the two. However for the conical _eser-

voir the quasi-steady solution underestimates the actual discharge !

time which, on the other hand, is given quite accurately by the _)

approximate theory_ In other words neglecting the free-s,urface _ ,

acceleration is not equivalent to the quasi-steady approximation.

i
Stary also obtains a solution of the complete equation, which li

gives t:he,.ratio of the exact discharge time to the approximate

discharge time. The ratio is less than 1,02 for _i0 and approaches

.j
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unity as the area ratio becomes large. If the correction factors

$

are set equal to unity then his solution reduces to equation (35).

Thus except for the correction factors the unsteady Bernoulli

equation and the one-dimensional theory are equivalent.

The sharp-edged orifice. So far we have said nothing regard-

ing flow conditions at the exit. For the conical reservoir, as

long as the cone is slender, the contraction effect of the jet is

small as our experiments show. For the cylindrical reservoir how-

J ever,with a sharp orifice at the exit -- the problem considered by

S_ary-- the jet leaves with a significant radial component of velo-

city inward which causes a radical contraction of the jet areai

downstream of the exit. The effect on th:e discharge time is enor-

_ mous as shown by Figure 6 in which Stary's approximate solution,

with k3 = 1.08, is compared with experiment for an initial free-

surface height of z2 = ii 25 in. _he discrepancies are too great

to be attributable to lack of precision in the correction factor

k3o Instead, following t'_e usual procedure, it might be better

_ to put _ = C_0_ where C is the inverse of a velocity coeffici -_

i ent, and is evaluated from the experimental data. Whether or noti

_ it is valid to employ a non-time--dependent velocity coefficient

_ in an unsteady flow is not known°,i

"; Whether or not to treat an unsteady flow situation by quasi-

steady theory depends on factors which are not easy to pinpoint.
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Sabersky and Acosta, in a recently published text book reference

J

10, treat the flow out of a cylindrical reservoir by quasi-steady

theory and conclude rightly that unsteady effects are negligible

for area ratios od _ 10. On the other hand their analysis is

equally applicable without alteration to a reservoir of arbitrary

t geometry, a conical reservoir for example. As we have shown, even

for area ratios up to AO, quasi-steady theory for the conical

: reservoir predicts discharge times from two to eight pcrcent less :

than the approximate theory which itself is less than experiment.

Thus it is our opinion that their method for determining a C_rite-

rion for neglecting_unsteady effects is faulty and should be used _

only with caution. . ,

Theoretical correction for the nozzle length. Rather than _ ,

introduce the additional complexity of a velocity coefficient we _

have-elected to deal with the configuration of Figure 4b where a

short transition section and straight nozzle enable the jet to be

emitted without any radial component of velocity at the exit, The _

velocity coefficient of a well-shaped, smooth nozzle can be ex-

,pected to be near unity except when the ler,_ h/diameter ratio be- '_

comes large. In this event viscous effects may become non-negligible _,

as can be visualized in'the limit of decreasing diameter as the

i

nozzle becomes a capillary tube. i

&
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For a short nozzle-plus-transition-section length the asso-

ciated volume of liquid is negligible with respect to the whole. '
_L

Therefore for analytical purposes the flow terminates effectively

._ when z = zI. By subtracting the dimensional discharge times for

! two flows of original heights z2 and Zl, and then non-dimensionaliz-

ing using z 2 as the reference length, we obtain the discharge

, time, denoted _ , for the nozzle configuration

'_ (39)-_ = (/- e '4),

where 6 _ zllz 2. Equation (39) is based on quasi-steady theory{

i but it is easy to show that it is also valid for exact theory to

a close approximation, for values of =_ not too near unity.

i EXPERIMENTAL RESULTS FOR THE CYLINDRICAL RESERVOIR

Although measurement of the discharge time for a cylindrical

reservoir appears almost trivial to carry oat there are several

surprises for the unsuspecting° It is possible that failure to

cope with these unforeseen effects accounts for the dearth of

published data for this flow.

-2

Effect of nozzle shape. Early measurements with a straight

exit preceded by a transition section which was simply a 90°

circular arc section of 3/8 in. radius, resulted in discharge

times substantially greater than predicted by theory, presumably
J

due to flow separation from the nozzle wall. We then went to the

1965003953-031



- 23 -

nozzle _hown in Figure 4b zn which the inlet was shaped to contour

._ A of Figure 5o This contour, which is not based on a theoretical

design, was _mployed for all of the runs with the exception of a

few at d = 3 inr We shall return to this point shortly° Details

of the _pparatus are given in the Appendix.
i

1

Free-surface collapse. Another phenomenon occurs for the

smaller area ratios (for d - ! in. and above). As the free-surface

height decreases, a point is reached where the center is visually

lower than that of the liquid adjacent to the walls This is a i

consequence of the pressure gradient normal to the streamlines,

near the transition section, as the fluid makes a turn more or less

parallel to the nozzle boundary. Whe_ conditions are favorable the

free surface, which remains at atmospheric pressure, pops through

the nozzle forming a 10ng finite cavity inside the jet. This des-

troys the almost one-dimensional nature of the flow, decreases the i

effective jet cross-sectional area, and consequently increases the

discharge time drastically°

To eliminate this interesting but unwanted effect we emplo 7 a

thin balsa wood disc, a little smaller in diameter than the reser-

voir, and which floats on the free surface° Surface tension "seals"

the free surface and eliminates the popping through entirely.

Although this phenomenon does not occur for the smaller holes

(dI = 0.25 and 0.5 in.), use of the disc is helpful there also.
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As the free surface approaches the terminal level Zl , surface ten-

sion and friction become more important. The result is that,

without the disc, instead of the flow terminating in a sharp cutoff

: it tails off gradually into a dripping process. With the disc

however, there is a distinct transition from a continuous jet to

the discrete droplet stage, which was taken to signal the end of

the flow., We have not heard of this device being exploited else-

i
where but if there are industrial processes where cavity formation

: is a problem (such as in tLe draining of a large tank of molasses)

it may have some potential usefulness°

Turbulence in the jet° Even with the improved nozzle the flow

in each c_se is initially turbulent on the jet boundary. This is

i
unde_ ndable since the Reynolds' number, based on the initial

quasi-steady velocity, and for water at 75°F, is 24,000 for the

one-quarter inch hole, which value exceeds the minimum critical
i

i Reynolds number 2300 and is great enough almost to guarantee the

appearance of turbulence. To the eye the scale of turbulence in-

creases as the exit diameter is increased° As the free-surface

level falls the outflow Reynolds number decreases° Eventually a
<

point is reached where the jet suddenly becomes laminar. The

:_ smaller the hole the sooner this occ,lrSo

_ _ Ref. 7, page 35

• 2
,> ,
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Experimental results. Experiment and theory are compared in

Figure 7° Runs were made for an overall nozzle-plus-transition

length of zI = 1.25 in. and a height of z2 = 25.15 in., which corres-

%
pond to 6 = i.0497 and I-6 - 0.778. Each experimental point is

the average of two runs. In no case does the deviation of any run

exceed one percent of its corresponding average. Because a log-log

plot tends to obscure the magnitude of error, a su,mmry of our re-

suits appears as Table I. i

?

TABLE I !

Experiment and Theory for the Cylindrical Reservoir

o_ z2 E dl _& te _ Dew. i
(in,) (in.) Eq, (39) (sec.) (exp.) (%) Contour

3080 25.15 0.0497 0.25 3384 939.1 3679 8.7 A __

770.1 , 0.50 846. i 22 7.8 892.5 5.5

192.5 1.00 211,5 54.6 213.9 I.I
i I

85.56 i.50 94.00 24.6 96.38 2.5

48.13 2.00 52.87 13.63 53.40 I.i _

30.80 2.50 33.84 9.25 36.24 7.I
r

2_.39 3,00 23.50 7,90 30,95 31.7 A "

21.39 3.00 23.50 6_60 25.86 i0.0 B

21,39 25.15 0.0497 3.00 Z3 50 6.60 25.86 I0.0 C

3080 13o25 0.0943 0.25 3018 611.3 330Q 9.3 A

192_5 13.25 0,0943 1.00 188.6 35.1 189.5 0.0 A
I

zI = 1.25 in. d2 , 13.88 in.

{
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, There is some disagreement between theory and experiment on

[

both ends of the curve. For large values of the area ratio (small
f

diameter holes) it was foreseen that viscous effects would be great-

est. A crude idea of the magnitude of the viscous contribution can

be obtained as follows: for an initial Reynolds number of 24,000,

and a nozzle length of 0.75 in., theory of turbulent flow through a

smooth pipe predicts a head loss of 1.9 in., this from an initial

head of about 25 in. For the three-inch hole the corresponding

_Reynolds number is 290,000 and the head loss 0.09 in° A theory for

variable Reynolds number is not developed, but Kaufman, reference 8 '

; page 123, gi_es an approximate scheme to hahdle it.

As the initial Reynolds-number becomes larger the deviation of

experiment from theory becomes almost negligible and continues so

over most of the central region.of the=curve. Thus we:conclude that

viacous effects are of importance only for the smaller nozzles, more

specifically when the length/diameter ratio exceeds unity We also

conclude that there is no need to incorporate the kinetic energy and

momentum correction factors of Kozeny and Stary in the analysis.

Only by putting k 3 = I would Stary's solution agree closely with ex-

periment for values of the area ratio near _- 200 Furthermore,

as we have indicated, for large values of _ the deviation is due

to viscous effects and not the failure of the one-dimensional theory

to account for variations of the kinetic energy and momentam flux in
J

o

T2
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the transverse direction•

For dI = 3 in., the largest diameter nozzle tested, uncorking

the hole results in a rather startling gush of water. The theoreti-

cal running time is only about six seconds. For contour A the

actual discharge time was 307. above theory. For this configuration

the jet was initially turbulent but turned laminar much sooner than

for any other diameter. It is probable that the flow separated from

the transition section wall although no attempt was made to verify
5

this.

Instead, another run was made using contour B, which has a

:slightly. more gradual transition terminating in a one-half inch long

j st_raight nozzle. This brought the experimen£al time to only 10%
D

above theory. A third run, using contour C, resulted in no addition-

a[ reduction in the discharge time. Since the theory must be right

in the limitir_g case of free-fall, and since the experimental devia-
L -

L ,

tion from theory is_apparently increasing with decreasing o_ -- the

trend can also be detected for d 1 = 2 5 in. -- we conjectur e that
2 2, 2

; separation still occurs for contours B and C although these runs re-

n_ined _turbulent much longer .than for contour A. _ No elementary

theory can account for this as it involves separation of either or

both turbulent and laminar unsteady boundary layer on a curved wall. ,

-3 I

It might _e_possible by a better nozzle design, e.g., adapting the '

method of Thwaites, reference ll, to maintain attached flow throughout

i
....'7

1965003953-036



t

• - 28 -

the run.

Several runs were made for the nozzle of contour A with

z2 = 13.15 in., d = 0.0943. The agreement with theory was essen-

tially the same as for 6 = 0.0497, and the data are-omitted from

the graph. It is important to note, however, that even for a

relatively short nozzle the factor 1 -E ½ .ay be significant:ly less

i than unity.

!

CONCLUS IONS

From the two configurations investigated there is strong evidence

_that unsteady, inviscid, liquid flow from a reservoir, with a free _

surface, should be treated by quasi-steady theory only when varia_

tions in the cross-sectional area of the reservoir are _restricted

essentially to the neighborhood of the exit station.

On the other hand it appears that the discharge time of such a

flow can be determined quite accurately by one-dimensional theory if

the acceleration of the free surface is neglected. Integration of

; the resulting equation is called the approximate unsteady solution.

The approximate solution is found not to differ significantly from a

numerical solution of the exact equation for the conical reservoir:,

whereas for certain ranges of the height ratio it may deviate con-

: siderably from the quasi-steady solution. Agreement between experiment

; and theory for a slender conical reservoir is good. _ :

Theoretical discharge times for the cylindrical reservoir

i
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configuration are about the same for all three theories as long as
|

the area ratio is ten or above. For a cylindrical reservoir certain

precautions are essential if meaningful measurements are to be obtain-

ed. In the first place to avoid collapse of the free surface it Is

necessary to use a thin, balsa wood disc which rides on the free sur-

face. Furthermore to eliminate the jet contraction at the exit a short

transition-section-plus-nozzle must be employed. If the length/dia-

l

meter ratio of the nozzle is large compared to unity, and if the Rey-

nolds number based on the instantaneous outflow velocity is not too

J
' high, frictional effects may be important. If the ratio is small, :

there appears to be a tendency of the jet to separate from the nozzle
t

_ wall which results in largerexperimental discharge times than' pre-

dictable from theory. It ought to be possibl e by suitable desig n to

_: avoid this Separation. Introduction of the n'ozzle requires a correc-
- .'4

tion to the theoretical discharge time which-may be large even for

short nozzles.

On the question of one-dimensional theory versus the non-steady

Bernoulli equation, with weighting factors to account for non-uniformi-

' ties, we conclude that the former is the more accurate. In one extreme,

where experiments-, deviate from the one-dimensional theory, the _ error
J

.is due to neglected fluid viscosity which neither theory pretends to

account for. The other indications ar e that the discrepancy is due
u

to inadequate design of the nozzle contraction Thuswe do not believe

that the use of the Kozeny-Stary correction factors can be justified •

for unsteady flows. In fact we .suggest that their validity even in
L

steady flows should be re-examined.

I
m
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APPENDIX

THE CONICAL RESERVOIR

The conical reservoir,_ Figure i, was made in two sections. The

lower part, Figure 8, which consists of three separate pieces bolted

t:-ogether, was machined from aluminum round stock, and provided with
2

O-ring seals at the horizontal joints. To the upper end of this

section is attached an extension (not shown) fabrioated from 0.060

inch sheet metal, rolled to the:conical shape. Spot check'_:cf the

extension show that the maximum deviation is les_ than one percent : i

across any diameter at the upper station. The total height of this
2. . _'

C

: reservoir from the apex of the cone, extended is 3¢ inches.

"5

To restrain the fluid and to start the flow we use o. simple

; _hinged arm supporting a rubber:padwhich is pressed against the ori- -_

fice lip. The device is held in place by a trigger prior to starting. _:

This _rrangement works well enough since it does not seem to contri- -

bute any transients of its own.

THE CYLINDRICAL RESERVOIR i_

For the cylindrical reservoir, Figures 4a and 4b, an empty -_

i20 Ib commerical grease drum is employed The sharp-edged orifice• _

is obtained by machining a h01e in the drum bottom.

The nozzle configuration uses the same drum with the nozzle of

U -. _'
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Figure 9 bolted to the bottom The nozzle is enlarged by machining

as we proceed from the one-quarter-inch to the three-inch hole.
2

Rubber stoppers are used to cork the supply.

g

i
&

5

!
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Fig. 7 Discharge times for cylindrical reservoir
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_ Fig. 8 Dimensions of conical reservoir
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Fig. 9 Dimensions of cylindrical nozzle
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