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ABSTRACT

The restricted ^hree-body model is used , to dev--lop a geometrical
and topological taxonomy of the field of earth-moon transits (bot'.-h
directions) which is based on conditions at the terminals (perigee and
periselenum). It is presented in such a way as to promote mental con-
trol of the subject.

The classifying techniques are then employed in the analysis of
free-return transits as well as such problems as the lighting conditions
upon landing.

The report provides convenient reference material for the engineer
involved ir the layout of Apollo type missions.
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DEFINITION OF SYMBOLS

S-1,^s 10, Defini^ ion

Az e ,	 (Az M) azimuth with respect to earth (moon)

C see page 13,	 Chapter II, Section 1

C(i,	 Pei	 pm) the basic class	 ,j. transits	 (see Chapter I,
Section 3)

C'(i,	 Pei	 pm) the reflection across the earth-moon polar plane
of the class C(ti, 	 Pei	 pm) by Miele's theorem

dem distance between earth and moon

G universal gravitational constant

i the inclination of tae lunar orbit plane (MEP)
to the ecliptic.

Ie ,	 (Im ) inclination of a transit defined at the point of
closest approach to the earth (moon) 	 (see page 17,
Chapter II, Section 3)

L the geometric mean longitude from the mean
equinox of date

MEP moon-earth plane (the, plane containing the mc:tion
of the earth and moon)

Mm mass of the moon

Me mass of the earth

Re distance from the center of the earth to the
space vehicle

Rm distance from the center of the moon to the
space vehicle

T,	 t transit time

V velocity of space vehicle

Xe postira vector of the earth

v

a

i
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DEFINITION OF SYMBOLS (Continued)

Symbol	 Definition

Xm	position vector of the moon

X	 position vector of the space vehicle

= Me + Mm	total mass of the system

y = Id3m/G(3] 1/2 	the reciprocal of the mean motion of the earth
and moon about the center of mass

A	 see pa gc 13, Chapter II, Section 1

E the inclina tion of the earth equatorial plane
to the ecliptic }

longitude
Y

i

µ = Mm/^ moon's fraction of the total mass

l - µ = Me/P earth's fraction of the total mass ^#

_	 = X/dPm the noY-nalized position vector r

' = Xy/dem normalized velocity vector

" = Xy2/dem normalized acceleration vector
Y

pe
normalized distance from the center of the earth
to the perigee of a transit

4
L

P6
normalized distance from the center of the moon

m to the perisel of transit
x

Cr the vertex phase angle (see page 15, Chapter II,
Section 2)

ti = t/y normalized transit time

CP latitude

(D see page 13, Chapter II, Section 1

Vi



DEFINITION OF SYMBOLS (Continued)

Symbol	 Defiuiti.on

2	 the longitude r : ^e mean ascending node"of the
lunar orbit .-n the ecliptic, measured from the
mean equinox .,i date

the mean longitude of the moon, measured in the

x	 ecliptic from the mean equinox of date to the
mean ascending node of the lunar orbit, and then
along the orbit

SUBS CRIPT.S

( ) e	referenced to the earth

( )m	referenced to the moon

( ) S	referenced to a space-fixed coordinate system

( )	 denoting an entire system of continuous variationss	 of the indicated pars im,eter

( ) R	referenced to a rotating coordinate system

DIFFERENTIATION

• = d/dt

' = d/dti

i
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LIST OF DEFINITIONS

r

Azimuth (t.z) -	 the angle between the velocity vector and local
north

Corotational -	 in the direction of the rotation of the system
R
	

9

Counterrotational -	 apposite the direction of the rotation of the
system

Earth-Moon Polar Plane - the plane containing the polar axes of the
earth and moon (and the line between the
earth and moon)

Free-Return Transit - a ballistic trajectory from the vicinity of the
earth which reaches the vicinity of the moon and
returns to the vicinity of the earth

Inclination (I) - the angle between the instantaneous flight plane
and the MEP (see page 	 1 7, Chapter II, Section 3)

Latitude the polar angle of a spherical coordinate system
measured from the MEP, positive north and negative
south,	 -900 r cp n: +900

Longitude the angle in the MEP measured from a reference
meridian (for, the earth - the point farthest
from the moon; for tha moon - the point nearest
the earth)	 o the m.eriAian of interest in the
direction of rotation of the system, 0 	 3600

Perigee - the point of closest approach of a transit to the
. earth

Perigee Belt; - the annular region containing all possible perigees
of any one of the basic classes of transits having
fixed transit time, perigee radius and perisel
radius

Perigee Horn - the horn-shaped region containing all possible
perigees of the system of classes having fixed
transit time and perisel radius

Perigee Station - a segment of a great circle on which all possible
perigees of a given basic class and phase angle 0
occur

k

Viii



LIST OF DEFINITIONS (Continued)

Perisel -	 the point of closest approach of a transit to
the moon	 I

Perisel, Belt -	 the annular region containing all possible perisels
of any one of the basic classes of transits having
fixed transit time, perigee radius and perisel
radius

Perisel Horn - the horn-shaped region containing all possible
perisels of the system of classes having fixed
transit tune and perigee radius

Transit -	 the path of the space vehicle

Transit time -	 the time lapsed from some initial point on a
transit to some other point on the transit
(generally between perigee and perisel)

Transit, Inbound -	 a transit from the moon to the earth

Transit, Outbound - a transit from the earth to the moon

Vertex Point -	 the point on the moon (or earth) which is over-
flown by all transits of a given class having
the same (De (or om)

ix
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TECHNUAL MEMOMNY)UM X-53t5l

A =4PREHENSIVE ASTRODYkIAXIC EXPOSITION AND
LWSIFICATION OF FART11-MOON TRANSITS

I

SU^MRY

The classical restricted three-body modol is used in obtaining an
astrodynamical survey and classification of the field of trajectories
(traveling in 'both directions) between the earth and the moon.

The space-fixed equations of motion are normalized and transformed
to a rotating system. The classification accomplished in this rotating
system is geometrical and is based on the time of travel from perigee to
perisel (or perisel to perigee) and the distances of nearest approach to
the centers of the earth and the moon. Classes so defined exhibit
identical structural characteristics as to shape of feasible regions of
perigee and perisel locations and as to the directional behavior of
transits near the celestial bodies.

A class-eigen coordinate system is introduced which is intrinsically
suited for the approxitrative solution of the fundamental two-point boundary
problem of earth-moon transits.

The resulting classes are applied to the determination of regions
of existence of free-r ,--turn transits (both symmetrical and asymmetrical)
and to the dete'ri mination of lighting condition ., at lunar arrival for
both impact and "fly-by" transits.

The modes of trans i tion from this system to the geographic and
sclenographi c, systems are exemplified in discussing the probliL.as of
launch from the Atlantic Missile Range it to a Junar transit under
general mission constraints at launch and lunar arrival.

INTRODUCTION

The concentration on the Apollo project in this country has placed
demands on certain segments of the scientific community for more complete
and comprehensive understanding of many astrodynamic problems. Prominent
among them is an understanding of the field of transits In earth-moon
space. Because of the nature of the Apollo mission, it is mandatory that
this problem be under firm mental control.



The gathering of the body of knowledge necessary for mental control
of the field of earth-moon transits should be conducted to meet a dual
purpose. Firstly, it should aim for simplicity of presentation to pro-
mote understanding and retention of concepts. Secondly, it should-be
df a form which can be used by any member of the scientific community
who should have need for such information in his work. The mode of
development and presentation of the survey of earth-moon transits pre-
sented herein is an attempt at satisfying this two-fold objective.

In the approach pursued to meet our study objectives, the Classical
Restricted Three-Body Problem is used, which yields a good approximation
of the physical system. In presenting the material generated from this
mathematical model, geometrical and topological concepts are used rather
than the conventional graphs and tabulated data.

It is felt that this approach meets the study objectives; i.e., it
results it easily retainable mental concepts which can be applied directly
by the scientist involved in the analysis of earth-moon transits.

CHAPTER I. GEOMETRICAL CONSIDERATIONS

Section 1. Reduction of the n-Body Problem

The environment in which an Apollo spacecraft must operate is a
dynamical system, classically referred to as the n-body system. In this
system each body operates in an inverse gravity field, attracting and
being attracted by every body within the system. The forces of attrac-
tion are dependent upon the relative sizes and distances between bodies.
To compute transits with complete accuracy in earth-moon space, which is
only a small portion of the n-body system, the forces exerted by all
bodies need to be considered. This, however, is not necessary because
some of the bodies exert forces too small to be within the scope of
present computer techniques. Thus, the earth, moon and sun would be
the bodies of major concern. The relative geometry of the physical
system, having primary influence on transits in earth-moon space, is
described in the following.

The motion of the center of mass of the earth-moon system about the
sun takes place in a plane referred to as the ecliptic. This plane pro-
vides a convenient reference from which a brief description of earth-
moon-sun geometry can be constructed. As the earth orbits the sun, it
rotates about an axis inclined by some 23.4' to the pole of the ecliptic.
The earth equator, being orthogonal to its pole, has the same 23.40
inclination with respect to the ecliptic. There is also a very slow
motion or precession of the equatorial plane of the earth, with a cycle
of some 26,000 years.
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next, the plane of the moon's motion about the earth describes c.
varying angle of about 5.15* with respect to the ecliptic. This geoni-
etry is depicted in Figure I where a yearly cycle (1966-67) is illustrated.
It may be pointed out that the lunar orbit plane precesses in space at a
rate of one cycle per 18.6 years (or 119.3' per year). When comparing
this plane with the plane of the earth's equator, and considering the
precessional motion, there results a variation in their relative inclina-
tions between 18.5 and 28.5 degrees. The two limiting cases of this
geometry are schematically shown in their 1960 and 1969 orientation on
Figure 2.

With reference to the 1969 geometry in Figure 2, another plane of
interest is that of the lunar equator, which has a constant inclination
of about 1.5* with respect to the ecliptic. According to one of the
laws of Cassini, the pole of the ecliptic, the pole of the lunar plant
of motion, and the pole of the lunar rotation lie in one great circle.
Thus, there is a resultant constant inclination of about 6.7 degrees
between the lunar equator plane and the lunar plane of motion. The
geometry for the lunar equator during October 1966 is shown in Figure 3
as well as the varying distance of the moon in its elliptic orbit.

The motions described above are the ones of major influence upon
earth-moon transits, however, included among them are certain conditions
which render a clear analysis somewhat difficult to achieve. A general
survey of the field of earth-moon transits requires the development of
a model which is applicable for any instant of time. Therefore, the
following additional reductions are made to achieve this end.

First, for the duration of a given transit, the moon may be restricted
to travel on a circular path around the earth rather than its conventional
elliptic path. Secondly, the effect of the sun may be neglected without
much sacrifice of realism because the major influence on earth-moon
transits is due to these (earth-moon) two bodies. Thirdly, a coordinate
system, referenced to the plane of the lunar orbit about the earth and
the earth-moon line, may be used so that the transits are independent
of the varying inclination between the earth and lunar equatorial planes.
In addition, the proper selection of a coordinate system for computation
makes it unnecessary to generate information for varying distance between
earth and moon.

A trajectory computed in su h a system, where the equations of
motion are independent of earth-..,00n distance, is unique and valid under
the proper transformation for any assumed earth-moon distance.

The reduction and coordinate systems are made clearer by the develop-
ments which follow in the next section.
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Section 2. The Restricted Three-Body Problem and Relpted Coordinate
Systems

As suggested in the previous section, for short periods of time
within any month of reference in the ephemeris, the earth and moon may
be considered to Move, separated by a constant distance, 

in 
a common

plane, describing circles about their center of mass (the barycenter).
The motion of a massless space vebtele in such a system is descr l.bed by
the equations of motion of the ciassical restricted three-body problem.

Two Cartesian coordinate systems are chosen for representation of
the vehicle's motion in this model: space fixed and rotating. Both
systems have their origins at the center of mass. At some initial time-,

the space-fixed system has its positive x-axis passing from the center
of the earth, through the barycenter, to the center of the moon; the
z-aNis is the axis of rotation of the system; and the y-axis is such
that the system is right-handed. The rotating --ystem has the same
definition as the space-fixed system at the initial time, but rotates
about the z-axis with an angular velocity equal to that of the earth-
moon system. (In this system, the earth and moon remain on the x-axis
at al). times,) These systems are shown by Figure 4 for the initial
time ) t = 0, and at a later time ., t = At, with the subscripts "S" and
"R" denoting "space fixed" and "rotating."

In the space-fixed coordinate system, the equations of motion may
be written

where

I	 ,

x S

X YS

S

X 
e 

is the position vector of the earth,

Y,jn is the position vector of the moon,

I



X is the position vector of the space vehicle,

Re = Ixe - xj,

and

Rm = I Yin - X I -

As previously indicated, by proper selection of the coordinate
system for computation, the equations of motion become independent of
dem. The .

 
obvious advantage of this Is that a trajectory computed in

such a system may be transformed into a corresponding trajectory for
every value of dem. This is accomplished by normalization of (1) as
follows [7]: Let

X = dem^3
	 (2)

where ^ is the normalized position vector. 	 et

Me 
+ Mm = P,	 (3a)

so that

M	 M
e	 m	

(3b)

are the earth's and moon's fraction of the total mass. Then

Me = P(l - 0 1 Mm = PI-L -
	 (3c)

Let

t = , T,
	 (4)

T is the normalized time variable and y is a constant. From equations
(3), and (4), we see that



X(t) = X(7z) = x;;(t)

so that

X_dX di =X,,,i 1

	

d ,r do	 y

and likewise,

X = X* 2	 (6)

Now dropping the * notation and substituting (2) into (5) and (6), we
may write

X = X' =
dy' 	 veloci.ty (7)

z
Nx

and

X = X"
y

d
_ -em ", acceleration.

y
(8)

.xs

Substituting (2) and (8) into (1) and factoring	 out of the right-hand
side, we obtain

d
em

y dens 5 ► 	 em	 a	 demur + em	 me

Ism -em e A

The normalization is now accomplished by setting

d3
em

6

(5)
	 A



so that

1/2
y = 0	 (10)

Therefore, the equations of motion are expressed in the normalized
system as

Ir 	 1

9m -
^1+ µ T rn = 1 3.	 c11)

For engineering application, the trajectories calculated in this
normalized system may be trarsormed point fbr point to the correspond-
ing trajectory for any specific dem by

t = yti,	 (4)

X dem,	 (2)

d
X	

emt
	 (7)

and

d

The equations of motion for the rotating normalized coordinate
system are written

F	 .1

^a

1



where r.	 ;:ti=^:f case refers to the vectors expressed in the rotating
coordinate ^y tc,z, and	 is the ith component of	 The sam% trans-
forma tior^r41, (4) , (2) , (7	 and (8) , may be applied to the position,
velocity, and acceleration expressed in this system. (In general, the
information presented in the following chapters will be in the rotating
system.)

To avoid confusion, ^1, ^ 2 , and ^3 will now be replaced by x, y,
and z, respectively, and the subscript "c-"' will denote the rotating
system and "S" the space-fixed system. The subscript "e' and "m" will
denote earth and moon. In the space-fixed system, z Se = zSm = 0, and
in the rotating system, yRe = z Re = yRm = zRm = 0 1 for all time, (t).

For the purpose of presentation of the results, four additional
coordin a te systems are needed. Two of these systems are Cartesian and
parallel to the rotating system, the only difference being the lgcation
of the origin. For one, t7he origin is fixed at the center of the earth,
and for the other, at the center of the moon (Figure S).

The other two are spherical coordinate systems, fixed in either
the earth-centered or the moon-centered rotating system. These systems
are defined as follows: On the oarth and the moon, equatorial planes
are defined as the intersections of the moon-earth travel plane (desig-
nated as the MEP) with the bodies. MEP-poles are perpendicular to the
MEP through the centers of the bodies with the north direction along
the positive direction of the axis of rotation of the system. On both
bodies, the MEP-latitude (cp) is defined in consistency with the defini-
tion of MEP-equators and MEP-poles, positive latitudes measured north
through 90 degrees and negative, south through -90 degrees. MEP-Longitudes
(T) are measured by great half-circles from pole to pole, the zero refer-
ence at the moon being that half-circle nearest the earth, and the zero
reference at the earth being that half-circle farthest from the moon.
The longitude is defined eastward (the direction of rotation of the
system) through 360 degrees. These systems are shown by Figure 6.
Within any of these coordinate systems, transits are identified, for
the purpose of this study, by reference to their six state variables,
in position and velocity, at the points of nearest approach to the center
of the earth and the moon. -These points are called perigee and peri-
selenum (for brevity, "perisel"). Alternately, the terms "departure" and
"arrival" or collectively "terminals" are used (Figure 7).

_
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Section 3. Reduction of the Problem to the Basic Class C(i, °pe, jj,)

=y	 The continuing effort to reduce the problem to its fundamentals is
.realized by using what is referred to as a basic class. This basic class
possesses geometrical features which are well suited for mental. control
of the problem. Before defining the basic class, it is convenient to
discuss a theorem which proves helpful in the problem.

Quoting from Reference 1: "The Theorem of Image Trajectories states
that if a trajectory is physically possible in the earth-moon space,1
three image trajt stories are also physically possible:

(a) The imag- with respect to the plaae which contains the
earth-moon axis and is perpeadicular to the axis of
rotation of the earth-moon system.2

(b) , 2 image with respect to the plane which contains the
e4trth-moor axis and the axis of rotati-.n of the earth-
moon system.3

(c) The image with respect to the earth-moon axis.`

The first o theee image trajectories must be flown in the same sense as
that of the bo ^ c trajectory, while the other two must be fl.ovm in the
opposite sense." It should be emphasized that these trajectcries are
exact images of ea ph other in all components of position for arbitrarily
large periods of time; i.e., every point of a given trajectory ; and
ther^:fore any .- i igee point, has exactly three unique images.

Author's Notes:

1Such a trajectory is deb

2The image of the same le
Figure 9.

3The image of the sample
Figure 10.

`The image of the sample
line (or a composite of

?icted in Figure 3.

trajectory as reflected across the MEP,

trajectory as reflected across the polar plane,

trajectory as reflected across the earth-moon
the reflections (a) and (b)), Figure 11.

9



By taking advantage of this theorem, the magnitude of the problem
is reduced as follows.

Consider the earth-moon space to be divided into four quadrants by
the MEP and the polar plane containing the earth-moon-line and the polar
axis. Let the position vector XR be denoted by the ordered 3-tuple
XR = (x, y, z). Then, for positive or negative x, y, and z, Quadrant I
contains all those points X = (± , -, +), Quadrant II contains the points
X = (+_, +, +), Quadrant III contains the points X = (i-, +, -), and
Quadrant IV contains the po 4 s X = (!, -, -). This quadrant definition
is illustrated in Figure 1'.

Now, referring to the theorem and Figure 12, by (a), every transit
having a perigee in Quadrant IV has an image transit (flown in the same
sense) with perigee in Quadrant I. Likewise, by (b), every transit
having a perigee in Quadrant II has an image transit (flown in the
opposite sense) with a perigee in Quadrant I; and by (c), every transit
having a perigee in Quadrant III has an image transit (flown in the
opposite sense) with a perigee in Quadrant I. Thus, it is necessary to
investigate only those transitg having a perigee in Quadrant I, since
all other transits may be obtained from these by simple reflections as
defined by the Theorem of Images. The images of transits with perigee
occurring in one of the two planes follow trivially from the points
along the transit in the neighborhood of perigee. To include these
transits, Quadrant I is defined to include that half of the polar plane
in which zR, ? 0 and that half of the MEP in which yR < 0.

In the investigation of these transits, consideration of absolute
tine for departure or arrival has been made unnecessary by the use of
the restricted three-body model, in that the terminals are referenced
position-wise to the MEP system. However, the time, i, spent between
terminals (referred to as "transit time") remains as an important
parameter.

By using the spherical coordinate systems described in the previous
section, one of the six state variables, flight path angle (,9) is fixed
by definition of the terminals, and is equal to 90 degrees (or horizontal)
at both end-points.

It

transit time, a
transit time,

all transits
pe , perisel on

T, are grouped

Now, arbitrarily fixing the terminal radii and the
basic class C(i, pe , pm) of transits is defined, where r
pe = perigee radius, and pm = perisel radius. That is,
which have perigee on a sphere about the earth of radius
a sphere of radius pm about the moon, and transit time,
into one class designated by C(ti, pe , pm).

10



The variables on this class are longitude at perigee (fie) and
perisel ( ?m), lata^tude at perigee (0e ) and perisel (/m), azimuth at
perigee (Aze) and perisel (Azm), and velocity magnitude at perigee (Ve)
and perisel, (Vm).

The numerical development and application of these classes are the
subjects of the following chapters.

k

	

	 •CHAPTER II. THE STRUCTURE OF THE BASIC CLASSES C(T, Pe, pm)

Section 1. The Numerical Development of a Particular Class

The attempt to collect individual transits intc a hierarchy of
families of subclasses defining a class of particular order, which
satisfies the definition of C(,r, Pe, pm), demands a search for charac-
teristics common to several transits. Since all classes, C(ti, Pe , Pd,
will be shown to have topologically identical structure, it will suffice
to analyze only one particular class in detail. The class

C(.68902785, 0 17022437 x 10-2 ) ,49937675 x 10-3)

is chosen for illustration. (It should be remembered that T = .68902785,
Pe = .17022437 x 10- 2, and pm = .49937675 x 10- 3 are dimensionless
quantities as expressed in the normalized coordinate systems of Chapter I,
Section 2. For convenience in notation, let T = .68902785
Pe = .17022437 x 10-2 ="" and pm = .49937675 x 10-3 = pm. )

As an arbitrary starting point in the determination of character-
istics common to several transits, a numerical search is made for all
transits satisfying the class restrictions and fully embedded in the
earth-moon plane. Four such transits evolve as shown in Figure 13.
They can be paired according to common departure directions, two leaving
the earth corotationally, in congruence to the system rotation, and two
counterrotationally. Each pair en::wines the moon.

To enlarge this small .Eamily, the numerical search is extended to
include all such transits of the chosen class having their departure
from the MEP. The results of this search are indicative of the charac-
teristics sought. "Iwo well defined families emerge. The two families,
consisting of an infinite number of transits, leave the earth in opposite
directions as depicte-i on Figures 14 and 15. The points from which the
transits of these two families depart define two small arcs (referred to
as perigee stations) in the MEP of less than 1.2 degrees, measured by
earth central angle. The velocity vectors have a largest relative

11



azimuth from the MEP of ±5.4 degrees, The two families define tubular
surfaces of transits which envelop the moon densely. The perisel loca-
tions form an almost circular pattern (with geometric center in the MEP)
for each family. These transits, if continued past their , perisel points,
cross through a small volume above the center of their perisel circle
(as observed from the center of the moon). This is i-lustrated by Fig-
ure 16. The small volume within which the transits have common crossings
is defined to be the vertex of the family. It should be emphasized here
that these two families contain all possible transits which belong to
the class C( Z'̀ , pL, pm) and have perigees in the MEP, 	 k

Consideration of these two families suggests an investigation of
the existence of transits which pass over one of the earth's poles and
one of the moon's poles. A numerical search yields only four such
transits, all of which depart from the same longitude. Two depart from
northern latitudes, passing over the north pole of the earth, one of
which passes over the lunar south pole, and the other passing over the
lunar north pole. The other two transits are exact reflections of the
first two about the MEP. As in the previous case, it is found that the
totality of transits, belonging to C(L-11 , p'^;, p'	 which depart from this
longitude, form two well defined families, one being the image of the
other about the MEP. These two families have every structural feature
ascribed to the first families discussed; that is,

(a) transits depart from small continuous arcs of great
circles, with small relative azimuths for a given arc,

(b) tranL its from a given arc form a dense family, defining
a tubular surface which envelopes the moon,

(c) the perisel locations for a given family form a
circular pattern,

(d) the transits of a given family have common crossings
in a "vertex point," which projects to the center of
the circular perisel pattern.

These characteristics indicate the existence of a somewhat annular
region of arcs of great circles (perigee stations) from which similar
unique families or subclasses depart. 'Therefore, a new coordinate system
is introduced to expedite the search process for the generation of other
subclasses.

i
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A pencil of great circles of radius P` is oriented such that one of
the intersection points (Ce) is in the MEP, and at the longitude of the
' r polar family" just discussed. The line containing Ce and the center of
the earth is referred to as the centerline. This pencil is shown on Fig-
ure 17. It is considered as consisting of great half-circles, each half-
circle being defined by the dihedral angle Te (referred to as "earth
phase angle") measured counterclockwise from the MEP to the plane of the
half-circle, through 360° (or equivalently, through ±180°).

Any point on the spherical surface can now be defined by two
coordinates: (a) the particular half-circle on which the point lies,
and (b) the "distance angle," /-\e , measured at the center of the earth,
from Ce along the half-circle to the point.

Using this coordinate system, it is found that on each half-circle
there is only a small arc from which departures are possible for transits
belonging to the class C( ,r*,pe, p*). Every subclass found in this manner
exhibits the characteristics ascribed to the first subclasses mentioned.
The departure and arrival structure of three of those subclasses, identi-
fied by their respective phase angles, (D e , of 0°, 90°, and 180°, is
illustrated by Figure 18. The corresponding vertices are also identified
by reference to cue.

The somewhat annular region (or belt) containing all possible
departure positions for transits of this class is given at the left of
Figure 19. The diameter of this region is about 15° earth's central
angle, and its width varies from less than 1° in the west to about 1.2°
on the east. At the moon, the area containing all possible perisel
circles for the class C(ti", pe, Ems) is also an annular belt (Figure 19
on right), Its diameter is near 120° moon's central angle, with the
belt width varying from about 20° in the west to only a few degrees in
the east. Representative perist- 1 circles and vertices are exhibited
within the belt, referred to by their earth phase angles (D e . All
vertices for this class lie on the indicated locus of vertices.

Departures from 0° < `pe < 180° produce families with vertex points
below the MEP, and symmetrically, those from 180° < Oe < 360° produce
vertex points above the MEP. This symmetry follows from application of
the theorem of images, for example, the families from 0° < '^e <i80°;
i.e., the families departing from below the MEP are exact reflections
of those departing above the MEP.

it
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Within the field of interest for the Apollo project, all classes
G(^, rye, p.) may be generated numerically in the same manner as
C( .r"^,p', p ), and the same basic features will be found for each class.M.

There are structural relationships between these basic classes
which may be used in the determination of classes of higher order. It
is through the use of these higher order classes that a conceptual con-
trol of the entire field of transits is gained. So that the engineer
may gain a better "feel" for the classifications, the expansion to
higher order classes is deferred to later chapters in which the material
will be presented as transformed for a specific d em . This will not
restril-t the use of the data presented as might be expected, for the
inverse transformation is easily obtained from the material presented in
Chapter I, Section 2. That is, the inverse transformation, applied to
data given for a specific dem will yield data in the normalized coordin-
ate system, which in turn may be transformed to any dem.

The classes of higher order will be developed from systems of
basic classes having common transit times. For this reason a brief
comparison of specific classes having .57418988 ^ Ti - .91870380 will
be given in Section 3 of this chapter to emphasize the shapes and
relationship between the departure and arrival areas (trajectories
from these classes, C(ii , p*, pm), which when transformed, according
to Chapter I, Se -tion 2, to dem = men .1 distance (385, 08r km)' belong to
C(Ti, 6555 km, 1923 km) where 60 g Ti _< 96 hours).	 This transit time
region is of interest for Apollo type missions. Classes from this
region will b y compared at four points, z = .57418988, .68902785,
.80386583, and .91870380 (corresponding to T = 60 hours, 72 hours,
84 hours, and 96 hours). The method of development described for

is identical for the other" three transit times.

Figure 20 shows the areas of all possible perigees corresponding
to these four transit times. As transit time Lncreases, the perigee
area shifts continuously to larger MEP-longitudes, and the over-all
diameter of the annular areas continuously decreases with increasing
transit time.

The corresponding perisel belts shift to smaller lunar longitudes
as shown by Figures 21 and 22. A detailed quantitative analysis of
these four classes is given in Section of this chapter.

All results presented for a specific dem will be for dem = 385,080 km,*
approximately the mean earth-moon distance, and y 104.49505 hours.
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Section 2. Body-Symmetry of the Basic Class

The similarity in the shape of perigee and perisel belts suggests
a symmetry in their structural features. Invf--stigations for this symmetry
yield a functional relationship between the terminal conditions of
arbitrary transits. This functional relationship is necessary for the
solution of the question typical for Apollo flights: What are the
departvre conditions for a transit that: is to approach a preselected
landing point on the moon in a presciected direction? Or a more funda-
mental question: In a given class, does a transit exist that accomplishes
certain approach conditions?

To this end, the coordinate system used for generation of the basic
class is applied to the transits arriving at the moon. A pencil of great
half-circles of radius Rm is positioned at the moon such that one of its
intersections is located in the MEP at the longitude of the perisels for
the polar-earth-polar-moon transits. The lunar phase angle, 1DM , and
distance angle,, /%pl, are defined as in the previous case.

Transits that reach their perisels on a common lunar phase angle
(Figure 23) show the following characteristics when traced back to
earth- (a) They envelop the earth densely. (b) They have an almost
circular perigee locus. (c) When followed further back, beyond their
perigees, they pass through a small volume representable by a vertex
(Figure 24). How this "body-symmetrical" behavior of the class struc-
tural features furnishes a key to the terminal correspondence problem is
shown in the following.

Figure 25 states (a) that transits emanating from a common vertex
at the earth have a common lunar phase angle, om; and (b) that transits
with a common earth phase angle ^e have a common vertex at the moon.
This relationship may be restated: There exists a one-to-one mapping
of vertex points at one body into station segments of the other body.
Since now the identification of its vertex and its station segment defines
a transit at one body, the knowledge of this transit's geometry at the
other body may be determined by a mapping function. A very simple function
may be obtained by introducing a vertex-phase angle, a, defined in the
same way as (D, with C. (or CM) as the pencil of the great half-circles
through the points on the vertex locus.

If reference is taken to the pencils of great half-circles intro-
duced previously at earth and moon, and if the locations of vertices and
belt-stations are measured by their respective phase angles (Figure 26),
a rule of quadrants holds which says that quadrants map negatively. To
elaborate on this, consider one example of a given transit for which the
phase angle of the vertex on earth, a., is between 0 and 90 degrees, and
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the perigee phase tingle, ve , lies between 90 and 180 degrees. This
transit will arrive at the moon such that its perisel phase angle, Jm,
is between 0 and -90 degrees, and its vertex phase angle at the moon, am,
is between -90 and -180 degrees. Thus, the functional relationship
between terminals may be restated as

Q(ae ) = -Q(jam)	 and Q(am) = -Q(%'),

where the symbol Q( ) reads "quadrant of."

Although a quantitative discussion will be omitted in favor of the
more relevant conceptual control of the problem and the general clas-
sification of transits ) the uniqueness of transits defined by these phase
angles deserves special emphasis. It will suffice to strongly emphasize
the following:	 I

In the planning of specific missions it should be remembered
that once a class C(T, Re, Rm) has been chosen, (a) selecting
both a and 0 at one body defines a unique transit, and (b) select-
ing eithercTat each body or (D at each body defines a unique transit.

Section 3. Quantitative Analysis of the Classes C(Tl,. 6555 km, 1923 km),_
60 ^ T  n-- 96 Hours

The basis for the develoament of the astrodynamical concepts -needed
for classification of transits in the earth-moon space has been presented
thus far within a geometrical framework and a normalized coordinate
system. Although this is sufficient for the purposes of this study, the
remainder of the development will be presented as transformed for
(l em = 385,080 km along with substantiati%, graphical representations of
the more interesting parameters.

The perigee and perisel areas defined by the classes C(Ti , P9,
in the first section of this chapter are not altered by the transforma-
tion to C(Ti, 6555 km, 1923 km), since these areas were given in a
spherical coordinate system. A quantitative analysis of these classes
is furnished by the following series of figures.

By application of Miele's Theorem of Images, terminal belts (and
points) and vertex curves can be quantitatively reflected across the
polar plane (containing the earth-moon line and the north pole of the
system). Also, the phase angle relationships given in Section 2 of this
chapter hold quantitatively for both lunar arrival and departure transits.
Figure 27 schematically illustrates this reflection principle. Thus, the
following information may be interpreted as either earth-moon transits
or moon-earth transits. (It should be remembered, that in performing this
analysis, the rotating coordinate system is utilized.)
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Figures 28, 29, 30, and 31; The variation of earth perigee azimuth
along various phase anglers is given as a function of the distance angle
/^, for the transit time classes C(Ti, 6555 km, 1923 km), Ti = 60, 72,
84, and 96 hours. ',these graphs show that to every point /\, of a perigee
station on a given phase angle, there are associated exactly two azimuths,

'	 with the exception of the boundary points where the azimuth is unique
for the given phase angle. Various inclinations of these transits (at
perisel) are indicated on the phase angle loci. Inclination as used in
this study is defined as follows;

cos I' = s in AZ CGS (,)	 00 r I'	 1800.

if	 << 0,

if z > 0I	 -I' if 'z < 0.

if	 02

0	 if t=0I = I'	 ifcp>0
(P

where	

ny	 {	 f 
7

f

where I is the inclination and 00	 15 180 0 or -180' ; I r 0'.  Thus ,
inclination is defined through 360° instead of the usual definition
through 180° and without the usual reference to the ascending node.

This definition is equivalent to the customary one, but allows the
numerical isolation of transits having inclinations near the relative
minimum and maximum inclinations possible within given classes as pointed
out in the following. The perisel (or perigee) conic defines a plane con-
taining the center of the moon (or earth), the perisel (perigee), and the
vertex. For any phase angle, there exists a conic which has a relative
minimum inclination equal to the latitude of the vertex point, and a
conic with maximum inclination equal to 180° minus the latitude of the
vertex point. These maximum and minimum inclinations could become
important in mission definition, and should be considered in conjunc-
tion with the last paragraph of Section 2 of th is chapter.
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Figures 32, 33, 34, and 35: she injection velocity requirements
for the transits indicated by Figures 28 through 31 are given as a
function of the distance angle, 6e, to points along the given phase
angles. The two velocities corresponding to the two azimuths for a
given point may be related through the inclination of the perisel conic.

A

Figures 36, 37, 38 and 39: A representation of the relationships
of perigee velocity on the perisel inclination may be obtained by cross
plots from Figures 32 through 35, i.e., perigee velocity versus phase
angle, with inclination of the lunar arrival plane as a parameter. n

Figures 32 through 35 and 36 through 39 may be combined to obtain
loci of constant velocity and lunar arrival inclination within the
perigee areas for each class C(Ti, 6555 km, 1923 km) such as those given
by Figure 40 for T = 72 hours. It should be remembered that by Miele's
Theorem of Images these loci may be reflected about the x-y plane. The
negative arrival inclinations shown here were obtained by this method.

Figures 41, 42, 43, and 44: The azimuth at perigee plotted over
Oe yields a narrow band very n2arly the same width over all cue. The
width of this band increases, as indicated, as transit time increases.

Figures 45, 46, 47, and 48: The velocity at perisel for transits
which leave the earth with the velocities shown by Figures 36 through
39 are shown as a function of (De . The correspondence between individual
transits is made through the parameter inclination of the arrival plane.

For the remaining part of this section, only the classes for T 72
and 96 hours will be discussed. These two classes are sufficient to
indicate the variations in the parameters with respect to the lunar
phase angle q., since most of these patterns are similar to the ones
just presented.

Figures 49 and 50:	 Tie variation of perisel azimuth along various
lunar phase angles is given as a function of the distance angleL 	 for
C(72 hr, 6555 km, 1923 kw) and C(96 hr, 6555 km, 1923 km). y.

Figures 51 and 52:	 The perisel velocities for the transits indicated
x

by Figures 49 and 50 are given as a function of Lam. 	 The velocities and
azimuths of the two transits having a given perisel in common may be
related throug ►i am and the inclination of the perisel conic (constant

r: liml loci are drawn in to aid further cross plotting).	 For 0 ^ Om ^ 180 0 , {
the positive 7.m are the intersections of the JImI loci with the upper
part of the om curves, and the negative Im are the intersections of the
1m( loci with the lower part of the om curves. 	 The dotted lines at

each end of the figure are the loci for minimum inclination of the perigee
conics.	 Appit_cation of Miele's Theorem of Images to these figures yields
the phase angles 130 0 G om < 360 0 .	 For these phase angles, the sign of
the inclination of the perigee conic reverses. E
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Figures 53 and 54: Perigee conic inclination is rl: iated to the
velocity at perisel and 0M. The positive inclinations shown here may be
reflected by the image theorem to obtain their negatives.

Figures 55 and 56: The behavior of the perisel azimuth over om is
very similar to that at the earth; however, the variation in the width
of the azimuth belts is smaller between transit time -lasses as indicated
by these two figures.

Figures 57 and 58: These two figures show the variation of perigee
velocity over (hn for various inclinations of the perigee conic. These
curves may also be reflected to obtain the negative inclinations.

Figures 59 and 60 illustrate
to the perigee conic inclinations
which make up the perisel belts.
the lunar injection loci for moon
be obtained for lunar arrivals by
the total area of the belts.

the loci of perisels, corresponding
of 30°, 60 0 , 9005, 120 0 , and 150°,
The belts as shown here represent
-earth transits. The same figures may
reflection. The shaded area represents

CHAPTER III. SYSTEMS OF CLASSES C(Ti, Re s , Rms) I

CONTAINING ALL TRANSITS IN THE FIELD _7 INTEREST

Section 1. The Systems C(Ti , Re, Rms)

A. Variation of the Lunar Terminal Radius

The systems of classes C(Ti, Re, Rm s ) are developed by stepwise
variations in the element Rm of a basic class C(T, Re, Rm), for fixed
values of Ti within the range of interest. For this system of classes,
Re is held constant and equals 6555 km. To facilitate understanding,
the development will be made by expansion of a particular r.lass
C(72 hr, 6555 km, 1923 km).

The subscript (s) will be used to denote systems of basic classes for
which the subscripted parameter, although unique for a specific basic
class, varies continuously over the system.
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For fixed values of Rm, 0 < Rm < Rm < ... < 1923 km < ...
< Rmk, basic classes are developed by tie metRods outlined in Chapter II.
Since, mathematically, the equations of motion treat the moon as a mass
point, the perisel radius Rm may approach zero. 2 Each of these classes
exhibits the structural features attributed to the particular class
C(72 hr, 6555 km. 1923 km) and have the same centerline, Cm.

The geometrical relationship between these classes is best
seen by considering first the relationship between individual perisel
circles from each class, for example, those generated from Oe = 0° for
various values of Rm. ExamolPr, of these perisel circles are shown by
Figure 61. Such perisel circles exist for mvery perisel radius in the
vicinity or the moon. They form a dense horn-shaped surface associated
with the given phase angle (Figure 62). The transits defining these
families, if continued beyond the perisel surface, cross through a con-
tinuvm (or line) of vertices at the center of the surface. Each point
of the line is associated with a particular perisel radius (Figure 63).

I'

	

	 A graphical representation of the intersections of the surface
by two perpendicular planes containing the vertex line (for instance,
the MEP and a polar plane) gives a more exact definition of the shZpe
of this surface. Figure 64 (in the MEP) shows the locus of perisel
points associated with the embedded transits. The polar plane is the
plane of flight at arrival defined by the transits leaving the earth
with the largest relative azimuths from the MEP (for each perisel radius)
and arriving over the north or south pole of the moon (Figure 64b).
Figure 65 shows the continuation of several typical transits through the
perisel loci to the vertex points associated with the given perisel
radii. The general features of these transits are conserved for all
transits in the vicinity of the moon.

Now, investigating all other phase angles, the same general
behavior as that discussed above is found for each phase angle. The
location of the surfaces generated, their vertex lines, and their cross-
sectional diameter at any perisel radius are functions of the departure
phase angle. An indication of the relative size and location of these
surfaces is found in the information presented in Chapter II (Figure 19)

The equations of motion have singularities at the centers of the earth
and moon. However, there now exists a computation procedure by which
limiting radii, including zero, may be studied. Richard F. Arenstorf
accomplishes the removal of these singularities simultaneously in his
paper, "on the Best Regularization of the Restricted Three-Body Problem,"
MTP-COMP-63-1.
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for the class C(t*, 4e, pA) transformed to C(72 hr, 6555 km, 1923 km).
The perisel circles (perisel radius 1923 km) shown here are elements of
the perisel surfaces generated for phase angles of 0°, 90°, 180°, and
270°. The shaded area represents the continuum of perisel circles found
at the intersection of a sphere of radius 1923 km with the continuum of
perisel surfaces generated from consideration of all possible phase
angles, i.e., the perisel locations for C(72 hr, 6555 km, 1923 km).

It was noted in Chapter II that, as departure phase angle
increases from 0° to 90°, the vertex point associate) with the perisel
circle at 1923 km moves away from the MEP to a maximttm latitude for
'De = 90°. Likewise, the vertex lines associated with these surfaces
move to a maximum latitude (about -9°). The polar plane in which this
maximum occurs is shown in Figure 66. A plane containing this vertex
line and perpendicular to the polar plane shown would be that plane
defir.ed by the transits arriving with the smallest possible relative
inclination to the MEP for this phase angle. This inclination is deter-
mined by the latitude of the vertex line for a given phase angle (as
discussed in Chapter II). The arrival situation for transits leaving
from (De = 270° is the image (about the MEP) of that for Oe = 90°. This
image may be obtained by application of Miele's Theorem of Images to
the transits leaving from (De = 90°.

The moon arrival situation for these transits which depart from
the earth with a counterrotational velocity component is topologically
the same as for those departing corotationally. Figure 67, analogous
to Figure 65, shows the intersections of the perisel surface defined by
(De = 180° with (a) the MEP, and (b) with a plane containing the polar
arrivals. By comparison of the perisel loci given for phase angles of
0 ° , 90°, and 180° (Figures 64, 65, and 67), the perisel surfaces, defined
as (De increases from 0 0 to 180°, are shown to increase in cross-sectional
diameter at a given perisel radius, and the vertex lines move to smaller
longitudes (as indicated by the perisel circles in Figure 19).

The locus of all such surfaces forms a perisel horn_ of varying
thickness, and generally the same shape as the surfaces of which it is
composed (Figure 68). The perisel horn contains all perisels for the
system C(72 hr, 6555 km, Rms . The vertex lines of these surfaces form
a smaller cone shaped surface about a line through the center of the
horn (Figure 69). This centerline is defined by the line from the
center of the moon through 'm (discussed in Chapter II). Figure 70 gives
a more exact representation of this volume of perisel points. The inter-
section of the perisel horn and the cone of vertices with the MEP is given
in Figure 70 part (a). The boundaries of the area of intersection are
practically the loci of perisel points corresponding to the embedded
transits from phase angles Oe = 0 and Oe = 180° (shown earlier in Fig-
ures 65 and 67). The intersection of the perisel horn with a plane
perpendicular to the MEP and containing Cr, is shown in Figure 70 part (b) .
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In summary, for fixed transit time (72 hours) and perigee
altitude (185 km), and a given phase angle, the variation of perisel
radius generates a continuum of perisel circles which form a horn-shaped
surface (the cross-sectional diameter increasing with perisel radius).
The continuation of these transits past the perisel surface defines a
line of vertices through the center of the surface. A similar unique
perisel surface and line of vertices are found for each earth phase
angle (0° ^ eke -^ 360°). As all other earth phase angles are considered,
a continuum of associated perisel surfaces is constructed which forms a
horn-shaped volume containing all possible perisel points belonging to
the system C(72 hr, 6555 km, Rms ). The locus of the associated vertex
lines is a smaller cone-shaped surface about the centerline Cm.

Similar perisel horns are generated by the system of classes
for every transit time in the range from 60 to 96 hours. An indication,
of the shape and location of these systems for other such transit times
is given by the basic classed presented in Chapter II for T i = 60 1 84,
and 96 hours.

F. Development of Injection Loci for Variations in Lunar Terminal
Radius

So that the development of the geometrical properties of earth-
moon transits may proceed smoothly, the variations in earth terminal
conditions were neglected in the previous sectiuLi. Now, having developed
the general properties of the perisel horn in the vicinity of the moon,
the variation in , .`rth parameters required to form the horn will be
investigated.

Consider first the continuum of families (corresponding to
various perisel radii) resulting from the injection phase angle 0e = 0°.

C	 As discussed previously, these transits all have their injection points
in the MEP , and result in perisels which form a horn-shaped surface. The
perigee stations associated with these families are colinear, but increase
in length with perisel radius (Figure 71); and also, for increasing radii,
each station and the resulting family contain all those stations and
families for smaller perisel radii (Figure 72). A similar situation
exists for those families of transits leaving the earth from oe = 180°.
Again the perigee stations are in the MEP, and these stations increase'
in length with perisel radius. However, along with an increase in
length, the stations for (De = 180° shift toward zero earth longitude as
perisel radius increases. In this case, the resulting families do not
initially contain those for smaller perisel radii. This is shown
graphically in Figure 73 and pictorial".y in Figure 74,

F
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In general, the features exhibited for perigee stations at
phase angles of 0' and 180' are conserved for all phase angles from 0*
to 360 0 , with those features at Oe = 0' being gradually deformed into
those for 4)e = 180*, and symmetrically from Oe = 180' to 00 	 360 0 . In
the previous section the intersection of a sphere of radius 1923 km with
the perisel horn was shown to be the perisel belt which corresponded to
the perigee belt for 72-hour transits discussed in Chapter II., A similar
unique perigee belt is formed for every perisel radius by construction of
the associated perigee stations for all phase angles. Perigee belts
corresponding to perisel radii of 1000 km, 1923 km, and 3000 km ar-, shown
by Figure 75. The features discussed above for perigee stations at phase
angles of 0' and 180' are perhaps more easily generalized to other phase
angles by consideration of this figure. The projections of the resulting
perisel belts formed at the intersections of the horn with spheres of
radii 1000 km, 1923 km and 3000 km onto a common sphere are given by
Figure 76.

For such perigee stations associated with any given phase angle,
the range of variation in velocity direction (or azimuth) required for
enveloping the moon increases as the length of the station increases
(corresponding to increasing perisel radii). An indication of this is
given in Figure 77, which shows the azimuth required at each point along
the perigee stations associated with the above perisel radii for several
phase angles. The coordinates are perigee azimuth and L\e, the distance
angle from the center, Ce2 to the perigee point. By application of
Miele's Theorem of Images, Oe = +45', +90', and +135' may be obtained
from (De = -45', -90', and -135'. The double-valued nature of 6e in Azi,
for each of these curves, corresponds to transits having the same position
at perigee, but having different velocity directions.

This increasing range of variation in Az i required for increas-
ing perisel radii is given explicitly as a function of perisel radius
in Figure 78 for phase angles of 0 * , 45', 90', 135', and 180' (and by
the proper reflections according to Miele's Theorem of Images, phase
angles of 225', 270% and 315').

Similarly, the range of variation in velocity magnitude required
for enveloping the moon from a given phase angle increases with the perisel
radius. Velocity magnitude requirements for each point along the perigee
stations associated with the perisel radii 1000 km, 1923 km, and 3000 km
are ilren for several phase ang les in Figure 79 As shown here A- is

"d

also double-valued in velocity magnitude for each phase angle and perisel
radius. From consideration of this double-valued nature of 6 e in velocity
direction and magnitude, two unique transits for each perisel .radius are
seen to be possible from each point of the corresponding perigee belt
(with the exception of the boundary points) which have different velocity
directions and magnitudes at perigee. (In the case 4, = 0' or Oe	 180',
the velocity magnitude is the same for the two transits.) The ensuing
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transits yield different perisel points and directions of arrival.
Inclinations of the perisel conics are indicated in both of these fig-
ures (77 and 79) to give more insight into the moon arrival (or departure)
situation, as :oell as being a convenient parameter for matching the proper
azimuths and velocity magnitudes on these graphs for given positions in
the perigee belts.

Another means of representation of the information contained
in Figures 77 and 79, which gives stronger emphasis to the inclination
of the moon arrival conic, merits at least graphical presentation.
Figures 80, 31, and 82 are plots of velocity direction at perigee vs
phase angle, with the inclination of the perisel conic as a parameter.
Figures 83, 84, and 85 are plots of perigee velocity magnitude vs phase
angle with the lunar arrival inclination as a parameter. In these fig-
ures, only inclinations of 30°, 60°, 90°, 120°, and 150° are given.
Inclinations of 225°, 270 0 , and 315° may be found by proper application
of Miele's Theorem of Images. It is interesting to note the shape
similarity of the corresponding plots (Figures 86, 87, and 88) for
velocity magnitude at perisel with those above for perigee.

P

' Section 2.	 Lunar Impacts

The preceding discussion of variations in perisel radius was with-
out regard to the volume of the moon. 	 This approach was taken so that
the families of constant transit time would be consistent families,
i.e., the time of transit was to be measured from earth perigee to the
(mathematical) point of lunar close approach. 	 In the physical situation,
assuming the moon to have a radius of 1738 km, all those transits with
perisel radius less than 1738 km will impact on the surface of the moon
at some time before periselenum. 	 Therefore, those points of the perisel

f horn which lie within the surface of the moon are to be associated with
impact transits.

E
Recall Figure 63 which was generated from the phase angle Oe = 0°.

' The surface represented here is that which was defined by investigation
of all possible perisel points in the vicinity of the moon, corresponding
to 72-hour transits which have their earth perigee at 6555 km (100 n.m.
altitude) and station phase angle Oe = 0%	 The perisel circles shown

` on the surface are those for perisel radii of 828 km, 1368 km, 1923 km,
and 2500 km.

To facilitace the association of perisel points with points of
j impact, the intersections of this surface with the MCP and a polar plane

containing the vertex line are given by Figures 89a and 89b. 	 (The
dotted circle represents the surface of the moon and the dotted lines

s represent the extension of the vertex Lines through the center of the
E moon.)	 Now retracing the paths of the transits for these radii (dashed)

k
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back to the surface of the moon, points of constant transit times and
constant path angles are found in the MEP and in the pole: plane corres-
pondirg to each perisel radius. These points are symmetric about the
vertec line. Figure 90 shows these transits impacting on the surface of
the moon and their continuation to the horn-shaped surface of perisels
assoc .ated with (De = 0. If all such transits defining the given periael
circles are traced back to the surface of the moon, circular loci of
almost constant transit time to impact and impact path angle are formed
for every perisel radius (Figure 91) . (The variation in •c and a is in
the second decimal place.)

The development of loci of constant transit time to impact, and
impact path angle for other earth phase angles proceeds in the same
manner. Similar concentric circular loci are described for each phase
angle. The impact loci for all earth phase angles, corresponding to a
given perisel radius, for example, Rm = 627 km, form an annular region
on the surface of the moon similar in shape to the perisel belt for the
given radius. In this annular region, impacts may be obtained with
fixed values of impact time and path angle from each earth phase angle
(Figure 92). Similar annular regions are formed for every perisel radius.
Figure 93 shows the regions associated with the perisel radii., i.e.,
258 km, 627 km, and 1183 km. The maximum variation of time and path
angle for any perisel radius over all (De is about .06 hour and 1.5° as
shown below. The impact time and path angle are not unique for a given
position on the moon. Neighboring perisel radii within the moon determine
overlapping annular regions of impact with different impact times and path
angles.

,The varia4on of the impact path angle with perisel radius is some-
what sinusoidal with the impact path angle single-valued and changing
from 90° to 180°, as perisel radius varies from 1738 km approaching zero.
This is shown for the phase angles (De = 0°, and 180° in Figure 94. The
transits having a zero perisel radius and an impact path angle of 180°
(i.e., the transit impacting perpendicular to the surface of the moon)
are found to be colinear with the extension of the corresponding vertex
lines mentioned before. As perisel radius decreases from 1738 km to
zero, the arc length between impact and perisel first increases to a
maximum, and then decreases to the radius of the moon for the limiting
case of zero perisel radius. At the same time, perisel velocity is
increasing. The combined effects of the first increasing and then
decreasing arc Length between impact and perisel and the increasing
velocity result in transit time to impact being double-valued (Figure 95).
The variations of impact and perisel velocity with decreasing radius of

= no	 d 18J° b V4 	 d 97	 Thperisel are given for q'e	 an	 y figures	 an	 e
corresponding longitudes of impact and peri.selenum are given in Fig-
ure 98, and the velocity magnitude at perigee for the embedded transits
is given in Figure 99.
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Perpendicular impact loci (corresponding to the limiting cases of
Rm = 0) are given by Figure 100 for the transit times of 60, 72, 84,
and 96 hours. These are the only possible perpendicular impacts front
the systems C(,.i, 6555 km, lams ) T i = 60, 72, 84, and 96 hours. An
indication of the similar loci for any transit time in 60 :^,: Ti	 96 is
given by Figure 101. This figure shows the center (which lies on Cm),
the major axis, and the minor axis of the loci versus transit time.
Since these loci lie on the vertex lines, their reflection through the
center of the moon results in the corresponding vertex loci.

Corresponding perigee positions are given by Figure 102. These
loci are very nearly circular for the lower transit times, and even for
the higher transit times the lo(:us may be at least approximated by
circles; therefore, Figure 103 indicates the positions of the centers
and radii of the loci for transit times 60 = T i _ 96.

Section 3. The System C(Ti, Re s , Rm)

A. Variation of Earth Terminal Radius

The somewhat arbitrary restriction of the earth terminal radius
to 6555 km (185 km altitude) has allowed an extensive study of the
behavior of transits in the earth-moon systems. However, only after
allowing variations in the earth terminal radius will the purpose of
this study have been accomplished, i.e., the classification of all
transits with successive close approaches in the vicinity of the earth
and the moon.

The systems of classes C(Ti, Re s , Rm) are developed in the
same way as were the systems C(Ti, Re a Rms ), i.e., by stepwise varia-
tions in the element Re of a basic class C(72 hr, 6555 km, 1923 km).
Thus, basic classes are generated for 0 < Re, < Re, < ... < 6555 km
< ... < Rek. Once more, each of these classes extibits the structural
features attributed to the particular class C(72 hr, 6555 km, 1923 km)
and have the same centerline, Ce.

Figure 104 gives a comparison of the perturbations in the
actual trajectory shape for Re = 6555 km (100 n.m., altitude), 7665 km
(700 n.m., altitude), 8775 km (1300 n.m., altitude), aad 9885 km
(1900 n.m., altitude). The perturbations in the shape of trajectories
from phase angles other than 0 4 and 180 4 are very similar to the trends
shown here.

w
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Figure 105a shows the relative positions of the perigee belts
for these classes, and Figure 105b shows the corresponding perisel belts
for Re.' 6555 km, 9885 km. From this figure, we see very little varia-
tion in the per isel belt for variations in Re. As indicated by the
dotted lines on Figure 105x, a horn-shaped continuum of such perigee
belts is found when Re is allowed to vary continuously between 0 < Re
Rek. The intersection of this perigee horn with a Sphere of any fixed
radius Re• is, therefore, the locus of all possible perigee locations
for transits from the classes C(T, Re., 1923 km), and the horn contains
all trans its of the system C(T, Res, 1923 km).

The intersections of this perigee horn with the MEP and with a
polar plane containing Ce are shown by Figure 106 and Figure 107. The
intersections of the corresponding perisel belts (at Rm = 1923 km) with
the MEP are given as a function of perigee radius by Figure 108.

B. Transits Having Perigee Stations Inside the Earth

The consideration of transits having perigee inside the earth
(analogous to the prev_aus discussion of perisels within the moon) has
its value in the possibility of future direct ascent missions, or the
desire for injection with a path angle other than 90 °.3

Since the general characteristics of such transits are very
similar to those discussed previously, only the perigee geometry is
presented. Injection altitude has been chosen arbitrarily as 185 km
(100 n.m.). The patterns existing, here are typical of the situations
to be encountered at any other altitude near the earth. Further,
numerical data are presented only for the embedded transits and the polar
(earth and moon) transits. The trends indicated by these transits are
in general applicable to other departure phase angles and directions of
lunar approach.

figures 109, 110, and 111 illustrate the (mathematical) behavior
of the embedded and polar transits bet-veen perigee and the 185 km injec-
tion altitude. Almost any geometrical restraint imposed at the moon,
which can be satisfied by injection at 185 km perigee altitude, can also
be satisfied by this type of transit when referenced to the correspond-
ing perigee class. Such transits may be easily referenced to the
corresponding perigee class by the simple two-body relationships, and
by the same means, injection requirements may be obtained for injection
into these transits at higher altitudes (This two-body approximation is
very good for short periods of time near the earth).

o The discussion here is not intended to show practicality, but possibility.
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CHAPTER IV. APPLICATIONS

Section 1. Free-Return Transits

A. Requirements for Free Returns

An important application of the geometrical concepts developed
in the previous chap(ers is found in the implication of the existence
or, just as important, the nonexistence of certain types of transits
satisfying given mission requirements.

One such mission of immediate importance is that of free flight
transits which, after passing arbitrarily near the moon, return to the
vicinity of the earth with position and velocity coordinates conducive
to reentry and recovery. The utility of such a mission definition lies
in its applicability to Apollo type missions, for which mission abort
in the vicinity of the moon, without thrusting maneuvers, and return to
earth may be desirable or necessary, or simply to missions for which
lunar fly-by and earth-return is required.

These free-return transits can be defined within the context of
f the classification methods of this study by the following restrictions

on position, velocity direction and velocity magnitude at the perisel
point;

1.	 Position - Two perisel circles must have this point
in common; one a lunar arrival circle defined by earth-
moon transits (outbound legs), and the other, a lunar

R. departure circle, defined by moon-earth transits
(inbound leg) corresponding to the reflection across
the M-E polar plane of the same or any other arrival circle.

2.	 Velocity Direction - The two perisel circles must be
tangent at this point.	 Since the transits are normal
to their perisel circles, tangency of the two circles
is required for the velocity directions to be colinear.

3.	 Velocity Magnitude - The velocity magnitude for the two
transits must be the same at this point.

Neither flight time, perisel radius, nor the perigee radii
appear explicitly in these restrictions. 	 However, they do appear
implicitly, defining boundaries of regions for which all three restric-
tions may be satisfied.	 The properties of these boundaries and certain
elements of the region of existence are the topics pursued in the follow-
ing.
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Without loss of generality, the discussion may be simplified by
assuming the perigee radius of the outbound leg and that of the inbound
leg to be the same; i.e., the classes of transits discussed belong to
C(Ts, 6555 km, Rm ), where Ts and Rms are dependent. The analysis and
the patterns whict would be developed for different combinations of the
two perigee radii are similar to that to be presented.

B. 5,rmmetric Free Returns

The most easily conceived free returns are those for which perisel
occurs in the M-E polar plane. The principles for the development of
such free return transits are outlined in the following idealized
example.

Consider the classes C(T*, 6555 kin, Ri), defined by the inter-
section of a sphere of radius R*, about the center of the moon, with
the perisel horn corresponding to the transit time T-A (<< denotes the
idealized examp'.e) and. C'(T*, 6555 km, R*), the reflection of
C(T*, 6555 Rtm, R) across; the M-E polar plane. Segments of the two
perisel belts defined at the intersections are shown on Figure 112,
with the perisel circles for the phase angles 0°, 90°, 180°, and 270°
superimposed. The loci of vertices are also projected onto the sphere.1

t

Figures 113, 114, 115, and 116 show the classes from the system
j

C(T*, 6555 km,Res ) defined at the intersections of spheres of radii n
R	 < RA < R4 < R', respectively, with the same perisel horn.	 These
five figures show that, as the perisel increases, at some radius e2
perisel horns intersect the moon-earth polar plane.	 The first possible
symmetric free return for C(T° , 6555 km, R 1) occurs at this point.
Here the perisel circles for (De = 0 from C(V%: , 6555 km, R^,c) and
C'(T*	 6555 km, R2) are tangent forming the inbound and outbound legs
of the free return. 	 In the same manner, with further increases of the k
perisel radius, a free return occurs for every phase angle as the
corresponding perisel circles become tangent (in the M-E polar plane). !

The latitude of the perisel point for these free returns increases from

CPM= 0 ° , for Oe = 0% to a maximum for Te = 90° (Figure 114), and back
to cpm= 0° for Oe = 180°.	 Simultaneously cp decreases to a minimum for
the corresponding phase angles symmetric about the MEP (360 0 > Oe > 1800).

Free returns of the type depicted by Figure 114, having perisel
latitude %. 0 0, have been called free returns of the second kind by
Schwaniger [6] and others, but will be referred to here as "plane
symmetric free returns." 	 "Line symmetric free returns" also described
in Reference 6, as those of type 1 or the first kind, have their perisel

it

The two perigee belts a.r-, reflections across the x-z plane.
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on the earth-moon line, and also occur in pairs, with azimuth symmetric
about 270 0 , (for earth phase angles symmetric about the MEP) as the
corresponding perisel circles become tangent to the earth-moon line,
as shown for Oe = 90° and 270° on Figure 115. Here, the perisel circles
become tangent to their reflection across the earth-moon line; i.e., the
perisel circles for (De	 90° and (De = 270° define a free return which
has an azimuth less than 270°, and symmetrically, Oe	 270° and (D'e = 900
define a free return which has an azimuth greater than 270°. The azimuth
increases from 270° to a maximum as oe increases from 0° to 90 0 , then
decreases to 270° as Oe continues to increase to 180°, and symmetrically
for 180 0 < Oe < 360 0 .

A three-dimen4onal representation of the development of the free
return patterns as described with reference to Figures 113, 114, 115,
and 116 is given by Figure 117. The plane symmetric tree returns,
defined at the points of tang ency of Figures 113, 114, and 116, corre-
spond to the perisel points A, D, and G in the x-z plane of Figure 117.
Likewise, the perisel points at d, for Oe = 90°, 270°, belong to the
line symmetric free returas defined at the point of tangencies of
Figure 115.

Thus, there is a line symmetric and a plane symmetric free return
for every earth phase angle except 0° and 180°, where the single free
returns satisfy the definitions for both types. The locus for the plane
symmetric returns is somewhat elliptical, and the locus for the line
symmetric is then the axis of the ellipse colinear with the earth-moon
line. The locus of the vertex points for free returns belonging to
C(To , 6555 km, Rns ) is indicated on the vertex cone, also shown on
Figure 117.

At this point, it should be reiterated that the example used is an
idealized case. The true geometrical patterns for the loci of perisels
corresponding to free return transits become distorted over variations
in transit time. Figure 118 indicates the variation in the shape of
the perisel loci for symmetric free returns of the systems C(Ts, 6555 km,
Rm ), Ti = 60, 72, 84, and 96 hours. The near-moon boundary for sym-
metric free returns is given by Figure 119. 'Figure 120 gives the
trans1-t time and earth phase angle for the maximum inclination achiev-
able in a neighborhood of the moon.

The discussion may be summarized here by the following:

1. The perisel points of all possible symmetric free returns
lie in the x-z plane.2

This is also implied by Miele's Theorem of Images.
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2. For a given transit time and perigee radius, there exist
two symmetric free returns (one line symmetric and one
plane symmetric for every earth phase angle 0° < Oe < 360*,
with the pairs for 0' and for 180' being identical. Each
free return has its perisel and vertex point at unique
distances from the center of the moon.

3. The perisel loci for the free returns off  neighboring tran-
sit times intersect densely, forming a region, within which
,:he perisels of an infinity of line symmetric free returns
exist at every point along the x-axis.

4. At any other point of the region, there exist exactly two
plane symmetric free returns, except at the near-moon
boundary of the region, where there is only one.

C. NonsyMetric Free Returns

The use of a symmetric free return transit for a given mission may
place undue restrictions on the position of perisel or the return
perigee. It is very likely that due to cracking (and other) restric-
tions on reentry, returns to a position symmetric to that of launch
would be undesirable, yet return to a specified altitude may be neces-
sary for successful recovery.

Such mission constrairits may be satisfied by application of the
restrictions given in Section 1 to the systems of classes C(TS , Res,
RMS ) and C'(Ts, R'	 -where Ti ^ Ti, i , and Rei	 R& i .i 	2^*es, Ms ),	 i Rmi = Rn
The development of such "nonsymmetric" free returns is a straightforward
continuation of that for the symmetric cases discussed in -the prev-,,ous
section.

Consider, for example, the class C(T*, Re) W.1 ) shown by Figure 113111

and, C' (T , Re, W instead of .; T*, Re,<	 W21), w^ere T*' is arbitrarily*'
near T*. There exist two perisel circles, one from e.-A class, corre-
sponding to different earth phase angles, which are tangent at a point
where the velocities are ttm_- samae, thus producing a nonsymmetric free
return with m̂ A 180 * a •ad Azm 0 270 0 . The coordinates of the earth
perigees for the two legs, as well as the transit times, differ.

As increasiug and decreasing transit time classes are consider,^d,
i.e., 

C1 
(T,c I , R,a 31 V* T  <> T* 1 two nonsytimetric free returns occur

for every earth phase angle in C(T Re, R*), one above the MEP and one2
below the MEP.

34



W, +

The outbound legs of these nonsymmetric free returns all have the
same transit time T* , and each of the inbound legs has different transit
times.

The approximate bounds on Ti for any Rm, may be found by comparing
velocities and positions for perisels in the MCP, over transit time,
for the systems C (Ts , Re, EMS ) and C' (Ts' , Re, Rms ) . This is illustrated
by Figure 121 for Re = R'e = 6555 tun and Rm = 1923 km. For these systems
of classes, there exists a continuum between the transit times of about
60 hours and 82 hours within which transits may have the same perisel
velocities and longitudes. the free returns are also dependent on
perisel azimuth and latitude, but for the deuermination of boundaries
these pararieters are not needed.

As an example for reading this graph, choose an outbound transit
time T = 65 hours. The transit times of possible inbound transit's
having comparable perisel longitudes are between about 73 hours and
76.5 hours shown by the shaded area. The limits on perisel velocity
for these free returns are sho^m by the dutted lines within the velocity
region. Further identity of thes, transits with respect to perigee con-
ditions may be obtained from cross plots of the graphs of perigee param-
eters presentert in Cha t. ter III.

Nonsymmetric free returns traveling in the opposite direction to
those discussed above may be obtained in the same manner from the same
figure. These transits are reflections of the above transits across
the earth-moor4 pol r plane. The perisel velocities are the same, and
tiie longitudes are refle,:lions about 180 0 , i.e., the positive portion
of the longitude curves in Figure 121.

Note that, for ?,, = 180 °, there exist perisels in the x-z plane
for transit times between about 69 hours and 70 hours. These points
represent symmetric free returns.

Figure 122 is given only 4s an indication of the shape of the
perisel loci for nonsymmetric free returns from the systems (T i , 6555 km,
1938 km). The solid curves are the free return loci for transit times
of 65, 70, 75 and 80 hours,•and the dotted lines of constant azimuth at
perisel indicate the velocity direction of the free returns. Note that
the intersections of the 70 hour locus with the moon-earth polar plane
(?^m = 180°) are symmetric free returns. This figure may be reflected
by Miele's Theorem of Images to obtain transit-, with the same transit
time in 'the opposite direction.
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Figures 123 and 124 for Rm = 1000 km and 3000 km, respectively,
give the same information as Figure 121 for Rm = 1923 km, i.e.,
boundaries in transit time perisel longitude and velocity for both
symmetric and nonsymmetric free returns. Although Rm = 1000 km is
physically meaningless, Figure 123 is very useful along with Figures
121 and 124 for cross plots over ?ei isel radii of greatest interest,
i.e., 1733 km < Rm < 3000 km.

A more detailed study of free return transits is to be published
in the near future by A. J. Schwaniger of this office (also see refer-
ences 6 and 9).

Section 2. Fhases of the Moon at Approach and Lighting Conditions for
Rendezvous and Impact

Almost any lunar mission places restrictions on the lighting con-
ditions at lunar approach. A complete treatment of this subject,
however, would very wet? comprise a complete study in itself. For this
reason, the following is intended only as an indication of another of
many passible applications of the concepts developed in Ch=apters I-III,
No numerical data are presented - only the method of application.

Figure 125 . is an arbitrary representation of the earth, moon and
sun with respect to the plane of the ecliptic and the vernal equinox.
The parameters indicated may be determined at any time from "The Astro-
nomical Ephemeris and the American Ephemeris and Nautical Almanac"' as
defined elow:

1

,^ = the mean longitude of the moon, measured in the ecliptic
from the mean equinox of date to the mean ascending node
of the lunar orbit, and then along the orbit,

= the longitude of the mean ascending node of the lunar
orbit on the ecliptic, measured from the mean equinox
of date, z

2 + W,

i = the inclination of the lunar orbit plane to the ecliptic,

L = the geometric mean longitude from the mea-a equinox of date,'
u

Hereafter referred to as AEAENA.
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earth to the sun,

ear th to thi: moon,

sun to the moon.

th centered ecliptic coordinate
earth-centered system by the follow-

Res = the vector from the

Rem _ the vector from the

Rsm = the vector from the

A vector expressed in the ear
system may be expressed in the MEP
ing rotations:

'kE,Pe	 (W)3(1) 1(S2)3 XEec	 TXEec'

where

j
r

1 0
.

0

(0) i = 0 cos 0 sin 0

0	 - sin 0 cos 0

cos 0	 s in 0	 0

(0) 3 = -sin 0	 cos 0	 0	 .

0 0 1

With respect to the 1XP moon-centereu system, this is given as



Therefore, the vector from the sun to the moon may be calculated in the
MEP moon-centered system by the above transformation of the following
expressed in terms of data given in the AEAENA:

cp = sin-1  (sin i s in w) ,	 cp A ± g
2

cos pA = 
cos w,
cos cp

W
	 z. 2,	 n = 0, 1, 2, 3

din LEA = tan cp/ tan i

L^\ = tan-1 [sin LA/cos LEA]

(if w n 2, L1A = w) .	 Therefore,

Rem cos (b6 + ©A}1	 Res cos L

Rsm = Rem - Res = Rem s in (2 + nA) - Res sin L .

Rem sin i sin w	 0

Transforming to MEP moon-centered coordinates, the latitude, cpm , and
longitude, Tms , of the "midnight point" on the moon are found From the
following:

x —	 cos cp cos (360 - 7)1

MEP_t 
II -
	 cos cp sin (360 - ?)

m	 s in cn
w

C'T

X
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This m.-dnight point defines the hemispheres of "dayJ.ight and dark-
n9ss" on the moon for the ephemeris time selected. For times in the
neighborhood of the selected time, there will be no appreciable change
in the areas of light and darkness.

If the time is selected to coincide with the arrival of so-ne earth-
moon transit, the lighting conditions available for rendezvous or lunar
impac may be determined for any transit arriving at this time merely by
reference to the centerline, Cm, for the corresponding transit time.
Trausits having a common transit time are essertially parallel in the
neighborhood of the moon and lie within a tubular volume (having an
almost circular cross section) which contains .their perisels and
decreases to a point at Cm.

For example, consider typical transits having a transit time of
72 hours arriving at the moon (at mean distance) at the ephemeris time
represented by the geometry of Figure 125. C m for 72 hours is approxi-
mately at 125° longitude. This arrival situation is depicted by Fig-
ure 126. Four transits (embedded and polar) for o e = 0, and the
associated perisel belt for 72 hours are given as typical. In this
situation, transits may depart from the earth from any ^De and arrive in
a lighted region with arrival inclinations 90° < Im -- 180°, and
-90° > Im ^; -180 0 . Similar conditions exist for impact transits.

(The location of Cm for other transit times in the region 60 f T 9 96	 f
may be found in the information given in Chaster III, Section 2.)

CHAPTER V. GECGRAPHIC AND SELENOGRAPHIC LAUNCH AND ARRIVAL CONDITIONS

Section 1. Launch Restrictions

For operational as well as flight reliability reasons, the Apollo
project requires launch from the Atlantic Missile Range within specific
limits on azimuth, and requires the lunar approach to be in a predeter-
mined direction over a specified position on the lunar surface. Thus,
implementation of the Apollo project requires the formulation of the
necessary launch parameters in a geographical coordinate system, and
similarly the arrival parameters must be formulated in a selenographic
system.

In consistency with the aim of this paper - promoting the under-
standing of the problems and the ways of solving them, rather than
bringing out quantitative data - a rigorous treatment of the transforma-
tions from the MEP to the geographic and selenographic systems is omitted,'
and the development is, in general, by means of sequences of illustrations.

See "Explanatory Supplement to the Ephemeris," HMSO, 1961; and "Selena-
graphic Coordinates," JPL TR 32-41, B. E Kalensher, 24 Feb. 1961, for
treatments including l ibra tions and nuta tions , etc.
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The selection of a launch date and time, for the investigation of
a missicn's feasibility, fixes the MEP coordinate system with respect
to the ephemeris and the Atlantic Missile Range. The situations avail-
able for launch are then determined by the perigee and perisel belts.

Four simple coordinate rotations, through w, i, 2, and c, relates
the perigee belt to the space-fixed (in direction) earth equatorial
system as shown by Figure 119.

This transformation is given by XEEQ = (e) I(-2)3(i) 1(-w)3RMEPe
where e, 2, i, and w are measured as shown. in Figure 127.

One further, rotation, through the angle of rotation of the earth
about its pole, is necessary to reference the MEP system to a particular
launch-site coordinate system.z

A typical case of relative axis alignment is illustrated on Fig-
ure 128, which intentionally does not represent the special geometric
relationships encountered near .968/9. Before and after these years,
a geometry similar to that shown materializes once a month. Although
it is not considered here, there is a small rotation of the MEP system
as well as a precession of the flight plane between launch and perigee
during the time periods shown on this and the next four diagrams, which
must be considered in a numerical investigation. These factors are con-
sidered in a later discussion.

Rather than limiting th p discussion to the possibility of effecting
particular launch geometries from Atlantic Missile Range a more general
question is posed: What departures, if any, are possible within a given
class C(T, Re, Rm), if the flight from Atlantic Missile Range to the
perigee of the lunar trajectory (including direct injections and injec-
tions into parking orbits, with subsequent injection into a lunar tra-
jectory) is to be made without lateral maneuvers? The restrictions for
such transits are that

(1) the restrictions imposed on the flight parameters by the
class C(T, Re, Rm) must be satisfied,

(2) the flight plane must contain a point oi the vertex locua
for the class and (neglecting the precession of the nodes
of the flight plane) the launch site, and

(3) the flight plane must be within the limits of azimuths
that are permissible for range safety as well as for
trackGng or other reasons.

See 01Meth.ods for Trajectory Computation," MTP-AERO-63-9, William E.
Miner, for typical coordinate systems and atmospheric trajectory com-
pu.tation methods.

40



Three geographical conditions (or times of a day) are referred to
in Figure 128, arbitrarily as times A, B, and C. For each launch time,
the launch azimuth limits are indicated, chosen here to be from 70° to
110° east from north. Now, since any plane of flight the',- will initiate
a transit of the given class must contain a point of the - ertex ellipse,
it is clear that time A is too early, and time C is too late for launch-
ing into a transit of the class. A time of feasible launchings is
represented here by the case of time B, but the times of possible launch
extend to earlier and later time points forming a launch wiodDw during
which transits of the class are possible.

The two lime ,points allowing the first and last full coverage of
the vertex ellipsq are depicted on Figure 129. The total. angular sector
defined at the vertex curve, by the above first and last "full coverages,"
encompasses roughly all approach directions feasible within this time
period. There is, however, a later, second period of feasible launches
into transits of the class. Figure 130 shows the initial and final
times of ful l vertex coverage by these flight y which, in genei p' ,
travel through larger central angles before ruching their vertices.
The angular section cut out by these flights is, in the general case,
separated from that of the earlier launch period.

Figure 131 gives an enlarged synopsis of the two sectors, where
t%e belt of perigee stations is now superimposed. This diagram illus-
trates all possible transits remaining less than one revolution in a
parking orbit which can be achieved by launch on this day without
lateral maneuvers. These sectors are unique in that there are no two
days for which the sectors are identical.

Reverting to the question of whether a particular set of departure
conditions (i.e., a particular flight plane) can be met at a particular
launch date, the answer .is partially expressed by the above discussion.
If the set of conditions is compatible with the sectorial description
of the feasible launches, the feasibility is established for (a) at
least twoo opportunities (azimuth ^ 90`) of ascending into (b) at
least one transit, from (c) at least one lunar phase angle family,
0° `^n G 360 0 (which will not be determined here). T his cumbersome
statement can be understood by consideration of the followings

(a) Under the assumption, that the permissible launch
a: .muths lie symmetrical about 90°, i.: there exists
a launch opportunity with the azimuth 90 0 ± a (a ^ 0),
then there exis ts another opportunity at a different

'At Least one opportunity for azimuth = 90 °.

i

r,

t

41



time of the day (earlier for "+d' and later for "-d')
for lauaching into the same flight plane, the azimuth
for which is 90' -; a. This is illustrated by Figure 132,
which shows that feasible launch trajectories cross the
launch latitude twice, except the trajectory launched due
cast.

(b) This follows from the assumption of compatibility of the
desired flight plane with the sectorial description of
the feasible launches.

(c) The vertex locus here is defined by the lunar p'-lase angle
families, each point corresponding to a distinct 0..
Thus, if the launch flight plane crosses the vertex locus
twice (rather than being tangent to it), two distinct
transits are possible by varying the position of the
perigee. (A corresponding variation is required in the
perigee velocity.) The perisel conditions of these two
transits may be estimated by the 0-a relationships given
in Chapter II, Section 2. Note that om for these two
perisels may be separated by as much as 180* for the case
that the launch plane contains Ce-

Another fact with respect to the launch problem is probably now
self-evident: all launch opportunities for such maneuverless flights
last only an instant. Launchings at ,Nimes different from these require
flout-Of-plane" maneuvers at one or more powered phases of the flight.
Out of plane maneuvers also are the only means of dealing with those
transits for which the departure geometry does not lie within the
angular sectors of feasible in-plane launches of the day.

If the mission restrictions will allow the vehicle to remain in
the parking orbit for a large number of revolutions, launch windows may
be greatly extended. As pointed out above, there are two possibilities
for launch into a permissible orbit on a given launch date without
lateral maneuvers. Consider now the launch time, T3, on Figure 130,
the first time possible, in the second sector, for full coverage of
the vertex ellipse on this day. If the vehicle is allowed to remain
in the parking orbit for about four days, an additional sector (with
azimuths between (b) and (c)) is available for launch at the same
instant, T 3, as shown by Figure 133 ((a) is the minimum, and (b) the
maximum, allowable azimuth). The plane of the parking orbit will pre-
cess werivardly at about 6* per day (for typical parking orbits of
interest here), and the vertex locus advances eastwardly at about 13'
per day (as the moon revolves about the earth). Therefore, at T5,
T 6 T3 + 4 days, the orbit planes between (b) and (c) will 'contain
points of the vertex ellipse as shown on Figure 133 by the dotted lines.
Note that (c) will reach the vertex ellipse , before (b). This is due to
the slower rate of precession of the orbit planes as the inclination
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This example shows that, in general, a lunar orbit can be achieved
with any launch aaiiitith and any launch time, if only t•he parking orbit
is maintained a suff 4eient length of time (the greate-6t time necessary
being less than 1J2 Month), and the park,.ng orbit is chosen such that
the vehicle reaches the perigee belt at the proper time.

Vais effectively yields an unlimited launch window for every allow-
able launch azimuth; however, perturbations on the parking orbit and
veloc,,ty requirements for injection into the parking orbit, as well as
other mission restrictions, may very well reduce this unlimited launchAll	 window to nc;ar zero, or even zero itself.

Section 2. Selenographic Arrival Conditions

The situation at lunar arrival, with res^t:ct to a selenob-i^aphic
coordinate system, is very similar to that at e-.rth O-varture discussed
in the previous section.

Neglecting once more the smaller perturbations on the system
(physical libration, etc.), a simplified transformation can be made
from the MEP coordinate system to a selenographie coordinate system as

t	 follows. Since the ascending node of the lunar equatorial plane on the
ecliptic occurs at the descending node of the MEP, the nodal line of the
MEP and the MEQ (moon-equatorial) plane (henceforth called the LNL
(lunar nodal line)) remains essentially parallel to the nodal line of
the MEP on the eclipti.t., Thus, an intermediate coordinate system, con-

*	 venient for geometrical representation of the lunar arrival situation,
is defined as having its positive x-axis containing the LNL and minted
toward the center of the earth, at the descending node of the MEP on
the ecliptic; 4 and its positive z-axis in the direction of the lunar
axis of rotation; and its y-axis such that it is a right-Banded system.
The relationship of LNT, system to the earth is shown by Figure 134 which
corresponds to the two times of the month depicted by Figure 127.

The transformation from the MEP moon-centered system to the LNL
system is given by two rotations of the MEP moon-centered systems; i.e.,

-LNL	 ( (mec + 
^) ) 1 (-W)3 Xm'

So that the angle between the negative x-axis of the MEP and the LNL
systems is always w.
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where

Imee = the inclination of the lunar equator to the ecliptic

and

i = the inclination of the MEP to the ecliptic.

One further rotation, through the angle of rotation of the moon
about its axis, defines a selenographic system. The treatment of the
lunar arrival problem, referenced to the selenography, is now almost
identical to that of the previous section for earth departure, with
the exception that both corotational and counterrotational flight are
to be considered. (It sh:)uld be remembered that the terms "departure"
and "arrival" are referenced to perigee and perisel points which may
be reflected by Miele's Theorem of Images in which case "departure"
and "arrival" are to be interchanged for the reflected flight in the
opposite direction.)

If a particular paint on the lunar surface is chosen to be over-
flown by transits from some class`'C(T, Re, R m), simple geom(tric con-
siderations allow the determination of admissible transits as in the
following example.

For a paint on the lunar equator s and the class C(72 hr, 6555 km,
1923 km) , r ;1 admissible transits are shown_ by Figure '35 to have lunar
phase angles in two sectors between —160° and 178°, for corotational
arrival, and between ,5' and -10°, for counterrotational arrival.
since all vertex points are overflown by transits of either sector,
earth launch from any (De wilt accomplish this mission. If earth launch
is restricted to the azimuth limitations of the previous section, the
following redi.ctions occur in the launch and arrival sectors.

5the point is chosen here to be on the lunar equator, but this does not
restrict the generality. Also, for the purpose of this discussion, it
is assumed that perisel occurs at the same time, ti, for all transits
under discussion, and the difference in the time from perisel to the
cotmaon crossing point is negligible (so that the discussion will not
be unnecessarily compi.cated).



Consider Figure 131 once more. Since, from Figure 135,
160 0 -< `fin --^ 178 0 and - 10* ;--' Oe r. V, only those elements of the earth
departure sectors which pass over the vertex points corresponding to
these om are available for launch. Figure 136 shows the reduc&d
sectors to be composed of four distinct sectors which are much smaller

•	 than the original. These fo lar sectors allcw ^e such that, approximately,
-100 ^ Oe ^ +100 for A. 200	 Oe n 45 0 for B, -65 0	 (De <- -45 0 for C,
and -75 0 n Oe <- -60* for D.

These restrictions must now be imposed on the lunar sectors. This
is given by Figure 137, where the possible arrivO-1 transits must pass
over tne vertex points corresponding to the restriction on Vi..

4

If the time of perigee
later time of the same day,
transits would be developed
systems changes with time.
shows the set of transits o
lines those (which fly over
later time, corresponding t

for the above transits had occurred at some
in general, a different set of admissible
since the orientation of the MEP and LNL
his is indicated by Figure 138, which
Rigure 135 for time, T 1, and the dashed

wie same point on the lunar surface) at a
1) T' .0

This procedure may be repeated to obtain conceptual control over
the launch conditions and arrival conditions necessary (and possiblO
for accomplishment of general lunar missions. Fo-;- c.-ary launch time,
the proper orientation of the MEP with the geographic and selenographic
systems must be made in agreement with the ephemeris.

If a further restriction is placed in the iiJssion definition,
requiring a transit to pass over a given point on the lunar surface in
a given direction, there is exactly one such transit from each class
C(T, Re,	 Furthermore, these unique transits vary at each instant
of time.
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ỳ tt

J >
	 ♦' i

:.- .
.	 C

.•	 °	 p Z

O

	

..__	 IN"

	

O f	
O s 4

°o 	 Q	 cy	 'e
/	 / 7/	 M

7/	 /	 o-

	

^^ 	 IE

P
mpp	 N

Yti— i,	 ci	 v

O ^ee,t Eg o 	E^ ia Y d o	 .'.
It	 .39 aCC! O	 W tci , ^aD

E	 OD ti `° o ao ti °° car= a	 N-	 n-

M

131



I o-11

CL

cIr 

1,

0
0011%

bm0
0F-

Vs

96

4

z
49
iOR

Who

a

at

z

low-

a

It

r

f I



10

96

06

low
CL

ON""

4^

Now

.......	 . .. Now



• 1

B 1

00 (dog)
Rm = 627 km	 Om (deg)	 p

90 ..^....^........

a 1

FIG. 92. IMPACT AREA DEFINED BY

A PERISEL RADIUS OF 627 KM IN WHICH

ESSENTIALLY CONSTANT TIME AND PATH ANGLE
MAY BE OBTAINED



00 (dog)

90

IS O

om td q)

itR m (km)

258-\

T = 71.83
,4m=145.3

T = 71.83

Om-146.0

T = 71.84
-8^m =146.6

T = 71.85
-9m=127.2

T=71.84
9'm=126.5

T = 71.85
,9m- 127.7

FIG. 93. AREAS OF ESSENTIALLY CONSTANT PATH ANGLE

AND TRANSIT TIME AT IMPACT FOR

PERISEL RADII 2S8 KM, 627 KM, AND 1183 KM



i

fI

O %A
OD

t
O ..^WN

O E
... r
3NE

ate

-- r uns ^.^ %0
b	 V
O 0 4AOD	 _00 tf U/f Z

t N

Ph ^ V

Im
	

3E
N

	

	 WO S N

O	 D r _O	 a
e	 E = s
N	 .. Osr

w r ate..v^ t
c	 tn.
d OOz-
v	 d'

..	 a
E
-^	 O

v
oc

p	 O	 O	 Q	 0	 0	 0	 N	
O

,^	 co	 ry	 O

ru	 —
0.



O
O
Nti H

OC

ww
tic

N

Q? a cE
ti 3 '

JIM
Lai N1

V ^O
H
%^ a

O s
a) F N

a â-
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Ẑ
CL
w~^ru

0
r~i.
W

WW
Q
^'

O
es. • o-

v̂ ^-s
s^,

W
~1= s
W
Q

1m-wJ
F '=

a
W
^',^

O W sn-

CSC = zCy W

W W ^'
$ W^U) Q Lim

VO
J
W

s
xg W

1-
=.
1WO

W y►
W

W
=i

V
Lj F_

m Lil

^ j'^ Q
T
..ice

`.... F-
it

LLLJ Z LU
`'

Q

C

c

Z
0 ^`
0

Z
0

F-,Q^""

Q ^
Lv

U)

0 Q
•.-^ Z

x 
0

QF

I

171



ia.O N
^ V

OIL

^""

^„^
W

W

a/+

C6

O

on-
%A W V

W

o
z
S

ME
O
W

m

a
s

co
oc
0 N

Z O
V

HOC

too
a++i V_ ^ W

w
U) O s ~'

r

=O

aĉ
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