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Abstract

It is estimated that large quantities of lunar planetary pictures are
to be obtained from forthcoming experiments. The processing of pictures through
digital computer techniques offers one possibility for handling the large number
of pictures which are to result from these experiments. This report is the final
report on a theoretical and experimental study of techniques for processing

pictures.

An outline is preéenféd of-possible linear and non-linear theoretical
work which can be made applicable to processing lunar and planetary pictures.
The theoretical material of this report is limited to linear processing. The
material deals with exploiting the geometry of pictures principally through the
assumption of statistically stationary properties under translation and rotation.
Pictures are defined as functions of one index where the index is a 2-dimensional
vector corresponding to the 2-dimensional coordinates of the picture. This nota-
tion makes it possible to handle pictures in the conventional 1-dimensional nota-
tion of classical processing theory while preserving the 2-dimensional properties
of the picture. The report deals with representation of the pictures, linear
processing; matrikzprod&éts, correlation functions, stationary and symmetry pro-
perties optimum lihear prbcessing;‘trivialﬂprocessing, orthogonal preprocessing,L
minimum error, miﬁimizétion wiﬁh a constraint, preprocessing’ﬁith prediction,

quantization, and convergence of iterative computations.

The experimental work of this report tests the theoretical results for
complexity, usefulness, and correctness. An experimental capability was developed
capable of producing pictures with up to 750 elements in 6 shades of brightness
corresponding to the 6 faces of the cube onto which the shades of brightness were
pasted. This capability was then used in the experimental representation of the
Craters Eratosthenes and Archimedes in 15 x 19 fields of elements. Artificial
pictures were also constructed having controlled correlation functions. A number
of experiments were performed with these pictures to extract in an optimum manner
another desired picture. A variety of FORTRAN programs are included for eventually

performing the processing computations on a digital computer.

)
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Introduction

The successful extraction of significant data from lunar and planetary
television pictures requires the survey and comprehension of presently known tech-
niques as well as the development of new techniques particularly directed at tele-
vision processing. This report deals with theoretical and experimental work in
the field of processing plctures. Much of the material of the report comes from

19

3 previous reports .

The theoretical work is dlrected at producing techniques for extractlng
deta either before transmission or subsequent to transmission. Pre-processing of
television pictures has the possibility of minimizing the transmission channel re-
quirements or maximizing the use of the transmission channel when the channel is
fixed and inflexible. Subsequent processing of television pictures after trans-
mission permits an organization of the data into a form which is more meaningful
as a final product and also permits hypothesls testing for the extraction of hy-

pothetical data from the pictures.

The quantlty of data to be gathered from lunar picture experiments re-
qplres both automatic reduction and the automatic design of prototype reduction
programs ., Many of the pictures will be used solely for mapping areas where only
rough mape are.presently available. Scientific efforts, however, will be directed
at measuring the density distribution of crater radii and typing the debris around
the craters as well as within the crater. Knowledge of the crater structure has
the possibility of distinguishing between comet and asteroid impacts as well as
the possiblility of the recognition of volcanic craters. Similar crater studies

will be performed on the scientific experiments directed at the Planet Mercury.
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Geological studies will be interested in the uniformity and roughness of the

surface structure as well as the classification of the surface geology.

Theoretical Studies

Television pictures are normally thought of as a sequence of pictures
capable of displaying moving objects. The use of television pictures in lunar
and planetary experiments is much broader than this concept. Many of the pic-
tures will be individually @istinctive and will require appropriate processing.
Some of the plctures will be related to others through observation of substan-
tlally the same experiment from different directions and different times. These
sets of pictures require simtltaneous processing which is considerably different

than that required for the processing of a sequence of pictures of moving objects.

Many optimum processing technigues are presently known for the proc-
essing of telemetry. Very few of these methods have ever been used in the proc-
essing of pictorial data. The following theoretical areas develop a number of
techniques directly applicable to processing television pictures with particular
emphasis on the use of digital computation facilities for processing pictures
both before and &fter transmission. The areas are listed in order of increasing
dlfflculty; S T . |

Llnear Spec1al Fllterlng based on prev1ously measured correlation

functions can be used to preprocess data to reduce its quantity as well as to post-
process date to remove random irregularities such as noise and to enhance various
effects for possible later detection. Most of the theoretical work presented in
this report deals with this area. Some of the original work was done by Bell Tele-
phone Laboratories and is reported in references 7, 13, 14 and 24. Much of the
theoretical work in 1 dimension as presented in references 1l and 16 is changed
into 2 dimensions in this report. The concepts of rotation and translation have

an expanded meaning in 2 dimensions.
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Linear Learning Processes introduce the concept of measuring para-

meters from sets of hypothetically characteristic data. The development of an
intelligent learning process has the possibility of replacing the heuristic
guessing which has normally accompanied picture processing in the past. The
ideas of References 1, and 4 have the possibility of being applicable. Other

approaches are contained in References 8, 15, and 25.

Nonlinear Spatiasl Filtering and Learning is directed at processing the

inherent nonlinear properties of a picture. The shades-of-gray scale is defined
as the logarithum of the brightness scale to correspond tc the human preception
of relative changes in the grey levels rather than the absolute changes in the

levels. The brightness scale also has an upper and lower bound. In order to

handle these nonlinear effects and possibly others, it is necessary to seriously
study techniques of nonlinear processing. Much of the basic theory is contained
in Reference 27. Examples of the implementation of this theory will be found in

References, 3, 6, 9, 17, and 20.

Sequentlal Fllterlng of Pictures which are correlated with one another

in sequence is an expan31on of the amount of date used in the process1ng of a
51ngle point of a pilcture. The theory is appllcable to scannlng systems where
1t may be desirable to process the movement and change of objects in the pictures.

The material of References 12 and 23 has possible application.

Extraction of the presence or absence of data in a picture from only a
hypothetical knowledge of what the data is to look like is an area particularly
directed toward the discrete recognition or rejection of the presence of data in
the picture under observation. The techniques of this area are also applicable
to control of experiments and the acceptance of valid commands. The material of

references 5, 8, and 18 can be applied to this subject.
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Linear Analog Techniques provide an alternate means of processing pic-

tures. Most theoretical work results in discrete processing on a digital com-
puter. A number of multi-dimensional analog techniqués also exist which have
the possibility of producing simple linear equipment which may work at consider-
ably higher speeds than can be obtained with digital equipment. The original

work is contained in Reference 26. Further work is in References 2, and 28.

The following theoretical and experimental work develops and tests
a number of linear techniques to handle the two-dimensional aspects of pictures:
so that the goemetry of the picture can be retained in two dimensions rather in

one dimension where a considerable amount of theory is preséntly well known.

Representation of a Picture

The following theoretical development has 2 objectives: 1. to rep-
resenta picture and its processing in classical vector and matrix notation,

and 2. to preserve the 2-dimensional properties of the picture.

A sampled picture is represented by the row vector x having elements

X154 correspoﬁaing to the samples'of the picture where the indicies 1 = (1,1)

and i = (a,b) are,2-dimensibn&liVéctors._ In claséical notatidh, it is customsry

to write the elements of & row véctor seQuenﬁi@lly in oné row. However, in the

notation of this report a row vector is written in a geometrical form, each of
the elements of the index vector indicating the gecmetrical position of the cor-
responding row vector element. The elements of the representation of x then
correspond geometrically to the picture that they represent. A possible rep-

resentgtion of a row vector is then

* = [xl,i] = [Xi] = 1 12 %1z *u
X X X, X
21 o2 Yoz oy
31 T2 T3z 3

\&
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Linear Processing

A second picture y can be obtained from the picture x by linearly
weighting and adding the elements of x to form the elements of the picture y.

Notationally, the new picture is computed by the matrix formule
y =xh +k

where
\ = X, ., h, ., +k |
[yl:J] [§ 1L,i 'i,J l)J]

The summation is over all the values of the index i. In reality, this is a
double summetion. It is represented here as a single sum because of its simpli-

city and its similarity to the classical matrix notation of the matrix product.

Linear processing can be used to produce an isolated point in a pic-
ture or to approximate some desired result based on the data contained in the

processed picture.

Matrix Transposition

The row vector x is a degenerate form of a matrix h having elements

hi 3 vhere the indices i and j are 2-dimensional vectors. The transpose ht of
» . T e — .

the matrix'h,has.elsmentszhjfi?
e R

no= [n ] h” - [hj,i]

The transpose xt of the row vector x =[xl i]is defined to be a column vector.
b

LN

Note that the indices have been transposed, not the elements of the vector rep-
resenting the indices. The representation of the column vector xt is the same

as for the row vector x.

t e -
* = [xi,l] = [Xi] = i1 %12 *1z *u
X1 Fop %oz Xy
*31 ¥zp ¥z X3y
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The ith row of the matrix h is the row vector [hi j] containing
b
all the elements hi P for which i is the first index. In a like manner the
)
Jth column of the matrix h 1s the column vector[hi j]containing allthe ele-
b

ments hi . for which j is the second index.
2

The vector indices i = (a,b) and j = (c,d) are equal when their cor-

responding elements are equal. The addition of indices is also element by element.

cand b = d
(a+c, b+d)

equality of indices: i=3j &> a
i+j <—> k

addition of indices: k

The sum, f, of 2 matrices h and k in this notation is the matrix of

elements equal to the sum of elements having identical indices.

f=h + Xk

where

The sum of the two pictures X and y is the sample-by-sample sum of

the pictures.

Product of LinearrTransformations

.-The. seguential processing of pictures by the relations
y = xh-and then by z = yg
leads to the product of the matrices h and g since substitution of y into the

equation for z produces the relation

z = xhg = XcC

where ¢ = hg.
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Iti terms of elements, the matrix equations are

[yl,j} - [f Xl,ihi,j]
[zl,k] - E yl,jgj,k]

. 8o that by substitution -

Az } = Z I x, :h, :
[l;k] {J i 1,1 )JgJ;k]
= LE *1 ici,k]
i
where .

-

c. = Z h, .g.

[l,k] 'j 1)JgJ,k‘]

The product of the matrices is thus & sum over the column 1ndex J of the first

matrix h and the row 1ndex 3 of the second matrix g.

A sqgliare matrix h 1is ‘one which has an equal number of row and column

indices. The diagonal of a square matrix is the set of elements for which the

row and column indices are identical. ‘The identity matrix I is then defined to

be the one which is 1 on the diagonal and O elsewhere.

1l i=3]
I, .l= 5. . where &, .
153 1,] 1,4 0 i#;
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Correlation Functions

The cross-correlation functlon ¢&z between the pictures x and z

is defined as the matrix product.

) = xﬁz
Cz T

where the bar denotes the ensemble average of each element in the matrix product

xUz. Due to the transposition, there is only one index, 1 = (1,1), over which

the summation is performed.

e e
$¢&21i}j1—ﬂf' xi,lzl,ji' - xizéf

i
-~ -

It should be noted that the two pictures x and z can have a different number of
samples and are not restricted to being the same geometrical size. The cross-

correlation function of a picture x with itself is known as the auto-correlation

function.

|
xx 1,3 *i,1 1,3 = Xixji

L L

’_-_"‘l

.. In this 2-dimensional notation, the correlatlon functions have many of

the same properties as the cla551cal one—dlmensional correlatlon functions. 'I‘he1

transposition of the cross-correlatlon functlon between X and z produces the

cross-correlation between z and X.

— - %] !
% = l x0z * X, -Z b = {; x = z2X = ¢
Pz = l 1,171, 3 ! = P10, 1 7 = P

The auto-correlation is also its own transpose.

e i
et
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Statistical independence between the two pictures produces the re-
sults that the cross-correlation function is the matrix product of the mean
values of the pictures

¢&Z = Z =X 2 x and z statistically independent
where the mean value of the picture x is the row vector made up of the mean
value of each sample of the picture. In the particular case where the pic-
tures are statistically independent and one of them has & zero mean, the cross-

correlation function is zero.

©_ = O.

XZ

The auto-correlation of the sum of two pictures x and y is the sum

of the individual auto-correlations and the two cross-correlations.

t
= + + = + + +
[ (x+y)" (x+y) O * Oy + By T O
Where the pletures gre -ststistically independent. and one has a zero mean, the
auto—correlatién&éflﬁﬁe sﬁm"is‘then.just’the.sﬁm.of the individual auto-

correlation functions.

¢ = oLt e

The correlation function of a picture made up of independent ele-
ments all having the same standard deviation o and mean m is an example which

has many uses.

X, X, = 095, ., +mnm
i3 i,J
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The correlation function is then

2 2
gxx = 0L +mU

where I is the identity matrix and U is the unit matrix of all 1's.

The cross-correlation function between two pictures y. and y, linearly
1 2

obtained from pictures Xy and X, is a matrix operation on the cross-correlation

functions between x, and x..

1 P
b R L e TR R o

- t (x.h. + k)% (xh + X
‘pyly2 LA = Xhy k)7 (xphy + k)

% £ -t 6 - t
= b ‘pxlx2h2 thy X))k, + ko xh, + Kk

In the case where the pilctures Xy and X, have zero mean the cross-correlation

function ¢& y has the particularly simple form
1va : -

@ o = B by kK
B T MBeg TR R

A further simplification occurs in the computation of the auto-correlation func-

tion ¢3y,0f the picture y obtained from the picture x when the picture x is made

up of independent, zero-mean elements. In this case, Oy = 021 so that the auto-

correlation function of the picture y is

© = ohh + k'k.
vy

An example of the use of linear processing theory is in the construc-
tion of an artificial picture from a random number table. Artificisl pictures
are often used in experiments where it is necessary to know and control the

properties of the pictures.
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If it is desired to construct anartificial picture with a prescribed
auto~-correlation function ¢§y’ a one-dimensional technique is available for
symmetrically factoring the matrix ¢3y to obtain a linear process h which will
transform a statistically independent picture into an artificial picture having
this correlation function. The two-~dimensional implications of this technique

are not presently known.

A later section describes experiments in artificially creating corre-

lated pictures from rendom number tables and linear processing.

Positive Definite Condition -

An ensemble of pictures x is defined to be linearly dependent whenever

there exists a nontrivial linear process h of the picture x sabout its mean x

which will produce a one-element picture y = x'h having a zero correlation

function.
2
= = 0.
Pyy =7
7 X' =x - X.

A set of pictures in which the same two samples are aslweys identical
~1s &n example of an ensemble of lineer dependent pictures. - When the ensemble of .

‘pictures is not linearly dependent, it is defined to be linearly independent.

In the case of an ensemble of linear independent pictures, every linear process h

broducing a one-element picture has a positive valued correlation function

®

t
= h ~..h » O for every h.
NAS QX‘X' v

An auto-correlation matrix thus is defined to be positive definite

whenever it is obtained from an ensemble of linearity independent pictures.

Where the matrix is positive definite, the determinant l¢kx| will be non-zero.
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The implication of the plcture x belng linearly dependent is that at

least one sample x, is essentislly computable from the rest of the picture. By

i
definition, if x is linearly dependent, there exists a non-trivial h such that

p = f %3847

Where

Y5 = 0.
This implies that y is essentially zero.
Y L= Qe
Since at least one of the elements of h has to be non-zero, assume that

hl 1 # 0. This produces the result that
2

1
X, 9 Th o *1,1 M1

1,i
L1 Py 1411
Thus, in the case where the auto-correlation matrix ¢&x has a zero determinant
|¢ | = 0, the auto-correlation matrix is non-positive definite so that the

samples of the picture are llnearly dependent. At least one of the samples

'can be produ _ ffrom the others. In “the case "of an auto- correlation function

¢ _having a zero determlnant ]¢> | = 0, 1t is always possible to drop the de-

pendent samples with a linear process h so as to produce a picture w' = . x'h with
a smaller number of linear independent samples and an auto-correlation function

¢§'w' which is positive definite and having a non-zero determinant.

|‘pW'W'| ?é O'

The new picture w' will contain all of the information contained in the ori-
ginal picture x since the linearly dependent samples are computable from the

linearly independent samples.
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Stationary Correlation Functions

The initial definition of the correlation function

¢§z - fl Zj]

permitted each element in the matrix sz to have a different value. In many

practical situations the correlation function will be independent of both trans-
lation and rotation, and dependent only on the distance of separation between

the elements xi and Zj'

' The correlation function ¢§é‘is'&efiﬁéd‘ﬁdvbe stationary when the ele-
ments of its matrix are functions only of the difference between the indices. A
stationary correlation function is thus independent of translation but not of ro-

tation. Whenever ¢ _ = Xy, is stationary, there exists ¢§z(k) such that

mxz(k) = X,%, . 1s independent of the index 1. The addition and subtraction of
indices is a vector additim and subtraction. A stationary cross-correlation func-

tion satisfies the relation

] - ] - ) < o]

The stationary auto-correlation function ¢&x satisfies the relation

‘Dxx(k) = ‘pXX(—k).

\7
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Symmetric Correlation Functions

The four elements x of the picture

117 %120 %310 *3p

X4 X5 xl3 T
21 o0 ¥oz
X X X

o Twe K3

normally have .& correlation function such that

xll x12 = XBl x52 horizontal
xll X}l = xl2 x52 vertical
X314 x32 = X, le diagonal

The first two relations are stationary relations. 1In the horizontal relation
the difference in indices (1,2) - (1,1) on the left and (3,2) - (3,1) on the

rlght, are the same. The thlrd relation is not a stationary relation since

the dlfference of the*lndlc s on the left 1is (2, l) and on the right (2, 1)

"In order t0'1nc1ude the dlagonal symmetry of the correlatxon, a sta—
tionary correlation function is defined to be symmetric whenever the correlation
function is a function of the magnitude of the elements of the differences be-
tween the indices. That is, if the stationary correlation function ¢(k) is sym-
metric then ¢(k ) = w(kz) whenever k, = (al, bl) and k, = (a2, b2) such that
'a | = |a , and lbl| = |b2|. When this property holds for the entire correlation
function, it is said to be symmetric.

T
s
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Distance

Further restrictions can be placed upon a stationary correlation func-
tion by specifying that the correlation is only a function of the distance be-
tween the elements being correlated. The distance d between the picture elements

having indices i = (11,12) and j = (jl,jz) is defined to be

4=\l - )% g - )

Two correlation elements are defined to be equal whenever they are the correlation

function of Eicturg_elgments;separated by the same distance.

A further modification can be made by specifying the distance meésﬁréd
in terms of an ellipse. This modification should have some use in the considera-
tion of scanned television pictures where the scanning process introduces a dis-

tortion into the correlation function.

Stationary and Symmetric Matrix Products

It would seem intuitive that the matrix product of stationary and sym-
metric matrices would also be stationary and symmetric. It is fortunate that
-this 1s the case since it makes it possible to construct invariant symmetric
‘processing Gevices which are a function -of the distance and direction from the

particular picture element which 1s to be constructed.

Whenever the matrices h and g are stationary, their matrix product

c = hg is also staticnary. That is if

. A
- |
{Cik] = l‘? P58k |

where h is a function of the difference j-i and g is a function of the difference
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k-j, then ¢ is a function of the difference k-i.

o

®ita,k+a Lzh

= Zh
Lj

[

In terms of the differences between the indices k-1 =

H@jgbkm]

' L RE
ita,] +a gj‘+a,k+a]

r and k-j = s the matrix

product becomes the familiar convolution formulas.

c(r) =

E h(r-s) g(S)]

S h(s') g(r-s')] |

A slightly more useful formular in computation is

c(r) = Zh(r+s) g(-s)
| s

Z h(-s) g(r+S)]
LS

Thus to compute the element c(r), the field of elements of g is reflected through

the origin and correspondingly multiplied and summed with the field of elements h

'startiﬁgiéﬁfthe”appropriate:e}éﬁent hr).

0 Bo,1
h = h-l,O ho,o
0 hOo"‘l
the field of g is reflected to give
[0 0
g(-s) = |8 o &0
€1,1  %o,1

For example where the matrices are

° 7 ) '50,1 ‘ gl;l g
By o 8=- 10 8,0 &0
0 o o 0
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The term ¢

0,0 of the product is obtained by directly multiplying the
fields and summing. '
0.0 By 10 0.0 7|
o0 = h108,0 Po,0 8, Pa,0°
L_? €1,1 Bo,-1 8,1 ©°° B
= hy 08,0 % Pl1,0 81,0 T Bo,-1 80,1

The calculation of the element c1 1 of the product is obtained by moving
>

the field g(-s) to the element hy ,, multiplying the fields, and summing.
>

0.0 h
0,1 1,0 0850
- h . O h
€11 -1,0 0,0 1,1 By 0 80,1
» h
0.0 0,-1° 0.0
= h5,0 81,1 * Bo,1 81,0 T P10 80,1
Further calculations would produce the matrix
. ‘0,2 C1,2
©1,1 %,1  S1,1 %2,1
C =
c.1,0  %,0 %,  %2,0
€0,-1  ©1,-1

where only the non-zero terms have been indicated.

These are convenient formulas for both hand computation and
machine computation.

From the matrix expression it can be shown that the product of two
matrices h and g which are their own transpose (ht = h and gt = g), that the

product ¢ = hg is not necessarily also its own transpose.

ct=gtht=gh74hg=c
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However, when the matrices are dependent only on the difference between their
indices and thus stationary, the product will be 1its own transpose when the
factors are thelr own trensposes. A stationary matrix h = h(s) is 1ts own trans-

pose n® when h(s) = h(-s). Thus, from the convolution formulas

[c(—r)] = h(-r-s) g(sﬂ

 h(-r+s") g(-S'ﬂ
, h(r-s»*g(s')]

[c(r)] :

where the filrgt step is the change of variable s' = -s and the second step

-
=

It
] wl>) oy

t

is the use of the self transpose property on the factors h and g.

A similar result is that the product of stationary symmetric matrices
is also symmetric. A stationary matrix is symmetric when it is invariant
under reflection of any of the elements of the vector representing the index
difference. That is, where the indices s = (a,b) and s' = (-a,b), the sta-
tionary matrix g = [g(s)] is symmetric in the first dimension when {g(s)] =[g(s')].

For example

0 3 o)
0 2 0

is symmetric in the horizontal dimension and not in the vertical dimension.

Where both the stationary factors of a product have a particular
symmetry, the product also has that symmetry. In particular where the indices
are

S

Ii
]

(a,b) r = (c,d)
s' (-a,b) ‘ r' = (-c,d)

the matrix product is

e

I
i

"

"
—
o
—
K
—
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where the first step 1s a change in the order of summation and the second
step is the use of the symmetry property of the factors h and g.

It should be noted that fully symmetric stationary matrices have
the self transpose property. Thus, in the matrix product, the fields can be
multiplied directly together without a reflectlon where both of the factors
are symmetric in both dimensions.

Construction of a Correlated Picture

An interesting example of the product of symmetric stationary
matrices is the processing of a zero-mean picture x whose elements are un-
correlated to obtain the picture y = xh. The correlation function wxx for

the picture x is
2

Cexe = C I

The correlation function ¢@Y of the second picture y is then
t
ﬁDW—h e nh

02 ht h

A specific example of a stationary symmetric matrix h is

w

g
i
£
%

w

The matrix multiplication then profuces the correlation. function

w
owe 2w o
© = o e ow  1w© 2w w2
Yy
2w2 ow 2w2
2
D |

This correlation is then both stationary and symmetric. The
normalize correlation is plotted in Figure 1 for several values of w.
The maximum ) é) occurs for w = 1/2.
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Figure 1, Theoretical Correlation as a Function of
Distance for various Weighting Coefficients of
the Linear Process y = xh

Experimentally the uncorrelated picture of Figure 2 was processed

with the stationary processor

1/2 ]
Copem - 12 1 1/2
o e

corresponding to the weighting coefficient w = 1/2. This processing produced
the correlated picture in Figure 3. The smoothness of Figure 3 is an indica-
tion of the correlation in contrast to the sharpness of the independent picture

of Figure 2.
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Figure 2. An Uncorrelated Picture

Figure 3. A Correlated Picture Obtained by Processing the Uncorrelated
Picture of Figure 2

~
"
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Desired Pictures

Linear processing of the picture x produces another picture y which
may have one sample or many. Normally, the processing of the picture x is
directed at obtaining a third picture z, which is known as the desired pic-

ture, as in Figure L.

" Fxperimental
. Ficture x

PICTURE  }———— Processed
PROCESSING Picture y

Desired >
Picture 2z

Figure 4. Picture Processing Directed at
Obtaining the Desired Picture z.

Exact construction of the desired picture z from the picture x is
normally prohibited by the inherent random differences existing between x and z.
The error picture in the processing is defined as the difference between the

- plctures y and z.
e = Y=Z.

The mean squared error of each sample of the error picture is the

diagonal of the auto-correlation of the error picture

0 = (-2)° (y-2)

Optimum Processing

One approach to the construction of a picture y as close to the pic-
ture z is to make the squared error between each sample of the two pictures y
and z as small as possible. In the case where the process is a linear process,
the process can be represented by the matrix relation '

¥ = x'h'+k
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where h and k are optimum matrices to be specified and x' is the difference
between the picture x and the mean picture x, x' = X - X. Variation of the

mean square error

0., = (7-2)° (y-2)

produces the.relation

%

e = 2 (Bht x'C4 Bkﬁ) (x'h + k - z)>
- ot (@, hm g )
x'x x'z
+ 23k° (k - 7)
The two relations
m&'x'h = ¢&'z
k = 2z

are sufficient to minimize each diagonal element in the error correlation matrix
gge. This implies that in the mean square, each element of the produced picture y
i’ ag: close to each element of the desired picture z as can be pOSSible usiﬁg )

linear processing.

The processing which produces a minimum mean squared error for each
element is thus
-1 _
y = x' ¢&'x' Qx'z *z
This solution assumes that the auto-correlation wx'x' has an inverse. In the
case where the auto-correlation ¢§'x' has no inverse, the determinant I¢&'x'l
is zero indicating that it is not positive definite. 1In this case, there exists

a linear process h which eliminates a set of samples linearly dependent upon the
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rest of the samples. The new set of linearly independent samples w contains
all of the information of the original set of samples. The optimum process

is then
-1 a
1
w ¢W'W' (PW:Z + 2z

e
i

t -1t -
x'h [n <px,x,h] h'Q ., +2

where use hsas been made of the relation

Simple Example

A simple example of linear processing results from the consideration
of pictures z which have had statistically-independent zero-mean noise added

to them. The picture to be processed is then
X = Z +n

and the desired picture is z. The auto-correlatlon of the picture is the sum

of fhé"éﬁﬁ64éorrelafiﬁﬁ“Tunctibns"of"the desired picture z and the noise n

U YR S N

z is

t
= X2z =22z +ng=
¢kz ¢zz

The mean value of the picture x is equal to the mean value of the desired

picture =z
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The optimum process is thus,

1 -1 -
Y o= X (@ @ )T @ 2
= ' ;l -1 v
= x' (IT+@v, @ ) +z
where
z' = z-z and x' = x-X,

For small values of noise the process is approximately
DR TSR TR, (IR
— oyt
y = X X (pz'z"pnn

This is a useful result in picture processing since it essentlially represents
a slight "touching up" of the original picture x by the picture -x' ¢£%Z, N
Under normal operation of the transmission facilitles, nolse is usually small and

statistically-independent, zero-mean.

At the other extreme, where the picture is predominantly lost in the
noise, the optimum processor is

_ oy L
Y= X QG T

In the case of a one sample picture, the processing should be

where

O, ., = [pll] and @ = [oll] .

3
s

L o
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In the case of a two sample picture, the process 1s the following

operation in terms of classical matrix operations.

S T ) M, e —
bryovp1 = 7p Leloxgd [oge  +0p  -logp + o) (o) eppt [7,5,]

+ O

(oo v 95) Ay 1) {|P12 P

where
20 = (pgq +0..) (pp +0,) - (py + 0,,)°
11 7 %1/ WPop T % 12 7 %0
and
o P11 Pz o - 11 ‘12
z'z! - nn o .

P1o Pop 12 ‘o2

 Stationary Sotutions
In the case where the experimental picture X and>desifed picture Z
are stationary, the processing device using the optimum h and k is also a

stationary device. Under the stationary condition, h is found from the solu-

tion of the set of equations

By (s-7) B(r) =@, (5)

X'z
or
z wX'X'(—r) h(I'-i'S) = (pXIZ(S)
r

&
Joaad
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Since there is only one element in the stationary matrix k, the ma-

trix k is symmetric. Also, since the matrix h is the product of the matrices

Dyryr
symmetric. In like manner the matrix h will be a function of distance when

-1 , . . . . : ,
and Oprys it will be symmetric when the matrices Byt gt and @y, are

the matrices ¢x'x' an@.¢x,z are functions of distance. Further simplification
results in the equations for h where the matrices h"px'x' anﬁ.¢k,z are funa=
tions of only distance. All the h's at a particular distance are equal and

thus require only one equation. ~That is the set of equations

(s)

Pyl g

B (e - )l =

needs to be solved for only distinct distances in the index s.

In particular, for the auto correlation matrix

r‘ﬂ/g <pl (p/Q T
P br Y% @9
‘P/Q Y P
_ -

and erosscorrelation matrix R .

= [0V}
wx‘z aﬁ. o wl

Lt

n n
by
h = hy B h
by
_ J

»

Al
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are @b, * Mpihl = @,
oy, * (o, + 20, +p) by =0
Solution of these equations produce the coefficients
_ % o, + 20, * @) -hojg,
0,6, + 20, +0,) ~lo)®

h
o]

1% " Py

l'fipdgpd+12¢y2 * ab)*_hgﬁz'

h

Generalization of this solution indicates that all coefficients at
the same distance are equal. The number of simultaneous equations in the solu~-
tion for the coefficients is equal to the number of distinet distances. This
is a particularly practical result in that it indicates that the first step
in the linear processing the picture x is to first add all the samples at a
particular distance. This produces a computational reduction of about four
for rectangular grids and up to twelve for hexagonal grids. The hexagonal

matrix of Figure 5 has a computation reduction of 7/2.

FIGURE 5. A Linear Processor Based on a Hexagonal Matrix
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The coefficients for the hexagonal linear process are

n - o o, + 20 * 205 + @) - 6010

- 2
© (PO(QDO + 2‘101 * 2@/3 + 902) - &pl

0Py~ Sh

P = (@ + + 20, + ) 6@2
@, \P, 2‘pl 90/3 ¢2 - 1

Minimum Error .

A”miﬂimﬁﬁmsdﬁggé&“efror’1s pfoaﬁééd fof“éﬁéfy sample in the linear

processing

]
™
=
+
N

y

where

-1
¢%'x' w&'z

]

h
The use of any other process
= x! + (z +
y=x"(h+ ha) (z,» kﬁ)

produeces the auto-correlstion of the error picture

0o = ele = [x'(n + ha) + (z + 1;8)-.7,]JC [x'(h + hs) + (? + ks‘)-z]

where the diagonal entries are the squared sample errors. After some reduction

with the expression.¢k,x,h = Qpry the error is
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=t ty (= -t ty = =t /-
Coo 0 * (27 4k (24 kg) - (27 +k )z -2" (2 + k)

t t t t
(h + h8 ) ?x'x' (h * hS) - (h + h5 ) Oty ~ qozx'(h + h6)

t

t
+ (h + hy

-t - -t £ty -
1 1
) x' (z + kS) + (27 + Kg ) x' (b + hS)
; ht h +h h. + k k
= Pyrgt Pyrx! & Pxix''s 5 78

Due to the positive definite condition, the diagonal entries of the term
5=Oandk6=0.
Thus, for a linear independent picture  x', the mean error is uniquely ob-

B ey s o C SR
h8 ¢k'x'h6 and k5 k6 are always positive except where h

tained by the optimum process

y=x'h+2z

where
ot nd x' = x=%
h = Opryr Pyrp 2nd X' = x-x.

The minimum -mean error is the diagonal of the expression

t,‘

min ‘pée = ‘pz'z"; -h ‘pxlxlh
-1
_(pz'z' = Py (Px|x| ¢x|z
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In the case of independent additive noise, the minimum error is
min = - (cp + )_l
('oee Py Byt z'z' © Pan Byrg

- ( v )t
Pprgr \Pyigr TPy Pan*

)-l

= @ ((pz'z' +(pnn Pyrye

= h
®nn
" The minimum error in the one sample picture of a previous section is

2 Punx
min P11 * P11

In the two sample pictures, the minimum error is

— o. (0,,0,.-0,) + .. (p o, - 02 )
2 _P13Y913%27%2 11 ‘P11Po2 T Pap
1 min ~ 2
+ -
(ppy * 037) (pyp + 0pp) = oy + 0y5)
2 2 \2
e o PoplOy39pm0) * 9pp (P11Pp, - P1p)
and e, L, = ,

T . , 2
é?iijf opp) (g *+ 0pp) = (pyp + 0pp)

In the case of stationary correlation functions in rotation, the minimum error

for the two coefficient rectangular grid is
TN Poe = wz'z' - woho - hwlhl
and for the two coefficient hexagonal grid,

i e, = - -
T Pee = Ppryg oho 6wlhl

AV
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Trivial Processing

The uniqueness of the solution to the optimum processing can be used
to identify the type of pictures which require no linear processing other than
possibly a change in scaling. The linear process which is restricted to a change

in scaling the original picture is

y=x'd +z

where d is a diagonal matrix of constants which amplifies each sample independ-

ently. In the case where the matrix 4 represents the optimum linear process,

o =1 : -
B | =‘¢}'C'X, .{px,z.
Since d is the unique solution, the only pictures for which a change in scaling

is the optimum process are where there exists a diagonal matrix 4 such that
¢&'x’d =%z

This means that a necessary and sufficient condition is that each column of
Cpr g is some multiple of the corresponding column of Pypryg”

[ith column of ¢&'x'] d; = [ith column of ¢&'z] every i
‘The mean error in this case is-

.,—5 i ; :.
®min = Pzrzt T ¢ Fx'z
As an example, the processing of a picture z which has added to it correlated
noise having a correlation function Pon equal to a multiple k of the correla-
tion function Py of the picture z would be processed by a simple change in

scaling. In this case,

Pyrxt = Pgige +'(pnn = (l+k) Corgt

>
e
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and
QDX,Z AR =(pz'z‘

so that the optimum process is

1 -
p— 1
Yy =Xy T2

the minimum error is then

2 _ o
—emin T 14k m%'z?

Orthogonéi Pfé;érdééséigg‘ 7

Another approach to linear processing results from the construction
of an orthogonal maxtrix @ column-wise composed of the normalized eigenwvectors:

of the correlation matrix:¢&ﬂx,. In particular,

<pX'X' Q = Q)
where )X is the diagonal matrix of eigenvalues Ai corresponding to the eigenvectors

q, -

5 The normal*orthogonal property of the eigenvectors indicates that

Q Q I Or Q Q?:}i?;,

w-_L&near pre-processxng Qf the plcture x with the matrlx Q produces the

picture xq = xQ which has the auto-correlation function

t Tt T
qoquq=quq=QXXQ=Q O @ =X

and a crosscorrelation function
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Subsequent optimum linear processing of the new picture xq requires that

-] -
LRSS

the mean error is then

‘The use of orthogonal processing appears to be of use in pre=

proce351ng plctures to obtain the _picture xq, which is composed of samples

having zero crosscorrelation and auto-correlatlon'ki. Presently, the experl—'”l"?*

mental use of this type of pre-processing is limited by the necessity to ob-

tain the matrix of eigenvectors Q.

A Stationary Example

A particularly useful experimental example of stationary linear pro-
cessing is the recovery of a correlated picture from a composite picture of
the correlated'picture added to an uncorrelated picture. The composite picture
could be: the»resalt of video transmission of a correlated picture being cor-
-~ rupted by adaitivs noise. haxlng & frequency bandwidth correspording to the
sampling rate of the pic¢tiire. Another example is the recovery of the uncor-
related picture from the composite picture of the sum of the correlated picture
and uncorrelated picture. This second situation corresponds to a high-grade
picture being corrupted by a fluctuating exposure level resulting in a corre-

lated bias being added to the picture.

A\
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The correlated picture to be used in this example is the artificially
constructed one of a previous example. The picture had zero-mean and the sta-

tionary correlation function

- /b -
1/2 1 1/2
@, = o 1/4 1 2 1 1/k
/2 1 1/2
- .1/4 o

where w = 1/2 was used in order to produce the highest value of normalized car-
relation at a distance of 1 sample. The uncorrelated picture to be added to
the correlated picture also had zero-mean and a stationary correlation function

composed of only one non-zero element.

0
¢é = 02 0 a2 0
0 N

Since these two piétures are independent of each other, the composite picture
made from their sum has a correlation function equal to the sum of the corre-

lation functions ®q and ©5-

B 1/L ]
/2 1 1/2
2 2
Prrgr = O 1/4 1 2+a 1 1/4
1/2 1 1/2
_ 1/4 3

The composite picture was then used to recover either the correlated picture

or the uncorrelated picture.

<y

W
g
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Since the pictures are zero-mean and independent, the crosscorrelation

Oyry between the composite picture x and the correlated picture zl is ¢i’ the

correlation function of the correlated picture. A similar relationship holds

for the independent picture Zg-

¢&zl = ¢l ¢&z - ¢2

The matrix equations to be solved are then

Dpiygtd =0 o i=l,02

* Since the correlstion functxons Bory , and ¢, are statiopary and symmetric, the ST

solution h to the equations is also statlonary and symmetric.

= hy n
h h h
/2 1 /2
h = h, hy By by h,
h h h
/2 1 /2
b

By the direct application of ‘the method for matrix multlplication the follow1ng

set of equatlons is obtained:

(2 + ag) h + L hy + 2 3/2 + h, =2 a®
h o+ (13/4 + a2) h, + 2h, + hy =1 N 0

1/2 b+ 2h + (5/2 + a°) '?/2 + h, = 1/2 0

1/4 b+ hy + ‘hyz + (2 + a%) h, = 1/k 0
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Only one equation is needed for each of the elements of the matrix h.
The other equations are identical to these and thus produce no new equations.
Since the solution of this set of equations is the unique solution to the opti-
mization of the linear processor, elements of h are zero at greater distance
than the extent of the correlation functions Oy 1yt and Opry of the experimental

and desired pictures. In this case

Experimental Results

Figure 8 is the composite picture representing the addition of the"
correlated picture, Figure 6, and the uncorrelated picture, Figure 7. The addi-
tion was performed with a2 = 1 so that the correlated picture had a Poo = 202,
the uncorrelated picture had a Boo = 02, and the composite had a oo = 30 .

The correlated picture is thus the dominant picture in the composite picture.

» The recovered correlated picture is Figure 9 and the recovered uncor-
related picture is Figure 10. As to be expected the dominant correlated picture
is recovered wlth better relatlve preclsion than the uncorrelated picture. It
is 1nterest1ng to note the uncorrelated appearance of the recovered uncorrelated
-picture from the hlghly correlated composite plcture.'

The minimum recovery error for linear processing of additive pictures

is the diagonal of the correlation function of the error picture.
-1
Poe =91 (0 +0,)7 g,

= o, n(2) _ o ey

(2) . i (1)

where h is the optimum processor used to recover the second picture and h

is the optimum processor used to recover the first picture. The recovery error

S
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Figure 6. Desired Correlated Picture zl Figure 7. Desired Uncorrelated Picture z
2

_ Figure Q:_WCQmposite Picture x of the Sum of the Correlated Picture zl and

' Uncorrelated Plcture z,

Figure 9. Recovered Correlated Picture Yy from the Composite Picture

Figure 10. Recovered Uncorrelated Picture y2 from the Composite Picture
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is the same for either picture recovered. The correlated and uncorrelated
pictures were both recovered with a theoretical error of .5202. However, the
desired correlated picture had a variance of 202 while the desired uncorre-
lated picture had a variance of 02, which indicates a better relative recovery

of the correlated picture.

Behavior of the Linear Processor

A general solution of the set of linear equations of the optimum
processor. can be worked Out through some fortunate cancellatlons and factori-

zations. For the recovery of the correlated plcture, the h's are

(1) 1  e2a3/) (1)
h = + h
© 2%+l a®+1 1
(1) al (au + 9/&&2 + 11/8)
h) " =g g T 5
a + 31/ha” + 131/8 a” + 205/16 a° + 95/32
(1) _ 8°(a® +3) (a° - 3/4)
Bt = 6 T
h(a + 51/4 a” +131/8 a” + 205/16 a® 4+ 95/52)
1) @ (a +1/2) (a° - 5/#) . o
by =773 n 2
L(a” + 31/4 8 3 131/8 a” + 205/16 a° + 95/32)
2
_a + 1(2 h
o +3 /2
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The h's for the recovery of the uncorrelated picture are closely related. They

are
(2) a® 2 - 3/h
hO = -—-—-—-2 + 5 hl
1 +a a + 1
(2) | (1)
hy © = -hy
n2 - ()

2 R

hée) _ _hél)

As to be expected the sum of the two recovered pictures y, and y. is equal to
Sl ’ 1 2

the sum x of the correlated piéture Zq and the uncorrelated picture z

X
(1) (2)
+ = x! 1
yp v, x'h + x'h
. -1 + xlen -1
XPprxr P T X Py P
b ’.‘v— . ‘-1' -, . o
= X' (0 + @)
= x!
= zl + 22
where Opryr =9 + ®5
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The behavior of the h's used to recover the correlated picture is
plotted in Figure 11. Where the additive corruption is negligible, the pro-
cessor relies principally on the plcture element being processed to produce
the processed element. (ho ~1, b~ h‘/.2 ~ Dy 0). At higher levels of
corruption the processor relies more on the elements near the element being

processed rather than on the element itself.

The behavior of the h's in the recovery of the uncorrelated picture

ié plotted in ?igure 12. It épﬁeafs that at all levels of corruption, the

. R
For recovery of either plcture the theoretlcal recovery error € 1is

computed to be

e2 agh(l)

SRR SRS T NS

a -+ 1 a +1 1

(1)

recovered correlated plcture. If b is optlmum, the - varlance of the recovered

Figure 15 is a plot of this error, a?h s normallzed by the variance of the

picture can be calculated by the formula

diag @yy diag (wzz - ¢ee)

202 - a2h (1)

o
The variance of the uncorrelated picture, a202, normalized by the variance of
the composite piéture (2 + a2) 02 is also plotted in Figure 13 as an indication
of the amount of error present in the composite picture x from which the pro-

cessed picture y is obtained.
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FIGURE 1%. Normalized Recovery Error

Processing the Crater Archimedes

. Further experimental work was performed on-a sampled picture of the
cratér Archimedes, Figuire 14. PFigure 15 is a composite picture of the crater.
and additive noise of half the variance of the original picture. Optimum lin-
ear processing then produced Figure 16, which appears to be a decided improve-

ment over the corrupted pictdre of the crater.
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Figure 1k. The Crater Archimedes in 285 Samples of Six Shades of Brightness

Figure 15. Corruption of the Picture of Archimedes with Additive Independent
Noise Having a Variance of Half the Variance of the Original
Picture

Figure 16. Recovery of the Picture of the Crater Archimedes with an Optimum

Linear Processor N



SPACE-GENERAL CORPORATION SGC 203R-L4
Page 46

The picture of the crater had the normalized correlation function

) .08 h
.32 .54 .32
CH .08 .54 1 .5k .08
.32 .54 .32
.08
- »

which is plotted in Figure 17 as a function of distance.
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Figure 17. Correlation Function of the Crater Archimedes
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Addition of an independent noise picture with a variance of half that
of the original picture produces the following set of equations for the deter-

mination of the optimum processor.

1.50 b +2.16 h, + 1.28 h/? + 0.32 h, = 1.00
0.54 h, + 2.22 h, + 1.08 h/.2 + 0.54 h, = 0.54
0.32 h + 1.08 h, + 1.66 h/,2 + 0.64 h, = 0.32
- 0.08 b+ 0.54 n, + 0.6k B * 1.50 h, = 0.08

which has-the.sodution .

h, = 7
hy = .12
h, =.

o Ok

h, =-.03

The large value of ho indicates a rather poor suppression of the error. However,
the experimental results indicate a satisfactory retention of picture features.
Perhaps, then, mean-square erfor is not a good indicator of damage done to a

picture by additive noise.

Suppression of Errors

The experiment with artificial pictures produced very little suppres-
sion of independent additive errors. This is to be expected when it is considered
that the nunber of processed samples was quite small and the picture was only

correlated over a small distance.

An upper bound can be obtained for the amount of suppression of addi-
tive independent noise by assuming a highly correlated desired picture. The
correlation function of the desired picture z 1is assumed to be 02 times the unit

matrix of all 1's. The correlation function of the independent noise is assumed
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to be 02a2 times the identity matrix of a 1 on the diagonal. All the equations
for the coefficients of the processing matrix h are identical so that all the
coefficients are equal. The equation for the single coefficient is then

(n + 52) h =1 or P
[e] O
n + a

where there is a total of n coefficients in the matrix h. The variance of the

error in the optimum recovery is then

7 _ a8 2
SRS aa

which should be normalized by the variance of the recovered picture

2 8 >
= g = o
n+a
n 2
= o}
n +a
Thus
A 2
£ _ &
n
¢3Y

In contrast, the variance of the error a202 in the original picture

normalized by the variance (l+a2) 02 of the picture is

\ﬂ\ '
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These two relations are plotted in Figure 18 for a processor operating on five
samples. A suppression of the independent nolse by a factor of 5 in variance
is obtained for small relative levels of noise. As the noise becomes larger

the linear processing breaks down and produces no improvement in the relative

quality of the picture.
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i paie 18, Theorebieal Limlts to the Suppression of Additive
© T "Notse by a-binear Processor. Operating on 5 Picture Samples

The upper bound on the suppression of independent noise indicates
that the suppression in magnitude of error is inversely proportional to the
square root of the number of samples. Thus, in order to obtain a suppression

in magnitude by a factor of 10 the processor requires at least 100 samples to
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reconstruct one element in the picture. The actual number of samples is pre-
sently unknown, as the bound given above is computed under the assumption of

a perfectly correlated picture. Whether or not it is possible to theoretically
compute the error for a more realistic type of correlation is unknown. The

computation will require a trick in the inversion of the correlation matrix.

Minimization with a Constraint

~ In the optimum processing of pictures it is often desirable to scale
the resultant pictures to a particular contrast by having the standard deviation

of the resultant. pic

ygr¢>equal to thg»standard deviation of the desired picture.

Minimization of the mean square error between the resultant picture and the de= -
sired picture subJject to the constraint that the resultant picture have the same
standard deviation as the desired picture results in a linear scaling of the

picture produced under an unconstrained optimization.

The standard deviation is given by the diagonal terms of the correla-

tion function of the zero-mean variables.
diag. ¢&,y, = diag. Oprpr = constant
The minimization is then of ‘the diagonal elements of the matrix

U = @ee + ) goyly,

where X is an undetermined constant and Cee is the error correlation matrix

O = (v - 2)" (v - 2).
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The assumption that the output y is obtained by a linear process on the input

x requires that

y =x'h +k y' =x'h

where x' = x-x and y' = y-&.

Variation of the matrix U produces the result

3V = a[(y - 2)%(y - z) + A y'ty‘]

e . . ,.r .
B L R o x'h]
t
= 2 23h [‘pxr}(' h(l+>\) - ‘vaz]
+ 2 akt[k - Z]

A sufficient condition for zero variation of the diagonal elements of the matrix
U is that

. gax,x,h(l'i'l) (Px lg

and k =2z

This is the same solution that was obtained for the unconstrained optimization
except for a scaling of the output pictures y, producing the desired standard

deviation.
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Pre-Processing with Prediction

One method of transmitting a picture with a sequence of independent
samples, is to sequentially scan the picture, predict the next element to be
scanned, measure the prediction error, and transmit the error from which the

picture can be reconstructed with a similar prediction.

Theoretically this method will precisely produce a replica of the
original picture. In those cases where 1t is possible to do high quality pre-
diction, considerable reduction -can be obtained 1n the total amount of data

which must be transmitted.
© Quantization of the transmitted sequenCé'of errors introduces a gquan-

tization drift into the reconstruction process. This drift prevents the system

from running for any reasonable length of time without having to be reset.

This section describes a method of prediction and reconstruction from
quantized errors in such a manner as to avoid the quantization drift in the re-

construction of the data.

The picture is to be reconstructed as in Figure 19 where the next
element in the scan is predicted from the previously reconstructed picture and

modified by adding the error to this prediction.’

Quantized » Recovered
Error j Addition Picture

Predictor w

Figure 19. The Reconstruction of a Picture from Quantized
Prediction Error
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The prediction error is obtained as in Figure 20 by qﬁantizing the
error between the actual picture and the predicted picture based upon a recon-
struction from the quantized error. The picture is first recovered in the same
manner as it is reconstructed in Figure 19. The prediction of the picture is
then based upon the reconstructed picture rather than the picture which is to
be transmitted. The error is obtained by subtracting the predicted picture

from the actual picture.

Subtraction
y 54 Quantizer N
Picture for i"' - : Quantized Error
Transmission |~ Error
X
>0 Addition
Predictor >4
Predicted Element Recovered Picture

- -Figure 20, Processing & Picture to Obtain a Quantized
B ‘Prediction Error '

The quantized errors are theoreticallyba séquénce of linearly inde=-
pendent samples. A later section presents a FORTRAN subroutine for transform-
ing a sequence of independent samples into a binary Huffman Codelo having a
maximum entropy per digit. This code essentially minimizes the amount of bi-
nary bits which must be transmitted in transmitting a picture. Further use of
various block coding techniques as may be found in Reference 22 will produce
the necessary reliability in the transmission of the binary data to insure

reliable reconstruction of the picture.
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Prediction

The theory of optimum linear processing provides a means of construc-
ting a predictor. A preceding Section showed that the optimum linear processor

for processing the picture x to obtain the prediction of the element 2z was

y=x"h+Xk
where
x! = -x

k =

ISH RS

and

Py ™ = Pyrg

A preceding . example used the stationary correlation matrix

B ]
/4
1/2 1 1/2
Gyt = o 1/h 1 2 1 1/k
1/2 1 1/2
1/k
B o -

The crosscorrelation matrix between the previously scanned portion of the pié—

ture and the next sample is then

—

1/4
1/2 1 1/2
Oy, = o 1/k4 1 X

L
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where X marks the center of the matrix. The matrix product:gx,x1h is obtained

from the formula

wX'X'h Ecpxxxx("r) h(r-*;s)

Z2@. () h(rs)
r

where the predicting processor has the matrix

B ]
hg
1 h3 » h2 h4
h = h5 hl X

where again X marks the center of the matrix. Equating the matrix product
to the erosscorrelstion produces the following set of equations for the deter-

mination of the coefficients in the matrix of the processor h.

2 h o+ 1/2h2 + h5 + ’h5 ’ o= 1
1/2hl + 2 n, + h5 + h), + hy = 1
hy o+ hy * 2hy + l/hhu + 1/2h5 + l/2h6 = 1/2
hy, + 1/uh5 + 2 h l/2h6 = 1/2
hy + 1/2h5 + 2 hy = 1/k
hy, + 1/2h5 + l/2hu 2 hy = 1/
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Solution of this set of equations would then produce the coefficients for the

predictor.
An approximsate sOlqtion can easily be obtained by assuming that

hu = 0 so that hl = h.2 and h5 = h6. The third order set of equations results

in the solution

—

-1/2 ]
-1/6  2/3 0

h = -1/2  2/3 X

- -

The power in the prediction error is obtained by the formula

2 . ) t
e” = diag {‘pz'z' -

¢&'x' h:}

Quantization of Pictures

Experimentally a picture is sampléed on a regular gird. It is custo-
mary -in-high guality pictures to use anywhere from 32 to 128 brightness levels
in the quantization:of the semples. Due to the limitation in experimental equip-
ment ,” the pictures presented in this report are quantized in 6 brightness le&elé
(black, 20%, 40%, 60%, 80%, and white). The shade of grey g can be computed
from the formulsa

g = - log‘/.2 b

where b is the brightness level. The grey scale and brightness levels have the

relation

g = 0 1 2 3 L 5 6 7 8 9 10 11 122 13 1k

b = 1 —4+ 1 1 1 1 1 1 1 1 1 1 1 1 1
= /2 2 272 & E7E' B 82 161872 32 33/2 6L Eﬂ7§ 128
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A geometrical pattern is formed by the relative brightness of the
elements of the picture rather than by the precise brightness levels. The tone
of the picture is the mean value of the brightness levels. The standard devia-
tion is a measure of the contrast. In numerous geometrical cases, it is desir-
able to represent a set of pictures with a uniform mean and standard deviation

of brightness levels.

The processing of pictures with linear and non-linear processors pro-
duces a set of numbers which normally extend beyond the 0-1 range of the bright-
ness levels. Several methods are aveilable for quantizing a set of numbers so .

that they can be represented in a finite number of brightness levels.

One method of representing a picture with quantized brightness levels
is to distribute the quantization levels so that all levels are represented with

equal frequency of occurrence.

Another method of representing a picture is to linearly distribute the
quantization steps over the range of sample values. This is the method normally
used in quantizing the samples of an experimental picture. However, pictures
which are the result of numérical . processing, tend to have a few excessively
small snd large wvalues which produce an excessive range. Linearly distributing
the .quantization steps over this excessive range produces a picture with most
ofthe¢

tayitd rakton- steps near 50h. These pictures have very little contrast. .

The qﬁéﬁtiédtibn of tﬁé picthres in this‘réport is based on a linear
system which distributes the four center shades of brightness (20%, MO%, 60%,
80%) between plus and minus one standard deviation in brightness about the mean

value of the picture. All values below and above one standard deviation are




SPACE-GENERAL CORPORATION SGC 203R-4 -
Page 58

made respectively black and white. Figure 21 depicts this type of quantization
as applied to uniform and Gaussian distributions. For these two distributions

the mean frequency of occurrence of brightness levels is

Brightness Level Uniform Distribution - Gaussian Distribution
Black 212 -159
20% hk .150
Lo% L1k .191
60% , , L1bb 191
80% ' 1hh ' 191
“White - _ Co W22 S - - .3159

The frequency of occurrence of each of the six levels is very close to

1/6 = .167.

The correlated picture of Figure 3 had the distribution of brightness
levels shown in Figure 22. Linear quantization between the standard deviations
produces the results of Figure 3 which clearly show the correlstion of the

picture.

The principal disadvantage of this method of representation is in the
comparisoﬁ of different pietures having different standerd deviations. -Pictures
- are presented as though they had the seme standard deviastions. The addition. of
the pictures in Figure 6 and 7 to give that of Figure 8 is an example. Figure
6, 7, and 8 have relative standard deviations of \/E: 1 andW/gT- Their standard
deviations are normslized so that a relative comparison of brightness levels can-
not be directly made. The method, however, does provide a simple way of represen-
ting geometrical patterns with a high degree of contrast in a fairly linear

manner.

Figures 23 and 24 are examples of this type of quantization in the rep-
resentation of the crater Eratosthenes. The white area in the center is an il-
luminated inner wall which casts the dark shadow extending to the edge of the

Figure. The measured correlation function is Figure 25.

{
9\
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Figure 24. The Crater Eratostenes in 6 Brightness Levels Distributed
About the Mean Plus and Minus One Standard Deviation
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Figure 25, Stationary Correlation Function of the Crater Eratostenes

Machine Programming

The experimental work of this report was performed by hand computa-

tion. The amount of computation for a very simple picture is at the limit of

"‘mﬂpraétlcal hand’computatlon

) One of the obJectlves of thls theoretlcal work has been to cast 1t
in a notation which can be easily programmed and run on & large automatlc com-
puting machine. Figure 26 represents the flow charts of the experiment in com-
puting a linear processor for suppressing undesired errors. Figure 27 is the
flow chart of a proposed experiment dealing with the removal of redundancy from/

a picture prior to transmission.

W
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Generate Quantize and
Random > g_gmg%te >4 Read _Oz_ut
Pic"cures z, B3 3, I, and zZy
z; & 2,
Linear Quantize and
Process N @_mgg:te » _Read Out
with h % x5 5 '1 and zl
to got 5
l — . §{ Theoretically - mm—— .
Compute —— Compute Read Out in
x=z)+az, P Fdye Terms of
- Distance
b
Experimentally Read Out in
Compute ——1 Terms of
Vs Distance
Y
Compute Read Out in
‘hy Terms of
. | Distance
“Process L. »{ Compute - Read Out ..
x by h, Yy v° y yZandy
\
Compute Read Out
Error Error

Figure 26. Flow Chart of an Experiment of the Suppression of
Undesirable Noise
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Compute
Recovered Picture

and
Quantized Error

Quantize and
Read Out
x

-

" Compute
Frequency Distribution
of Quantized Error

'

Compute
Entropy

Figure 27.

Quantize and
Read Out
y

Flow Chart of an Experiment in Removing the Redundancy
from a Picture
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FORTRAN Subroutines

The following subroutines have been written to facilitate the experi-
mental work in picture processing. The FORTRAN convention contained in Refer-

ence 21 for most IBM 709 and 7090 compilers is used.

Crosscorrelation of Two Pictures

The crosscorrelation of the picture X and Y is particularly useful
in the design of optimum processors. In the following program these pictures

are assumed to be of the same dimension as in Figure 28.

X(1,J) and Y(I,J)
M I=1,M J=1,N

Figure 28, The Number of Elements in a Picture

The correlation to be calculated experimentally has the dimensions of Figure 29.
The dimensions should be odd numbers due to the single value of the correlation

at the origin, (MO, NO) = (MC g l, N ; L
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¢(X,L)
K=1MC L = 1,NC

< NC

N
>
Figure 29, The Number of Elements in the Correlation Function

The crosscorrelation is computed by the formula
N
-
-
J=1

c(K,L) = (X(1,J)-xAvG) = (Y(I + K - MO,J + L - NO)-YAVG)

L
MV

=

In those cases where the indices of Y are beyond the range of the picture, the
average value of Y is used resulting in a zero term being added into the

summation.
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FORTRAN Program for Calculating the Crosscorrelation of Two Pictures X and Y

SUBROUTINE CRCOR (C, MC, NC, X, XAVG, Y, YAVG, M, N)
DIMENSION X(u4@,4@), Y(up,4p), c(kp,Ld)

DO1I=1,M

DO1J =1,N

X(1,J3) = X(1,J) - XAVG
¥(r,J) = ¥(I,J7) ~ YAVG
T=M=xN

MO = (MC+1)/2
(B0 = (nes1)/2

DO 4 X = 1,MC

DO 4 L = 1,NC

c(K,L) = B.¢
DO3TI=1,M

DO 3 J = 1,N

IY = I+K-MO

JY = J+L-NO

IF (IY) 3,3,2

IF (3Y) 3,3,2
IF (IY-M) 2,2,3 -
IF (JY-N) 2,2,5

2 ¢(X,L) = C(X,L) + X(I,J) =

3 CONTINUE
4 ¢(X,L) = c(x,L)/T

RETURN
END

Y(IY,JY)
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X=X~ XAW

Y=Y « YAW

COMPUTE

T MO NO

C=C+ BY ;

Figure 30. Flow Diagram for the Crosscorrelation of 2 Pictures
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Stationary Matrix Multiplication

The matrix product
¢ = hg
where c¢(r) = ¥ h(s) g(r-s)
s
is computed on the assumption that the dimension of each matrix is M x N with
appropriate subscripts. The center is considered to be the integer part of

o0, 70) - (42, 22
Thé com@ufatibn‘of the prd&ﬁét iéjtheﬁ i
MH NH
c(z,d) =Z Z H(K,L)* G ( I - MCO + M30 - K + MHO, J - NCO + NGO - L + NHO)
=1 L=1

where the summation is only over the mutual range of H and G.

e
Y
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FORTRAN Program for Calculating the Matrix Product

SUBROUTINE MATRIX (H, MH, NH, G, Mg, NG, C, MC, NC)
DIMENSION H(48,48), G(4p,48), c(ip,up)

MHO = (ME+1)/2
NHO = (NH+1)/2
MGO = (Ma+1)/2
NGO = (NG+1)/2
MCO =.(MC+1)/2
NCO = (NC+1)/2

MO = MBEO + MHO - MCO.
NO = NGO + NHO ~ NCO
DO2 I =1,MC
DO 2 J = 1,NC
c(1,3) = 8.8
DO 2K =1,MH
DO2 L = 1,NH
KG =TI - K+ MO
IG =J - L + NO

CIF (Ke) 2,21

IR (18) 2,2,1
IF (K¢ - M3) 1,1,2
IF (16 - NG) 1,1,2

1 ¢(1,J3) = ¢(1,J) + H(XK,L) * G(K&,1G)

2 CONTINUE
RETURN
END
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CALL MATRIX

i

COMPUTE

MHO MGO MCO MO

NHO NGO NCO NO

C(I,J) =0

SGC 203R-4
Page TO

Figure 31.

KG LG
ST
KG LG FOR
YES
RANGE
C=C+ I

NO

Flow Diagram of Stationary Matrix Multiplication
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CONSTRUCTION OF A HUFFMAN CODElO

The conversion of a set of words into another set of words
having maximum entropy per digit is a coding problém for which an

exact solution is known in terms of an algorithm.

The frequency of occurrence of the original words are
initially listed from the smallest to the largest. The following
program assumes that the ordering process has already been performed.
The first two words are distinguished by a O for the first and a 1

for the second. They are then combined and treated as a single word.

' The algorithm proceeds by reordering the new set of words
distinguishing the first two words with a 0-1 and combining. Each
word is built up as a séquence of O's and 1's depending upon the
algorithm.

An index matrix provides the correspondence between the

ordered set of frequencies and the original set of words. The matrix

1 1 o 1 o o

o o0 1 o o0 1

o 0 o0 0 1 0
L —

indicates that the first, second, and fourth words are assoclated
with the first frequency. The third and sixth are associated with the
second frequency. With this type of index matrix it is then possible
to know which of the original words are to be distinguished by

O's and 1's. .

The program stores the code words reversed from right to
left with a 1 signifying the end of the word. The code words can be
obtained from the decimal representation by expressing the representation
in binary, reversing the ordering and dropping the terminal 1.
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A simpler program mey be possible by using the concept of "low
order pairing.” A set of low order words are paired and moved up into

the table without any reordering or moving of the rest of the table.
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FORTRAN PROGRAM FOR CONSTRUCTING A HUFFMAN CODE

1 READ 4T N

2 DIMENSION WORD(N) X(N) FREQ(N) INDEX(N,N)
3 READ 48 FREQ

L DO 10T =1,N

5D0 10 J = 1,N

6 IF (I-J3) = 9,7,9

7 INDEX (I,J) =1

8 GO0 T0 1¢

9 INDEX (I,J) =0

g CONTINUE .

1110012, I=1,N

12 WORD: {T)=s1. )

13L=N

14 DO 44 M = 2,N

15 D0 20 J = 1,N

16 IF (INDEX(1,J))18,18,17

17 WORD (J) = 2.6 * WORD(J)

18 IF (INDEX(2,J)) 2¢,2¢,19

19 WORD (J) = 2.8 * WORD(J) + 1.¢
2¢ CONTINUE

21 IF {12} ~~h5',- hsﬂ-,

2 D083 I = 1,8 .
23 X(J) = INDEX(1, J) + INDEX(Q J)
24 F = FREQ (1) + FREQ (2)

25 D0 27T K = 3,L

26 IF (F-FREQ(K)) 27,27,28

27 CONTINUE

28 X = K-3

29 D0 33 I = 1,K

3 IK=1+2

31 FREQ (I) = FREQ (IK)

32 DO 33 J = 1,N

33 INDEX (I,J) = INDEX (IK,J)

SGC 203R-4
Page T3
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FORTRAN PROGRAM FOR CONSTRUCTING A HUFFMAN CODE (CONTINUED)

34 K = K+1

35 FREQ (K) = 8

3 DO 37T J = 1,N

37 INDEX (K,J) = X(J)

38 K = K+1

39 L = L-1

40 DO L4 I = K,L

41 IK = I+l

42 FREQ (I) = FREQ (IK)

k3 DO kb J = 1,N ,

44 INDEX (K,J) = INDEX (IK,J)
L5 PRINT 49 (WORD (I)/ I = 1,N)
L6 STOP

47 FORMAT

48 FORMAT

49 FORMAT
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COMPUTE
WORDS

SUM INDEX YES
AND FREQ

A

FIND K AND
SET K = K-3

C T vove FREQ(T)
U AND INDEX(T,T)

S
K = K+1

Y

INSERT FREQ(K)
AND INDEX(K,J)

K = K+1
L =1L-1

MOVE FREQ(I)

N D INDEX(I,J)
I=K,L

SGC 203R-4
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PRINT

STOP

Figure 32, Flow Diagram for the Construction of a Huffman Code
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Additional FORTRAN Subroutines

The following subroutines remain yet to be writlen:

1. Quantization for Display

This subroutine should compute the gquantization constants and
then quantize the picture, perhaps as it is being read out of the machine.
Provision should be made for entering the subroutine with the constants already

given as may be the case in fixed scaling.

-2+  Random PipturevGengratiqn )

Several random nuwber routines arc needed for producing artifi-
cial pictures with known properties. Uniform, and Gaussian distributions with

zero mean should be the most useful.

5. Theoretical Correlation Computation

This is the computation of the correlation matrix based on the

linear processing of a picture having a specified correlation matrix.

k4, .‘gbtimuﬁv86iuﬁiqn

Based on the input correlation function ¢ T and the cross-
x'x
correlation function Oyt g2 the optimum processor should be obtained. This is

the solution of a set of simultaneous linear equations.
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CONVERGENCE OF ITERATIVE SYSTEMS

One method of designing optimal processing systems is
through iterative approximations. An approximation to the system
is used to compute a better approximation iteratively until the
optimal system is obtained. Sakrison(25) has considered an iterative
design of a specific optimel system. This sectlon considers some
of the basic elements of his analysis of the convergence of a system

to an optimal system.
NORMS

In order to consider the convergence of an iterative
system to an optimal system it 1is necessary to have some measure of
the error between‘the approximétion X and the optimum s&étem>e.' The
measure is known as the norm Et where t denotes the sequence of
approximations. A very useful norm is the average squared error in
the case of a single varisble or the average inner product of the

error in the case of a multiple veriable system.
Etlé Average [ (X-0).(X-9) ]

Other norms are based on weighting functions of the error such that

t

Et=0 X=19.

E, >0 X#g.

DIFFERENCE EQUATIONS

The behavior of the norm is of-particular importance in
describing the convergence of the approximation to optimal systems.
In those cases where the norm cen be described by the first order
difference equation

AE, < a, + bt E

y S 8 s
BE, = Egq - By

quite a bit can be said about the convergence based on the properties

of the coefficients ay and bt'

~
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The existence of the difference equation which can be
explicitly solved 1s the most important idea of this approach.

Where E% is the solution of the difference equation

1 - 1
AEt at + bt Et
and Et i1s the actual norm which satisfies the difference relation

AEt < &a_+ 'bt E

t t
the norm Et is bounded by the solution E%
. | S
Et < Et

and all t whenever O < i+ bt

If this were not so, then there would exist a T for which
1
ET+1 > ET+1
and
5 < F
The difference equations produce the relations
B A
SE R
Epyy - Bp = 8p *+ By By
Subtraction produces the inequality
- ! - Tt
(Bpyy = Bpa) < (140p) (Ep - Ep)
which is a contradiction under the assumption that 1 + 'bT > 0 since
- wt
By = Bpyy > 0
B, - Ep SO
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Thus for all iterations t, the norm E_ is less than or equal to

t

the solution E{ of the difference equation.

1
E, < E}

SOLUTION OF THE FIRST ORDER DIFFERENCE EQUATION

The first order difference equation

T _ '
AEt = a.t + bt Et

has the general solution

t
1 t 4
Bl ™ 2: 8y J—i+il +bj) + E| Jgo\l + bd)
=o .

In the particular case where bJ is the»conétant b and a

1

is the constant &

raised to the ith power, the solution has the closed form

t+1
a
, 1 - (%) ,
E} = (1+b) = E (L +1)
1-T7+%
wvhere a, = ai b, =D
1 J n

This solution converges to zero approximately as

Pl
El = ... (1 + b)
where
& <1 and 0 < (1 +Db) <1
1+b

It 1s easy to see that 1f ¢t

correct solution

1 t
E} a, + E} (L +1b)

t+1

0, the general solution gives the

ety
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By induction, the solution for t is assumed correct

t-1
' b= " ) - (o)
E, = E: a +b + B 1+
t £ 1 =101 J 0 j=o0 J

From the difference equation the solution for t + 1 is found to be

t - 1
B,y = & +E (1 + bt)

Substitution of E% produces the relation

-1 :
ot | t
- t
Bi,= 8 * z a; JEiﬂ(l + bJ) + E Jgo(l + bJ)
i=0
¥ o, I T (1))
= 1+d Il +
iZo 1 J=t41 * J) ¥ E°J=o J

Which is the relation for the general solution of E% .

Another property of the first order difference equation,
which makes it useful in the analysis of lterative convergence, is that

the solution E% converges to zero whenever the coefficlents satisfy

the constraints

8

A<

o
[y
v
o
~1s
i)
[WY
]
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The logarithm of the second term of the general solution produces
sequence of relations

lim In | E Jio (1+bj)]’= 11m{1nE +; 1n(1+b)}

{0

<1In E + 1im E: b
t 7 J=0

This implies that

1im E‘ H (1:+ b*) =0
tw O J=0

Considerably more mathematical rigor is needed to show that the first
term of the general solution also coaverges to zero. A gufficient

proof is one which shows that for every € > O there exist a T such that

k t

<
E: 4 J—i a (L+0b ) €
1=0

for every t greater than.T.

The proof needs several steps. First, since O <1 + b345 1,

(1 + bJ) < 1 and since the a, > O there exists some I such that

5 s
i=I+1

for every t.

t
J=E+l i

nolm

These inequalities imply that

% & t

Z 13n1+1(l+b) Z a, <

1=T+ i=T+1

nlm

v
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The second part of the proof results from knowing that the product
converges to zero. That is, there exists some T such that for
every t > T

< @&

t
(L+b
JEI+1 * J)

This inequality produces the relation that

I t I t )
Il 140D
Z ! Jgiﬂ(l +bj) = Z ! 3=I+l( J
i=0 i=0
I
€
i=0
€
=3

Thus the total sum from O to T and I + 1 to t 1s less than €
whenever t ~ T. This implies that the second term converges to zero.

The rate at which it cqnvérges to zero depends on the particular

PROPERTIES OF THE ITERATION

An example of the use of the first order difference equation
1s in the calculaetion of a norm equal to the inner product of the

error between the system parameters X and the optimum parasmeters 6

E = Avera.g‘eBXn - 8) . (Xn - 9)]

The iterative procedure for the determination of the process is
an iterative correction

Xn+1 = Xn + €n

S
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The error 1s then

Xn+l -0 = Xn -0 + €

so that the norm is

Egq = E  + Average {en e, 2(Xn - 9).€n}

This is then a difference equation of the norm.

AE = Average {e e +2(X -0).¢ }'
n n' n n n

In those cases where there exlsts appropriate & and bn such that

C e _ ‘ »
Average'ien ce, + 2(Xn - 9).en} < & +rbn E
The behavior of the norm En can be analyzed quite effectively with

the solution of the difference eguation.
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