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TECHNICAL MEMORANDUM X-53Z06 

TRANSIENT PRESSURE RESPONSE IN A FLUID SYSTEM 
AS A VIBRATING VALVE CLOSES 

By 

Cecil A. Ponder, Jr. 

George C. Marshall Space Flight Center 

Huntsville, Alabama 

ABSTRACT 

Equations are derived that describe the unsteady flow in a pipe
line when a vibrating valve closes; a pressure oscillation occurs in 
addition to.*ater hammer. The results of analytical and experimental 
investigations show that the pressure oscillation causes an increase 
in the maximum transient pressure-during valve closure that is pro
portional to the frequency and amplitude of valve vibration. -

Because the boundary conditions and natural frequencies may vary, 
each fluid system must be investigated to determine-the relationship's 
between the pressure oscillation and the frequency and amplitude of 
the valve vibration. The analytical methods reported can be used for 
such an investigation. 
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DEFINITION OF SYMBOLS 

Symbol Definition 

a Velocity of Wave Propagation (in/sec) 

A Acceleration of Control Volume (in/ sec 
2
) 

A Flow Area of Pipeline (in 
2 

) 

At Effective Flow Area of Valve at Time t (in 
2
) 

A, Wetted Area of Control Volume (in 
2
) 

C1 Constant Dependent Upon Pipeline Mounting 

C+ Characteristic Curve with Positive Slope 

C Characteristic Curve with Negative Slope 

d Double Amplitude Displacement of Vibration 

Exciter (in) 

D Inside Diameter of Pipeline (in) 

e Wall Thickness of Pipeline (in) 

E Modulus of Elasticity of Pipeline Material (lbs/in
2
) 

f Darcy - Weisbach Friction Factor 

F Force on Control Volume (ibs) 

F Vibration Exciter Frequency (cps) 

g Acceleration of Gravity (386.04 in/sec
2
) 

K Adiabatic Bulk Modulus of Elasticity of Fluid (lbs/in
2 

) 

I Length of Pipeline (in) 

M Mass of Control Volume (slugs) 
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DEFINITION OF SYMBOLS (Concluded) 

Symbol Definition 

P Piezometric Pressure of Fluid (ibs/in
2
). 

Ptotal Total Pressure of Fluid (lbs/in
2
) 

p Static Pressure of Fluid (lbs/in
2
) 

R Static Pressure Below Valve (lbs/in
2
) 

t Time After Valve Closure Begins (sec) 

V Fluid Velocity (in/sec) 

IVI Absolute Value of Fluid Velocity (in/sec) 

x Location Along Pipeline (in) 

X Displacement of Vibration Exciter (in) 

2P. Effective Bulk Modulus of Fluid and Container (lbs/in )
 

p Specific Weight (lbs/in)
 

4Phase Angle Between Vibration and Start of Valve
 

Closure (radians) 

Tw Shearing Stress exerted on stream by pipe wall (psi) 

f Poisson's Ratio 
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TECHNICAL MEMORANDUM X-53206 

TRANSIENT PRESSURE RESPONSE IN A FLUID SYSTEM
 
AS A VIBRATING VALVE CLOSES
 

By Cecil A. Ponder, Jr.* 
George C. Marshall Space Flight Center 

SUMMARY 

The transient pressure response in a pipeline caused by the 
closure of a vibrating valve was investigated in order to study the 
effects of the vibration. The vibrating valve causes a pressure oscil
lation which increases the maximum transient pressure. Analytical 
expressions describing the transient flow were derived, and the bound
ary conditions of a test facility were used in a solution of the equations. 

In an experimental investigation, transient pressures were recorded 
as the valve closed while vibrating at several different frequencies and 
amplitudes, including the natural frequency of the system. The time of 
valve closure was varied between . 250 and 1. 00 second. Two suction line 
configurations were used. One was a uniform suction line of 4-inch 
diameter; the other had a 6-inch diameter to 4-inch diameter concentric 
reducer midway between the reservoir and valve. 

The results of the investigation show that the maximum transient 
pressure is increased only slightly by low level vibration, but as the 
vibration increases, the-re is a significant increase in the maximum 
transient pressure. The acceleration at which this increase in the 
maximum transient pressure becomes significant depends upon the 
natural frequency of the system, and the .frequency and amplitude of the 
forced vibrations. With the valve completely closed, a large pressure 
oscillation was obtained during vibration. 

INTRODUCTION 

Aerosp.ce engineers have recently begun to study the effects of 
fluid vibrations on space vehicles. Because high pressures require 
more rigid ducts and structures, there is particular interest in the 
magnitude of pressure oscillations produced by the fluid vibrations. 
The transient pressure that is caused by the closing of a valve has 
historically been called water hammer. When the closing valve is also 

*Chrysler Corporation, Technical Support Contractor 

http:Aerosp.ce


vibrating, the water hammer couples with pressure oscillations, and 
a higher maximum pressure results. These pressure oscillations, 
if transmitted throughout the fluid system, create structural problems. 
Because there was a need for understanding the coupling of fluid. 
vibrations and water hammer, the transient pressure response of 
the closure of a vibrating valve was investigated (Ref . 1 and 2). 



HISTORY OF WATER HAMMER INVESTIGATIONS 

There have been numerous dnalyses of water hammer. A discus
sion of various methods of reducing %vaterhammer by Michaud (1878) 
was the first investigation of the phenomena. In 1897., N. E. Joukowsky 
first connected water hammer with acoustic wave action (Ref. 3 and 4). 
His analysis was based on instantaneous valve closure and a uniform 
pipeline through which an inviscid fluid was- flowing. He derived the 
equation: 

AP = ap AV (1) 
g 

Joukowsky conducted an extensive program to verify his equation. 
However, the effect of compound and branched pipes, or valve closures 
of finite time was not included in his analysis. 

At about the same time Lorenzo Allievi, an Italian engineer, made 
a thorough study of the water hammer caused by linear valve closures 
of finite time (Ref. 5). He constructed a chart from which the maxi
mum surge pressure during a linear valve closure could be obtained. 

One of the first water hammer studies in the United States was 
.conducted by N. R. Gibson (Ref. 6). He used the method of arithmetic 
integration to give the same results that Allievi had obtained, yet he 
had no knowledge of Allievi's studies. E. E. Halmos pointed out the 
identical results, and in 1925, he published an English translation of 
Alleivil s works. 

Several other investigations of water, hammer were made-, and in 
1927, Ray S. Quick published a comparison of the various theories 
(Ref. 7). These theories, however, were merely amplifications of 
the basic ideas of Joukowsky and Allievi. 

Nonuniform gate closure was investigated in 1928, by S. Logan 
Kerr (Ref. 8) in connection with his investigations of valve closures 
from partiar openings. R. W. Angus extended Joukowsky' s theory to 
include a thorough study of water hammer in compound and branched 
pipe systems (Ref. 9). He relied heavily on graphical solutions. 

J. Parmakian published Waterhammer Analysis (Ref. 10) in 1955. 
It included a derivation of the basic linearized water-hammer equations 
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with an abrupt pressure loss at the end of the pipeline to account for 
the frictional losses. Graphical methods used to solve water-hammer 
problems were thoroughly investigated by Louis Bergeron (Ref. 11). 

F. M. Wood used Heavisides' operational calculus as an analytical 
method of predicting the transient pressures in the pipeline (Ref. 12). 
Although the nonlinear frictional loss term of the water-hammer 
equations was linearized, he neglected the other nonlinear terms of 
the wave- equations. Wood's analysis gave the results in terms of only 
the pressure and velocity surges that were produced. 

R. George Rich improved Wood's analysis by using the La Place-
Mellin transformation so that he worked directly with the total pressure 
in the pipeline (Ref. 13). He also used the linearized friction loss and 
ignored the other nonlinear terms of the water-hammer equations. 

Many authors, including Parmakian, Wood and Rich believed that the 
solution of the water-harnimer equations with the nonlinear terms was 
impossible (Ref. 14). 

However, in 1960, M. Lister published an article on the solution 
of hyperbolic partial differential equations (Ref. 15). The article 
showed that the theory of characteristics could be used to solve partial 
differential equations with two dependent and two independent variables. 

V. L. Streeter and C. Lai used this theory of characteristics with 
an approximation to permit calculation of the transient pressute at 

specific time intervals (Ref. 16). 

The solution used in this investigation is based upon the theory of 
characteristics as suggested by M. Lister. A grid of characteristics 
was used, however, to eliminate errors introduced by the method of 
specific time intervals. The spacing of time was controlled by the 
number of characteristic grid lines used. 

By using the theory of characteristics to solve the wave equations, 
the transient pressure and fluid velocity are calculated not only at the 
ends of the pipeline, but also along the length of the pipe. There is 
also no need for linearizing or neglecting the nonlinear terms. Because 
the primary purpose of this investigation was to study the effect of a 
vibrating valve, this additional boundary condition was included in the 
analysis. 

4 



ANALYSIS 

Unsteady Flow in a Uniform Pipeline 

The solution of the transient pressure is based on a one-dimen
sional analysis of the transient flow through a uniform pipeline, with 
boundary conditions given at each end of the pipe, as well as the initial 
steady state conditions along it. The fluid system investigated is shown 
in FIG 1. It has a uniform pipeline with a reservoir at one- end and a 
valve at the other end. The basic equations describing the flow through 
the pipeline are: 

a. The momentum equation, Ref. 14,. (see Appendix A for 'deriv
ation) 

8V+ IA + - =0 (Z)
avV a 8V+ fV =0(2 
at ax 2D P 8x 

b. The equation of continuity for unsteady flow of a compressible 
fluid (Ref. 10) 

ap + av +Vap = 0 	 (3) 
at ax ax 

c. The equation of state for a compressible liquid (Ref. 16) 

OP P 	 (4) 
ap P 

Where P is the effective bulk modulus of the liquid in an elastic 
container defined as (Aef: 10). 

1 + 	 (5) 

K eE 

where values of C1 , are as follows: 

C, = 5/4 - ± 	 for a pipe anchored at the upper end without 
expansion joints 
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I -
2
* 	 for a pipe anchored against longitudinal movement 

throughout its length 
C i 

C = 1 -	 p/2 for a pipe with expansion joints 

It should be noted that P is the piezometric pressure, and there
fore, includes pressure variations caused by elevation; that is, 
P = pz + p, where p is the local static pressure and z is the elevation 
above a datum plahe. 

Combining the equation of continuity (3) and the equation of state 
(4) 

aP + P _V + Mar= 0 (6) 
at ax -x 

This equation, along with the momentum equation (2), forms the 
basic wave equations used in the analytical study of water hammer. 

By using the theory of characteristics, a set of characteristic 
equations is derived in Appendix B. These characteristic equations 
define two sets of curves as shown in FIG 2. One set of curves has 
a positive slope and the other set has a negative slope (identified as 
Q+ and C-). 

The characteristic equations ake: 

C
+ 

Along 

(x - xA) 	= (VA + aA) (t - tA) (7)o 	 o 

+(Vo -VA) + -g- (Po - PA) fVA A1 (to tA)= 0 
PAaA ZD 

(8) 

Along C 

(x - xB) 	= (V B - aB) (t - tB) (9)o 	 o 

V( 	 fVB V I (t _ tB) =0 (10)PBaB 	 ZD o 
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With the fluid velocity (V), pressure (P), location (x), time (t), 
and density (p) given at points A and B, equations (7), (8), (9), and 
(10) can be solved simultaneously for the four unknown quantities 
(P, V, x, t)' at point o. It is also necessary to determine the density 
at point o. The equation of state (4) can be integrated from point A 

to point o, to give the density.o /o
 
f dP f dp () 

pA 

= 9
P o jiin -PoA (1) 

or 
A e( P op - P A)( 

5 3P = ~A (13)0 

by using the series expansion (Ref. 17) 

n
3
2 X 
e = 1 + x +-f-X 

! + + ... + ! (14) 
X
 

the density at point o can be approximated with a high degree of 
accuracy as 

=
 
Po A i+ Po PA) '(15) 

-
It should be noted that (P- F'A ) is of the order of 10 6 so that 
higher order terms may be 'neglected. As shown in the FIG Z, the 
quantities at point o are later used to determine the unknown quantities 
at point S. The number of points for which solutions can be obtained is 
one less than the number of points for which the conditions initially are 
known. This problem can be eliminated, however, if the boundary 
conlitions are known. " 

Boundary Conditions at the Reservoir 

It is assumed that the reservoir used is of sufficient capacity to 
provide a constant total pressure at the intersection of the pipeline 
and the reservoir. Therefore, returning to FIG Z 

PLVL
 
PLtotal = PL + Zg = CONSTANT
 

(16)
 



This boundary condition is used in conjunction with the equation for 
the C- characteristic to evaluate the unknowns at the left boundary 
(point L in FIG 2). 

xL = 0 (17) 

From equation (9) 

(xL - xA) = (VA - aA) (tL - tA) (18) 

and from equation (10) 

g f VA IVA 
(VL - VA) - a (PL - PA) + 2D (tL - tA) = 0 (19) 

PA aA 

With the conditions at A and the total pressure supplied by the reservoir 
known, the pressure (P J velocity (VL), and time (tL) can be found. , 

As before, the density was found by integrating the equation of 
state from point A to point L 

P (+PL+ PA) (20) 

Boundary Conditions at the Valve 

With reference to FIG 2, the total velocity of the fluid at the valve 
(point.R) is a function of the pressure drop across the valve, and of the 
motion of the vibrating valve. The orifice flow equation, with a 
correction for upstream area, is used to calculate the velocity as a 
function of the pressure drop across the valve (Ref. 18). 

VR_ = At [2g9 (R R)I 1/ 2 (21) 

Because the valve was excited sinusoidally by the vibration exciter, 
the velocity oscillations induced in the water were directly proportional 
to the velocity of the vibration exciter and to the ratio of the projected 
area of the vibrating valve to the area of the pipe line. The displacement 
of the exciter is 

X - cos (2rPt +4€) (22) 

2 

8 



The exciter velocity is found ,as 

dX = id sin (2,TrFt + @) (23) 
dt -

The ratio of the projected area of the valve to the area of the suction 

line is (i - A Therefore, the .velocity oscillation caused by 

vibration is 

= (i ,+ rdF sin (ZrFt+ ) (24) 

The total fluid velocity at the valve face is then given as 

(Z5)
_At f.29 (-PR _R) I/Z) 1 ( --

At 
idsindf (2irTt +) 

From equations (7) and (8) for the C+ characteristic 

t XR - XM 
tR = + (VM + aM) (Z6) 

VR -VM + g P P 
)

+ fVIM .R t)=0 (27) 

(-tR - tM)RMaM RD 

also at the valve face 

The density relationship is again found by integrating the equation of
 
state, this time between xM and x R
 

PpR= pM (I +- R PM) (29) 

The simultaneous solution of these equations will then yield PR, VR, 
tR and PR. 

9 



Boundary Conditions for Branched and Compound Lines 

Surge pressures in other piping systems can be computed using 
the characteristic equations (7), (8), (9) and (10) for each uniforin 
section, with the boundary conditions for the case involved. For 
example, the boundary conditions in FIG 3 require that the flew into 
an intersection is the same as the flow leavirig the intersection, and 
that the pressure is constant across the intersection. The equations 
of the boundary conditions would then be: 

2At junction A V, D = VD22 
(30) 

P1A = P2A (31) 

At junction B 
2

V2D= VsD + .V4 D4 (32) 

= 
P2B B = P4B (33) 

Initial Flew Conditions in the Pipeline 

Referring to FIG 2 before calculations can proceed, a set of 
poihts rAust be determined where all of the variables P, V, p, x, and 

t are known. The points used in the analysis are the values when t=0, 
the steady state flow conditions just as valve closure begins. Because 

the conditions were steady state (= 0), the wave equations (2) arid 

(6) reduce to: 

-.Vv-+dV f 
- vVIVI ++ 

-
Pv d4 = 0 (34) 

dx 21 p dx 

dY dP3- + V = 0 (35)
dx dx 

dP'
 
Combining the two equations to eliminate -L yields 

dV -p dV + f v p v - dx= 0 
2 (36) 

-VI V 2D 

10 



Because the flow is steady and the suction line area is constant, from 
the requirement of continuity 

'G = pV CONSTANT (37) 

g dg__ fd=0 (38) 
"V G V + D 

Integrating this equation from x to 

' dV _-gp /dV , f f 
o, GVo, - 2 dx = 0 (39) 

Vol x Vox Df 

The notation Vo, x denotes the velocity at time zero, position x. 

Vo1 + , V f (I - x) =0 (40) 

Therefoie using the above equation and the known conditions at x = I, 
the velocity at any point along the suction line may be calculated. 

-The pressure at any point along the suction line may be found by 
integrating equation (35) 

dV
 
dP- PdV (41)dP=-T- (1 

IPol dP =- - dV 
Po,x Vo, x V (4Z) 

= PoV Po,2 - 1. V olt (43) 
Vo,x 

And since-the flowrate is constant, the density variation along the 
pipeline may be found 

G = Po, x Vol x (44) 

This then defines the flow under steady state conditions. 

11 



Steps of Computations-

In solving the characteristic equations, a matrix form was used 
to keep the variables orderly (FIG 4). Here (a) is a variable analagous 
to time, and (b) is a variable analagous to the location along the pipe
line. Subscripts are used to denote the location of the variables within 
the matrix. For example P 1 means the pressure at a = I, b = 2.2 


The steps in computing the unknown quantities are:
 

a. Divide the suction line into sections. The number (n) of sec
tions chosen will of course determine the degree of accuracy. 

b. Set t = 0 for arz 0 and solve the steady state equations (40), 
(43) and (44) for b = 0 through n. This sets up the initial conditions. 

c. The unknown quantities P, V, p, and t are then determined 
for the matrix point (1, 0) using the reservoir boundary conditions 
(equations 16 and 17) and the C- characteristic passing through the 
matrix point (0, 1) (equations 18 and 19). Then density at point (1, 0) 
is found from equation (Z0). 

d. The unknowns are then determined for a= 1, b=2 through (n-1) 
by using both characteristic curves and the known values at a-0. For 
example,, the variables are found at matrix point (1, 3) by simultaneous 
solution of the C + 

characteristic passing through the matrix point (0, 2) 
aRd the C- characteristic (equations 9 and 10) passing through the 
matrix point (0, 4). 

e. The variables are then determined for the matrix point (1, n) 
using the valve boundary conditions (equations Z5 and 28) and the C+ 
characteristic (equations 7 and 8) passing through the matrix point 
(0, n-I). The density at point (1, n) is found from equation (29). 

f. - Using the results calculated for a = 1, the variables for a = 2 
are determined (steps c through e). The calculation then proceeds in 
this manner as far as desired. 

Limitations of Theory 

The limitations of the analysis, as applied to the experimental 
facility, are: 

a. The test pipeline contains a bellows that was not considered in 
the analysis. 

12 



b. The analysis assumes an abrupt area change between the pipe
line and the reservior so that 100% wave reflection is obtained. The 
experimental facility did not have an abrupt area change. 

c. The analysis assumes only the friction losses in the shear 
stress between the fluid and the pipeline, omitting the internal viscous 
dispersion within the fluid. 

d. Two phase fluids are not considered so that once vapor pres
sure-is reached, or a bubble exists within the fluid, the equations are 
invalid. 

EXPERIMENTAL INVESTIGATION 

Description of Experimental Facility 

The experimental program was established to measure the tran
sient pressure response when a vibrating valve is closed. The 
Experimental Facility is shown in FIG 5. This facility had a uniform 
pipeline of 4-inch 0. D. x . 0625-inch wall aluminum tubing attached 
to the bottom of a 4950 gallon reservoir that could be pressurized to 
20 psig. At the lower end of the pipeline, Z76 inches below the 
reservoir, a pneumatically operated 4-inch butterfly valve and a 4
inch diameter bellows were attached. The butterfly valve was bolted 
to a 22, 000 pound force vibration exciter. A 6-inch drain line with a 
vent was attached to the bottom of the butterfly valve using a bellows 
to allow the butterfly valve to be vibrated as it was closed. 

A second pipeline configuration (see FIG 6) was also used. This 
pipeline was a 6-inch 0.D. x 3/16-inch wall aluminum tube that 
extended from the reservoir halfway to the butterfly valve. The pipe
line then was reduced from 6-inch 0. D. to 4-inch 0. D; the remaining 
length of pipeline to the valve was 4-inch 0. D. tubing. 

Instrumentation 

Four pressure transducers were located along the pipeline-to 
collect data. Accelerometers were mounted on the vibration exciter 
and on the butterfly valve. A position indicator was used to measure 
the angular position of the butterfly in the valve. These measurements 
were recorded on an oscillograph using a paper speed of 10 inches/sec. 
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Also measured during the tests were water temperature, ullage pres
sure and liquid level in the reservoir, and the frequency and displace

ment of the vibration exciter. 

Control of Test Variables 

The most important factors that determine the maximum surge 
pressure are the time of valve closure, and the variation in fluid 
velocity while the valve is closing. The time of valve closure was 
controlled by orifices on the exhaust port of the pneumatic piston that 
closed the butterfly valve. The variation in fluid velocity while the 
valve was closing could not be controlled. A turbine flowmeter lacks 
sufficient response to measure this transient velocity. Because the 
effective flow area during valve closure could not be directly measured, 
it was approximated by measuring the effective flow area for various 
angles of the butterfly valve during steady flow and assuming the effec
tive flow area was the same during unsteady flow. 

To determine the effective flow area during steady flow, a turbine 
flowmeter was installed upstream of the valve. The flowrate through 
the valve and the pressure drop across itwere measured for several
 
valve positions. The orifice flow (Ref. 18), with the correction for 

upstream area was used to determine the effective flow area for each 
valve position.
 

i/2
 

Q =At [zg (A (45) 

solving this for At 

C 
= t Q 2 11 Z (46) 

The natural frequency of a fluid system is defined as the frequency 
at which a maximum pressure oscillation occurs for a given velocity 
variation of the valve [(P)maxj. The natural frequencies of both 

pipelines, with the valve closed, were determined experimentally by 
measuring the pressure oscillation at the valve for a given velocity input. 
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The frequencies of vibration of the valve during closure were then 
chosen at and between the natural frequencies. 

With the valve fully. closed, a small velocity oscillation could pro
duce a large pressure oscillation, especially at the natural frequencies 
of the systems. Therefore, two levels of vibration were used, The 
first, a low level vibration, was allowed to continue after the valve was 
closed. However, the second, a high level'vibration, was stopped when 
the valve fully closed. 

Description of Tests 

Tests were conducted as described below: 

With the butterfly valve closed, the reservoir was filled with water 
and pressurized to15 psig. For the low level vibration tests, the 
recorders were started, the vibration exciter was set at the predeter
mined frequency and displacement, and the butterfly valve was opened. 
When steady state flow was established, the valve was closed at the 
predetermined rate. The recorders were stopped after the transient 
pressures had damped. The procedure was the same for the high level 
vibration tests except the vibration exciter was turned on after the valve 
was open, and was turned off as soon as the valve was fully closed. 

EXPERIMENTAL RESULTS 

Tests of Uniform 4-Inch Pipeline 

The natural frequencies of the 4-inch pipeline, between 20 and 100 
cps, were determined and are shown in FIG 7. The fundamental natural 
frequency is at 32 cps, with another resonant point at 96 cps. Fre
quencies of 32, 48, 64, 80 and 96 cps, were chosen and used as the 
vibration frequency of the valve during closure. 

The steady state effective flow area of the butterfly valve was 
determined and is shown in FIG 8 as a function of the angular position, 
of the valve. The effective flow area of the fully open valve is seen to 
be 8.34 in 2, compared to a pipeline flow area of 11. 79 in 

2 
. The steady 

state approximation for a . 250 sec closure was then obtained, as shown 
in FIG 9, by comparing the angular position during closure to the steady 
state effective flow area of the valve. 
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The pressure surges created by valve closures with the 4-inch pipe
line are shown in Table I. These maximum pressure surges were 
measured at the pressure transducer located just upstream of the valve. 

A typical pressure response, FIG 10, shows the static pressure at
 
the valve for a . 265 sec valve closure with (a) no vibration, (b) low
 
level vibration of 32 cps, . 010-inch displacement, and (c) high level
 
vibration of 32 cps, . 380-inch displacement.
 

With no vibration, the static pressure increased from the steady 
flow value of 20.4 psia to a maximum of 117. 1 psia. When the valve 
fully closed, the pressure dropped rapidly and oscillated about the 
steady state level of 48 psia until it was damped out by the losses of 
the system. The pressure surge was determined to be 96. 7 psi. At 
the low level vibration of 32 cps, . 010 inch dispiacement, the results 
were similar. The vibrating valve caused only a small variation in 
the pressure response during the valve closure. However, the continu
ation of valve vibration after closure caused a pressure oscillation, 

the first cycle of which Was 25. 4 psia to 64. 7 psia. After several 
seconds of vibrationa steady state oscillation as shown in FIG 11 was 
obtained. Although the velocity input to the valve was sinusoidal, the 
pressure oscillation measured at the valve was not sinusoiddl. This 
suggests the presence of gas or vapor bubbles in the liquid. 

When the valve was closed during high level vibration of 32 cps, 
.380-inch displacement (FIG 10), a significant change in the maximum 
surge pressure was obtained. As the valve closed, the vibration caused 
a pressure oscillation which reached 303. 6 psia, giving a surge of 273. Z 
psi. The minimum pressure during closure was very small (3. 5 psia). 
At the minimum point the curve is flat, probably because of the forma
tion of gas bubbles in the fluid. 

The results of a . 250 sec valve closure during vibration at 48 cps 
are shown in FIG 12. The results here are essentially the same as for 
32 cps. The effect of vibrating at a frequency other than the natural 
frequency was twofold; first, it changed the number of pressure oscilla
tions during the clogure, and secondly, it required vibration at a higher 
level to reach the same magnitude of pressure oscillation. This second 
phenomenon can be seen in FIG 7; as the vibration frequency moves away 
from the natural frequency, a smaller pressure oscillation is obtained 
for the same variation of velocity. At a slower rate of valve closure, 
the pressure response wave lengthened and the maximum pressure surge 
was reduced (Table I). 

16 



Tests of Pipeline Having an Area Reduction 

The natural frequencies of the pipeline having an area reduction 
were determined and are shown in FIG 13. The fundamental frequency 
is 36. 5 cps, with another resonant point at 82 cps. From this figure, 
frequencies of 30, 36. 5, 48, 59, 70, 82, and 96 cps, were chosen and 
used as the vibration frequency of the valve during closure. 

The pressure surges created by valve closures are shown in 
Table II. A typical pressure response, FIG 14, shows the static pres
sure at the valve during a . 232-sec closure with (a) no vibration, (b) 
low level vibration at 70 cps, . 0Z5-inch displacement, and (c) high 
level vibration at 70 cps, .080-inch displacement. The results here 
are similar to those of the uniform 4-inch suction line, except the 
shape of the pressure response curve was altered slightly. 

ANALYTICAL RESULTS 

The equations describing the transient flow through a pipeline were 
programmed for a digital computer. The boundary conditions of a uni
form suction line between a reservoir and a valve were used. The 
equations were then solved using the physical constants of the 4-inch 
pipeline, and the steady state approximation of the effective flow area 
during valve closure (FIG 9). The resulting transient pressure at the 
valve face for a .250 sec closure is shown in FIG 15. Comparing this 
to the experimental results (FIG 10), a higher pressure is predicted 
than measured, and the wave shape is also different. A slight modifi
cation of the curve of effective flow area, as shown by the dashed line 
in FIG 9, will yield the correct wave shape and maximum pressure of 
FIG 16. Since this slight modification gave the correct wave shape,. 
the assumption previously made, that the steady state effective flow 
area was equal to the transient effective flow area, is only approxi
mate. For comparison, the transient pressure created by an instan
taneous closure is predicted [Equation (i)] as 1760 psi. 

FIG 17 shows the calculated results under conditions similar to 
those of FIG-16 except that the valve was vibrating at 32 cps, with a 
displacement of . 030 inches. The vibration only slightly modifies the 
base curve. However, when the displacement is increased to . 380 
inches (FIG 18), there is a marked increase in the maximum pressure 
during the valve closure. These results compare favorably with the 
experimental results shown in FIG 10. FIG 18 shows that the pressure 
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decreases quite rapidly, and according to the equations, the pressure 
would continue decreasing to below zero psia. Of course, this could 
not occur, so computation was stopped. This is a significant point, 
because if the vapor pressure of the fluid is reached, the fluid will
cavitate, similar to the cavitation in ultrasonic cleaning. This is 
probably what happened in the experimental results shown in FIfG 10. 
When cavitation does occur, the expressions in- this analysis do not 
apply because the assumption of a constant bulk modulus for the fluid 
is invalid. 

The pressure variation at the valve for a sinusoidal vibration of 
32 cps with . 030 inches displacement with the valve closed is shown 
in FIG 19. The pressure variation steadily increases, damped only by 
the losses of the system. Without losses or cavitation, the oscillation 
would increase undamped for the natural frequency. For other than 
the natural frequencies, there would be a steady state level even with
out losses. If the pressure oscillations caused cavitation, large local 
pressures could be created due to 'collapse of the bubbles formed. 

CONCLUSIONS 

Analytical calculations, which are verified by results of the 
experimental tests, show that a vibrating valve can cause a substantial 
increase in the maximum transient pressure in a pipeline during valve 
closure. -The magnitude of the transient pressure is directly related 
to the magnitude of valve vibration, and is also a function of the fre
quency of forced vibration. If the valve is closed, small valve vibrations 
at the natural frequency of the fluid system cause large pressure oscil
lations. 

The initial fluid velocity, time of valve closure, and the rate of 
decrease in flow area are important factors in determining the maxi
mum transient pressure. The magnitude of the transient pressure of 
a fluid system, with or without vibration, may be calculated by the 
methods reported if the boundary conditions of the fluid system are 
known. This method does not neglect the nonlinear terms of the wave 
equations (including friction), and it provides results along the suction 
line as well as at each end. 

18 



Test 
No. 

2 


FIG 10 	 14 


74 


FIG IZ 	 17 


30 


76 


33 


67 


46 


66 


80 


102 


120 


103 


117 


90 


TABLE I
 

Measured Pressure Surges
 
Uniform 4-Inch Pipeline 

Valve Vibration Vibration Pressure Surge 
Closure Time Frequency Displacement at Valve Face 

(sec) (cps) (in) (psi) 

Z68 0 0 97' 

Z70 3Z .010 97
 

.260 32 .380 304
 

.250 48 .038 110
 

271250 48 .170 165
 

.260 64 
 .04Z 101
 

.Z51 64 .095 106
 

.251 80 
 0Z4 102
 

.Z65 80 060 116
 

.Z64 96 .010 102
 

.243 96 .043 154
 

.504 
 0 0 52
 

.449 32 .010 
 59
 

.466 32 .380 
 160
 

.457 48 .038 
 69
 

.462 48 .170 
 116
 

.481 64 
 .042 60
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TABLE I (Concluded) 

Test 
No. 

Valve 
Closure Time 

Vibration 
Frequency 

Vibration 
Displacement 

Pressure Surge 
at Valve Face 

(sec) (cps) (in) (psi) 

1IZ .475 64 .095 70 

92 .477 80 .024 64 

Iil .473 80 .060 122 

94 .483 96 .010 64 

106 .460 96 .043 110 

4 .998 0 0 40 

10 1.025 32 .010 56 

49 .939 3Z .380 148 

21 .955 48 .038 62 

52 .944 48 .170 75 

24 .957 64 .042 44 

55 .948 64 .095 156 

37 .967 80 .024 51 

59 .958 80 .06o 165 

43 .948 96 .010 54 

60 .932 96 .043 113 
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Test No. 

233 


235 


305 


238 


307 


Z42 


310 


244 


313 


Z48 


317 


251 


319 


Z54 


322 


FIG 14 Z30 


Z10 


TABLE II 

Measured Pressure Surge 
Pipeline with Area Transition 

Valve Vibration Vibration Pressure 

Closure Time Frequency Displacement Surge 
(sec) (cps) (in) (psi) 

.127 0 0 162 

129 30 .030 166 

118 30 .300 192 

130 36.5 .005 162 

118 36.5 .295 193 

130 48 .030 159 

.132 48 .150 181 

129 59 .045 155 

135 59 .100 165 

129 70 .025 160 

.131 70 .080 171 

130 8z .004 155 

125 8z .058 176 

129 96 .015 158 

124 96 .042 175 

Z38 0 0 93 

ZZ4 30 .030 95 

Z2 



325 

Test No. 

Z12 


328A 


Z15 


332 

Z18 


334 


2ZZA 

FIG 14 

337 


223 


341 


2Z8 


345 


Z78 


274 


348 


271 


351 
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TABLE II (Continued) 

Valve Vibration 
Closure Time Frequency 

(sec) (cps) 

.238 30 


.222 36.5 

.241 36.5 


.224 48 

.224 48 

Z23 59 


239 59 


.235 70 


2 70 

.230 8Z 


.Z34 8Z 


.2Z8" 96 


.ZZ8 96 


.549 0 

.546 30 


.561 30 


.550 36.5 


.567 36.5 


Vibration Pressure 
Displacement Surge 

(in) (psi) 

.280 IZ0 

.006 86 

.250 139 

.030 90 

.150 106 

.045 90 

.100 103 

.025 102 

.080 126 

.004 93 

.060 150 

.015 101 

.042 149 

0 49 

.030 55 

.300 137 

.005 51 

.250 190 



TABLE II 

Test No. Valve 
Closure Time 

(sec) 

270 .535 


35Z .569 


Z67 .548 


357 .532 


264 .541 


358 .559 


Z60 .543 


362 .563 


Z57 -541 


364 .565 


385 .843 


382 .853 

380 .839 


376 .821 

375 .820 


371 .826 


(Concluded) 

Vibration 
Frequency 

(cps) 

48 


48 


59 


59 


70 


70 


82 


8Z 


96 


96 


30 


36.5 


48 


59 


70 


82 


Vibration Pressure 
Displacement Surge 

(in) (psi) 

.030 68 

.150 108 

.045 54 

.100 127 

0Z5 60 

.080 69 

.004 50 

060 81 

.015 78 

.042 73 

.300 67 

.Z50 72 

.150 62 

.100 61 

.080 70 

.060 66 
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LEGEND
 

1. Pressurization Supply Valve 

Ti 2. Pressurization Regulator
 
3. Vent & Safety Relief Valve
 
4. Drain Valve
 
5. Surge Valve
 
6. Fill Valve
 
7. Reservoir
 
8. Vibration Exciter
 

P1 - Pressure Below Valve
 

P2 - Pipeline Transient Pressure
 
P3 - Pipeline Transient Pressure
 
P4 - Pipeline Transient Pressure
 
P5 - Liquid Level Indicator
 
P6 - Reservoir Pressure
 
TI - Fluid Temperature
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FIGURE 5. SCHENATIC OF TEST FACILITY 
(4-INCH DIAMETER PIPELINE) R-P&-PE 

12-1-64 
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1. Pressurization Supply Valve
 

Ti 2. Pressurization Regulator
 

3. Vent & Safety Relief Valve
 
6 	 4. Surge Valve
 

5. Fill Valve
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7. Reservoir
 
8. Vibration Exciter
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P3 - Pipeline Transient Pressure
 
P4 - Pipeline Transient Pressure
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P6 - Reservoir Pressure
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FIGURE 6. SCHEMATIC OF TEST FACILITY 
(Pipeline with Area Transition) R-P&VE-PE 

12-1-64 
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APPENDIX A 

DERIVATION ;OF THE MOMENTUM EQUATION 
-[Equati'on -(2)] 

Con-sider The ,control volume of length dx in the uniform pipeline 
,of FIG 1. At.face a of the control volume, the pressure (P) acts 
over the area (A,) exerting a force (-PA) on the control volume. 

Fa = PA (47) 

(The direction ,ofpositive force is the same as the direction 
,ofpositive velocity) 

aP 
At-face b, 'the pre-ssure (P + ax dx) acts over the area (A) exert

ing a for ce on the -control volume of 

aP
 
Fb =-(P + j dx) A (48) 

A shear force is also exerted on the control volume by the 
fluid ,moiVi-ngpast the pipe walls. The direction of the shear force 
is opposite the direction of-the fluid velocity, and its -magnitude is 
A o two. t(Whe-re Aw is the wetted area of the control volume and TW 

Is theshearing stress exerted on the stream by the walls). The 
wetted -area -expressed in terms of the pipeline dimensions is 

(4D = TrD) 4dx 4A ,A : Ddx -- = dx (49) 

The -Darcy-Wei,sbach friction factor is defined as four times the rati-o 
of the -wall shearing stress to the dynamic head of the fluid 

4 T O 
f pv 21 g (50) 

The magnitude of the shear force in terms of the friction factor 
-is 

4Adx 
D 

f pV 
2 

Zg4 (51.) 
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The direction of the shear force is controlled by using the fluid 
velocity times its absolute magnitude (VIVI) instead of V 

2 
. (VIVI). 

always has the sign of V, whereas V 2 
is always positive. The shear 

force acting on the control volume then becomes 

s= - dx fpVjVI (5Z)
D Zg 

Summing the forces on the control volume 
iF = Fa + F b + Fs A - (P + 8 - dx f pVIV (53) 

ax D 2g 

The mass of the control volume (which is constant) is 

M: -P Adx (54) 
g 

The acceleration of the control volume is 

A = dV (55)
dt 

In unsteady flow, the velocity is a function of both the location along 
the pipeline (x) and the time (t) 

V = f (x, t) (56) 

dV = aV d. + aV dt (57) 
ax at 

and 

dV aVdx+ av(58)
dt ax ,dt at 

since 

dx = V (59)
(it 

dV av av
A V av ov (60) 
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Using Newton's 

'Aap 

second law 

ZF = MA 

"(Rf PV IV' Xd 
IV 

+ xxa aD 

(,61) 

(62) 

Simplifying 

v aVax + at g-+ p aP fV+ -vlvI =o (2) 
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APPENDIX B 

DERIVATION OF THE CHARACTERISTIC EQUATIONS 
[Equations (7), (8), (9), & (10)] 

The basic equations used are the wave equations: 

_v -vV+ aP+ -vvI =0 (2)
t Ox p Ox 'D 

= &P + Pi	- + V2- 0 (6) 
at x Ox 

A linear combination of these equations yields 

v +vIY+. -+L VIVI+aL+a ap+_ (63)aV 0 

at Ox P Ox 2D at ax Ox
 

Rearranging this equation yields 

SaV+(V+ a)2 Y +V1V1 	 = 0 (64) 
at Ox LT 5jOx 2DFa oa 

Since P and V are the dependent variables, and x and t are the 
independent variables. 

dP OP dx OP 
+d -- .t ... (65) 

and 

dV OV dx OV (66)
i + IT T 

In equation (64), the total derivations dP and !IV can replace the 
Tquantities in brackets if dt 

dx = V + p = V + -&- (67) 
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This requires that 

1/2 
= +(68) 

Therefor.e, two equations were obtained, one for the positive a 
(defining the C+ characteristic) and another for the negative a 
(definingthe C- characteristic). 

Substituting the positive a into equation (67) yields 

dX = V+ / (69) 

Since the velocity of wave propagation is defined a~s 

a P~g(70) 

.equation (69.) becomes 

dx = V+ a (71) 
dt 

Substituting thi-s into the total differential equations (65) and (66) 

dP -SP 8P
 
- + (V + a)- (72Z) 

dV _ + (V + a) 'V (73,)
d t at ax 

Equation (64) with the positive a substitution becomes 

0+I (74)+ gL + (v) )+(v+a) 
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substituting (72) and (73) into equation (74) 

dVg+ _ dP + f VIVI=0 (75) 
d-T pa dt 2D 

therefore along C + 

dx = (V + a) dt (76) 

dV + -L 
dV+ ci +~ VIVIit =0 (77) 

similarly along C

dx = (V - a) dt (78) 

g f 
dV - dP + - VlVfdt =0 (79) 

These characteristics are shown in FIG 2. If the velocity and pressure 
are known at any two points on the x-t diagram (points A and B for 
example) the characteristics can be solved for the conditions at point 
o. To do this, a linear approximation, between A and o and B and o, 
as shown below, is used. 

J f (x) dx =f (x1 ) (X 2 - X1 ) (80) 
x]
 

The characteristics then become 

Along C + 

(x - xA) = (VA + aA) (t - tA) (7)o o 

(Vo - VA)'+ AaA (Po - PA) + 2"D VA (to tA) 0V A 

(8) 
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Along. C

(x xB) (V B - -tB) (9) 

(Vo - vB) - g (Po - PB) + A vBIvBI (to - tB)-0 (10) 
PBaB 

With the conditions given at points A and B, these equations may be 
solved simultaneously for Po, Vo, xo and to. 

- = a B ) ( t o 
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