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TECHNIQUES FOR EXAMINING
STATISTICAL AND POWER-SPECTRAL PROPERTIES
OF RANDOM TIME HISTORIES*

By Herbert A. Leybold
Langley Research Center

SUMMARY

A technique is presented for digitally generating random time histories
having any desired shaped power spectra. Four random time histories having
different statistical and power-spectral properties have been genersted and
analyzed to determine their instantaneous mean and amplitude distributions. In
each, the distribution of instantaneous means could be approximated by a normal
or Gaussian distribution and the distribution of instantaneous amplitudes could
be approximated by the sum of a Rayleigh distribution and a normal distribution.
An attempt was made to relate the coefficients of the equations used to repre-
sent the distributions of means and amplitudes to the power-spectral properties
of the generated time histories. Two of the coefficients could be related to
the power-spectral properties of the time histories. The remaining two coeffi-
clents were empirically determined since no apparent relationship was found
between these coefficients and the power-spectral properties of the generated
random time histories.

INTRODUCTION

Many of the loads encountered by aircraft and missiles are random in
nature and, consequently, are usually described statistically. In order to
reduce the mathematical complexity in utilizing such a description in analyzing
the response of structures to loads, most investigators have made simplifying
assumptions about the statistics of the random-load history (ref. 1). As an
example, in fatigue studies the statistics of the load peaks are usually used.
These statistics are obtainable either by actually counting the peak loads at
various levels or by a relationship developed by Rice (ref. 2) which relates
the peak load distribution to the power spectrum of the random load-time history.
When programing fatigue tests, all peak loads are usually applied about a com-
mon mean load. In general, this mean load is representative of the overall mean

*The information presented herein was offered as a thesis in partial ful-

fillment of the requirements for the degree of Master of Sclence in Engineering
Mechanics, Virginia Polytechnic Institute, Blacksburg, Virginis, May 1963.




of the random load-time history from which the peak load distribution was
derived. A variation in mean load can have an effect on fatigue life (ref. 3).

Thus, it appears that a statistical description of both the distribution of
instantaneous mean loads (i.e., average of two successive peak loads) and asso-
ciated instantaneous amplitude distributions (i.e., difference between peak
load and instantaneous mean load) would be more useful than the peak load dis-
tribution alone for studying fatigue under random loading. The instantaneous
mean load distributions and associated instantaneous amplitude distributions are
hereafter referred to as simply the mean and amplitude distributions. These
distributions can be obtained by actually counting the instantaneous means and
instantaneous amplitudes, but there is no known relationship between these dis-
tributions and the power spectrum as was the case for the peak load
distribution.

In the present investigation, an attempt is made to develop an empirical
relationship between the power-spectral properties of a given random time his-
tory and the mean and amplitude distributions of this time history. This was
done by digitally generating four random time histories with different power-
spectral properties and counting the means and amplitudes in order to determine
their distributions for each of the time histories generated. Equations
describing the mean and amplitude distributions are developed and an attempt is
made to relate the coefficients of these equations to the power-spectral prop-
erties of the generated time histories.

SYMBOLS
A amplitude of periodic function of time
ag filter factors or Fourier coefficients
F<§i> frequency-response function
F
f frequency, cps
fp Nyquist or folding frequency, cps
Tq number of amplitudes counted in interval y; <y < Yia
v number of amplitudes counted which exceed ¥y =Yyy
fo computed frequency of occurrence of amplitudes in interval
Ty number of times per second zero axis is crossed with positive slope
fp number of positive peaks per second
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Pp(y)

R(T)

Ry

At
Y(t)
Y1

y(t)

Yi

number of times per second that value y 1is exceeded

computed number of amplitudes which exceed y = yy

constants of peak probabllity distributions
raw spectral density estimate

number of amplitudes normally distributed about specified mean value

nmumber of amplitudes distributed according to Rayleigh distribution
about specified mean value

number of positive amplitudes about specified mean value
normal probability

Rayleigh probability
probabllity that peak will exceed given value of y

modified random number
covariance function or autocorrelation function of continuous variable

generated random number

covariance or autocorrelation of discrete set of values

time, sec

uniform interval of time, sec
normal deviate

filtered time history

discrete set of values obtained by sampling filtered time history
Y(t) at uniform intervals of time At

original time history

discrete set of values obtained by sampling original time history
y(t) at uniform intervals of time At

standard variable, y/oy

dummy variables



coefficient of normal probability

oN

OR coefficient of Rayleigh probability

oy standard deviation or root-mean-square (rms) value of y(t)
0§ mean square value of y(t)

G? mean square value of first derivative of y(t)

J

o2 mean square value of second derivative of y(t)

y

#(£) power spectral density of a continuous variable

P smoothed spectral density estimate

Matrix notations:

[ ] square matrix

{ } column matrix

A dot over a varlable indicates differentiation with respect to time.

A bar over a term indicates the mean value of the term.

GENERATION OF RANDOM TIME HISTORIES

A digital random time history having the properties of band-limited white
noise was generated and used as the input to several linear systems, each
having significantly different frequency~response characteristics. The output
responses obtained were used to calculate power-spectral properties and also to
obtain the distributions of means and amplitudes.

A brief outline of the procedures used to simulate digitally random time
histories having different shaped power spectra is as follows. A more detailed
discussion of each of the following steps will appear in subsequent paragraphs.

1. Random numbers having a uniform probability distribution were generated.
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2. The uniformly distributed random numbers were then transformed into a
normal or Gaussian distribution having a mean of zero and a variance of one.
The numbers obtained were assumed to be samples taken at 1/2-sec intervals from
a continuous record. A power spectrum was calculated by using these numbers
and was found to be essentially flat. The normally distributed numbers will be
used as the input to a linear system.

3, In order to determine the frequency response of the linear system the
following equation was used:
r[i
I

where ¢in is the power spectrum of the normally distributed numbers obtained

2
= ¢out

¢in

in step 2 above and ¢out is the desired shaped power spectrum. Knowlng both
the input and the desired output power spectrums, the magnitude of the fre-

Ir
4. The frequency response was then used to filter the input (i.e., the

normally distributed numbers) to the linear system. The filtering was done by
utilizing the following equation:

M
Y; = § aYi 1K
KM

where Y54k 1s the input to the system, ay represents the filter factors

gquency response can be determined from the above relationship.

obtained by transforming the frequency response into the time domain, and Y3

is the output which represents & random time history having the desired shaped
power spectrum.

5. Four time historlies were generated in this manner. Power spectrums
were calculated for each in order to insure that the proper filter factors had
been obtained.

6. Once it was determined that the calculated power spectrums were essen-
t1ally thé same as the desired shaped power spectrums, the digital random time
histories of step 5 were analyzed to determine their instantaneous mean and
amplitude distributions.

The procedure described can be used equally well for digitally simulating other
random time histories having arbitrarily shaped power spectra.



RANDOM NUMBER GENERATOR

Random numbers were obtained with a fixed-point pseudo random number gen~
erator developed by the National Bureau of Standards (ref. 4). Each generated
random number Ry was obtained from the previous random number Ry_; by

taking the last 11 digits of the product RpRy.; Wwhere Rg = 515 and
N=1,2, 3, . . .. Numbers were then selected at random from the generated
Ry. Only the first 6 digits p of the randomly selected 1l-digilt number were
used in this investigation. Approximately 160 000 random numbers were selected
in this manner each having an equally likely chance of occurring (i.e., uniform .
probability distribution). The set of numbers obtained were all greater than

or equal to zero but less than or equal to 999 999.

TRANSFORMATTION TO NORMAL, DISTRIBUTION

The random numbers were transformed into a normal distribution with mean
equal to zero and unit variance by an approximate equation developed by Tukey.
(See ref. 5.) This transformation was made in order to simulate a stationary,
Gaussian random process. The transformation requires that the random numbers
be between zero and one. Therefore, all numbers p were divided by 10° and

designated q. Tukey's transformation is

X' = k.91 E;OJ“ - (1 - q)o°lﬂ (1)

where q is the modified random number and X' is the normal deviate. It was
found in this investigation that when X' became greater than 2.k, there were
significant departures from the normal distribution. Hence, it was necessary
to use a corrected normal deviate X, as follows:

A

X = X! (111 € 2.4)

(2)

b
il

X'+ -I-;%'_(o.u)(x' 22 (x| > 2.)

It should be noted that these equations restrict the normal deviates to the ;
range -5.73 € X< 5.73 which is no great handicap. |

E I

A power spectrum was calculated by using equations (B1) to (B3) and the
first 40 000 normally distributed random numbers X. Due to storage limita-
tions 1in the computer used, only 5000 numbers could be handled at one time.
Therefore, 8 power spectra were calculated for each of the first 8 groups of
5000 numbers generated. The 8 power spectra were found to be essentially flat
and varied only slightly from each other, indicating that the sample size of
5000 numbers was sufficlently large. An average power spectrum was obtained
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from the 8 groups of numbers (white noise) and the remaining properties were
calculated based on this average spectrum.

FITTERING OF RANDOM NUMBERS

The generated random numbers X, which when taken at discrete uniform
intervals of time define a time history having a flat power spectrum, can be
modified by numerical filtering techniques in order to change their amplitude
response characteristics and thus change the power spectrum of the time history.
The amplitude response characteristics can be changed by utilizing the input-
output relation of power-spectral analysis, which states that the product of
the input power spectrum ¢in(f) and the square of the amplitude response

o2

spectrum @ . (f). Thus,

(sometimes called a transfer function) is equal to the output power

2
B (T) = \F(-ff-;) Bin(2) (3)

&)

¢in(f) is the flat power spectrum obtained by calculation from the generated

The amplitude response can be determined from thils equation since

random numbers and ¢out(f) is the specified or desired power spectrum. The

amplitude response defines the changes that have to be made in the frequency
domain in order to obtain the desired shaped power spectrum. These changes can
be reflected in the time domain by taking the Fourier transform of the ampli-
tude response. A time history comprised of discrete values Yi and having the
desired shaped power spectrum can be calculated with the use of the following
equation:

M

Yy = E agyi4x (%)

K=-M

where Vi = 0 when 1 < M. The Fourier coefficients &g result from the

Fourier transform of the amplitude response and the generated random numbers X
are represented by Yi4g- Details for determining the coefficients of the

Fourier cosine series representation of the amplitude response are given in
appendix A. The four amplitude response functions used in this investigation
are shown in figure 1. The symbols show the shape of the response actually used
to filter the random numbers whereas the solid curve shows the desired response.
Twenty points were used to represent this response. These four amplitude
response functions represent the concepts of bandwidth-limited white noise,
atmospheric turbulence phenomena, single-degree-of-freedom system, and a modi-
fied single-degree-of-freedom system (band pass), respectively. For brevity the

7



filtered time histories obtalned by using these response functions are referred
to as time historles A to D, respectively. Statistical samples showing the
characteristically different features of the four time histories obtained in
this manner are shown in figure 2. For clarity, the values of Y; have not

been plotted but rather the curves faired through these values. The increment
of time is At = 1/2 sec between values of Yj. As a reference, 10 At is
shown in figure 2.

For the normally distributed numbers a power spectrum was calculated for
each set of filtered random numbers using equations (Bl) to (B3) and the first
40 000 numbers in each set. The power spectra were obtained by averaging the
power spectra of 8 groups of 5000 numbers. Power-spectral properties were cal-
culated based on the average power spectrum. This procedure was followed in
order to determine whether the filtered time histories had power spectra
equivalent to the specified or desired power spectra. The calculated power
spectra were equivalent, within small tolerances, to the specified power
spectra.

In calculating these power spectra, the assumption was made that the fil-
tered random numbers represented a sampling from a continuous time history
y(t) at discrete uniform intervals of time At = 1/2 sec which resulted in a
discrete set of values Yi vwhen t =1 At. There is no loss of information
from this sampling if the time history y(t) contains no frequencies greater
than the Nyquist or folding frequency fy vwhere

1

I+

The frequencies T, (EfF t f), (hfF f), « « o cannot be distinguished in
any frequency representation of y(t) which is determined from the values of
yi. Thus, frequencies greater than fp will appear to be in the range

0<€ f < fp. It is said then that all the frequencies in y(t) have been
folded into the range O € f € fp. This folding property follows from the

relations
sin 2x(2mfp * £)t = sin(2mri * 20ft) = *sin 2nft
where
i=0,1,2,3 ...
m=1,2, 3, 4, ...

If frequencies higher than fp are present in the sampling, they will appear

to contribute power or energy to the lower frequencies which will result in
errors in the power spectrum at the lower frequencies. This situation was auto-
matically eliminated by properly selecting the frequency range of the shaped
output power spectrum.

TR
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POWER-SPECTRAL-DENSITY CHARACTERISTICS

OF RANDOM TIME HISTORIES

In using the power-spectral-density approach for analyzing the fluctua-
tions of a random process it will be assumed that the process is stationary
(i.e., statistical properties are invariant with time) and also Gaussian in
nature. The power spectrum or power spectral density ¢(f) is a frequency
distribution function which describes the frequency content of the time varia-
tion of a random disturbance y(t). For stationary processes, the power spec-
trum @(f) may be defined by the relationship which exists between @(f) =and
the covariance or autocorrelation function R(T). This relationship is
expressed as a Fourler cosine transform pair as follows (ref. 6):

\

#(£) =4 k/::o R(T)cos 2nfT AT

1]

) (6)
R(T)

U/\w P(£)cos 2xfr df
0

S

The covariance function, which is the mean value of the product y(t)y(t+r),
gives a measure of the correlation between values of y(t) separated by a time
interval T. Hence

T
R(7) = F(&)y(t+1) = lim éf \/\ y(£)y(t+7) at (7)

Il
@]

For the special case when ~

R(0)

s02 = [ pe) ot - 2 (&)

The function ¢(f) may be regarded as the contribution of any frequency f to
the mean square of y(t). The square root of the mean square value is known as
the root mean square (rms) or standard deviation oy of v(t).

The derivatives of a Gaussian random process are required in order to
determine the statistics of such quantities as the number of times per unit
time the disturbance crosses the axis y(t) = O, the number of maxima of y(t)
per unit time, or the number of times per unit time that the disturbance
exceeds a value of y(t) = yiy where 1 =1, 2, 3, . . .. The following rela-
tionships are the ones developed by Rice (ref. 2) between the derivatives of
y(t) and the power spectral density @(£):



. 2 _ 2 _ ® 2

S(0)Z = o2 - fo (2x£)2p(5) ar (9)
and

507 = o - [ (en'pe) ar (10)

The relationships involving these derivatives in obtaining zero crossings,
peaks, and level crossings are as follows.

The number of times per second that the zero axis is crossed with a posi-
tive slope is

l [of)
fo = &= A (]])
The number of positive peaks per second is

0’..
£y = el_ﬂ < (12)

e«

The mumber of times per second that a value of y(t) =y; 1s exceeded is

_yg
fy = fo exp —5 (13)
207

(See ref. 6 for limits on yi-)

Another relationship involving the derivatives of y(t) can be used to
obtain the probability Pp(y) that a peak will exceed a given value of

y(t) = yi+ The probability is expressed in terms of a standard variable =z
where 2z = yi/oy.

The expression for the probabllity of obtaining a peak greater than Yy
is (ref. T)

22
£ =l z ( h)
P (y) = Pef-2) + 22 e 1-P<—-> 1
P N(Kl £, Nk
where Pynf-2\ and Pyx[2\ are the normal probabilities that -2 and -2 will
Nik Nix K K
1 2 1 2

be exceeded; that is

10




PN(§> = —& _/:/OK exp -'-Z—z dz (15)

where
e \2
K =K = 1-(—9) (16)
fp
or
K
K = Kp = —= (17)
fo/fp

The previous relations are valid only for a stationary random process
which is Gaussian in nature. A more detailed discussion of this subject may
be found in references 6 and 8. For data-processing purposes, the operations
representing these expressions are more conveniently expressed in other forms.
Appendix B gives the expressions which are in a form amenable to digital com-
puting (egs. (Bl) to (B6)).

ANALYSIS OF RANDOM TIME HISTORIES

An attempt is made in the present investigation to describe analytically
the distributions of instantaneous means and amplitudes of several random time
histories having different power-spectral properties and to develop relation-
ships between these analytical expressions and the power-spectral properties
of the random time histories used. This was done by analyzing four random time
histories having different statistical and power-spectral properties which were
generated with the ald of a digital computer. Some of the power-spectral prop-
erties of these time histories have been calculated and are given in table I.
The distributlons of instantaneous means and amplitudes were obtained by actu-
ally counting each mean and amplitude in the time histories. The number of
occurrences of each of these values is listed in tables II to V. A discussion
is presented of the distributions obtalned by counting, the manner in which
these distributions were described analytically, and the relationship between
these dlstributions and the power spectra of the various time histories.

The frequency distributions of the means for the four time histories inves-
tigated are plotted in figure 3. All four distributions appear to be normally
distributed. This normality was checked by plotting the probability of
exceeding a given mean value on normal probability paper for each of the tlme
histories (fig. 4). As a first approximation the means can be considered to be
normally distributed.

The frequency distributions of the amplitudes f5 about specified means
are tabulated in tables VI to IX. Only those distributions which were

11



considered to have a sufficient sample size to be representative have been
plotted in figures 5 to 8. The positive and negative amplitudes are approxi-
mately symmetrical. Amplitudes were considered to be either positive or nega-
tive depending on whether the slope of the line between successive peaks was
positive or negative. The amplitude distributions are approximately symmetri-
cal about the zeroc mean.

An equation, similar to the one developed by Rice (ref. 2) for determining
the peak distribution, which gave the best fit to the data was found to repre-
sent the distributions of the amplitudes about any specified mean. The equa~-
tion represents the sum of a normal distribution and a Rayleigh distribution
and is expressed mathematitally as follows: ’

Te = NyPy + NgPR (18)
where
fo computed number of occurrences of amplitudes in range y; S ¥ < Vi
Ny number of amplitudes normally distributed
Ngr number of amplitudes distributed according to Rayleigh distribution
Py normal probability which may be expressed by the following expression:
il 5
1 -
Py = Jf exp —= 5 da (19)
cNVEE Yi 2oy
Pr Rayleigh probability which may be expressed by the following
expression:
Vil -p2
pR=_12 f L exp B S dp (20)
OR ¥i 20

The general form for equation (18) is a modification of the peak prob-
abllity distribution equation which is the sum of a normal and a modified
Rayleigh distribution. The coefficient oRg 1n the Rayleigh portion of the
equation is the slope of the straight-line portion of the curve obtained from
a plot of log of the cumulative frequency of amplitudes against the square of
the amplitude for any specified mean. It was found that the coefficient op

remained approximately constant, regardless of the mean value. The following
relationship was developed, by using a trial and error procedure, in order to
relate the coefficient op to some of the power-spectral characteristics of a

random time history:

12
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2
£ - K
op = =2 + (e - ) (21)
£ t
P 22+ fp
fp

where fo, fp, K3, and Kp are derlvable from the power spectrum of a random
time history.

The coefficient oy in the normal portion of the equation which gave the
best fit to the data was found to be related to the coefficient og as follows:

oy =1 - oy (22)

The remaining coefficlents in equation (18), namely Ny and Ny, were

adjusted by a least-squares technique to give the best fit to the data

(egs. (C3) and (Ck)). These coefficients might have some physical significance
but for the purpose of the present paper they will be treated as being inde-
pendent. The technique used 1s summerized in appendix C. Since the distribu-
tions of amplitudes are approximately symmetrical, only the positive amplitudes
were used to determine the coefficients. The number of positive amplitudes at
a specified mean Np was found to be related to the coefficients Ny and Ny

by the following expression:

NT=NR+%NN (23a)
which may be rewritten as follows:
N N
R, 1N
l=—+=-— 23b
et (23p)

The ratio of NR/NT was found to be a nonlinear function of the mean, being

fairly constant for means close to zero and becoming progressively smaller for
larger means. An attempt was made to predict the quantity Np by determining
the probability of occurrence of the means and multiplying it by the total num-
ber of occurrences in the time history. Since it has already been established
that the probability distribution of the means is approximately normal, all

that is required is the standard deviation of the means. A relationship between
the standard deviation of the means and the power-spectral characteristics of a
random time history was found but the relationship was not sufficiently accurate
to predict small standard deviations - that is, time histories C and D - and
therefore not accurate enough to predict Np. No apparent relationship was

found between the power-spectral characteristics of a random time history and
the coefficients Ny and Ng.

The coefficients derived to give the best fit to the observed frequencies
for each of the time histories investigated are presented in table X. The

13



computed frequencies based on these coefficients are given in tables VI to IX,
and the observed frequencies are also given for comparison. In addition, the
observed frequencies (open symbols) and the computed frequencies (solid symbols)
are plotted in figures 5 to 8.

In the present paper, a strictly empirical approach was taken. An equa-
tion was fitted to the data using a least-squares technique and two variables,
namely, Ny and NR. Possibly a better fit could be achieved by adjusting

the four coefficients oy, og, Ny, and Ng simultaneously with a least-

squares procedure. However, a strictly analytical approach would be more
desirable. It is most probable that an expression could be derived analyti-
cally since the expression for amplitudes developed in this paper is quite
similar to the expression for peaks developed by Rice (ref. 2). In addition,
a definite relationship exists between the peaks and the means and amplitudes.

CONCLUSIONS

Four random time histories with significantly different statistical and
power-spectral properties have been generated with the aid of a digital com-
puter. The statistics of the means and amplitudes as well as the power-spectral
characteristics have been obtained for each time history. The following con-
clusions have been drawn from an analysis of the data obtained:

1. The frequency distributions of the means are, in first approximation,
normally distributed and symmetrical about a mean of zero.

2. The frequency distributions of the positive (or negative) amplitudes
for a specified mean can be described by the sum of a Raylelgh and a normsl
distribution. The positive and negative distributions are approximately sym-
metrical. These distributions are also approximately symmetrical about a mean
of zero.

3. The standard deviations of both the normal and Rayleigh distributions
representing the frequency distributions of the amplitudes are essentially
constant over the entire range of mean values and can be approximated from the
power-spectral characteristics of the time histories.

L. The coefficients Ny and Nr 1in the general equation defining the

distribution of amplitudes have been obtained empirically but no apparent rela-
tionship between these coefficients and the power-spectral properties of the
time histories has been found.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., December 3, 196L.
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APPENDIX A

DETERMINATION OF COEFFICIENTS OF A FOURLER COSINE SERTES
REPRESENTATION OF FREQUENCY-RESPONSE FUNCTION
Consider the continuous periodic function of time, amplitude A, and fre-
quency f, such that
y(t) = A cos 2xft

If this function of time 1s sampled at discrete time intervals At, the con-
timious time history is replaced by a discrete set of values y; equal to

y(t) when t =1 At and undefined in between. Thus,

y(t) = y; = A cos 2nfi At (t =1 At)
When At = — y
F
Y; = A cos ix L (A1)
i fx

The above time history can be modified to change its frequency character-
istics (i.e., numerically filtered) as follows:

M
K=-M
where
Y filtered time history
yi+K original time history
ag filter factors or coefficients
M number of points used to approximate the amplitude response

Equation (A2) represents, in numerical form, the passage of an input signal
y(t) through some linear system which results in an output signal Y(t). Upon
substituting y; from equation (Al) for y;,r in equation (A2),

Y Aaocosn——i+Z[Kcos:t i-K)+aKcos:r——(i+K)]

15



APPENDIX A

Where ap = a_g

M
Yi = A cos =n E; ilan + 2 }Z cos jl K
* £\ © K Ty

K=1

M
Y = an + 2 ZE: B cOs 1 LK A
i *=J¥i\%0 K g (a3)

K=1

The term in parentheses is in the form of a Fourler cosine series. It is

(o)

in the form of a Fourier cosine series in order to filter the generated time
history. Therefore let

necessary therefore to represent the amplitude response function

vhere h =0, 1, 2, . . . H, then

H
f h Kh
RESTREC POy

h=1

where

H
1 Kh
== ., co — dh
ax H L h 5 % "

Using the trapezoidal rule of numerical integration

() = g[eos = 2] [1a] (i)

where

r
ol
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APPENDIX B
EXPRESSIONS USED FOR DIGITAL COMPUTING

Given a time history y(t), digitized at discrete uniform time inter-
vals At, and assuming that the origin of time occurs at one of these inter-
vals, then

t =14t
where 1 =0, 1, 2, . . . N and

y(t) »y(1 at) =y

The covariance or autocorrelation function shall be defined as & quan-~
tity Rp where

N-P

Y1¥14p (p=0,21,2 ...M=60) (BL)
1=0

Equation (Bl) is the numerical integration of equstion (7).

The power spectral density is the Fourier cosine transform of the covar-
iance function Rp. For convenience it is obtalned in two steps. The prelim-

inary step gives estimates of the raw spectral density I, and the flnal step
gives estimates of the smoothed spectral density ¢h' Estimates of spectral

density are termed raw when they are obtained from the covariance function Rp

by Fourier cosine series transformation and smoothed when hanned (operation of
smoothing with weights 1/4, 1/2, 1/4) from the raw estimates (ref. 9). The
smoothing operation partially accounts for the fact that a finite sample rather
than an infinite sample was used when taking the Fourier transform. There are
as many estimates Iy as there are terms in Rp, that is, M. The raw spec-

tral density estimates are given by the matrix equation:

i% 0 0 0 . :ﬂ
0 1 0
0 0 1
{Lh} =4 At E:os %If-l-jl . . {RP} (B2)
. 1
1
- 2]
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APPENDIX B

where h 1s used to represent a frequency

O - _1h
h =M oM At
and.
p=h=0,1,2 ...M=60

The smoothed spectral density estimates are given by the matrix equation

——

2 2 o . . .

1 2 1

o~
i
&
1]
=
o)
S
w
N

1 2 1

o 2 2|

-
S

The mean square of y(t) and its derivatives are defined as follows:
1 1
032,=Afh(§¢o+¢1+¢2+"°¢M_1+§¢M) (B4)

h_ 1
2M At 2M At

where Af}y =

> (2n)? 2 1

05’_(2MA1; Zh¢h+—M2¢h (B5)
()" [T

g . A ntg, + i Yy (B6)

v (2M At) Z ¢h &
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APPENDIX C

ILEAST-SQUARES TECHNIQUE FOR DETERMINING

THE COEFFICIENTS Ny AND Ny

The equation chosen to represent the frequency distribution of amplitudes
about & specified mean is

T = NyPy + NgPR (c1)

where f. 1s the computed number of occurrences of amplitudes in the range
y1 Sy S Yia1e In order to facilitate computation of the number of occurrences

of amplitudes in the range y > yj, fyi 1s computed first. The desired value
fe can then be computed from the following relation:

f. =7 - f
¢ Yy Yi+l

Thus,
fy; = NyPy(¥1) * NRPR(¥1) (c2)
where
® 2 y 2
- 1 i -
Py(yi) = JF exp — do = 1 - JF exp 5 do, = %li - ¢(xi]
oy\en Yy 20y oxVex Yo 2oy

where @(x) = Error function

1 *© -p2 -Y%

Pr(¥1) = —5 B exp dp = exp
2 Doo2 -
OR ¥y OR OR

The following approximation, obtained from reference 10, was used to facilitate
computation of the error function ¢(x) in the computer:

B(x) =1 - =

L
<1 + alx + a2x2 + a,3x5 + auxu)

19



APPENDIX C
where

_J1

2QN
a1 = 0.278393
an = 0.230389
az = 0.000972
a)y = 0.078108

The least-squares technique involves minimizing with respect to each of the
undetermined coefficients the sum of the differences squared between the
actual and calculated number of times a value y = y; 1s exceeded - that is,

E:(fb - fyi>2. Since the coefficients oy and o have been previously

determined to be constant it 1s only necessary to minimize with respect to Ny

and Ny. Thus,
ST {z [fa. - MPy(yi) - NRPR(¥; ) ]}
Y SR

Solving these two simultaneous linear equations for Ny and Ny gives

"
o

|
o

Ny = 1=0 1=0 B 1=0 i (c5)
o0 [o9] [e ]
2
] PN Yi PR(¥y1 )Py Yi)
=l i:o i=O
[s4] o0 [s4] 0
Z yl Z yi PN yl Z z [PR Yy
=i =O : =
N - (ck)
[+] 2 [+¢]
Z PR Yi PN yi) - Z [PN Yl:l ZI:PR ¥i
i=0 i=0

20
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TABLE T

POWER~-SPECTRAL-DENSITY CHARACTERISTICS OF THE

FOUR RANDCM TIME HISTORIES

Time history
A B rc

oy 0.9978 1.0017 o.9§éﬁ
o§ 2.5147 6489 2.3571
c§ 11.5483 1.4698 7.7025
fo .2529 .1280 L2462
fp L3411 . 2395 2877
fo/fp CThak <5344 .8558
Ky L6711 8452 5173
Ko .9052 1.5816 6045

0,9915

2.6216

8.9284

2599

«2937
.8849

4658

.5264

9



Mean|

-0.1
+.1
-3
4.3

+1.1
-1.3
+1.3
-1.5
-1.7
+1.7
-1.9
+1.9
-2.1
+2.1
-2.3
+2.3
-2.5
+2.5
=2.7
+2.7
-2.9
+2.9
-3.1
+3.1
=3.3
+3.3

Total

6,865

6,663

+0.2

313
316
379
Lol
391
L9

k70
Ll

L3
3h1
718
250

251

164
102
99
48
63
27
2k
1

7

6,698

5,662

TABLE IT

FREQUENCY OF OCCURRENCE OF TNSTANTANEOUS MEANS AND INSTANTANEOUS AMPLITUDES FOR TIME HISTORY A

+0.4

257
.230
298
312
Bhe

383
356
Lol
387
%7
367
274
275
202

143
1%
871
76
ho
L%
25

[P RO T

[

5,634

-0.6

202
192
198
216

256
277
309
311
296
234
262
185
188
152
12
97
91
65
65
35

16
18

1,146

+0.6

217
176
206
235
257
253
318
286
28k
326
256
269
221
212
147
139
11k

54
70

31
20

W @

4,201

22
20

15

2,810

+0.8

155
152
162
155
181
183
195
207
205
197
161
162
135
145
103
110

70

T

45

25

25
10

owow F

2,951

-1.0

871
™
95
97

107
118

129

116
15
87

T1
55
64
45
10
20
35
19

By o\

1,726

+1.0

87
(el
102
123

102

1,767

53
b3
bl
50
60
56
69
60
61
59
65
68
b7
59
1
4
18
2k
1k
1>
13

980

+1.2

1,031

-1 Lk -1.'6 +1.6|-1.81+1.8]-2.0[+2.0-2.2 k2.2 |-2. 4| +2. 5 |-2.6 |+2.6| Total
28| 27| 15{ 20| &4 5 2 2,519
28] 29| 16| 15| 3 8 2 1 1 2 2,431
22| 25| 22| 15| 3 8 1 1 1 2,749
3B 25| 15 91 5 T 1 2 2 2,808
291 16f 13| 13| 7 3 & 3 2 1 3,299
32| 26| 19| 18| 4 4 3 2 1 3,307
26| 26| ] 15( 7| 5 3 2 1 3,613
24 k2| 1h| 16| T | ¥ | 2 3,642
% 32| 12 7| 8] 7| 2] 2 3,674
26| 3| 22f 12| 5 5 2 & 1 3,610
26| o4 8| 2o & L 1 1 1 1 3,147
|l 260 | 7| 3| 2| 1} 1 1 3,24l
23| 22 9l T 4| 2 1 1 2,611
22| 23| 13| 13| 6| 3 1 2,536
6] 15 7 9 3 2 1 2 1,869
15| 15 2 6| & 2 3 1 1,922
13 b 2 3 1 3 1 1,273

8l nl 3| s 1 2 1, 300
6 8] 2 2 1| 21 1 79
8l 7| 1 5] 2| 2| 1 83
1} 2 31 2 465
2 4 1 432
3 2 1 249
2| 1] 1 222

1 1 89

1 1 1 1 97

1 1 1 41
1 51
19

17

L

1 6

1

b8

465] 458] 227| 234 85 | 8o | 24 | 28 8 | 10 2 1 1 52,827

23
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TABLE III

FREQUENCY OF OCCURRENCE OF INSTANTANEOUS MEANS AND INSTANTANEOUS AMPLITUDES FOR TIME HISTCRY B

Am:ean 0.0 |-0.2|+0.2 |-0.b|40.4}|-0.6|4+0.6|-0.8] +0.8| ~1,0| +1.0| -1.2| +1.2[-1.4[+1.4]-1.6 |+1.6 [-1.8|+1.8|-2.0 +2.0[-2.2 [+, 2 |-2. 4 |+2.4|-2.6 |+2.6 }-2.8|+2.8]-3.0|+3.0] -3.2|+3.2| Total
-0.1 %6 | 3716 | %9 | 34! 359 297 305| 218| 222 158| 177 | 132| 126 76 95| 36| 41| 33| Lso| 16} 18| 10| 12| & 2 2 4 3,838
+.1 386 | 380 | 364 | 368! 338| 286| 200| 211| 234| 183 182| 132| 1%9| T 100| 54| k9| 3| 39; 16) 24| 9| 9| 4 3| 1 3| 1 3,913
) 302 | 30| 38| 255| 273| 223| 209 187| 175| 133| 1s2 85 B6| 66| 52| 26| 43| 15| 4| 15| AT 6 T 3 3 1| 2,976
+.3 313| 330| 295 251 294 | 212 213| 166| 176| 128| 1k 86 92 63| 43| 37| 37| 10| 15| 10| 1 5 T 4 5 1 1| 2,952
-.5 250 250' 301 | 259 267 | 209| 205| 169| 155| 109| 108 86| 81 30 51| 37| 27| 10 21 6] 8 5| k| 24 1| 2 2,653
+.5 2k | 264 291 | 223 | ouk| 211| 219 | 163| 189| 107| 115 T 91 4 35| 30 23 12| 25 10 11 5 1 1 1 1 2,643
-7 239 | 23% 232 221 | 239! 18%{ i77| 17| 147 8 9L 76 62 39 33 23 25| 15' 2% 3 5 L 2 1 1 1 2,331
+.7 256 | 243 25| 213| 204 186| 182 147] 120 % T T 73 k3 37 19 27 15 14 Lo onl 6 b1 T 1 2 2,295
-.9 203 | 205 2% | 184%| 198 1ko| 15| 105 108 8l 89 50 59 30 39 17 22 1k 6 10 3 3 b 1 1 1,952
+.9 192 2235 189 | 178| 1gL 165| 152 g4 100 T 92 57 52 3% 25 15 19 1 10 I 5 1 1,884
-1.1 171 153 153‘ 0 139 i09 119 92 82 68 53 42 39 19 29 1+ 11 9 8 b 2 2 1,458
+1.1 187 154 159 122 172 116 125 6 > 52 57 39 33 2b 19 16 18 5 6 2 1 1 1 1,458
-1.3 B4 123 12k 107 117 103 9h g T2 4o 42 29 30 7 1 Lo It 1 1 4 1,125
4.3 130 18 W6 109 90 B 8 73 6L ¥ 57T 27 ¥ 13 20 10 9 T 2 1 1 1 1,13
-1.5 10k 8 89 kg T T2 ST 36 k5 22 Sk 21 22 5 11 6 8 =2 3 2 1 765
+1.5 8y 71 100 88 84 60 70 47 Ly 37 29 17 17 10 5 5 T 3 3 1 782
-7 60 &l 18 58 i 18 3n 36 27 16 22 1k 16 12 T 4 2 1 513
+1.7 69 60 62 59 18 50 39 28 3 20 27 5 3 5 9 1 5 1 1 1 530
-1.9 50 3% 3 28 g9 28 24 20 22 g 1n 7 7 5 5 1 1 1 2 1 326
+1.9 3 % s 3 33 % 4 13 ¥ 1y 9 w0 5 3 5 5 3 1 1 356
-2.1 23 21 29 24 19 21 12 1 5 6 L 2 L 3 2 2 1 185
+2.1 15 25 24 13 21 8 2l 6 8 2 10 6 1 2 3 1 1 170
-2.3 6 13 9 5 1 6 9 6 5 2 b 2 8
+2.3 8 12 1 1 8 8 7 5 6 3 2 1 2 1 8l
-2.5 n 12 6 i 2 1 6 5 3 b 1 52
2.5 I 8 6 '3 5 T 6 1 2 1 1 1 L6
-2.7 4 3 3 1 2 3 1 1 18
2.7 2 3 7 5 1 1 1 1 1 1 23
-2.9 1 3 1 1 1 1 8
+2.9 2 1 1 L
-3.1 1 1 1 3
+3.1 b3 1 1 3
-3.3
+3.3 1 1 2

Total 3,881 3,811 3,890 3,362 3,511 2,87k 2,860 2,133 2,138 1,497 1,599 1,074 1,086 607 637 362 389 202 242 207 122 57 57T 20 7 7 9 3 4 1 2 '%6,561




+T

+.9
1.1
+1.1
-1.3
1.3
1.5
+1.5
-1.7
1.7
-1.9
+1.9

+2.
-2
+2.
-2,
+2.
-2.

+2

= R R I * IRV IR CU TR

4.5
.5

Total

20
23
13

10

10

10,069

-0.2

2%
e
332
321
374
26

453
509
526
516
527
Bl
Log

365
254
261
221

213

179
98
85
50
59

33
16

25

o =

"

1

[B-425

TABLE IV

FREQUENCY OF CCCURRENCE OF INSTANTANEOUS MEANS AND THSTANTANECUS AMPLITUDES FOR TIME WISTORY €

8,657

-0.4

232
249
192
175
218
240
286
264
278
.58
298
291
262
270
2kh
214
165
163
ns
121
97
gl
57
%6
3%
33
23
21
12
ik

5,010

+0.4

p,178

-0.6

bl
133
89
73
80
86
15
12k
k2
124
116
121
15
129
108
102
8
7
53
62
39
35
16
22
23
23

t"G\O\U\

+0.6

2%
18
13

2,369

kg
56
31
33

[N RV R N

nN

730

+0.8

L6

55
28

723

-1.0

E o I - e

n

160

+1.0

22

13

=
© -

o ® F m ® oo kv o

Fouou o ow

172

-1.2

+1.2

~1.4

+1.1

-1.6

+1.6

-1.8

+1.8

+2.0

+2.2

2.4

+2.4

Total

1,967
1,971
1,640
1,575
1,954
2,058
2,461
2,51%
2,623
2,612
2,591
2,611
2,358
2,335
1,938
1,549
1,418
l,h}ﬁ
1,0%
1,068

1

43,850
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TABLE V

FREQUENCY OF OCCURRENCE OF INSTANTANEOUS MEANS AND INSTANTANEQUS AMPLITUDES FOR TIME HISTORY D

G 0.0 (-o.e +0.2 I‘-o.u +0.4 0.6 [+0.6 1-0.8[+0.8 [-1.0(+1.0{-1.2{+1.2(-L. b [+1.% (-1.6[+2.6{-1.8 +1.8{-2.0[+2.0 (-2.2|+2.2 { Total
Amp.
-0.1 ugh [ 388| 67| 228| 214 | 68| 79| 24| 22| W | 9| 1 1 1,889
+.2 486 395 35| em | 19 73) 94| 27 23| 5{ Wy 2/ 3 1,802
-.3 wg2| 36| 39 168| 137 3| 30| 7| 6| 2| 2 1,583
+.3 Lo1 3o 31| abo| 154 | 48| 6| 2] 4| 2 3 1 1,58L
-5 649 k1g heg( 153 2631 =l 35 T 9 2 1 1,501
+.5 650 406 Ly | 176| 163 29| ko 6 Iy 1 11,919
-7 8ah | 573] 553| 183 199 | 3| 3| & 6] 1] 1 2,40
+7 768 573 556 179 207 | 4| 37 8 311 2 1 12,3719
-.9 89| 64s| 6Gog| 218| 2uk| ue| W] 2| 6 2,693
+.9 903 | 647{ 6kl 2o7( 236 k3{ M 3 2 2,754
-1.1 872 587( - 664 238| 216 | 43| 39 8 8 2,675
+1.1 8ko 619 635| 209| 2a4| u3| Lo 6 8 2,614
-1.3 64 sk2 550 205 21k [ b2l 0 5 3 1 2,356
+1.3 738 525 538| 215| 237 50| 43 T 5 2,358
-1.5 603 ks 462 | =201| 202 | 48| 51 4 4 1,990
+1.5 650 k43 k37! 190] 19%| 40} 45 8 ks 1 2,011
-1.7 kg %58 378 k| 131 | 36| 37 2 1 1 1,537
+1.7 450 355 351 16| 169 38( 30 5 7 1 1,562
-1.9 302 248 229] 120| 107 22| 26 5 3 1,082
+1.9 56| 263] 251 105| 107 24| 29| 71 5 1,107
-2.1 255 198 191| 77| 81| 15| 18| 4| b 843
+2.1 ou2 200 190 Th 62| 17| 27 3 1 806
-2.3 155 1k 19 50 Th) 18) 15 1 576
+2.3 176 122 122 x| 43| 20| 15 1 1 1 549
-2.5 110 T 81| 36| 3z2f 3| 5 338
+2.5 110 k(3 86 % 4o T 17 2 372
-2.7 62 Ly 63 29 20 T 8 1 23k
2.7 56 43 61| 18| =2 s| 7 214
~2.9 43 33 2k 11| 16| 4 5 1 137
+2.9 37 Lo 20 13 12 3 1 128
-3.1 22 13 18 11 1 1 66
+3.1 2k 19 18 5 5 2 3
-3.3 1h 9 T 3 2 35
+3.3 1 10 12 1 2 1 1 38
-3.5 3 1 5 1 b hE
+3.5 3 2 2 L 1 15
-3 1 1 3 1 6
+3.7 3 1 3 1 1 9
-3.9 2 2 Y
+3.9 1 1 2
b1 1 1
1
B
+h.3
4.5 1 1
+H.5
N
+.7 1 1
Total {13,983 10,12k (10,174 4,100 [4,126 9;1# 968 | 157 k| 18 | 25 3 5 1 1 1 1 ik, 765
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TABLE VI

PREDICTED AND OBSERVED FREQUENCIES OF OCCURRENCE OF INSTANTANEOUS AMPLITUDES

ABOUT A SPECIFIED INSTANTANEOUS MEAN FOR TIME HLSTORY A

Mean -L.b -1.2  -1,0 -0.8 -0.6 -0.b -0.2 0.0  +0.2 +40.b  +0.6  +40.8 +1.0 +1.2 +1.k
ﬁés mark fa fC fa. fC fa fC fa fC: fa fC fa fC fa f'C fa fC fa. fc fa fC fa fc fa fC fa fC fa fc fa. fc
0.1 2828L43L46 7h 87 13 153 192 183 263 243 301 325 328 321 313 325 230 215 176 183 152 153 75 87 bkt 46 29 28
3 35265051 97 OL 146 152 216 213 201 280 322 342 325 248 379 32 312 293 235 213 155 152 123 9L 56 51 25 26
.5 3229 56 60 107 104 182 171 256 257 330 335 4h0 395 W41 407 391 395 380 347 253 257 183 171 117 10k 62 60 26 29
.7 2k 33 60 69 129 119 193 195 309 294 405 384 450 451 483 466 463 U51 356 386 286 294 207 195 110 119 78 69 ko 33
.9 26 33 59 69 116 120.195 197 2% 297‘571 388 43 156 koo W7o LUk 456|387 388 326 297 197 197 113 120 59 69 35 33
' |
1.1 34 30 68 63 87 109 17h 178 262 269 380 351 399 412 k11 ko6 413 412|367 351 269 269 162 178 99 109 66 63 26 30
1.3 22255952 Tl 9oI132 147 188 222 260 289 312 340 337 351 318 340|275 289 212 221 145 14T 104 90 4% 52 23 25
1.5 1519 41 39 64 68 110 111 1h2 168 207 219 278 258|235 266 251 258|202 219 139 168 110 111 53 68 42 %9 1519
1.7 81324 28 4 48 T4 78 91 117 125 154 177/181|166 186 164 181|135 154 1212118 7% 78 L9 48 30|28 11|13
1.9 8 81318 25 31 30 51 65 T7 89 100 104 118|109 121 99 118 76 100, 70| 77| 35 51 17 311618 7| 8
2.1 2 511/11| 19 19 22. 31 34 W6 46| 61 51| TL| 60| Th| 63| TL| 41| 61] B3| 46| 25| 31| 15| 19| T|1L| 4| 5
2,3 0| 3 4 6| 8| 11| 15! 172 181 26| 24 34i 21| 40| 36| 42| 24| 4o| 24| 2| 22| 26| 12| 17| 8| 11| 2| 6| 0| 3
2.5 o 2| 1| 3| 5 6| 5 9| 8| 14| 13| 18| 14| 21| 5| 22| 17| 21| 7| 18| 8| 14| 5| 9| 3| 6| 2| 3| 1| 2
2.7 1 1| 2l 2| 1 3 1 5 5/ 7 2 9| | 8|11 8|11 5| 9| 2| 7| 4| 5| 2| 3/1|=2
2.9 2| 2 2 4 2| 5| 4| 21 3] 5/ 1| 4 2| 3 1l 1
3.1 1l 2| 1} 2f 1} 1| 1] =2 1 1

fg - observed frequency of occurrence {i.e., number of amplitudes counted in an interval)
fo - predicted frequency of occurrence (eq. {C1))
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TABLE VII
PREDICTED AND OBSERVED FREQUENCIES OF OCCURRENCE OF INSTANTANEOUS AMPLITUDES

ABOUT A SPECIFIED INSTANTANEOUS MEAN FOR TIME HISTORY B

~\\\\\jfff:-l.h -1.2 -1.0 -0.8 -0.6 -0k -0.2 0.0 | +0.2 | +0.% | +0.6 +0.8 | +1.0 | 41.2 | +L.4
Amp

falfe| fal| fe| £

i

class mark a c| fa e falfe| f

0.1 T4 {89 |132 {136 |187 |18l {211, |236 |286 282 |268 341 | 380 |363 | 366 | 382 | 364 (363 1338 |34k |290 1282 |23k [236 |182 |18l 1139 |136 (100 |89
.3 63[62] 86 {10k 1128 (143 1166 {187 |212 |237 [251 {288 330 |310 |313 {320 |295 | 310 (29k |288 1213 [237 |176 |187 (144|143 92 |10k | 43|62

5 5% TTH 721107 |102 [163 |137 |211 | 187 |223 225 |26k [250 249 250)291 25012&& 205 2191187 1189 [137'1151102 91| 72 35|%6
| ; ; ! }

T 43io7" T 61 9% ' 88 x1h7 120186 171‘215§205 231231 1256 22812&5 251;2oh*205 182'171i120 120 | ™ 88. 73 61 37T:27
.9 32 2l 57L 56 77! 81 gk 111 165 1159 178x191‘225‘215 192 2125189 215 191\191 152 159 1100 {111 , 92' 81 52 56 25 24

1.1 2k 20 39 u8< 52 69 76 9 116|136 122 162;15& 1832187 1803159 185i172!162 125;156i 73| 9% 57 69v 33 48 19 20

1 f

1.3  1316' 27 37 45 53 73: 73| Bullou 109 125 118 [14. |1%0 139i146 1&1' 90 125 89§104‘ 61i T3 5755 41 37 2016

1.5 110111 17! 26; 37’ 57‘ 47‘ 51, 60 7318887 TL| 99| 84 97 1oo 99 8l 87 70i 75 Wil 51 29i 37 17 26 511
: 1.7 i 51 73 5; 16; 20 oh | 28| 32 5ob u7i 59' 56 60? 63| 69 621 62 65 hBi 56 59 b7 3% 32 27 24 k4 16 97

1.9 3 4 10 10,17 14 13119 % 27E 3T} 23| 36| 37| 39 37‘ h2‘ 57 35 55‘ ”5! 27 16 19 9 1 5 10° 5 L

2.1 % 2 2; 6; 5; 2 8 6§ 10 8: 15' 15; 18i 25! 20| 15 20! 2h) 20 21 f 15l Bi 10 10 8 1 5 3 2

2.3 o? 113 5; Y 5i 8 7/ 101 9! 12: 100 8{10/11 10 8/ 9| 7| T| 6| 5 2 2 3 11

2.5 oi 1}‘ 14 11 1 o2l 1] 2 7! 5 u{ ¥ 8 5! 4l s 6i 5% 51 h! 6 31 2 22 0f 2 1 1

2.7 10 E BEIRES A 1! 1 71 2| 3 2| 2| 2| of 2 5] 2i 11l a2l g

2.9 . i ; ? 1 o E o2 2 10 o 1 . 1l oo

5.1 | | L L L i [ { 10 10 ll Oi ? ; i — |

fg - observed frequendéy of occurrence (i.e., number of smplitudes counted in an interval)
fe - predicted frequency of occurrence (eq. (C1))
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TABLE VIII

PREDICTED AND OBSERVED FREQUENCIES OF OCCURRENCE OF INSTANTANEOUS AMPLITUDES

ABOUT A SPECIFIED INSTANTANEOUS MEAN FOR TIME HISTORY C

Mean|=0.8 -0.6 -0.k -0.2 0.0 +0.2 +0.4 +0.6 | +0.8
ﬁ?ﬁ;s markfalfe| fa| fe| fa| fe| fa| fe| fa] fe| fa| fe| fa| fef| fa| fe [falfe
0.1 56 |55 |133 [1h1 249 [219 {344 {355 | 375 [ 375 | 355|355 | 219 [219 {141 |1k41 |55|55
<3 33(22| 73| T4|173(165 |32 [279 [331|323|310|279|199 {165 | 89| T4 |25 |22
.5 35133 | 86 |1.08 |24 [245 |L28 (415 (443|481 (k3T |4h15]221 |245 117|108 |36 |33
T 31 |ho |12k 131 |26k |297 J453 |50k (585 {584 [501 |504 |29k |297 |12k |131 |32 |40
.9 Lo 42|12k 140 {318 316 (526 535 [fh2]621 496 (535|285 | 316 1122|140 |31 |h2
1.1 33 (41 1121 |135 {291 |30l [527 {516 [599 |598 |540 (516 | 317 | 304 121 {135 |43 1k
1.3 4036 |129 [120 | 270 |270 429 458 [541.|532 {448 (458|290 |270 [130 |120 {41 |36
1.5 28130 (102 | 99|21k |223 |365 (379 |b45 [440 [391 |379 {232 (223 [112] 99 {39 (30
1.7 34123 TL| 77|163 [173|261 [29% |325 [340 [295 (293|172 |173| 85| 77 [18]23
1.9 17| 62 56 (1211126 (213 21k |oh5 248 [185 j21k 106 1126 | 65 56 |27 |17
2.1 1612 35| 38| ok 87179 7 (175|170 27 {17t 91| 87| 26| 38| 9|12
2.3 12| 7] 22 25| 3| 56| 85| 95 {104 |110 |110] 95| Lo| 46| 24 25 12| T
2.5 5| 5| 23| 15] 33| 34| 59| 58| 64| 68 57| 58] 32| 34| 18] 15{ 9| 5
2.7 2] 31 6| 9] 21| 20§ 33| 34| 46| 39| 35| 34| 25| 20| T| 9} 3| 3
2.9 2{ 11 11| 5| 1411|2519 23| 22| 19} 19] 12y 11| 7| 5{2|1
3.1 2|1 31 8| 6 0f{10(11|11f10| &} 6] 5] 3
3.3 1, 3| 4| s5110f 6| 8| 5| 3| 3| 2| 1
3.5 1) 1| 1| 2| 31 3| 3| 2 of 1
3.7 1l 1| o] 1 2 o| o
3.9 o| o i} o
b1 ol o
k.3 o} o
k.5 i}f o

fa - observed frequency of occurrence (i.e., nmumber of amplitudes counted in

an interval)

f, - predicted freguency of occurrence (eq. (C1))
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TABLE IX

PREDICTED AND OBSERVED FREQUENCIES OF OCCURRENCE

INSTANTANEOUS AMPLITUDES ABOUT A SPECIFIED

INSTANTANEOUS MEAN FOR TIME HISTORY D

Mean| -0.6 -0.4 -0.2 0.0
caie mnk|Ta|Te| Ta| o Ta] %o| fa] %o
0.1 | 73| o] 23 |104] 305| 35| uee nes
.3 L8| 25t 149121 | 34| 309] ko1 | ka7
.5 29| 38| 176|18L| ko6 | brol 650] 650
-7 Wi b6 179 225| 573 576] 768|795
.9 43| 50| 2277]| 2k2| 6L47|618] 903] 854
1.1 Lzl kol 209|236 | 619[604| Lo 834
1.3 |50[hki2151213) 525|545| 738|753
1.5 Lof 371190 179| 443|591 650|635
1.7 38| 29) 146 142( 3551 363} 460} 502
1.9 2k 221105106 2631 271 316 375
2.1 17(15| 74| T75|200|191|2k2| 26k
2.3 20| 10| 48| s50[122|128176{1TT
2.5 71 7] 36| 32| 74| 81|110|112
2.7 5( 4| 18| 19| 43| kol 56| 67
2.9 31 2| 13| 11| k2| 28| 37] 39
3.1 2 1| 5| 6| 19| 15| 24| 21
3.3 1| 3| 10} 8] 11} 11
3.5 of 2 2 & 61 5
3.7 1 1 1t 2| 3| 3
3.9 o] © 1
b1 o| ©
L.3 ol o
4.5 ol ©o
b.7 i} o

+0.2

a

355
31
bl
556
649
635
538
L7
351
251
190

122

61
20
18

12

355
309
k70
576
618
60k
545
459
%63
271
191
128

81

4o

28

15

+0.

fa

19k
15k
163
207
2%
21k
237
193
169
107

62

L3

ko

24

12

= oou

fc
19k
121
18k
225
2h2
2%
213
179
1h2
106
™
50
32
19

OF

+0.

ol
L6
ko
37
n
ho
b3
45
30
29
17
15
17

f, - observed frequency of occurrence (i.e., number of

amplitudes counted in an interval)
fo - predicted frequency of occurrence (eq. (Cl))
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TABLE X

COEFFICIENTS DETERMINED TO GIVE BEST FIT TO OBSERVED FREQUENCIES

B

Mean
1.4
-1.2
-1.0
_.8
-.6
.

+.2

+.4

+.8
+1.0

+1.2

+1.4

Time history A

og = 0.81h
oy = 0.186
Augw Ny
22 | 60 |
L3 88
819 17h
1,340 316
2,026 343
2,644 458
3,104 650
3,204 | 630
3,104 650
2,64l 458
2,026 3h3
1,340 | 316
819 17h
k73 88
2oL 60

|Time history B

og = 0.746
oy = 0.254
N | N
153|205
358 | 433
515 58k
709 ™3
1,019 865
1,221 | 1,059
1,378 | 1,104
1,356 | 1,177
1,378 | 1,104
1,221 | 1,059
1,019 865
709 T3
515 | 584
358 L33
i53 295

Time history C|Time history D
og = 0.915 og = 0.942
oy = 0.085 oy = 0.058

I Ng * Ny Ng Ny
319 96
1,058 | 237 390 | 170
2,392 | 332 { 1,888 | 30k
L, 056 529 | 4,830 ko5
b,705 | 538 | 6,675 | 674
4,056 529 | 4,830 195
2,392 3%2 | 1,888 30k
1,058 | 237 390 | 170
319 96
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Figure l.- Amplitude responses employed in filtering. Curves represent the desired
response; symbols represent the response cobtained using Fourier coefficients.
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Figure 2.~ Samples of the four time histories obtained by filtering.
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Figure 6.- Statistical distributions of instantaneous amplitudes with respect to a spec-
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