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FOREWORD

This document constitutes a final report on the application of the

blast-wave theory of meteoroid impact to the problem of space radiator

design. Other publications entitled "Comments on the Solution of the Spall-

Fracture Problem in the Approximation of Linear Elasticity", CAL Report

AI-1821-A-3, NASA CR-54250, and "On the Possibility of Simulating

Meteoroid Impact by the Use of Lasers", CAL Report AI-1821-A-I, NASA

CR-54029, have previously been generated under this NASA-sponsored pro-

gram.

The present report is mainly concerned with the phenomena of shock

propagation and fluid flow due to impact. The application of these results

to the prediction of the deformation remaining after the fluid motion ceases

is taken up in the report on spall fracture, mentioned above.
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ABSTRACT __

report presents analytical solutions for the p_opagation ofThis

shock waves in dense targets struck by hypervelocity projectiles. The

solutions considered deal mainly with the high-pressure phases of defor-

mation, during which the material strength can be neglected. Several

methods of solution are described. Their advantages and limitations are

discussed, and their accuracy is estimated by comparing their predic-

tions with experiment and with the results of numerical solutions. To

illustrate the application of these approximate theories, an example is
I

given of shock propagation in porous targets. _.. _)
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of the sound speed, equal to C_/_/D_,square
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parameter related to Grdneisen constant at normal density,

see Eq. (65)
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denotes cohesive contribution

denotes free-surface conditions

denotes Hugoniot conditions, e. g. , _

pressure

denotes conditions at the shock, e.g.,

= Hugoniot (or shock)

t_ = shock velocity

denotes conditions ahead of, and behind, the shock

denotes time derivative

denotes _//_

denotes proportionality
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INTRODUCTION

The deformation of a solid target by the impact of a high-speed

projectile is an extremely complex phenomenon. Attempts to predict the

behavior of real materials during such an intense disturbance are com-

plicated by the presence of a variety of nonelastic, nonlinear effects.

In recent years, however, interest in impact at the extreme velocities

of meteoric particles (10- 70 km/sec) has made it possible to neglect

material strength during much of the deformation. This approximation

is suggested by the fact that the pressures generated at impact are typi-

cally measured in megabars, and far exceed the strength of any common

material. While the applicable equations of inviscid motion are consi_ -_-

erably simpler than those in which material strength is accounted for,

nevertheless their solution presents a formidable problem in time-

dependent, multidimensional, compressible fluid flow. Numerical solu-

tions of such problems for specific cases have been reported by Bjork l'
2

3,4
and by Walsh and his coworkers. The latter results, in particular,

have revealed the existence of certain scaling laws, but extensive corre-

lations of the numerical results have not yet appeared. Parallel analytical

treatments, while less specific, have also identified these scaling laws,

and have been used 5 to correlate results from a variety of cases. The

main purpose of this report is to review several of the more promising

analytical approaches that have been used, to present some extensions of

them, and to show their range of application.

The solutions described below deal exclusively with the inviscid-

fluid model; the strength mechanisms by which the target material is

eventually brought to rest are omitted. Consequently, the solutions offer

I AI-1821 -A-2



no direct information about target damage, but describe only the shock

propagation and the flow behind the shock. Some implications of these

results on the question of target damage are presented in the Concluding

Remarks.

One of the main obstacles to finding analytic solutions for shock

propagation in solids is that the powerful method of similarity cannot be
5

used. The reasons for this fact, which is associated with the equation

of state of the material, are briefly reviewed in Section I. Various forms

of the state equation are considered in Section II, and the particular form

used in the present report is described in detail. The three types of non-

similar solutions considered are taken up in Section III. The first of

these, developed by Oshima 6 for a perfect gas, has perhaps the greatest

analytical justification, and is here extended to the case of solids.

The second is the "Quasi-Steady" solution used previously 5 to

achieve a fairly accurate correlation of impact-generated shock waves.

This theory is also extended, so as to apply to the weaker, later stages

of shock propagation, and is compared extensively with experiment and

with numerical solutions. The third method reviewed was developed ori-

7
ginally by Porzel for the case of atmospheric blasts, and was later

extended by Zaker 8 to the problem of a nuclear explosion inside a solid.

The Porzel-Zaker theory is rederived here, in the light of new informa-

tion now available about the equation of state of solids.

The application of these theories is illustrated in Section IV by

considering shock propagation in porous targets, a situation which appar-

ently has not yet been treated numerically. The report concludes with

remarks intended to indicate what can and cannot be done at present by

AI-182I-A-2 2



analytical means, and to call attention to several lines of research that

may be fruitful for achieving an improved analytical understanding of

deformation due to hypervelocity impact.

3 AI-1821 -A-Z



I. SIMILARITY CONSIDERATIONS

When material strength is neglected, the equations expressing the

conservation of mass, momentum, and energy reduce to the Euler equa-

tions of an inviscid, compressible fluid. Assuming that all motion is

symmetric about an axis normal to the target surface,

coordinate system with its center at the impact point,

motion a re

and using a spherical

the equations of

@t )f

Here M.

tions, t

and _ denote velocity components in the _- - and _ -direc-

denotes the pressure, /9 the density, and _ the internal

energy per unit mass. The index 7) appearing in the continuity equation

must, strictly speaking, be set equal to Z, since these equations apply

only for a spherical problem. Its value is left arbitrary for the moment,

since, when the _ -variation is discarded (as will be done shortly) the

correct forms for the cylindrical and planar cases can be recovered by

setting 7_ = 1 or 0.

AI-18ZI-A-Z 4



These equations are completed by the equation of state,

taken for the moment in the form

At the shock, the Rankine-[-lugoniot conditions apply. Thus

which is

(5)

f, p,) e,

_/_o---O

p=_ --/4,6_-<,_,) (61

,,?,_po- ,po_ _, (7)

,c+o>(Tf)_,-e_ "- _ + _, - (8)

where LZ= is the velocity of any portion of the shock normal to itself, and

subscripts O and 1 denote conditions ahead of and behind the shock.

The analysis presented in this report is based on the assumption that

the shock is always a hemisphere, with center at the impact point on the

surface. Such an assumption is supported by photographs of impact-

generated shock waves in transparent targets, 9, 10, II by internal meas-

12, 13
urements of shock shape in wax targets, and by computer solutions

5 AI-1821 -A-2



1,2,3,4
for impact into solids, at a sufficiently long time after impact.

For impact into a gaseous target, the results of Welsh et al 4 indicate a

spherical shock whose center lies inside the original target surface, at

about one-third the distance traveled by the shock along the axis of sym-

metry.

The problem of predicting the flow field behind the shock wave as

it propagates into the target requires the solution of Eqs. (1)- (4), which

contain two spatial coordinates and time. One of the most fruitful

approaches to such a complicated problem has been the method of simi-

larity, which assumes that properly normalized distributions of the

various physical quantities {pressure, density, etc.) at each instant are

the same when viewed on a scale defined by the shock radius at that in-

stant. Thus each quantity, instead of varying independently with time and

with the spatial coordinate _ (distance from the origin), is assumed to

be a function only of the similarity variable.

where /_x(_) is the instantaneous distance of the shock from the origin.

Mathematically speaking, the objective of the similarity assumption is to

suppress time as an explicit independent variable. To see how this is

done, and to set the stage for the introduction of Oshima's method below,

it is instructive to change independent coordinates from _" , _ , _-

to _ , _ , _s(_) , and to redefine the dependent variables in terms

of certain dimensionless functions:

AI-182I-A-2 6



i oZ.

(10)

2.

_._o_ _/_%_)
In these terms, the basic differential equations become

(12)

(13)

(14)

The assumption of similarity amounts to neglecting the right-hand sides

of these equations -- i.e., it is assumed that the functions @ , _ ,

7 AI-1821 -A-2



_C, _._ , and _ do not change with the scale _ of the disturbance.

In addition, similarity requires that the combination f_s]_/_z" be a

constant, which is satisfied if the shock radius is proportional to a power

of the time

(15)

The only remaining source of time dependence then comes from the

boundary conditions. The Rankine-Hugoniot conditions, written in terms

of the dimensionless functions introduced above, become

' _L

where conditions ahead of and behind the shock are denoted by subscripts

O and l , respectively. These equations show that an explicit time

dependence can enter in either of two ways. The first occurs whenever

ahead of the shock is comparable to 2o _z- , which is ofthe pressure

the order of the pressure behind the shock. The second possibility of

time dependence comes from the state equation. As pointed out, for ex-

14 15
ample by Kynch and by Sedov, similarity solutions are possible only

if the equation of state has the form

AI-1821-A-2 8



where _(?) is any function of the density. When the state equation has

this form, andwhenthe term _o/po_l" is negligible, it is possible to

eliminate _1 between the last two of Eqs. (16),
v

expression for the density ratio across the shock

constant

and the result is an

which remains

The equation of state of a perfect gas

is of the form of Eq.

e=

(v-,)?
(17). Thus, departures from similarity in the

(19}

perfect-gas problem arise only from the term The situa-

tion is just the opposite for shock propagation in solids. There, the term

o_ z" is certainly negligible whenever the fluid-mechanical model

itself is appropriate. On the other hand, the state equation appropriate

to a high-pressure solid does not match the form required byEq. (17),

except in the limit of extremely high pressures, where, as will be seen

below, the state equation approximates the required form, and the density

ratio across the shock approaches a constant value. It is a matter of

common experience, however, that the density ratios produced by impact-

generated shock waves are far from constant. For impact speeds on the

order of 10 km/sec, they may range as high as 2 or 3 at the impact point,

but they drop rapidly as the wave expands, and quickly approach the

elastic-wave limit of I. Only the very early stages of impact at very high

speed experience the constant density ratio required for similarity. Thus,

as pointed out in Ref. 5, impact-generated shock propagation in solids is

characteristically nonsimila r.

9 AI-1821-A-2



II. EQUATION OF STATE

The nonsimilar behavior of shock propagation in solids is caused by

the form of the state equation. For the range of pressures encountered

in hypervelocity impact, the Mie-Gr{ineisen equation of state is commonly

used. In most numerical solutions, this equation is expressed in consid-

erable detail, requiring the specification of a large number of constants.

For present analytical purposes, a less cumbersome expression is desir-

able; this section describes an approximate form of the Mie-Gr_neisen

equation used in the analyses that follow. A complete description is given

of the shock-wave relations and thermodynamic properties for such a

state equation.

A. General Form

The Mie-Gr[_neisen equation is usually written in the form (see Ref.

16, Eq. (33))

pr?) (2o)

where the subscript ¢- denotes the cohesive contribution, and where

/"/p) is the Gr6neisen factor, which depends weaklyon /& It is con-

venient to express the cohesive quantities in terms of measured shock-

wave data; along the Hugoniot, Eq. (20) takes the form:

prrp) (21)

Subtracting the left and right sides of this from the corresponding sides

of (20) gives

AI-182I-A-2 I0



e-_.C?}=

This can be rearranged in the form

pr_
where

(22)

(23)

The presence of the second term in Eq. (23) renders a similarity solution

inappropriate (compare with Eq. (17)) except in the limit of extremely

high pressure, where A(p) is negligible compared to the first term.
i

B. Shock-Wave Relations for General /'-, A

The Rankine-Hugoniot condition expressing conservation of energy

across a shock is

+++°I 1- _- _ (25)

Zpo P,

If all energies are measured with respect to eo , the equation of state

may be rewritten

e-eo --
A_) (26)

pr_)

Equating these two expressions givesthe Hugoniot curve in the form

(27)

ii AI-1821-A-2



where the approximation has been made that _o _<__, An alternate

form can be derived by using the other two Rankine-Hugoniot conditions

=p,& -<.<,) (28)

= o (z9)

This relation is shown in Fig. I. If information about the functions /'(/p,)

and _ (/_,) is available (perhaps from a theoretical estimate of the

cohesive terms) this figure can be used, for a given value of /I}I , to

find the corresponding value of LA_

C. Specialization for a C , S Medium

The steps indicated above can be reversed, and the measured

Hugoniot data can be used to investigate the quantities Y-f/0) and Ap).

In particular, if /-(/_) is known_ Eq. (24) gives A(p) in terms of the

Hugoniot data. These relationships take on an especially simple form

for a substance whose [-lugoniot displays a linear relation between the

shock speed and the particle speed behind the shock

/.4_s ----C 4- S/J-i (30)

Such a substance is here referred to as a C , 5 medium.

ber of materials are well approximated by such a relation.

for example, presents a collection of values of C and 5

mate rials.

A large num-

Reference 16,

for various

$ 17
As pointed out, for example, by Tillotson.

AT- 1821-A-2 12



In what follows, the explicit form of

derived. From Eq. (24)

z_(?) for such a material is

zp W +I-

For the moment, I-

will be specified later.

(31)

is assumed to be a known constant; its precise value

For a C , S medium

Thus

M-/ .- /_ (/.._.)_

+'p./:I"

(:.)(÷+' :o)
(33)

In the limit of extremely strong shocks, where /_s----_o9 , the re-

sults of Fig. 1 indicate that the density ratio should approach _+ 1.
F"

On the other hand, for a C ,S medium,

The constant value to be used for P is chosen so as to make these two

limiting values for the density ratio equal, i. e. ,

5 /-
-:÷l = _ ; or F= z(s-l) ) or s= I+ _- (34)
I

It would be more accurate to allow /'-C/_)

the limiting density ratio to the value 25

haps in a linear fashion

to vary from this value at

16
1 at normal density, per-

13 AI-1821-A-2



but for purposes of convenience, the constant value /-= 2S - 2

used throughout the analysis that follows.

With this specification, the final form of the state equation used

below is

(35)

has been

This representation has the advantage of generality. It shows that the

equation-of-state data for a large number of materials can be correlated

interms of the dimensionless pressure +_oC _- , density /_o , and

specific internal energy _" , with only S remaining as a param-

eter. Figure 2 is a plot of this equation for the cases 5 = Z and

5 = 1. 5. The qualitative resemblance to the specific state equation of iron

used in Bjork's calculations (see Fig. 1 of Ref. 18) is obvious. Figure Z

shows the [-Iugoniot, which can be found from

- :
')

-- P- (37)

as well as a number of isentropes, about which more will be said below.

_" The fact that the internal energy scales with C z can be used to esti-

mate how much the Hugoniot is changed by heating a target, such as a

heated radiator tube, for example. Changes in eo due to heating are
given by CvA'/- Even for a temperature rise of 1000°K, Cv_T'//_ _-

is on the order of a few percent. Thus the shock-wave properties of a

given material are not appreciably altered by heating it, and it might be
expected that changes in impact damage in heated targets are due mainly
to the effects of temperature on strength.

AI-182I-A-2 14



The Hugoniot conditions can also be written conveniently in terms of the

shock Mach number _-- I/:_/_ A few values of _ are shown on Fig.

2. The corresponding values of pressure, density, internal energy, and

particle velocity are

__9__= 5P4

7% t + (
(38)

(40)

_, I'4-I
= _ (41)

C

The representation afforded by Eq. (36) ceases to be valid in the

limit of extremely high pressures, where the linear LZs , 6Zj relation

no longer holds. As noted below, Eq. (36) is also incorrect at low pres-

sures. It is, however, a simple and useful approximation in the inter-

mediate range of pressures -- i.e., in the range where the approximation

of Eq. (30) is appropriate.

D. Isentropes; Low-Pressure Behavior

Along an isentrope, the relation

(42)

15 AI-1821-A-2



together with the general form of the Mie-Gr({neisen relation,

following linear differential equation

whose solution is

gives the

(43)

For the special case of a C , _5

using

medium, taking f- = 2 ( _ - 1) and

-- / p'_o -$

cTM Z(s-I) s- (_- ')2/po

the equation for the isentropes is found to be

(45}

°-°° (46)

where

(47)

Equation (46) defines the isentrope passing through the point S-eo _ e__ ,

_ = 1. The constant _/6_- can be evaluated in terms of conditions along

the Hugoniot; an isentrope starting from the point _-_-_ ?_//D will
I

have

= I) _- ; (48)

AI-1821-A-2 16



The function _ can be evaluated explicitly whenever 25 - 1 is

an integer. In particular

slip<, 3 7 ,,IC. 7P/l<'

: .p/l° ÷ - -- <*<i'li'F e l ll,o
At low density, the function D is approximately:

(49)

5 o O- z_-I z-_ (5-I) z (_-,)

Thus, all isentropes converge toward the value

(50)

e- _'o I

C.'7--

•,-- a5 J__Z- _ 0

z_(s-,) yo

Since, in the same limit

(51)

A -i (52)

_>- z_ (s-,)

it follows that _/_or.. _ also approaches zero along an isentrope. In fact,

it is clear from Eq. (35) that _4oc_r approaches zero more rapidly

than does //7o

The _ , 5 form of the state equation derived in Eq. (36) is based

on the linear approximation to the /-_s , _l Hugoniot, and applies only

when t' >>'_° Thus, it must be viewed with suspicion when P//_o

becomes even as low as unity, to say nothing of the limit _ _ O One

of the most serious deficiencies of Eq. (36) at low density is that negative

17 AI-1821-A-2



pressures are encountered along the isentropes. For example, when

and e coordinates of an isentrope are given by (defining

and

Figure 3 shows the low-density behavior, for S : Z , of isentropes start-

ing from density ratios at the shock of 1.2, 1.4, and 1. 8. For the lower

entropy states (lower values of _14 ) the negative pressures are encoun-

tered at higher density.

Usually, the negative pressures themselves can be tolerated, espec-

ially if they comprise only a small part of an otherwise high-pressure

solution. Their effect is often more serious, however, in that they may

lead to imaginary values of the sound speed. The square of the speed of

sound, equal to the slope of the curves in Fig. 3, is negative over a rather

wide range for the two lower-pressure isentropes shown.

In the analysis below, Eq. (36) is used for all values of p , in

spite of its improper behavior at low density. The justification for use of

such a model lies chiefly in the fact that the low-density states have no

appreciable effect on quantities such as the shock trajectory. Furthermore,

even if their effect were appreciable, it would be very difficult to select

a more accurate model. The states reached by a shocked material when

AI-1821-A-2 18



it is expanded to low pressure are understood far less fully than are the

corresponding high-pressure states. If the material is completely vapor-

ized, it may be possible to treat it as a perfect gas, but in other regimes,

processes such as condensation render such an approximation invalid.

It is reasonable to expect that the shock-propagation solutions are

insensitive to the low-density portions of the equation of state only for the

semi-infinite-target problem, because most of the mass is concentrated

in the high-pressure region near the shock, where the equation of state is

valid. Since only a very small fraction of the total mass is described by

the low-density portion of the state equation, the over-all error in quanti-

ties such as the shock trajectory is quite small.

The situation is not nearly as favorable in the case of the thin-plate

perforation problem. There, the momentum distribution of the material

ejected from the rear surface of the plate is an item of central interest.

In predicting such a distribution, the mass and velocity acquired upon ex-

pansion to low pressure must be known accurately, and they may depend,

in a sensitive manner, on the precise form used for the equation of state.

It is noteworthy, in this connection, that most theoretical treatments of the

thin-plate problem (see Ref. 19, for example} make use of the perfect-gas

approximation.

Negative pressures are present in the state equations used for some
2O

of the computer solutions of hypervelocity impact. Riney, for example,

extends the state equation into the tensile regime by use of the formula

19 AI-1821-A-2



tion of state for iron used by Bjork 2 also predicts negative pressures.

Whether the same remark applies to his calculations inaluminum I is un-

certain, since the state equation used in those calculations has apparently

not been published.

Walsh and his coworkers make use of a low-densityequation pre-

sented by Tillotson 17 in which the pressure is expressed as the sum of a

perfect-gas term plus a correction which vanishes exponentially as the

density goes to zero. The boundary along which the state equation is

changed from the condensed-state form to the expanded-state form has

been slightly changed in recent work 4 from that used in previous publica-

tions. 3, 17 In both formulations, it is possible to encounter negative pres-
21

sures. Shanfield, Lee, and Bach, for example, have recently found

negative pressures in aluminum when applying Tillotson's formulation.

Figure 4 indicates the magnltude of the negative pressures that may

be encountered. Shown here are the pressure-density states through

which an iron particle passes after being compressed to twice normal

density, according to the equations employed by Tillotson, Bjork, and

Riney, and also according to the present formulation (Eq. (36)) using

S = i. 59, /DoC2- = I. 259 megabars. For convenience, the actual equa-

tions used are collected in Appendix A.

The fact that no difficulty caused by these negative pressures has

ever been reported indicates that calculations in a semi-infinite target

can safely be made. That such errors in the state equation can be toler-

ated in the thin-plate problem is much less likely.
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E. Sound Speed and Temperature

As a final note on the thermodynamic properties of a C , 5 medium,

it is of interest to calculate the sound speed and temperature field. The

most convenient expression to use for the former is

Use of Eq. (36) leads, after a little algebra, to the expression

(56)

(57)

The temperatures reached by a compressed solid have been calcu-

fated in a number of different ways (see, for example, Refs. 22, 23, 24).

Since a general form of the equation of state is being employed here, it

is of interest to inquire whether the associated temperature field can be

determined with a comparable degree of generality. For this purpose,

the method advanced by Walsh and Christian in Ref. 24 is especially con-

venient. These authors determined the temperatures along the Hugoniot

from the relation

P

-- e -eo 4-

z

(58)

where "IF= _/_ is the specific volume, and where the integration is

carried out along the Hugoniot. On this path, the right-hand side of (58)
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is known, and is, in fact, a function only of

respect to _ gives

Differentiating with

+ L[-_° (59)
Z

An independent relation for the left-hand side of this equation can

be found from

T_ = C vcLT-

Integrating along the Hugoniot,

gives

and differentiating with respect to

Equating (59) to (61) produces a linear differential equation for

whe re

(60)

W

(61)

(62)

As suming that
C V and _)g. are constants, the solution is

(63)

where the parameter

Cv _ (641

is related to the Gr_neisen parameter at nor-

real density, i.e. ,
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c_
5#1,1C__ (65)

Along the Hugoniot of a C, 5

_,-_o-po_

A little algebra shows that

medium

(66)

{_- c'__,,_]_

where

_c_= __po_.__-')_

Substituting these into l_.q. (64) leads to

(67)

whe re

SC _ (68)

(69)

It is clear from this analysis that the temperatures along the Hugoniot

are controlled by the Gr_neisen factor _/_. and by the characteristic

temperature C_/dV- The values of these parameters given by Walsh

and Christian 24 for Aluminum Zinc and Copper are listed in the table

below.
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Material

24ST Aluminum

Zinc

Copper

2. 785

7.14

8. 903

• 92 x 107

. 397 x 107

• 390 x 107

50.6 x 106

70 x 106

75. 5 x 106

37,000

Z3,300

40,600

2-

1.97

Z. 46

2.17

Having the temperatures along the Hugoniot, the temperature at any

other state can now be determined by finding how the temperature falls

along an isentrope. This relationship has been given by a number of

authors (see Ref. 16, for example), and is rederived in an alternate way

in Appendix B. It has the form

__2._.= _ _
2 (7o)

,-_ medium, this takes the simple form

-- (71)

For the particular case of a

It is interesting that this expression has the same form as that of a per-

fect gas of constant specific-heat ratio

T= (72)

in spite of the presence of the term A (/)

F. Comparison with Enig's Formulation

Z5
Enig has recently derived an analytical formulation of the equa-

tion of state of a C, 5 medium by pursuing the logical consequences of
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the "mirror image" approximation. This approximation assumes that

the pressures and particle speeds experienced bya particle in a planar

isentropic expansion wave are mirror images of the Hugoniot curve:

\ s_2r'f_oPE

This approximation is consistent with another well-established approx-

imation that the free-surface velocity acquired by isentropic expansion

from a point on the Hugoniot is twice the particle speed on the Hugoniot.

Enig noted that the "mirror-image '_ assumption implies an equation of

state, and found a closed-form expression for this equation for the case

of a C , S medium. In the present notation, Enig's result is

where

and where the functional dependence of on_-

cally by

(74)

is given parametri-

_3
(75)

Z4
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This equation of state is shown in Fig. 5.

parameters 5_oC_ , 5(#-') ,

is no other dependence on the parameter

it is noteworthy that only the

and 57" e-_-o
¢,. appear. There

Enlg goes on to calculate the temperature, using the assumption

that the thermal coefficient of volume expansion at low pressure is con-

stant. The resulting speciflc heat at constant pressure exhibits a rather

singular behavior at low pressure, indicating that a satisfactory state

equation cannot be derived under the simultaneous assumption of the mirror-

image approximatlon, the linear GAs , _Al relation_ and the constancy

of the thermal coefficient cf volume expansion at low pressure. The

formulation involving only e , _ , and /9 is perfectly satisfactory,

however, and can be used in its present form if one is willing to dis-

pense with its temperature predictions at low pressure.

The present form of the Mie-Gr_neisen equation does not recover

the mirror-image approximation. To illustrate this, calculations were

made, for S = 2 , of the free-surface velocity acquired by a shocked

particle. Along an isentrope, O_= -pO._., or
!

o _

where subscript Fg

is given by Eq. (57).

(76)

stands for free surface, and where the sound speed

Because of the improper behavior of the present

formulation at low pressure, the sound speed is imaginary over an appre-

ciable range of pressure, as shown m the sketch below.
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0-_'_ 0 _ _s

If the integration is started at the point A, the results are as follows

9 4

7 z/3

3. 04

2.10

The principal contributions to the integral in Eq. (76) come from the

low-density range. It is clear from these results that the present for-

mulation would be quite inadequate for any study (such as the thin-plate

problem) where low-density behavior is important. It also serves to

indicate that caution must be used in interpreting results from computer

solutions whose low-density state equations allow negative pressures.
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III. METHODS OF NONSIMILAR SOLUTION

This sectlon describes three approximate analytical methods that

have been used for predicting some of the features of the flow patterns

set in motion by hyperveloclty impact. The objective of these solution

methods is to produce simple formulae for the location and strength of the

main shock wave, and for some of the details of the flow pattern behind

the shock. None of the three methods uses a similarity assumption, and

thus their success is measured by their ability to achieve maximum accu-

racy with minimum complexity, by making the proper approximation.

It should be emphasized that the only class of problem considered

is that for which the projectile may be represented by a point disturbance.

Thus, the analysis will not be valid for greatly elongated projectiles.

Moreover, even fcr cubic or spherical projectiles, the analysis only

applies when the scale of the disturbance is large compared with the scale

of the projectile.

A. Oshima's Method

The literature of blast waves in gases contains a number of analytic

methods for dealing with the nonsimilar effect. Notable among these are

26
perturbation methods, explored by Sakurai, among others. Such per-

turbation methods, which describe the first-order departure from simi-

Z7
larity, have been applied_ for example by Kochina, to shock propagation

in condensed media. .Another method, due to Oshima, 6'Z8 offers the

possibility of a wider range of validity than that of the perturbation tech-

niques, for a comparable expenditure of effort. Furthermore, the method,

developed originally to handle nonsimilarity arising from counterpressure
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_o in the perfect-gas case, can easily be adapted to handle that result-

ing from the equation of state in the present case.

The first of the subsections that follow contains a review of

Oshima's technique for the perfect-gas case, together with a few addi-

tional features not explicitly mentioned in his original paper. The second

section below then presents the application of Oshima's technique to the

case of shock propagation in a _ , 5 medium.

I. Review of the Perfect-Gas Case

a) General Analysis

Consider the case of a symmetric flow, where the index 7) is 0

for the planar case, l for the cylindrical case, and 2for the spherical

case. Oshima begins by making the change of independent variables from

f" and _ to _ and _(_) Thus the Euler equations become

(78)

0J

(79)
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These equations contain no approximations beyond those implied by use

of an inviscid fluid. The terms on the right-hand sides come from the

time derivatives in the original equations, and represent the change in

the dependent variables with respect to the scale _ of the disturb-

ance. For the case of a perfect gas, where

4_ (80)
(:_,)+

the energy equation becomes

0.

(81)

The boundary conditions at the shock can be written conveniently in terms

of the shock Mach number b4

where the sound speed ahead of the shock,

In terms of

C O , is

(8Z)

(83)

the Rankine-Hugoniot conditions for a perfect gas are

z _ ,_/_

:,-/ / (:+,) ,,_'- (84)

+ (,,e,) =
(_'_-t) t.4"

(y-O t,4 t'+ z..
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At this point, a similarity solution would require three steps. First,

derivatives with respect to _ must be assumed to vanish. Second,
,,

the combination _s_/_z" must be assumed constant, which implies

,/
that f_s _ _ Finally, the shock Mach number must be taken to be

large, so that _-z is small compared to unity.

Oshima uses the notation

(85)

The value of _/ is not assumed to be constant, however, as it would in

a similarity solution, but is permitted to vary with f_ (_) The

next step is to approximate the derivatives with respect to /_s This

is done by first replacing these derivatives by derivatives with respect

to the shock Mach number, and by then approximating the result. If

stands for either _ , _ , or _ , the final form is

,V 2,-4

using the definition given in Eq. (85). The problem is thus converted into

one of approximating _)'/_ (It is possible, of course, to proceed

to this point directly from the basic partial differential equations, by

using "_ and ]_ as independent variables. )

The essential feature of Oshima's method is his approximation for

_/dh4 , namely
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The Rankine-Hugoniot conditions can be used to evaluate the right-hand

side. Using (87), Oshima has, in general

i-d (88}

Note that the right-hand side depends only on _? , with /_ as a param-

eter. Thus the equations of motion have been reduced to a set of ordinary

differential equations, which are found, after a little algebra, to be

(9O)

(91)

These equations differ from those of the similarity analysis by the

presence of the parameter _ For /_--_c_ , they reduce to the

self-similar relations which were first derived and solved numerically

Z9
by G.I. Taylor.

Equations (89) to (91) can be solved for the derivatives in the form
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(93)

/

where

(¢-,0 " - _/4.,
(94)

,-- 4 4_ - _) _¢
< - ,,/ z 4-rr-,)_ _- --_

(95)

- _-_ /,.4a_l @-- (96)

/_,,/ f z(_'-r) ,_" t _r_=- 2- z+ - .----- (97)

For a given value of _/ , these equations must be solved anew for

each value of b'/ In doing so, the value of _/ for each given value

of b_ must be chosen. Oshima points out in his original article that,

for each b-4 , there is only one value of A/ which produces a solution

free of singularities. When iw/ differs from this value, the solution

encounters one of two singularities, because either (_-v[)_'-- _4"//@ or

__ vanishes. The existence of a single value of A/ leading to a
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regular solution has been demonstrated both by Oshima's own calcula-

tions for 7) = l ,6 and also by some more accurate calculations of

Lewis 30 for 7) = 0, l, 2. Both these authors terminate the integration

at a small, nonzero value of

radius. The value of A/C_W)

strong-blast limit of Z//,_4.3.,.

-_ , which they refer to as the core

which they find varies from the classical

at Asf=_ , to the value /_ = l at

= 1 , consistent with the fact that the shock expands llke a strong

blast wave at first, and ultimately decays to a sound wave, for whlch

The distributions of pressure and density found by Oshima's method

for _ = 2 bear a strong resemblance to the results of machine solu-

tions of the full partial differential equations. Lewis' results, 30 for ex-

ample, can be compared with the correlated numerical solutions shown

by Sedov (Ref. 15, pp. 246-248). The velocity distribution is not nearly

as well recovered, however; the Oshima result has _4. always positive,

whereas the numerical result shows both positive and negative regions.

The more gross properties of the solutions such as the predicted shock

trajectory, agree well with machine solutions, and also wlth experiment.

In order to determine the shock trajectory, the conservation of

total energy is used

O
198)

r '
(r-O
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where

and

{99}

= 2, z%4_ _or _=B_,z- (lOO)

The constant E- has the dimensions of energy, energy per unit length,

or energy per unit area, according as -_ = 2, l, or 0.

can be written in a form valid for any _ and 7_o

Equation (98)

where,
31

as in all explosion problems, the scaling length depends on the

energy release divided by the characteristic pressure in the medium

/

Once the shock radius-shock speed relation is known, the shock trajectory

is found from the identity

---- I

Vo
0

(103)

b) Qualitative Nature of the Flow

The role played by the singularities of Eqs. (92) to (94) and the

general nature of the flow they define can be seen by rewriting the equa-

l5
tions in the (X, g) coordinate system used by Sedov:
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In terms of these variables,

form

the equations of motion can be wrltten in the

(_-w)_, + a/g -
,.05

c_
Ii06_

where the functions q _ and q depend only on y_

4 (,-,_)

2 + (y-,)_4 _

ll07'

and

,108,

= _ ×(×-v)+ (,-v)- _,09,,

liJ. O,
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The use of the Sedov variables achieves the same result here as it does

in the similarity limit, namely, the variable _ does not appear ex-

plicitly. Thus, by dividing Eq. (107) by (106), a single differential equa-

tion for _/_ as a function of _4 and _ can be derived, and is useful

in any detailed study of the singularities of this set of equations. The

boundary values at the shock are

The singularities of this system of equations occur at the points
3O

_-a =0 and(_-.)___ =0.A plotofthesolutio_foundbyLewis

for a typical Mach number and for various values of J has the appear-

ance:

So r values of A/ different from that which gives _(o) : 0

the solution encounters one of the singular lines, as shown in the sketch.

The nature of the flow is the same as that of the similarity solu-

tion 18 (b_--_:Z:_) The quantity (y..H)_'_ _ always remains negative,

approaching - _O as -_--_ 0.
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c) A First Integral

The similarity equations ( b4_._ ) have a first integral, that has

32
been derived, among others, by Lees and Kubota. The quasi-

similar equations have an analogous integral. It can be derived by writing

the basic equations in the form

(113)

whe re

z(_'-,) _ 4;"
2Z_ _- (_'-,) z ÷be'-_>_ J

(:17)

If (112), divided by (¢__) , is added to 11141divided by

the resulting equation can be integrated, to give
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(118)

whe re

The same first integral has also been treated by Oshima,

#
sult appears to contain a misprint.

For the similarity case ( /_:0O ) Von Neumann 34 and,

15
Sedov

(119)

33
but his re-

independently,

have derived an exact solution of the entire problem by express-

ing, in terms of the similarity variables, the statement that the time rate

of change of the energy enclosed between two surfaces must equal the

rate at which work is being done on the surfaces, less the flux out. The

35
same exact solution has been later rediscovered by J. L. Taylor,

36 37
Latter, Sakurai.

For the quasi-similar case (]vT_:_) the same approach does not

produce an exact solution.

d) Mass Conservation

Oshima's approximation does not conserve mass. The integrated

value of the mass distribution from the origin to the shock should yield

the same value as the product of the undisturbed density and the volume

swept out by the shock, i.e.

o

':' The exponent on the quantityI_(K__) )<_ _ shouldbe multiplied by Q_
in Eq. (24) of Ref. 33.
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or

I
/

(120)

The alteration that is made to the continuity equation in the quasi-similar

approximation violates this fact. The continuity relation, Eq. (ll2), can

be written in the form

Multiplying by _7) and integrating by parts gives

o.

If the limits are taken from zero to one, and the first of Eqs. (16) is

used, the result is

J
o H,

The right-hand side o£ this equation, evaluated from Lewis' calculations,

is shown in Fig 6 for 7) = 2. The maximum error, about 40%, occurs

near /,_ = 2. Such an overestimate of the total mass present is quite

significant, and is partly responsible for the distorted particle trajec-

tories described below.

e) Approximate Solution for _--_O

The perfect-gas solutions reported by Oshima and by Lewis show

a constant, nonzero pressure near the origin (_ = 0), while the density

vanishes as a power of

3O
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(124)

Substituting these into the continuity and energy equations ((112) and

(ll4)) gives, respectively, the relations

whose solution is

= _ = (iz6)

In order to completely specify the solution, it is also necessary to know

and _ There appears to be no way of determining these analy-

tically. They are related to each other, however, so an estimate of

(perhaps from numerical solutions for A/ close to the proper value, and

close to the origin) can be used to find an estimate of _ The

relation, which comes from the first integral described above (118), is

r,7_ /,-,/=,.¢'c,._'-r"

2. Asymmetric Disturbances in a Solid

a) General Analysis

The foregoing discussion deals exclusively with symmetric disturb-

ances, such as a spherical blast. Because the impact problem is asym-

metric with respect to the target surface, the _-variations in the equations

of motion must be reinstated before any meaningful results can be ex-

41 AI-1821-A-2



tracted. When such variations are permitted, however, it is necessary

to solve a set of partial differential equations, even if the similarity

assumption is made. At present, there are no analytic solutions account-

ing for asymmetry, either with or without the similarity assumption.

Limited analytical progress has been made in the similarity limit,

18
however, by restricting attention to the axis of symmetry. Approximate

solutions along that axis have been made by approximating the off-axis

pressure distribution. It was found that for a wide range of off-axis dis-

tributions, the solution was virtually the same, and was quite close, in

many respects, to the solution of the symmetric probiem. That evidence,

which was restricted to the perfect-gas (or extremely high pressure)

limit, suggested that the impact process could be considered as one half

of a spherically symmetric disturbance, whose scale is controlled by the

energy of the projectile, its momentum playing a secondary role. Walsh

and his coworkers have recently presented an exact numerical solution

4
of the perfect-gas problem. Several important features of their results

are matched closeIy by the approximate solution.

An approximate treatment of the asymmetric, perfect-gas problem

38
has also been given by Rayzer. His solution is quite close to the sym-

metric, constant-energy soIution in many important respects.

Finally, mention should be made of two other papers in which the

40
asymmetric problem is discussed. In one of these, a brief reference

41
is made (p. 63) to the use of a dipoIe representation. The other paper

* The case of impact into a half-space of gas represents the sphericaI

generalization of the_lanar "sharp-blow" problem, which is discussed
in detail by Mirels. 39
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is chiefly a presentation of experimental data on the cylindrical problem

of shock propagation due to a sudden energy release along a line (an ex-

ploding wire) at the free surface of a half-space of water. The paper

refers to an analytical treatment of the problem in a Russian disserta-

42
tion.

The main conclusion drawn from the perfect-gas studies was that

approximate solutions for quantities like the shock trajectory could be

obtained by assuming the disturbance to be equivalent to one half of a

spherically symmetric disturbance. It was emphasized, at the time that

5
conclusion was presented, that the evidence for it was limited to the

perfect-gas, or similarity limit. In taking up the nonsimilar nature of

the problem, then, one of the first questions to be answered is whether

the same conclusion can be reached at finite values of the shock speed.

The evidence presented below indicates an affirmative answer to this

question. After the evidence has been reviewed, the discussion then

centers on the symmetric solutions.

The basic differential equations in the

system are given above in Eqs. (ll)- (14).

equation of state, which in these variables is

"_ , 8 , _:_S coordinate

To these must be added the

(lz8)

The boundary conditions at the shock for a _', S medium, written

in terms of the shock Mach number _ = /_/,- , take the form:

(lzg)
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5t-4

j+
(13o)

(131)

For a spherical shock, there is no tangential component of velocity imme-

diately behind the shock. Thus

Using the same notation as for the perfect-gas case, a new symbol

is introduced for the decay coefficient

• 7- (133)

and the Oshima approximation is again made, by use of the relation

I (I)
(i34)

The derivatives of ¢ , _/ , and _ are readily found from this

formula. It cannot be used for the derivative of b0 , however, since

that function is identically zero along a hemispherical shock. This deriv-

ative is retained, for the moment, in its original form.

There are two possible ways of calculating the derivative of

The first is to apply Eq. (134) to the boundary value of d} , giving

,

AI-1821-A-Z 44



_ /-M __

Df#s #
(135)

The equation of state, (128), can now be used to replace _ in terms of

4 and 4 _ The seondway of calculating the derivative of _ is to

reverse these two steps, substituting (128) first, and then applying for-

mula (134). The result is completely different

(136)

These two approximations are referred to in what follows as the first and

second forms of Oshima's method. The former has the advantage of

greater simplicity, while the latter appears to be a more consistent for-

mulation. Only the first form has been used in the calculations reported

here.

6
The same ambiguity is present in the perfect-gas case. In the

derivation outlined in Eqs. (79), (80), (81), and (91), the equivalent

second form was derived. The first-form result is quite different, and

in fact is considerably more complex.

When the first form for a C , _ medium is used, the basic equa-

tions become
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(137)

/-/4 /

,4 ,+ (s-O_/

N' a,_ "qao

J" _ /-_/__.4__ (138)

_#_w _ + _..4.__._.¢. I ,0¢" _,_ (139)

_z_ -_ ___ _-____;/_
u _4-t A/ t+(s_0_ 4

For the case of a symmetric solution, where all

or for a "centerline" solution (i.e., along the axis

tric case) these take the form

(140)

-derivatives are zero,

6)-'0 in the asyrnnrne-

4,'*_ +_ ,,/ (141)
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L_ 4"' I-,4 (142)

4_" -H - ,"/ / + (__-_)_1
(143)

where _: is defined for _) = 2 as

_) _ O) (144)

A different definition would be appropriate for a centerline solution in the

cylindrical case ('7) = I), while for a planar case, _ must be identically

zero.

If the function

energy equation is

_ A z 4,J

is now expressed in terms of -_ and _ , the

7-
i-_ m _-,J ;/4 j
,',/ m-_ _-7 /+(:;-,_m

(145)

where the function _z- , defined as

4'
(146)

is a dimensionless sound speed (squared), i.e., (see Eq. (57))
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With these definitions,

mF.

the final form of the quasi-similar equations is

---- =/_,. (149)

(150)

where

/<,=
H I+ (s-,)_4

-72 (151)

__ /-_ _
IV M-I

(15z)

4-F 5-_ _ol 4_
(is3)
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Solved for the derivatives, these equations become

= (154)

¢'= (¢-_)s_- T < + _ I155)
(____ _-

-- (156)
(_-_)___

These equations are identical in form to those which applyfor the perfect-

18
gas case, to which they reduce as /_ _O They have the same

singularities as those for /_--_Z_

and the other is at the "sonic line",

sound speed.

The Oshima approximation for a C ,-5

the total mass, just as in the perfect-gas case.

series of steps as is used in deriving Eq. (123),

only for a symmetric case) is

; one is at the point where ¢_---_[ (/_--_'_),

medium fails to conserve

Following the same

the result (which applies

whe re

,+(s-,)_

(157)

(158)
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b) Results of Calculations

Equations (154) to (156) were solved numerically on an IBM 704

_c

computer for the spherical case ( _)= 2), with ._ = 2 , and using the

first-form definition of /_ Spherically symmetric solutions ( _" = 0)

were done for /_ = 8, 4, 2. 5, 2, I. 5, and I. 25, and "centerline" solu-

tions (_ 0) for t_ = 8, 4, Z, and I. 5. The results are shown in Fig.

7. The solution for _ = 09 would be the same as the perfect-gas

similarity solution 18 for T = 3.

The solutions with _ :_ 0 require an additional equation specify-

ing "_ In the absence of an exact solution, some approximation must

be used. The approximation used here is to relate _ to the off-axis

pressure distribution in the same manner as used in the similarity solu-

tion 18 -- i. e., the term /_s aug//_ in Eq. (139) is assumed to be

zero, the resulting differential equation is differentiated with respect to

, and then _ is set equal to zero. The result is

The pressure variation is then approximated in the form

- - < (,-n)r* (160}

The value /_ = 10 , which was found satisfactory in the perfect-gas

case, has been used in all the calculations reported here. With this speci-

fication, the variation of "U can be found as part of the solution.

_" The author is very grateful to Mr. Harold M. Rosenbaum, Computer

Services Department, for his very competent handling of these calculations.
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Near the shock, the only important terms in Eq. (159) are

, ) '7 -_ 2- =_

whose approximate solution

7.-

_z= /<,co) 1162 

explains the parabolic variation of "_ that is evident in Fig. 7.

For each value of _ , various values of A/ must be tried until

a solution is found which is free of singularities. In general, only one

value of /N/ leads to such a solution. When A/ is less than this num-

ber, the quantity (q___)7-__7. vanishes at some nonzero value of _ ,

and when /_/ is greater than this value, the solution encounters the

singularity at _ = ?

The results shown in Fig. 7 suggest that, just as in the similarity

(/_ =_IP) limit, the three-dimensional effects are not large, at least as

far as quantities like the shock trajectory are concerned. The evidence

for this conclusion comes from two sources. First, as will be seen

below, the shock trajectory is mostly affected by the mass-averaged

values of velocity, pressure, and density. Because such averaging intro-

duces a factor %_)_z- into the integrands, onlythe values very close to

the shock are influential. Thus, the relatively large differences in the

distributions of _ , _] , and _ between symmetric { _"= O) and

asymmetric {_"=_ O) solutions are not likely to be reflected in comparably

large differences in shock trajectory.
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The second line of evidence concerning the insensitivity of shock

trajectory to asymmetry lies in the values of A/ Regarding A/ as

a function of /_ , the shock trajectory can be found by integrating Eq.

(85) in the form

= (1631

where .It"-- (t-M_/tq . and where the normalizing constant _o is

defined below• The fact is that /k/ has approximately the same value, at

given _ , for both the symmetric and asymmetric solutions• Thus the

shock trajectory is not markedly affected by symmetry considerations.

It is interesting to observe that the value of A/ for the asymmetric

solutions is always less than its corresponding value for the symmetric

solutions• At the perfect-gas limit, Walsh 4 has pointed out that the value

/x/#_s_m = . 375 agrees with the result 6K--- - . 59 found from hisl-_/

calculations. It appears that the present results for 0(. exhibit the same

ratio as that for _,_ =

6O

8

4

2

I•5

•400

•444

• 489

• 591

• 681

• 375

•4175

•4575

• 5495

•6365

• 667

• 798

.955

I• 447

2.13

•6O0

• 718

•843

1.2Z

I. 751

Z

5

•600

• 599

• 589

• 562

•549
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The fact that this ratio is approximately constant is presumably related

to the constancy of 0( revealed by Walsh's solutions. There is at

present no analytical proof of this assertion, however.

c) Further Discussion of Symmetric Solutions

Given that the symmetric solutions can be used for a crude approx-

imation to the shock trajectory, it is of interest to examine in detail their

distributions of pressure, density, and particle velocity. These results

are shown in Fig. 7. As _ gets closer to one, a narrow region appears,

in which large gradients of velocity, pressure, and density occur. These

large gradients are not associated with singularities of the differential

equations (the solutions are free of such singularities), and the question

arises whether they represent the appearance of an entropy line 39 or

perhaps of a second shock. In connection with the latter possibility, it

must be recognized that, in a gross sense, the terms which are intro-

duced by Oshima's method are not unlike the artificial viscosity terms 43

which are often used for the express purpose of generating shock waves.

In order to identify the source of these steep-gradient regions, a

calculation was made of the trajectories followed by various particles.

There are twe ways of calculating such trajectories. One is to integrate

the relation _/_t = _A. , while the second is to follow lines of constant

entropy (since the entropy of a particle does not change, once the particle

_:cIt should also be observed that _/_s_ was found to increase with

increasing _ , and hence with increasing _ , in the perfect-gas

( t_ =oD) results of Ref. 18. The same tendency presumably persists at

finite values of /'4 _ indicating that materials with larger values of

will be associated with larger values of _/ and
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has crossed the shock). For an exact solution of the partial differential

equations, of course, both methods would lead to the same trajectories.

Within the framework of Oshima's approximation, however, they do not

necessarily lead to the same result, and the closeness between the two

may be used to judge the validity of the approximation.

The first trajectory calculated is that of the shock. Conservation

of energy gives

whe re

"ft.#!

= M '2oC

(164)

and

o

= I# _-# ZT ) -#or 7,)-- 0# [j Z (166)

_ is defined here as one-half the value used in Eq. (I00), to facil-

itate application to impact problems, where it will be assumed (as in

Ref. 5) that all the available energy goes into one half of a symmetric

disturbance. It is interesting to note how the quantity //_¢C 2" presents

itself as the proper quantity to use as an ambient pressure. This pres-

sure, and the total energy #: , can be scaled out of the problem by the

definition

,+-v)
(167)
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In these terms, the shock radius-shock speed relation is

Figure 8 shows the result for _ = 2 , compared with the earlier

Quasi-Steady solution.

the identity

(168)

is shown in Fig. 9.

The shock trajectory itself, found by integrating

(169)

o

This figure also shows particle paths, found as lines of constant

entropy. This is done by first finding from Eq. (46) the variation, with

-_ , of the quantity _/_- , for a given value of _ , i.e., at a given

Eq. (48)_ it is also possible to find the values of _/_-instant. From

that exist along the shock. A graphical solution of these two relations

then makes it possible to identify, for each _ at a given _ , the

value P'_o which the shock Mach number had at the instant when that

particle was traversed by the shock. The results are shown in Fig. 10.

Note that horizontal lines (constant P'_o ) trace the history of a given

particle. Thus, the particle intercepted by the shock ( _ = 1) at the

instant when p_ = Z. 5 has dropped back to the point -_ = . 75 at the

later instant when _ = 2. Using these results, one can find the coordin-

_'/_o /_s//_ C_/f_o along a particle path. The results,ate s = _ o ' '

shown in Fig. 9, suggest that the steep-gradient regions are associated

with an entropy line, and not a second shock.
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While the trajectories of the high-entropy particles (those processed

by the strong portions of the shock) are reasonable, those crossing the

shock at later time make no sense. All particles should initially follow

the shock -- i.e., they should be deflected to the right. At late time

( _--_i), however, the particles appear to start in the opposite direc-

tion. In addition to this obvious fault, these trajectories do not agree

with what would be had by integrating the velocity field. In all the solu-

tions of Fig. 7, the quantity ¢ is always positive. However, the

constant-entropy lines of Fig. 9 show regions of negative velocity.

In spite of its internally inconsistent description of particle trajec-

tories, the Oshima solution makes an accurate prediction of the shock

trajectory. The path traversed by the shock in Fig. 9 is, if anything,

closer to experiment than the Quasi-Steady solution presented previously.

In general, Oshima's method appears to work best at early time,

when most of the mass is concentrated near the shock. During the weaker

stages of shock propagation, the errors introduced by its approximations

become more important, and its predictions of distributions of physical

quantities less reliable. Throughout the entire range of shock strength,

however, the integrated quantities required for shock-trajectory deter-

minations are adequately handled.

B. Quasi-Steady Method

In the foregoing discussion of Oshima's method, the point has been

made repeatedly that accurate shock-trajectory predictions require the

distributions of pressure, density, and velocity onlyvery near to the

shock. Oshima's method is specifically designed to yield the exact values

at the shock for these variables, and excellent approximations to their
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first derivatives with respect to -_ Thus, any other approximation

which is accurate at the shock is likely to be adequate for shock-trajectory

calculations, even though its analytical basis might not be as rigorous as

that of the Oshima method. One such approximatior_ called the "Quasi-

Steady" method, was advanced in Ref. 5. In the sections that follow, this

method is reviewed, extended to later, weaker stages of shock propaga-

tion, and compared extensively with experiment and with computer solu-

tions.

The Quasi-Steady method is based on the observation that, for

shock-trajectory calculations, the only quantity needed is the integral I

in Eq. (i65), which depends on the shock speed h'_ with material prop-

erties (such as -_ ) appearing as parameters. The Quasi-Steady approx-

imation equates this integral to the value _', that it would have for a

perfect-gas similarity solution with _/ so chosen as to give the correct

values of pressure, density, and particle velocity at the shock. In the

perfect-gas similarity solution, the boundary values at the shock are

_ _',_
given in terms of _ by

> e -e. Z
(r÷f)

whole range of _ from zero to one.

;:" The derivatives at "_ = 1 are not quite exact, since they depend on

, which in turn depends on the entire approximation scheme over the

It should be noted that the Quasi-Steady method cannot be used to

describe the nonsimilarity arising from counterpressure in the perfect-
gas problem. The reason is that the Quasi-Steady method always has

_6 -- lC" at the shock, whereas they are in general different for a
perfect gas (see Eq. (84)).
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in applying the Quasi-Steady solution, the Hugoniot values 6/, , _I

pi ' el , are regarded as known, and the corresponding value of

is then found from any one of the relations

For example, when the shock speed is such as to create a density ratio

?I/p o = I. 5 , the integral _ is assumed to be the same as it would
-!

I,_'-e f
be in a similarity solution with _'-- - 5" At a later instant

when /_/_ = 1.4 , _/ is taken to be 6, etc. For a point-source solu-

"/[ 0

tion, the shock speed is initially infinite, and the density ratio /J//o

is equal to its limiting value. Thus _ starts out with the value

_P_//°_m+i_ /[ (_-_I As the shock speed decreases, /iI/_

decreases, and thus _/ increases, approaching infinity as /_//o ap-

proaches one. The large values of _ that are thus encountered in an

attempt to account for nonsimilarity constitute, in a sense, the counter-

part of the strong-blast theory in which / is allowed to approach 1. 44

It should be emphasized that the Quasi-Steady method can be quickly

applied to any material whose Hugoniot is known. A graph, for example,

ef/_ vs. _ will give _ vs. _.$ , from Eq. (171). The corresponding

values of _I_I , found from Fig. Ii, are then used in Eq. (164) to give

the shock radius-shock speed relation
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The shock trajectory is then found from the identity

(173)

These relationships hold for any Hugoniot curve.

For the special case of a C , -_ medium, the shock-trajectory

relations can be worked out once and for all in general form. The basic

equations are the same as Eqs. (167)- (169):

(174)

whe re

(175)

and where f is defined by

Curves of I//1,,1 and _/J'ffo

were presented in Ref. 5.

f-'q-I

VS. _S/,_ , for

(176)

S = 1.2, 1.5, and 2.0,

Those results were based on values of

extending up to 20, and provided results out to around /'_s/_ ° = 7 ,

where I/p./ was between . 8 and .9, and Cq://l:_° was approximately 4.

The calculations have now been extended to weaker shock strengths, by

adding the cases _ = 40, 70, and I00, for which the distributions behind

the shock are shown in Fig. 12. The new shock-trajectory results,

the solid lines in Figs. 13 and 14, extend to _fp___ 19shown as

lies between . 96 and . 98, and where _/_/_o is about 15. Inwhere '/M
addition, curves have been prepared which show the pressure and density
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at the shock as a function of the depth to which the shock has penetrated.

These results, which can be found from Eqs. (174), (38), and (40), are

shown in Figs. 15 and 16. For convenience in re-plotting, coordinates

of all these curves are given in Tables I and II.

It is also possible to find the distributions of various quantities

behind the shock, using the distributions for the various values of _/ ,

given in Figs. 7a-j of Ref. 18, and in Fig. 12 of the present report.

For example, the pressure distribution can be given as a function of K'/y-_=

and /_ by using the relations

These calculations have been done for _"& 20,

and 2. 0. The results are shown in Figs. 17a-c.

(177)

and for 5 = 1 2, I. 5,

Unfortunately, there

are very few numerical solutions available at present with which to com-

pare these results.

Solution at Early Time

At early time, a point-source solution must contain a finite amount

of energy in an infinitesimal volume. Thus the initial shock speed is

predicted to be infinite. In actuality, the disturbance in the near vicinity

of the impact point is not well represented bya point source, but at first

exhibits a structure that is governed by the details of the geometrical

configuration in which the projectile and target come together. Shortly

after contact is made, the shock entering the target tends to become

planar and parallel to the target surface. Its plane portion is soon

affected by rarefaction waves originating at the intersection of the pro-

jectile with the free surface, but the interaction near the impact point is
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roughly one-dimensional until the time when the shock has propagated

into the target a distance on the order of the projectile length. During

this initial period an exact solution for the (constant) shock speed can be

found, from the Hugoniot curves of the projectile and target (see, for

example, Ref. 18, page 17). The Quasi-Steady theoryis improved by

using the constant-speed solution up to the point where it intersects the

point-source curve, using that curve thereafter. Curves showing con-

stant multiples of the stress-wave speed, designated _ , have been

added to Fig. 13, which presents shock trajectories for the special case

of a ¢ , 5 medium.

Solution at Intermediate Time

Once the early-time phase has been completed, the shock speed

ceases to be constant, and makes a transition to the point-source curve.

If the impact speed is sufficiently high, so that the early-time shock speed

is many times the stress-wave speed, then the transition to the point-

source solution occurs in the strong-shock portion of the point-source

solution, where the shock radius expands in proportion to the 2/5 power

of time. As the shock continues to expand, it slows down further, and

the power of time according to which it expands {essentially the slope of

the log-log _:_ _ curve) becomes larger, approaching the constant stress-
)

wave speed ( f_s_'_ ) at late time. For a less severe impact, the tran-

sition to the point-source solution occurs at sufficiently late time that

the 2/5-power-law variation is not detected. The speeds presently attain-

able in laboratory experiments are not sufficiently high to produce a ._z/_-

variation {even if the very early time data could be properly resolved).
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Such variations do appear, however, in computer solutions. Bjork's data

for iron striking tuff 2 at 30 km/sec, for example, show this behavior,

as do the results of Walsh et al 3 for an iron-iron impact at 40 km/sec.

Thus, in general, the shock expands according to the first power

of time, both early and late. During the intermediate period, a variable

power of the time is observed. The power may initially be as low as 2/5

for a very high-speed impact; it is higher for more moderate impacts,

and in all cases tends toward 1 at late time.

It should be pointed out that a different interpretation has been ad-

45
vanced by Heyda and Riney. These authors believe that the solution

for the late stages of the hydrodynamic flow is of the form /_ c_ _ _/_ ,

with the transition to the form /_5

strength effects become important.

even without any strength influence,

= C occurring only when material-

The present results indicate that,

the wave speed in the inviscid solu-

tion asymptotically approaches the acoustic velocity of the fluid being

considered. In support of the variation /_s c_ _z/_ , Heyda and Riney

present a large number of computed results for Aluminum-Aluminum and

Lead-Lead impacts. However, the data (which are listed in Appendix C)

only extend to shock radii on the order of f_//___ 5. Reference to
, v

Fig. 13 will show that the slope of the log _s ' log _ curve is indeed

around 2/3 in this region. It appears that the calculations must be ex-

tended to later times (]_'>10<) before truly asymptotic conditions are

achieved.

Solution at Late Time

For the case of a point-source disturbance in a perfect gas, where

nonsimilarity is caused by counterpressure, the solution at late time
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finds the wave speed approaching the sound speed ( /_--,'-I), while the

excess pressure (shock pressure less the ambient pressure) decays in-

versely as the first power of the shock radius. The present problem

involves nonsimilarity due to the form of the state equation only; the

counterpressure term is always neglected. Thus it is not surprising to

find in the present results that, while _---_ 1 at late time, the law of

pressure decay differs from the acoustic ( _ =o_s) relation. Instead,

the pressure decays as approximately the -7/4 power of /_

This result can be demonstrated by noting that the function _, (_/)

for _/ _ 10 is closely approximated by the relation

where _ = 0. 366_ _ = 1. 7. As is allowed to approach one, _f/

becomes very large

M,/'- /
(179)

Thus

The shock-radius, shock-speed relation then becomes

i } '/3 (181)

or

(18z)
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This expression then gives the asymptotic law of pressure decay as

For

po c s /d

vq = 1. 7 , _ = O. 366 , this becomes

(183)

_)- t.7&Y_o--_ _ E.g/ ( (184)

It should be noted that if _"(b4) were proportional to ( /,_ - l) 2

as t'_-_l , then the pressure would decay as the -3/2 power of _z

It is quite possible that a theory more accurate than the Quasi-Steady

approximation would indeed reveal such a variation. For example, it is

reasonable to assume that, at late time, the quantity _4-_4 z is always

equal to its value at the shock. Thus .._(_) would be given by

-,}_"

and the -312 power-law decay of shock pressure results. The same re-

sult would be found if _'l (_) were assumed inversely proportional to

The present results are not capable of resolving exactly what the

pressure-decay law is. However, it appears not to be the inverse first-

power familiar in gaseous acoustics, and is probably closer to the 3/2

power mentioned above.

Comparison with Experiment and with Calculated Solutions

Figure 13 shows a correlation of the experimental data available at

present on the propagation of impact-generated shock waves. Included

are some measurements taken from a set of high-speed photographs of a
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Lucite target, made by Mr. Robert Piacesi of the Naval Ordnance Lab-

oratory. Also included are the numerical results of Bjork for iron

2 1
striking tuff at 30 km/sec and iron on iron at 5 km/sec, the results of

Walsh et al 3 for iron-iron at 40 km/sec, and Riney's data 45 "in Aluminum

and Lead, referred to above. Particularly for the high-speed numerical

results, the different regimes are clearly shown. Most of the experi-

mental data lie in a range so close to the stress-wave speed that the shock

trajectory is essentially a constant-speed line throughout.

Data on shock pressure as a function of shock radius are shown in

Fig. 15. One set consists of the results computed by Walsh and Tillot-

3
son for iron striking iron at 40 km/sec. Another set is a group of

46
experimental measurements made by Charest. In addition, Riney's

results in Aluminum and Lead 45 are shown. The agreement is quite good

-2

in all cases, and indicates a decay law where _ _.o_ for _ _ 1 ,
-1.6"

toward _ c_ _ for _//_ on the order of ten.tending

Charest 46 notes that his data, as well as some calculations done

for his case by Walsh and by Riney, are correlated by a -1. 6 power law,

and is careful to stress that this law must not be extrapolated beyond the

range where it has been observed. The correlation shownin Fig. 15

indicates some guidelines for making such an extrapolation. If one moves

in the direction of smaller _s//_ , a more rapid decay is to be ex-

pected. Very near the surface, of course, the pressure will level off at

the value appropriate to the impact point. In the direction of larger _//_

::" These data have not been published previously. We are very grateful

to Mr. Piacesi, and to Dr. V.C.D. Dawson of NOL for providing copies

of the photographs, and for their permission to use the data in this

report.
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it is probable that the ]_s law is still valid, at least to the point

where strength effects become important. Unfortunately, there is at

present no reliable estimate of the point at which this occurs.

The coordinate of all the points shown in Figs. 13 and 15 are col-

lected for easy reference in Appendix C.

Comparison with Shock-Speed Data in Wax Targets

47
Karpov has recently presented a refined set of wave-speed meas-

urements in a wax target, and compares the data with the constant C , S

form of the Quasi-Steady theory. Actually, the Hugoniot for the particular

target material is not characterized by a single pair of parameters C and

S , but is better approximated by

b_s = 2. 91 + 1.48 _Za (km/sec) for _9 _ 20 kbar

5Q = I. 85 + 7. 32 _Z_ (km/sec) for _l _ 20 kbar

An improved Quasi-Steady prediction can be made by using the complete

Hugoniot. The results are shown in Fig. 18. The agreement is improved,

compared to that found using the constant values C = 2. 91 km/sec, and

S = 1.48. The theory still overestimates the shock speed, however, by

as much as 20%.

It is possible that part of the discrepancy can be traced to strength

effects, '_which have been shown to influence plane-wave propagation. 50

In the later portions of Karpov's data ( _: _C_4) the density change across

the shock is only a few percent. Thus a serious question exists as to

whether or not an inviscid model has any relevance.

;:_Part is also due to the failure of energy scaling, and part may be due
to a two-wave structure 48, 49 of the main shock.
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SuYnrna r_

On the whole, the Quasi-Steady theory makes a satisfactory pre-

diction of shock-wave trajectories, and provides a quantitative estimate,

in terms of _o , of the extent of the strong-shock, transitional, and

stress-wave regimes. It can be quickly and easily applied to any mater-

ial whose Hugoniot is known. Its chief drawbacks are that it is based

on pure energy scaling, and that it gives no information about the three-

dimensional character of the solution, although the distributions it

predicts behind the shock appear reasonable near the shock and near the

axis of symmetry.

The deficiencies of the Quasi-Steady solution are essentially the

same as those of Oshima's method. Thus, in spite of its lack of rigor,

the Quasi-Steady solution is probably preferable, because of its ease of

application.

C. Porzel-Zaker Method

An approximate analytic solution for strong blast waves in gases

7
was developed some years ago by Porzel. His purpose was to account

for departures from ideal-gas behavior. In 1959, Zaker 8 adapted the

analysis so as to make it applicable to the nonsimilar problem, and pre-

sented a solution for a point-source explosion in a solid. Inview of the

relative unimportance of asymmetry on quantities like the shock trajec-

tory, Zaker's results also have application to the present problem. In

the subsections that follow, the Porzel-Zaker method is reviewed, and

modified slightly so as to incorporate the C , 5 state equation described

above.
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1. Approximate Solution

The basic idea behind the Porzel-Zaker method is the observation

that the continuity and momentum equations involve only ? 2
and b/- Thus, an approximation to any one of these can be used to

find corresponding approximations to the other two. The basic quantity

for which an approximation is chosen is the density, which is assumed

;,,..
to vary as a power of the distance from the shock:

whe re,

the shock, and where the exponent _._

found from the mass conservation law

.-p.< :f
o

as before, subscript 1 denotes conditions immediately behind

, a function only of time, is

which gives

(is5)

(is7)

This approximation reproduces other solutions to a remarkable degree.

For example, the perfect-gas similarity solutions are extremely well

recovered. In particular, the case _/ = 7 , for which _ = 4/3 J

/

leads to _ = 1 , which is the exact solution for that case.

To find the velocity field, the conservation law is written for the

mass lying between the origin and a given particle path, as shown in the

following sketch.

* Solutions of this sort have also been considered briefly by Nowak. 51
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£

1

F

I

or

Here _'t(}) is the Lagrangian coordinate of the particle which was ori-

ginally situated a distance _o from the origin. Taking the time deriv-

ative of this equation along a particle path gives an expression for

_f/D_: , which can then be equated to the value of _//I_e given by

the continuity equation. The result is

The solution of this equation for /_

evaluate the constant, is then

using conditions at the shock to

_ : _,-_--7- I- o<..&_
(189)

where

(190)
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The quantity

with increasing k s

coefficient (see Eq.

to zero at __ ---C_

is always negative or zero, since /6 i increases

, while the factor &_-_/_./_,_/_$ is the decay

(85)), which varies from -3/2 at infinite shock speed,

For a C , -_ medium, Eq. (190) takes the form

Zaker notes that o_ is small in the strong-shock region _o<
k

and neglects it for that reason.

(191)

°.

_-- S--I '

The additional error introduced by this

step during the weaker stages has not been studied.

The next step is to find the pressure distribution, from the momen-

tum equation

@r = o (19z)

Using Eq. (189) for gd , it is possible to show that

Integration of Eq. (192) then gives the pressure

(193)

r

O

(194)
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Use of the above expressions for 2 and _)_'/D_I then leads,

some manipulation, to

after

+ (195)

By setting ('//ff_ = 1 , this gives a formula for the pressure at the ori-

gin _(0,_:) in terms of conditions at the shock

(196)

(o,,.+z?" (o_<.,,)o_,_', <.<,"_ z o<_,,',"E: +
IJ

Energy Field and Shock Trajectory

All that is now required to complete the solution of the problem is

a determination of the internal energy e-e o as a function of position

and time. Once this has been done, the conservation of total energy can

then be used to derive a differential equation for the shock trajectory.

To find the internal energy, Zaker uses the Hugoniot curve to calculate,

for any _ and p , the "waste heat", or energy unavailable for
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mechanical work. For the present formulation, it appears simpler to

use the state equation derived above, since it gives e-e_ explicitly in

terms of _0 and p

To illustrate how this can be done, and to show the type of differ-

ential equation for the shock trajectory that results, consider the case

where 0<. is neglected. The conservation of total energ:_ using the

present C , 5 form of the state equation, can be written

z,,-re - z+-_ z<_-+('+ X )
(i97)

_ I 'i.,,.

where

A- _,+,_) 7; ,_:

Carrying out the integration leads to

(198)

E..

where

_(#,i_) = _.(__,)
io,_.,< ),_,- , _,_+_-,)

(199)

(2oo)

25-Z
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The last term in Eq. (199) can be rewritten as

(201)

(199) can be solved, so as to give an explicit expression for

as a function of _ and _ After integration, the

Thus, Eq.

shock trajectory is then found by applying Eq. (173).
,s,

If _;_ is not neglected, the third-order derivative /_s will

appear -- for example, from the term _'C_" However, the differ-

ential equation for total energy conservation never contains the independent

variable _ explicitly. Thus, the complete solution simply requires a

number of quadratures.

The integrations indicated above have not been carried out. The

analysis given is intended only to show the contribution that an explicit

form of the state equation can make to Zaker's solution. It would be very

interesting to complete these integrations, and to compare the results

more extensively with the Quasi-Steady theory. Presumably, the shock

trajectory would not be markedly different, but the distributions of _ ,

, and __ behind the shock would undoubtedly be better approxima-

tions of the exact numerical solutions.

;:_All of these steps could, of course, be put in dimensionless form,

using only the variables /_s//_ , /_ , and c_//_

;:_:_ One of the points that needs further study is the early-time solution.
Zaker uses initial conditions related to an equivalent sphere of water,

and finds early radius-time variations of the form _ , where A/

is approximately 2/8 to 2/9, instead of the value 2/5 that would be ex-

pected for a strong blast.
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IV SHOCK PROPAGATION IN POROUS TARGETS

The potential utility of porous substances for achieving improved

resistance to meteoroid puncture has often been cited -- for example,

in Refs. 18 and 52. Recent experimental findings in substances such as
53, 54

foamed plastics, and fiber metals 55 tend to substantiate the ex-

pected improvement. One of the factors responsible for the improvement

is that porous materials absorb more energy per unit mass than do solid

materials. Thus they offer the possibility of more rapid attenuation of

impact-generated shock waves. In this section, the Quasi-Steady method

is used to derive a solution for the propagation of spherical waves in a

porous medium. The purpose is partly to illustrate how easily this

method can be applied to a somewhat unconventional situation, and partly

to shed light on the degree of attenuation that may be achieved by poros-

_c
ity.

A. Hugoniot of a Porous Material

The equation of state for the nonporous form of a given material

can be used to predict the Hugoniot for any degree of porosity. This fact

57-59
is pointed out in three recent Soviet publications, and details are

worked out in those references for specific state equations. For present

purposes, it is useful to find the Hugoniot for substances whose equation

of state is the form introduced above (Eq. (36)). This equation applies

for any degree of porosity; the fact that the constants C and 5 were

determined from experiments on the nonporous form is irrelevant. The

_ Zaker applied his theoretical approach some time ago, 8 and con-

cluded that porosity was effective in achieving a more rapid attenuation.
Some aspects of plane-wave propagation in porous solids have been

studied recently by Payton. 56
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constants, however, have no direct relationship to the shock-wave proper-

ties of the porous substance. For example, £ will not in general be

the weak-wave speed.

The initial density of the porous material is designated by 9e ,

and the porosity is defined as

(202)

The Rankine-Hugoniot equations for the porous solid are

(203)

Eliminating the energy between the first of these and the state equation

gives, for the Hugoniot_

A

With this relation between 2H and

equations can then be used to find M s

D+'
and

(204)

the other Rankine-Hugoniot

_Zj Figure 19 shows

typical results, for _ = 1. 5 , and three values of the porosity param-

eter, _r_ = 1 , 2 and 4. To provide a common standard of reference,

all quantities are made dimensionless with respect to the values /Do and

C Several features are worthy of notice. The first is that a weak

wave ( _--_ 0) compresses the material back to its normal density, con-

sistent with the fact that a porous solid has very little compressive strength,

and is returned to its solid form by even a slight disturbance. The most
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striking feature, however, is the behavior of strong shocks. A limiting

density ratio is achieved, equal to

"" (Z05)

porosity _ is greater than _/_S-I_ , even an infinitelyIf the initial

strong shock will not compress the material back to its normal density,

although an extremely weak wave will do so. The reason is that the tern-

peratures achieved in a shocked porous medium increase with increasing

porosity. At high enough porosity, the decrease in density associated

with these high temperatures is sufficient to keep /_ less than /Zg_

This phenomenon has been observed in the Soviet experiments, 57, 58 and

60.
was also reported recently In this country.

A detailed analysis of the weak-wave limit shows that the shock

speed and particle speed are proportional to each other

"F_-I

IZl"" ----- LZ_"" _ (206)

and both are approaching zero.

B. Solution for Shock Trajectory

Having determined the Hugoniot for a porous C_ , S medium, it is

now possible to find a solution for impact-generated shock propagation by

using the Quasi-Steady solution. Conservation of energy in a spherical

blast requires
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where

O

In terms of the usual scaling length, _- C

comes

(zos)

, this be-

(109)

The integral _ is now approximated by equating it to the value it would

have for a perfect gas whose value of _/ matches conditions at the

shock

As the shock speed varies from infinity to zero,

shock radius is shown in Fig.

(z]o)

increases from

The resulting variation of shock speed with

20 for 5 = I. 5 , _ = i, 2 and 4. It

should be noted that the wave speed at a given depth is reduced consider-

ably by the porosity.

Another integration gives the shock trajectory, from

Z=f
0

(Zll)
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which is shown in Fig. 21. The reference quantities c_ and _ depend

oniy on the target material and impact energy; they are independent of

the porosity. Thus the curves shown provide a direct measure of the in-

creased attenuation caused by the porosity.

One interesting feature of the curves for _4_ 1 is that the solu-

tion has the form _5 c-o _ 7"/s" both at early and at late times. Thus it

never departs by very much from the classical Taylor solution for a

strong shock. Mathematically speaking, such behavior is due to the

finite range of variation of _z Whenever _/ is constant, the solution

is of the form

At early time, _= _S -I , while at late time, _---_ -I)

(212)

Physically speaking, both of these limits must be viewed with some reser-

vation until experimental evidence becomes available. At early time,

the pressures generated in a porous target are less than in a nonporous

one; thus the point-source assumption of instant destruction of the pro-

jectile is not as easy to justify. At the late-time limit, inviscid theory

does not apply, because of the low pressures involved.

In any event, the evidence suggests that a porous substance will

decelerate an impact shock wave more rapidly than the nonporous form of

the same material. Whether this can be a useful design concept in pro-

tecting against meteoroid penetration depends upon a number of other

systems considerations, of course, but it would appear that further study

of the concept is warranted. In particular, studies of wave attenuation

by internally instrumented targets would be very informative.
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V CONCLUDING REMARKS

Status of Analytical Theory

The ma.m purpose of the research described above has been to

develop analytical methcds for predicting the history of an impact-

generated shock wave as it travels through a target. The problem is

made complex by _o factors_ f_rst, it is multidimensional, and second,

the state equation cf solids renders similarity methods inapplicable.

[[he present results indicate that the multidimensional nature of

the problem can safely be ".gncred, If attention is restricted to quantities

such as the shock trajectcry. This conclusion is based upon approx-

imate solutions along the axis of symmetry_ and their comparison with

solutions which assume the impact-generated flow field to be equivalent

to one half of a symmetric disturbance. Such a conclusion had been

5.
reached previously by Rae and Kirchner m the limit of extremely high

impact speed, where similarity applies; the present results extend this

conclusicn to the range where ncnsimilar effects are felt.

To account for the nonsimilarity of the problem, three approximate

apprcaches have been studied and extended. One of these, called the

Quasi-Steady method_ has been developed more completely than the other

two. The result is a simplified prediction, based on energy scaling, from

which the histcry of the shock location, shock speed, shock pressure,

etc., can be found for any material whose Hugoniot is known. This theory

has proven successful in correlating all cf the measured and calculated

shock-trajectory data available at present. The only remaining discre-

pancies occur either at very early time, due to the plane-wave nature of

the problem in the near vicinity of the impact point, or at very late time,

due possibly to the onset of material-strength effects.
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One of the most important results of the Quasi-Steady theory has

been the identification of the scaling parameter /_o , proportional to

the cube root of the projectile kinetic energy divided by the character-

istic pressure pocz" of the target, and the demonstration, by com-

parison with experiment and with computed results, of the ranges of

this variable in which various types of shock motion can be observed.

Thus, the perfect-gas, or similarity solution, in which /_ _o _ _/x- ,

can be detected only for times less than 10 -2 f'_//_ , while the acoustic,

or stress-wave, limit is encountered at times greater than 10 /_//c..

The intermediate, or transitional, regime is the one in which most

present-day results lie. In all three regimes, the shock trajectory begins

with a constant-speed, plane-wave phase, and approaches the point-

source solution only after the projectile has been destroyed.

Suggestions for Further Research

Future improvements in the state of analytical theory could most

profitably be sought in two areas. The first is concerned with accounting

fcr the two-dimensional nature of the flow field. When approximate

descriptions of this feature of the flow are obtained, they will permit the

restriction to pure energy scaling to be removed.

The second area in need of improvement is the late-time portion of

the problem. Even in the inviscid approximation, the law of decay of the

shock pressure should be firmly established. Looking beyond that stage,

the problem of material-strength effects is amenable to analytical study.

A great deal of computational effort is presently being directed at this

aspect of hypervelocity impact, and such analytical developments would

be helpful in interpreting the numerical results.
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It should be reiterated that the solutions described above are

capable of supplying, with very little effort, a considerable amount of

information -- for example, concerning the shock trajectory. Their

advantage, in this regard, lies in their ability to handle unconventional

problems very quickly. A significant example is the treatment, given

above, of shock propagation in porous solids. Another such example is

the application of the Quasi-Steady theory to the problem of shock propa-
61

gation due to irradiation of a solid by an intense laser beam.

Implications for Damage Effects

No report on the mechanics of hypervelocity impact should close

without indicating how the studies in question contribute to our under-

standing of impact damage. While shock-propagation phenomena are of

great interest in themselves, nonetheless the subject of most intense

practical concern is the configuration in which the target material finally

comes to rest.

At least three types of damage may be considered, depending on the

thickness of the target. For verythin plates, whose role is to spread

out the impulse of the projectile over a wider area, the essence of the

problem is to determine the momentum distribution of the material coming

from the back of the plate. Although this case has not been specifically

investigated here, nevertheless the present studies have called attention

to the significant effect of the low-density portions of the state equation.

For somewhat thicker plates, the most serious mode of deformation

is that of spall fracture. Here, the present analyses supply important

information, since the shape and amplitude of the incident compression

wave must be known before the occurrence of such fractures can be pre-
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62
dicted. The companion publication to this one discusses in greater

detail the application of the present results to the spallation problem.

Finally, for targets which are effectively semi-infinite in extent, it

is desired to know the crater depth. Unfortunately, no theory based on

the inviscid-fluid model can offer any direct evidence on this question.

Physically speaking, the crater boundary takes shape along that line

where the material strength predominates to such an extent over normal

and shear forces that further removal of material ceases. This occurs

long after the point where the strengthless model is no longer valid.

To remedy the situation, some auxiliary criterion for defining the

crater size must be chosen, and its choice is crucial. The current dis-

63
agreement over the scaling laws for crater size can be traced almost

5
entirely to differences in crater-formation criteria, since all of the

published shock trajectories comply with essentially the same scaling law.

The two most prominent crater-formation criteria in use are those pro-

posed by Bjork I and by _Aralsh, 3 and the present studies bear, indirectly,

on both of these.

Bjork I identifies the crater boundary as the locus of points where

the pressure is extremely low, and the particle velocities randomly

oriented. The existence, noted above, of negative pressures in the state

;:c
equation used by Bjork for iron raises a question about the validity of

the low-pressure portions of his results. Use of the inviscid model at

_"It should also be noted that the Hugoniot curve for iron given by Bjork

(Figs. 3 and 4 of Ref. l) is in error. It should be compared with the

experimental results listed by Rice, McQueen, and Walsh (Ref. 16) and

by Altshuler et al (Ref. 64) or with the Hugoniot determined from the state

equation used by Bjork {Fig. I of Ref. 18).

AI-1821-A-2 82



low pressure is always a questionable procedure, and the uncertainty

is compounded when the state equation itself is suspect. What is needed

is a quantitative statement of the pressure levels involved, and of the

extent to which they are affected by the state equation.

Walsh 3 bases his criterion on the late-stage equivalence which he

observes. His argument is that_ if two different impacts give rise to

the same flow patterns during the late stages of the inviscid phase, then

the subsequent deformatien during the strength-affected phases must

also be the same° Thus_ crater size is scaled by the same parameters

as those which govern the late-stage equivalence.

By comparison_ Walsh's criterion appears to the present author to

be preferable. However, certain features of the present studies suggest

that further examination of this criterion may be profitable. In particu-

lar, much of the evidence on which late-stage equivalence is based

comes from integrated quantities, such as the total fluid momentum. It

has been observed above that such integrals (in the case of the energy

distribution) are rather insensitive to conditions at points whose dis-

tances from the origin are less than about 1/3 of the shock radius. But

these are the particles that will eventually form the crater boundary. It

would be a more sensitive test of late-stage equivalence if some param-

eter could be chosen that does not heavily weight the influence of particles

near the shock, but rather emphasizes the role of the relatively less

dense material. It has been pointed out, in this connection (Ref. 5, page

43) that the time scales for shock propagation in different targets under

identical impact conditions appear to be different from the time scales

that govern the ejection of material from the crater.
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In summary, it can be said that the approximate analytic solutions

discussed above properly account for nonsimilarity, accurately predict

the shock trajectory, and focus attention on the need for better informa-

tion on the state equation at low pressure. Future improvements should

seek a better description of the two-dimensional nature of the solution,

and should begin to account for the influence of material-strength effects.
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APPENDIX A

STATE EQUATIONS

In Ref. _, Bjork presents the state equation which he uses for iron,

crediting it to Dr. F. H. Harlow of the Los Alamos Scientific Labor-

atory. It has the form

(A-i)

+?o(e-eo)o._,_ +o.sso_(_-,) qoo+poCe-a)

,,.her°4,--?/poanc w oret,e mete=
3

of units is used. Thus the density /Do is 7. 86 gm/cm = 7. 86 Mgm/m 3.

The internal energy e___ o has the units (m/msec) 2 or (km/sec) 2! !

and the pressure is in Mgm/(msec) 2 0 -2-m or 1 Mbars. For _-;_/ 1 ,

20 *
Rine¥ uses the same relation, and also credits it to Harlow. For

5_( 1 , Bjork apparently continues to use Eq. (A-l), while Riney's

formulation -- Eq. (55) -- takes the form

(A-2)

90o+poe-<)

;:' Riney's version contains several factors involving parameters _',

and _,. Dr. Riney has informed the author in a private communica-

tion (September 15, 1964) that these parameters have been set equal to
zero in all calculations to date. It should also be noted that the absolute

value sign in the first line of Eq. (A-l) is absent from Riney's formula.

For ,41.>/ 1 , its absence makes no difference.

93 AI-182I-A-2



The state equation used in Walsh's calculations has the form, for

condensed states

e-eo

while for expanded states it has the form

(A-3)

= o..?(e-eo)

e-eo _ /_ o< - I

In these relations, the pressure is in megabars, the internal energy in

3/gin, 17Mbar-cm and the constants, for iron, are

(A-4)

0-=0.5

_ = 1.5

= i. 2-79 Mbar

= i. 05 Mbar

3
_ = 0.095 Mbar-cm

(X = _ = _

/gin
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method is due to Sedov (Ref.

APPENDIX B

ALTERNATE DERIVATION OF TEMPERATURE

ON AN ISENTROPE

This Appendix contains an alternate derivation of Eq. (70).

15) who points out (p.

7--

The

233) that because

(B-l)

is a perfect differential, it follows that a partial differential equation

for 3" can be derived from the exactness conditior_. In general, if

is exact, then

o{ _ = M dx + A/ o(_
(B-z)

O

If the state equation is given in the form

(B-3)

then

(B -4)

and the exactness condition, after multiplication by /2 7":"

form

(B-5)

, has the

p- _0 (B -6)
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This partial differential equation may be written in the form of three

ordinary differential equations

by using the method of Lagrange (see, for example, Ref. 65,

The method states that, in general, the problem of solving

(B-7)

p. z50).

= o (B-8)

is equivalent to the solution of the system of ordinary differential equa-

tions

P Q

If this set has the two solutions

(B -9)

&4.<X/ _/_') -----CI and

then the general solution of (B-8) is

(B-10)

where -f is an arbitrary function.

For the Mie-Gr{ineisen equation

prcp 

(B-f1)

(B-I2)
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one of Eqs. (B-7) is

whose solution is

(B-J3)

" 2
(B-14)

The second of Eqs. (B-7)

is a relation for the _I? coordinate of an isentrope,

(B - ] 5)

as can be seen by

comparison with Eq. (56). Thus the solution of (B-15) is found to be

t
which is the same equation for an isentrope already derived in Eq.

The general solution for the temperature field is therefore

(B-16)

(44).

whe re 14-

T P
is the entropy. In particular, along an isentrope,

(B - 17)

p
which is the result presented above (Eq. (70)).

(B-18)
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APPENDIX C

COLLECTION OF SHOCK-WAVE TRAJECTORY DATA

The data shown in Figs. 13 and 15 come from a variety of sources.

This Appendix lists the measurements used, and the quantities employed

in reducing the data.

Eichelberger and Gehring 9 present data for a Lucite target struck by

a steel projectile. The data listed in Table III below were taken from

Fig. 5 of their paper.

The second set of Lucite experiments was reported by Halperson

and Hall. 10 They state that their results have the form 4 = 8 /_s -1/4

where _ is in mm/_sec, and _ is in millimeters. Integration

leads to

= (5.6Z x 105/: )4/5 (C-l)

where _s is in cm, and _ in seconds. This formula has been used

to calculate the _ , _ entries in Table IV.

The third set of measurements in Lucite was taken by Piacesi (see

p. 65). The projectile was a I/4-inch-diameter aluminum sphere. The

measurements are listed in Table V.

1
The first set of numerical results was reported by Bjork. The

quantities listed below as _ are actually the distance along the axis of

symmetry from the impact point to the shock. Because the shock itself

is spread out over several mesh sizes by the artificial viscosity tech-

nique, the precise location of the shock is uncertain by several percent.

The numbers quoted below in Table VI lie about halfway between the points

of minimum and maximum pressure.
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The same comments apply to the data from Bjork's calculation of

iron striking tuff. 2 In reducing these data, the value C = 2.21 km/sec

was used.

66
B j o rk.

This was found from the equation of state given by Brode and

At low pressure, it has the form

where, if "_ units are used, the constant

gm ' . Equating (C-2) and Eq.
cm 2 erg

(c-2)

/_ has the units 5. 30 x 105

(8) gives

_ = I- Z.,,_o _z, (c-3)

Thus, using Eq. (7)

or

=
2/>ot'/<>)

(c-4)

as

Using _ = 5. 30 x 105 gm and //_i
sec-cm 2

km/sec. The data is given in Table VII.

3
= 1. 7 gm/cm gives

(c-5)

(c-6)

=2.21
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The third computed trajectory is that for iron striking iron at

40 km/sec, given by Walsh and Tillotson. 3 The /_ , _ points, given

in Table VIII, were found from Fig. 12 of Ref. 3, which presents the

pressure _, behind the shock as a function of _'_s These pressures

were converted to shock speeds by use of the Hugoniot curve (Fig. 8 of

Ref. 17). The resulting graph of I/___ vs _ was then integrated

(by Simpson's rule) to give _s vs _ The shock speed was tai<en to

be constant, at its impact-point value of 3. 05 x i06 cm/sec for

0 < _ _/ I. 36 ca. The resulting trajectory is listed in Table VII;-.

Another set of calculated trajectory data has been given by Lake

and Todd (Fig. 7 of Ref. 67). These calculations assume a spherical

_,¢

wave, and neglect the _ -variation. The results, given in Table IX,

-3
are for an iron projectile of mass l0 gm, striking aluminum at 4. 75

km/sec (i5, 600 ft/sec) but reveal an extremely rapid rate of shock propa-

-10
gation. For example, at the latest time shown (6. 9 x 10 sec) the

averageshockMachnumber = is827 Thesedatahave
U

nct been included on Fig. 13.

Charest 46 has recently presented a set of measurements of the shock

pressures developed in an aluminum target when struck at 7. 32 km/sec

by 0.476 cm diameter aluminum spheres. His data have been reduced,

and appear in Table X.

l_'inaliy, Heyda and Riney 45 have presented computed results for a

series of aluminum-aluminum and lead-lead interactions. Measurements

* The 6_ -variation is included in the formulation of Ref. 68, but the

continuity equation used there is in error. The equation in question --

Eq. (i) of Ref. 68 -- is presented for the case of cylindrical, not spherical,

polar coordinates (cf Eq. (i) above).
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taken from their figures, and the associated values of _a/_-o

_/_-o ' __ _" are given in Tables XI through XVI.
,Fo
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Tab1 e I

QUASI-STEADY PREDICTION OF SHOCK RADIUS, SHOCK-SPEED RELATION

I/M _)d Rs/R ° p i/,/9oC2 ,,,01/_o

S = 1.2 • I 1.667 .3q.7 75 q

• 2 2 .636 16.7 3

• 3 2. q'3 .959 6.q9 2. q'

• q 3 1.3q. 3, 12 2

• 5 3.6 i.813 1.67 1.71q

. 6 5 2. q.3 0.925 1•5

• 7 7 3•28 .511 1.333

• 8 I I q..667 .260 I. 2

• 886 20 6•96 . 121 1. 105

• 9@15 qO I0.75 .0550 I •052

• 9662 70 15. I0 .0301 1.029

.9762 I00 18.72 .0208 1.020

S = 1.5

S=2

, I 2.33 . q.q9 60

• 2 2.75 .795 18.25

.3 3.29 I• 17q. 5.20

• q. q 1•619 2.50

5 5 2.16 I. 333

6 6.5 2.85 .73q.

7 9 3.80 . q09

8 I q. 5.3q • 208

858 20 6.60 . 130

926 qo I0.62 .0569

958 70 15.0 .0307

970 I00 18.65 •021!

I 3•q._ •581 qs.o

2 q 1.017 I0

3 _•71q I.q75 3, 69

q 5.667 2 1.88

5 7 2.62 1.0

6 9 3. qq. .556

7 12.333 q.. 55 .306

8 19 6.35 . 156

81 20 6.56 . lU,5

9023 qo 10• q5 .0600

9q36 70 lUt. 85 .0317

960q I00 18.50 •021q

2.50

2,1q

I, 87

.667

• 50

• 36

• 25

,15q.

• 105

.052

I. 029

1.020

1.82

I. 667

I.Sq

I.q28

I. 333

I. 25

I. 178

I. IIJ

I. 105

1.052

1.029

I. 020
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Tab|e 1-T

QUASI-STEADY SOLUTION FOR SHOCK TRAJECTORY

Rs/Ro ct/Ro)S = 1.2 ct/Ro)S = 1.5 ct/Ro)S = 2

• 5 .0356 .0206 .0198

I . 153 . it 28 .0887

1.5 . 3;2 .2706 . 2 lieU,

2 . 586 . u,826 . 3908

2.5 .873 .7386 .61 16

3 I. 19q. 1.0319 ,8703

3,5 I, 5153 I. 35q.6 I. 160

15 1.9115 1.7016 I . U,76

15.5 2,302 2.0686 I. 8115

5 2.7015 2. U,526 2. 171

5.5 3. 119 2.81596 2.51t3

6 3. 5152 3. 2576 2. 927

6.5 3,975 3,6756 3.32q.

7 15.1515 q.. 1026 3.732

8 5.312 I.I..9715 It.571

9 6. 225 5. 867 5. q.37

I0 7. 151 6.778 6.3215

II 8.086 7.702 7.226

t2 9.029 8.635 8. 1150

13 9.981 9. 577 9. 0615

115 I O. 939 I O. 526 9. 997

15 I I. 901 I I. 1580 10.938

16 12.868 12. q.qo 11.882

17 13.839 13. q03 12,833

18 Iq..812 115.369 13.789

19 15.788 15. 339 115,73=t
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Table "l'T-r

EICHELBERGER AND GEHRING (REF. 9) IRON - LUCITE

M= 0.18 gm

Ro = 0.338 cm

V = u,.6 km/sec c = 2.59 km/sec

Ro/c = 1.30q/cLsec /3oCi2 = 7.92 x 1010 dynes/cm 2

t,)J. sec Rs, cm ct/R o Rs/R o

• 67 u, .33 u, • 516 .988

1.06 .5_0 .813 I. 598

I. 55 .77 I. 19 2.27

2, I0 .92 1.62 2.72
2.u,O 1.07 I.Sq 3. 16

3.20 I. u,O 2, It5 t_. 15

_. 30 I. 59 3.30 q. 70

5.6 1.93 q.. 30 5.70

6.9 2. 23 5.30 6,60

8.2 2.56 6.30 7.60

Tab]e]-_T

HALPERSON AND HALL (REF. I0) ALUMINUM - LUCITE

M= I.Ogm

Ro = .610 cm

V = 5.31 km/sec

Ro/c = 2.35/U.sec

c = 2.59 km/sec
I0

jOoc2 = 7.92 x I0
dynes/cm 2

t,,/_ sec Rs, cm ct/R o Rs/R o

1.780 I 0.755 I. 6t_O

1.780 x I0 1 6.3 7.55 10.3
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Table I

PIACESI (PRIVATE COMMUNICATION) ALUMINUM -LUCITE

M = 0,361 gm V = 5,7 km/sec c = 2,59 km/sec

Ro = 0._90 cm Ro/c = 1.90_sec j_o c2 = 7.92 x I0 I0 dynes/cm 2

t,jJ. sec Re, cm ct/R o RslRo

I. 076 O. 75 O. 565 I . 53

2,552 t. 50 I, 3q.5 3.06

q..028 2.05 2 • II q.. t9

5. 5015 2.55 2.90 5.20

6.980 3.17 3.66 6. t18

8._56 3.69 u,.q.5 7.51

9. 932 _. 20 5.22 8.59

I I.q.I u,.71 6.00 9.61

12.88 5.08 6.80 I0.3

M = 6160 gm

R0 = _.90 cm

Table "V'I"

BJORK (REF. I) IRON - IRON

V = 5.5 km/sec c = _.0 km/sec

Ro/c = 12.25J_,sec JOo c2= 1.259 Mbar

t,)j. sec Rs, cm ct/e o es/e o

3.5 3.1 .286 .632

8.7 7.9 .710 1,61

81.7 36 6.68 7.35

Tab1 e

BJORK (REF. 2) IRON- TUFF

M = 1.065 x I0 I0 gm V = 30 km/sec c = 2.21 km/sec

Ro = _6.5 meters Ro/c = 2.10 x I0 "2 sec Po c2 = 8.30 x i0 tO dynes/cm 2

t, sec- Rs, meters ct/R o Rs/Ro

.17 x 10-3 5.5

.36 x I0-3 II

3._u, x I0 "3 65

6.36 x 10-3 89

9.25 x I0 "3 105

2tL8 x 10-3 165

61 x I0 -3 260

8. iO x 10-3

1.72 x 10-2

1.6 u, x I0 -I

3.02 x I0 -I

q..[iO x I0"

1.18

2, 90

.118

.236

I. _0

1.92

2,25

3.55

5.60
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Table'V-I-]-I"

WALSH AND TILLOTSON (REF. 3) IRON - IRON

M = 38.6 gm V = _0 km/sec c = q.O km/sec

Ro = 3._ cm Ro/c = 8.5)zzsec JOo c2 = 1.259 Hbar

t,)u, sec Rs, cm Pl, Mbar ct/R o Rs/Ro Pl//OoC2

. _50

.678

.89_

I. 150

I. u_u_9

I. 787

2. 160

2. 566

3.012

3. _97

u,.019

u,.586

5. 186

5.812

I. 37

2

2.5

3

3.5

u,.5

5

5.5

6

6.5

7

7.5

8

I, 3u, u,7.5

2.7 17.5

3.8 8._

6.2 2.9

6.5 2.6

7.25 2.0

8.2 1.5

• 053 . it03

.0798 .589

.105 .735

135 .881

170 I. 03

2 I0 I. 18

255 1.32

303 I. ;7

355 1.62

q.lO 1.76

_7u, I. 9 I

5u,O 2.05

610 2.20

685 2,35

- .39_

- .795

- 1.12

- 1.82

1.91

- 2.13

- 2.ql

Tab|e TX"

LAKE AND TODD {REF. 67) IRON - ALUMINUM

M = lOt 3 gm V = _.75 km/sec c = 5.85 km/sec

Ro = 2.695 x 10 -2 cm Ro/¢ = _.61 x 10 -6 sec

37.8

13.9

6.67

2.30

2.06

1.59

1.19

t,jz sec e$, cm ct/R o Rs/Ro

5.2 x I0 "11 9.12 x I0-2 1.13 x 10-3 3.39

1.6 x I0 "10 1.52 x I0 "1 3.u,7 x 10-3 5.65

3.9 x I0 "10 2. u,I x I0"1 8.u_6 x 10-3 8.95

6.9 x I0 -I0 3.35 x I0"1 1.5 x 10-2 12. u,
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TableI

CHAREST {REF. _6) ALUMINUM - ALUMINUM

M = 0. i525 gm V = 7,32 km/sec c = 5.85 km/sec

Ro = 0.187 cm Ro/c = 0.320J_sec JOoC2 = 0.92_ Mbar

Rs, cm Pl, Mbar Rs/Ro pl,Po c2

0.51 .352 2.73 .381

0.76 .206 ¢.05 .22_

1.02 .150 5._5 .162

1.02 .130 5._5 .1_1

1.53 .0786 8.20 .0850

1.91 .0_96 10.2 .0538

2.5_ .0315 13.6 .03ql

3.05 .0239 16.3 .0259

3.55 .0198 19.0 .0215

_.80 .0120 25.6 .0130

6._0 .0076 3_.1 .00822

7.61 .0053 _0.8 .00573

M = 0.1525 gm

Ro = 0.197 cm

Tabl e

HEYDA AND RINEY (REF. _5) ALUMINUM - ALUMINUM

V = 7.6 km/sec c = 5.85 km/sec

Ro/C = 0.337,/xsec /30 c2 = 0.924 Mbar

t,/4sec Rs, cm Pl, Mbar ct/R o es/R ° pl/po c2

3qo .315 1.155 1.01 1.60

380 .3_5 I.I10 1.13 1.75

;20 .380 .865 1.25 1.93

510 ._10 .695 1.52 2.09

750 .615 .SqO 2.23 3.13

915 .750 .2rio 2.7t 3.81

985 .790 .225 2.92 _.01

050 .850 .226 3.11 q. 32

180 .920 .210 3.50 _.68

320 .990 .211 3.91 5.02

_50 I.I10 .110 _.30 5.63

I 25

I 20

935

750

58_

260

2;q

2L_5

227

229

.119
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Tab] e TIT

HEYDA AND RINEY (REF. q.5) ALUMINUM - ALUMINUM

M = .1525 gm V = 20 km/sec c = 5.85 km/sec

Ro = .375 cm Ro/c = .6_2_sec j,jo c 2 = .92_ Mbar

t,_sec Rs, cm PI, Mbar ct/R o Rs/R o Pi,Po c2

200

210

232

260

285

375

u,lO

505

555

.632

.750

.860

I. 0 u,5

I. 555

I. 823

2. 076

.320

• 350

.360

.u, 15

. q.35

555

630

695

770

825

955

I 075

I.I10

I. 370

I. 770

2.025

- .311

_. 88 .328

_. 30 .362

3.95 .q05

3.60 • u,q.5

1.52 .585

I. 53 .6q.o

I. 37 .786

- .865

O. 9_ .986

0.73 I. 170

O. 78 I. 3q.

O.q.3 I, 6q.

0.52 2.;2

0.23 2.85

O. 20 3.22

.85Lt

• 935 5.29

• 015 q'.65

.11 U,.28

.16 3.90

.q8 1.6q.

• 68 I. 66

.86 I.q'8

2.05

2.20 I. 02

2.55 • 790

2.87 .8U,3

2.96 , q'65

3.65 • 56 I

U,.73 • 250

5. qO .216
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H = • 1525 gm

Ro = ,595 cm

Table3iq-IT

HEYDA AND RINEY (REF. 45) ALUMINUM - ALUMINUM

V = 40 km/sec c = 5,85 km/sec

Ro/c = 1,020 sec po c2 = ,92g Mbar

t,/44sec Rs, cm ct/R o Rs/Ro

122 .315

133 .3u,o

I uto .370

158 .u_lO

165 • U_U_

181 . Ut65

191 • 500

• 252 .62

.280 .69

.310 .7l$

• 366 .82

.396 .87

.q3 .92

.q8 1.0

• 52 I. 05

• 58 i. 15

• 7_ I. 25

• 88 i,35

1.03 I. 5

1.60 2. I0

I, 7t$ 2.20

I. 90 2. q.o

120

130

137

155

162

178

187

.2q.7

• 275

• 305

.360

• 390

.q.21

• u,70

.510

• 570

• 725

,863

1.01

I. 57

I. 70

1.86

• 530

• 570

.622

• 690

.Tq.O

.783

.8qO

I. Oq.

1.16

1.2q.

I. 38

I.U_6

i.sq.

1.68

I.76

I. 9u,

2.10

2.27

2.52

3.5q.

3.70

q..Oq.
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Tab]e TI'V"

HEYDA AND RINEY (REF. q.5) ALUMINUM - ALUMINUM

M : .1525 gm V : 60 km/sec c : 5.85 km/sec

Ro : .780 cm Ro/C : 1.332_sec )0oC2 : .92_ Mbar

Rs, cm t,j_sec ct/R o Rs/R o

.311

• 3q.o

• 377

,q.I

. q,q.5

. tt8

.51

.63

.70

.76

.83

.90

.95

1.0

15

26

q.o

50

67

80

95

2.08

2.17

2.3q,

2.50

2.60

.087 .0653 .qO0

.090 .0675 ._35

• 102 .0766 ._85

.i10 .0826 •526

.121 .0910 .570

.131 .0982 .615

.IWI .106 .652

.180 .135 .809

.202 .152 .897

.230 .173 .972

.260 .195 1.06

.282 .212 1.16

.331 .2_9 1•22

.370 .278 1.28

._W .330 I._8

.56 ._20 1.62

• 63 ._7_ 1.80

.70 .526 1.92

.8_ .630 2.1_

.96 .720 2.30

I.II .832 2.50

1.25 .gqo 2.66

I.;0 1.05 2.79

1.52 1.1_ 3•00

1.7; 1.31 3.20

1.90 I.q3 3.3;
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Table

HEYDA AND RINEY (REF. 45) LEAD-LEAD

M = .6_1 gm V = 7.6 km/sec c = 2.07 km/sec

Ro = .39q cm Ro/c = I 90q,/Zsec po c2• = .48_ Mbar

t,JJ. sec Rs, cm Pl, Mbar ct/R o Rs/R o pi,po c2

. _0

._5

.50

55

60

70

80

87

95

I 30

I 62

I 80

2. O0

2.17

2.31

2.70

;. 70

5.90

6.29

.285 _.21 .210 .722 8.70

.310 3.33 .236 .788 6.88

.335 2.87 .263 .850 5.92

.375 2.69 .290 .950 5.56

• _05 2.53 .315 1.03 5.21

._2_ 1.78 .367 1.08 3.67

• _85 1.98 ._20 1.23 _.09

• 560 1.23 ._56 I,_2 2,5_

.620 .95 .500 1.58 1.96

.685 .81 .682 1.7_ 1.67

• 885 .61 .850 2.25 1.26

• 950 .57 ,9_6 2._1 1.18

1.01 ._3 1.05 2.56 .89

1.07 1.1_ 2.72 -

I,II .33 1.22 2.81 .67

1.2; .37 I.II.2 3.15 .765

1.76 .125 2.;6 ;.;6 .258

2.03 .135 3,10 5.15 .278

2.28 .06 3.30 5.80 .12_
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14 = 0.6_i gm

Ro = .751 cm

Table'X_l"

HEYDA AND RINEY (REF. _5) LEAD - LEAD

V = 20 km/sec c = 2.07 km/sec

Ro/c = .363)cLsec /OoC2 = ._8_ Hbar

t,JJsec Rs, cm Pt, Mbar ct/R o Rs/Ro Pl /VOoc2

.16 .315 21.2

.2t_ .350 -

.28 .385 16.3

.30 . _10 1_.8

.31 ._35 13.85

.36 . _95 I0.3

• _0 .560 6. I

• u,6 .625 5.3

,53 ,690 5, u,.5

• 60 ,755 q.. I

.75 .820 3.6

• 90 .950 2.9

1.05 1.08 2._

1,27 I. 12 I,q.

1,62 1,25 1.7

2.0 I. 50 0,65

2,71 1.77 0,6

3. I0 1,895 -

3.37 2.025 O. U,6

U,.20 2. 280 O. ItO

.O_ql

• 0660

.0770

0829

0855

0992

I10

127

lit6

166

207

2_8

290

350

551

.7u,8

.856

.930

1.16

._20

• _65

.512

.5u,5

• 580

.660

•7tt5

.830

.920

.00

.09

.26

. u,tt

, u,9

.66

2. O0

2.3_

2.62

2.70

3.0u,

q.3,9

I

33.7

30.6

28.6

21.3

12.6

II.0

11.2

8. _8

7. ;2

6. O0

q.,95

2.90

3.51

1,3q.

1,2q.

• 93

• 83
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Figure 20 QUASI-STEADY SOLUTION FOR SHOCK-SPEED, SHOCK-RADIUS
RELATION IN POROUSMEDIA; S = 1,5
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