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We have studied several problems in connection Wlth'%;
the gaseous flow in the close binary system. First, the -
statistical property of the Jacobian constants of c0111d1n
particles in the system is examined and a/conversat*oq>1aw
for their mean value established. Then the velocity<
independent nature of the rate of change in angular momentum
of a particle moving in the binary system is pointed out.
These properties prompt us to derive for the gaseous flow

a set of differential equations that provides a point of

view lying in the middle between the orbital approacia (which :
neglects both pressure and collision) and the hydrodynamic

approach (which includes both) because our equations take into |

~ account the collision but not the pressure. The equations

have been solved under the same approximation as Prendergast

(1960) has assumed and have been found to yield a similar

result as was obtained by him from the hydrodynamic equations.
Because of our emphasis on the Jacobian constant and

. angular momentum in the treatment of gaseous flow we have

called attention to the fact that some combinations of thesec

~ two physical quantities are incompatible in a certain regio..

of space which we have called the forbidden zone.
Finally, the formation, the evolution and the significance
of rotating rings observed in, many Algol-type eclipsing binaries '

of matter from the secondary surface,




I. INTRODUCTION

The problem of gaseous streams observed in some binary

systems has been studied theoretically either as indiv@dua}
bodies moving in orbits independently of each other (Kopal 1959,
Gould 1959) or as an aerodynamical flow (Prenderggg$¥ 1960).
Both approaches encounter difficulties, though of entirely
different nature. In the present paper, we shall call the :
attention to a few general properties of the motion of gaseous
particles in the binary systems, which lead us to a theory that
somewhat reconciles these two fundamentally different approaches

and thereby makes the flow problem easier to comprehend.

II. STATISTICAL PROPERTY OF THE JACOBIAN CONSTANTS DURING A
COLLISION OF PARTICLES
One of the differences between the two approaches mentioned

in Section I concerns the collision of particles. While the
neglect of this important process makes the orbital approach
unrealistic, some results obtained in celestial mechanics of the
motion of an infinitesimal body in a gravitational field of two
. revolving components has its physical significance. This is
because of the statistical property of the Jacobian constants
that we will discuss in this Section.
let us assume that the two stars are revolving around each

other in circular orbits. This is generally true for close
binaries (Struve 1950). Thus, a motion of a particle in such

a system is identical to what is treated in the restricted three-
* body problem in celestial mechanics (e.g., Moulton 1914; Brouwer
" and Clemence 1969. Following the standard treatment of the
problem we shall choose as the unit of length, the separation
between the two components, as the unit of mass, the total mass
of the two components, and as the unit of time, the period of

the orbital motion of the two components divided by 27T. In such
a unit system the gravitational bonstant is one. ILet us now denbtg_
byAthe mass of the secondary component. Thus, the mass of the
primary will be 1-/“& If, furthermore, a rotating coordinate
system xXyz is so chosen that its origin is at the center of mass
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of the two components, its x-axis coincides at all times with

the line joining the two components and its z-axis is perpendicular
to the orbital plane of the stars, then the coordinates of the
primary will be X, = -/p, y1 =0,2y =0 and those of the
secondary will be X, = 1 -fb, Yo =0, 25 = O in cgnsistency

‘we

with the adopted unit system.,

The equations of motion of the third infinitesimal body in
the restricted three-body problem admits an integral, frequentfy‘
known as the Jacobian integral, as follows:

C=2U-(x+Yy+3) (1)

o W Vol
U.—.—)_‘-(xz}'g)—f-l——/f-v" (2)
Here ry and r, are respectively the distances of the infinitesimal
body from the primary (l-/L) and the secondary (/L) component,
while (x,y,z) the three vector components of r, are the coordinates
of the infinitesimal body. The dot represents as usual the time
derivative. The integration constant C, is known as the Jacobian
constant, .

We can transform eqﬁation (1) into a stationary system.
Let us now consider a collision of n particles of mass,
m (i = 1; 2 ...n). Since we have particles of atemic sizes,
the coordinates may be regarded as the same for all colliding
particles at the instant of collision. Moreover, the total
kinetic energy of the colliding particles conserves during an
elastic collision, It follows from these considerations as
well as the definition of C by equation (1) that.

n / " C:' R |
SmCpo=2 %l - (3)
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. /
where Ci and Ci are respectively the Jacobian constant of the

i-th particle before and after the collision. Thus, if we
define an average C, such that

n * .
= > '
< C > 2 m.l, - 44 £ y ) (‘/')
A=) 4=l |
4_.,/.C>will be an invariant under the physical processes of elastic
?collisions. However, it may be noted that the dispersion of ’
C?s from their average value will in general change after each
collision.
For inelastic collisions an equation connecting various
Ci and C{ can always be obtained from the energy consideration
if we know the detailed process of the collision. We shall
‘assume in the present paper that the collisions that take place
among particles in the binary system are statistically elastic,
i.e., endoergic collisions balancing exoergic ones.

As a result of the constancy of <C> during collision, the
problem of gaseous flow is considerably simplified because we
have now a macroscopic quantity,<ic;>, to deal with instead of
following the courses of numerous particles in the system.

Thus, the gaseous particles must maintain a constant value of

| <C> in their stream motion. Indeed, Prendergast (1960) has shown
that C is a constant along a stream line. This situation
resembles the introduction of the concept of temperature and
pressure which simplifies our study of the chaotic motion of
molecules in gases in free space. Therefore, whatever is the
‘nature of ejection that occurs on the stellar surface, the mean
value of C's of ejected particles and their dispersion serve as
two of the most characteristic indices of the mode of ejection
as regards the course of their subsequent motion.

It should be noted, however, that although the gaseous
particles maintain a constant (C) , the mean flow does not follow
the orbit derived from the equations of motion of the three-body
problem., It is physically obvious that all those loops, cusbs,,
sudden reversal in the direction of motion, and other erratic




behavior found in the orbits of the three-body problems must
be completely erased by collisions.

I;I. THE RATE OF CHANGE OF ANGULAR MOMENTUM
' The angular momentum (the z-component) per unit mass of the
third body with respect to the center of mass of the binary t
system will be denoted by h. It is given by:

h = x2 + y + X %% - y g: ' [S;);

and varies with time because the third body is continuously

interacting with fhe two revolving component stars.

‘Although h varies with time, there are two points which
make it physically‘significant. First, the totallangular momentum
is conserved among the colliding particles if thghcollision takes
place rapidly, Secondly, it can be easily shown from the equations
of motions in the restricted three-body problem that

f—% /c(:—/c)y(‘L ) RO,

The significance of equation (6) derlves from the fact that dh/dt
is a function of coordinates of the third body only, being
independent of its velocity. Moreover, it is anti-symmetric
with respect to the x-axis and to the line bisecting the separation
segment between the two finite bodies. Thus, it vanishes on
these two lines. Here we see physically why five Lagrangian
points all lie on either of these two lines. It follows that
any steady flow in a closed curve must cross either one or both of
these lines so that h will recover to its original value after ’
the completion of the circuitous flow. Indeed, this is the casef"
of rotating gaseous rings frequently observed around the primary
component in many an Algol type binary system (Joy 1942, 1947;
also Sahade 1960).

In the three dimensional case, dh/dt vanishes in the XZ
plane and in the plane bisecting the line joining the two components.
Thus, if we divide space into four regions by these two planes
the sign of dh/dt is positive in the two regions and negative

in the other two.
-5 -
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IV. GASEOUS FLOW DERIVED FROM THE C AND h CONSIDERATIONS
In the two dimensional case, a knowledge of C and h at

every point defines completely the flow pattern. Therefore,

a velocity vector field of gaseous motion in a binary system can
be defined by two scalar fields of h and C. Since the average‘f
values of C and h do not change by collision, we may write

2C =5 _ _ | | - ,
st reveTe "

from the constancy of C and

_a;.ﬁ.l._qz}.yﬁz/a(l-/%)é“é) | (X)

from equation (6) when we follow the stream lines. 1In writing
these equations where u denotes velocity at point (x, y) we

"have made an additional assumption that C and h are continuous
over the plane. In this way, we have derived two flow equations
from the results of celestial mechanics.

By imposing the continuity condition of C and h over space

“we are able to take advantage of the result derived from celestial
mechanics but at the same time to discard as meaningless the
seemingly erratic and infinitely varied forms of orbits that one
may actually obtain by a straight integration of the equations

of motion in the three-body problem. Thus, equations (7) and

(8) are proposed here not as a result of mathematical formality
but they correspond to a physical process that involves collisions
under the conservation law of C and h. |

Since the pressure is not included in equations (7) and (8),

the present formulation of the flow problem lies between the
orbital approach (which neglects both pressure and collision)

and the bona fide hydrodynamic equations of flow (which include
“both.) Thus, the present treatment is mathematically equivalent
to the hydrodynamic approach when the pressure is neglected. '
In presenting the problem in this manner we gain a better physical
insight because both C and h are physical quantities.
Actually an inclusion of pressure would make the problem

1
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very difficult. Indeed, Prendergast (1960) who started directly
from hydrodynamic equations also neglected the pressure term .
when he came to the stage of solving the equatiohs. Thus,

the equations (7) and (8) should be equivalent to what Prendergast
has used, although the basic approach is different.

What we will show in the following is that we can obtain a
similar solution as obtained previously by Prendergast. Also
by following the present derivation we can see véry clearly the
conditions under which the solution will be valid.

Following Prendergast, we shall consider the two-dimensional
case, neglect the velocity component at right angles to the
zero-velocity curves and choose a right-handed orthogonal curvilinear
coordinate system (?, 7,2’) whereg’ is the label of the zero-

~velocity curves, namely

U=$, )2

.Gr'is'f given by equation (2) and 7 is an angular measure

‘along the zero-velocity curve. If we now denote Qg and Q the
metric coefficients corresponding to this coordinate system, we
‘can express equations (7) and (8) in thls new system as follows:

Y (25 5] - 2 vi'i‘fw 21)=0 (19
Q - 533. o

‘.WL
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if we assume a steady state of flow. Here the subscripts
and 7 denote respectively the components of the vector in the

5 and‘y direction. . _ ',4 - |
If we neglect 'U; , we obtain ‘ . o 5

2 :7 =0 : : } (2
from equation (10) an
U /7, -

Zp ol (ﬂ;_J+_za7) -l 4h-4)
G, " & .
_f;'oz equation (11) Combining equations (12) and (13) we
.obtaln a second degree algebraic equation for %

“’L %’ o5 /‘(l/“)%(?—[ﬁ) N

a7 7

By neglecting U- in one of the two hydrodynamic equations

of flow and in the other, Prendergast has also obtained a
second degree” algebraic equation for Y, . While the coefficients
in the equation here (which involves Jﬂ% q 972;/9 ) are
completely different from those in Prendergast's equation, (which
involves 3@) /3; ), both results are va11d under the same

' appro_;umatlon. Now it appears from equatlon (10) that in order
to neglect ’u; ) o 7/ must be small, This is the condition
for the validity of our' solution. .

, Physically we have started by assuming that the flow
follows the zero-velocity curves, but once we have found 'Uy ’

according to equation (14) we immediately see that - u,r

]
does not vanish because 9“7/32 does not. So the flo?y cannot
exactly follow the zero-velocity curves. Whether we can find

a converging field of velocities for this steady state by an
iteratin'g process, we do not know. Neither has Prendergast

./ . ) —8— . . ) !




commented on this possibility. _Istuitdvely-it_appears—that—i%
ggnnot-be:dﬁnezhecanse_oﬂzthe:bagig:canﬁlict:betweenvequaigg;g;~
12 ) —and—(I4)s—~It—should-be=noted—that-this—conflict=arises—mot
“omty—in—the—flow=forced-to~feottow—zero-velocity—cmrves—but—ine .
].znyno@her—fhmrﬁﬂﬂmﬂF%ﬁﬁﬂnmrﬂﬁnes—may:be—given—bypjgééf?rgjfﬂk
However, near the two finite bodies, the variations of velocity
with'2 is small, so the flow pattern obtained here represents .
a good approximation. This explains why gaseous rings are
frequently observed around the primary component of many an Algol-
type eclipsing binary.
In order to complete the analogy of the present calculation
with Prendergast’s, we may write equation (10) by néglecting
A% and higher order terms, as follows:

3
7 Q 2 U Xy -
E &?_7; " ) (’"u7 23

We can now examine the asymptotic behavior of U, for
small values of ry (or similarly of r2). In the immediace
neighborhood of the 1-/a, component, wg may take the position
of this component as the origin and use the polar coordinate
system (rl, ?’) where.‘f‘is the angle that the radius vector
ry makes with the x-axis, being counted, as usual, positive in
the counter-clockwise direction from the positive x-axis. The
zero-velocity curves in the immediate neighborhood can be
approximated by circles. Thus, we have

| ?“U—?a& / Q7=ﬂl (IS).‘
. 1 |

“and - . ,?:_‘f; . - | ([é)

since (3)7,20 is a rigthhahdéd'coordinatg system.
It can be easily shown that equation (14) reduces to



2 =
'u,) —-2/1"1(7 - —j‘zjﬁ =0, 7)

1

under the ~proximation given by equations (15) and (16). We take
the negative sign before the square root in the solution of this
quadratic equation, because as Prendergast has pointed out, the'

" velocity should vanish if the force vanishes. Retaining the
dominant terms, we find the solution for small ﬂl

ﬂ7=ﬂ!"(n, )/L ().

This asymptotic expression represents the Keplerian velocity
in the neighborhood of the lj/L component in the rotati:igz
coordinate system.

In order to study the asymptotic behavior at large distances
from both the components, we use the polar coordinates (r, §)
and expand all quantities in terms of 1/r, 9-be1ng now the
angle between the radius vector'??and the x-axis, It can be
shown that the angle that the normal to the zero-velocity curve
makes with the radius vector r decreases as 1/r5. Conszquently,
we may take the radius vector as the normal to the curve as a
first approximation for zero-velocity curves at large distances.
Similarly, we can show that the radius of curvature may be set
equal to r if we neglect terms of 1/x5 and higher orders. With
‘these approximations we can-easily derive from equation (14)

Uy ==Ly | (1)

if we remember that in this asymptotic case

=6 o (24)
According to equation (19) the gas remalns at rest in the
stationary frame of reference. Thus, the asymptotic behavior in

both cases is, as it should be,‘idéntical to what Prendergast
has obtained. ‘
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The numerical evaluation of 4y is not simple but it can be
done. We shall illustrate it by computing values of U, at those
n
two points in the flow around the 1—/(. component where a s‘g\eam

-e
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line intersects with the x-axis. At these two points we can
fake advantage of the simplification arising from the symmetry
of the zero-velocity curves with respect to the x-axis.

Let point A(X,,0) be the one of these points on the right’
side of the lsz component and point B( 2,0 ) the one on the
other side, Thus, Xo> /4 at A andX<{s4at B. The relation
between X, , r; and r, at both A and B can be easily obtained.’

Since Q, denotes the radius of curvature of the zero-velocity

curve at A or B then we have in the immediate neighborhood of
Aor B

'/15 ="Q7"(xo'1:@7)mjo , (22)

wherelf represents the angle which the normal to the zero-velocity
curve at any point near A or B makes with the positive x-axis.
When two signs appear together, the upper one corresponds to

point A and its neighborhood and the lower. one points to B and

its neighborhood. Again’f}:""fas in the first case of asymptotic

expansions. With the aid of equations (21) and (22) we may
reduce equation (14) to ’

S iy R

where

/ﬁ--ﬁ—(_‘_—’g;i{;{-a-—’;) ey
e

for point A and B respectively according to whether we take the
upper or lower sign in equation (24). The solution of equation

23) is g
. <@y [1-0-07] D
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. the minus sign before the parenthesis has been chosen in ordecr
to agree with the asymptotic behavior found previously in
equation (18). The radius of curvature 6? can be derived from
equation (9). We shall omit its long expression here.

We have computed Y, according to equation (25) for several’
cases of zb'with/u=012, t appears evident from the results of
computations that velocities thus obtained are very near to those
found in the periodic orbits which we may obtain either by the-*
" numerical process of successive approximation (Huang and Wade
1963) or by the series solution (Huang 1964). In the second
and third column of Table 1 we have given a few velocities of
a particle as it crosses the x-axis obtained by equation (25)
and from the periodic solutions r?spectively. Needless to say,
the disagreement in sign between Y and U, in one half of the

cases in Table 1 arises purely from the difference in the coordinate

system. We should compare only the magnitudes between the second
and third column. As would be expected, the agreement between
two kinds of computations becomes better and better as we
approach more and more to the star. Thus, the gaseous rings
found observationally in many binary systems may be regarded
equivalently either as a hydrodynamic flow or as motions of
particles in a continuous series of periodic orbits that exist

around the component.

V. THE FORBIDDEN ZONE

Since our approach to the problem of gaseous flow in the
binary system emphasizes the two physical quantities C and h, it
- is interesting to point out that at some points in space, a ‘
certain combination of values for these two quantities is
incompatible. In other words, with a given value of C and h,
sometimes the particle cannot go into a certain region of space
which we shall call the forbidden zone. It can be easily seen
as follows. We may express equations (1) and (5) simply as

J.Lz_!_ajz_*_%'z _-;A.,’ o ‘-.:' (,_g)
‘);fj —-’?.I.,‘-': 8/ ' (27)

- 12 -

ond




~where A and B are functions of x, y, z, C and h and can be easily
found from equations (1) and (5). Now in the (x, y, z) velocity
space, equation (26) represents a sphere with the center at the

origin and with a radius. equal to Al/2

, while equation (27)
represents a plane. It is then obvious that for any given :
combination of A, B, x, y, z (or equivalently C, h, x, y, z) the
two surfaces may or may not intersect with each other. If they
do not, no real velocity components (x, y, z) will satisfy both
gquations. This means that the particle with the given values
of C and h cénnot reach the point (x, y, z). In other words,
the point (x, y, z) lies in the forbidden zone associated with
the given C and h values.

The firbodden zone can be easily calculated from the
condition that the distance of the origin from the plane given
by equation (27) in the velocity place is greater than the

172

radius, A of equation (26). Explicitly, the forbidden zone

B8 > AL Y) (8

We shall illustrate the forbidden zone only in the x, y
plane. It can obtained by plotting the curve defined by the
following equation

2(1-4) 2/ |
N R I

[

where 9which enters into the expression for r; and ry denotes

- the angle between the radius vector 701‘ the third body and the
positive x-axis.

. Although h is a physical quantity, it is not a constant of
motion in the restricted three-body problem. Consequently, the
forbidden zone is not as importaht as the zero-velocity curves

in depicting the motion of particles, However, combined with the

- 13 -
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property of dh/dt discussed in the previous section, the
forbidden zone may serve some useful purpose of excluding.
certain modes of gaseous flow in the binary system.

Figure 1 illustrates three forbidden zones in the x, Yy,
plane for C = 3.5 and for three values of h. The areas ’
that include the origin are forbidden to particles having
the assumed C and h valuesbmzpecause of the symmetry with .
respect to the x-axis, oanAhalf of the zone is drawn
in each case. However, the signs of dh/dt are marked in

the figure in all four quadrants at the corners.

VI. SOME REMARKS CONCERNING THE ROTATING GASEOUS RINGS

OBSERVED IN THE BINARY SYSTEM

1. The Chance of Ring Formation

Let us denote Cl and 02 as the value of C that corresponds
respectively to the innermost and outermost contact surface
(Kuiper, 1941). The latter will be hereafter called, for
thé sake of brevity, the Sl and S2 surface. Both C1 and C2
have been computed by Kopal (e.g. 1959) and Kuiper and Johnson
(1956) .

According to the result obtained in the restricted
three-body problem, those ejected particles whose C values
are greater than C1 cannot penetrate the S1 surface, and
those whose C values are greater than C2 cannot penetrate
"the Sz

values are less than 02 could escape from the system and

surface. It follows that those particles whose C

those whose C values are larger than C1 will remain inside
i > "+ . “the §; surface.
The quantity, '

measures the closeness,ofiﬁhe two critical zero-velocity
surfaces S1 and 82 and;may have an important effect on

the flow of matter ejected by the secondary component into
the primary lobe of the S1 surface. We do not mean that

- 14 -
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only those particles with C values between C1 and 02 will
penetrate into this volume, since any particle with C‘(Cl
can move into it. But the amount of accumulation of matter
inside this volume at any given time perhaps increases

with the increase of AC. It follows from this reasoning
that formation of gaseous rings around the‘primary (lj/L)
component favors large values of/u, as we can easily see, )
for example, from Kuiper and Johnson's Table, that AC increases

'with/L .

On the other hand, we have pointed out (Huang and
Struve, 1956) that from the consideration of available
.space for their ring formation around the primary
component, gaseous rings have a better chance to exist
in binaries of smaII/U—. From the two arguments we may
conclude that perhaps formation of gaseous rings has its
highest chance in binaries with}a.neither near the maximum
end of 0.5 nor near the minimum end of approaching zero.
Observationally .gaseous rings have been found in binaries
with & around 0.2. . While this result agrees with the
prediction from the previous simple arguments, it may also
be caused by the effect of observational selection, since
it is extremely difficult to measure/a,when.it is much less
than 0.1,

In passing, it may be noted that following the argrument
of available space we have predicted a few eclipsing binaries
in which gaseous ring may be expected but not yet observationally
detected (Huang and Struve, 1956). Among these predicted \
stars is B Per. (Algol) whose emission feature wag«discovered
by Struve and Sahade, 1957). While they have concluded
that the emission feature does not indicate a ring structure,
it nevertheless reveals an-accumulation of gases in the system,
xhnd the accumulation of gases | = 1s a necessary coudition(
for the ring formation.

.15 -
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2. Ring Formation, Mass Dissipation and Ejection Velocities

It is evident from observations that the gaseous particles
flowing in the binary system come from the component stars
themselves (e.g. Wood 1950; . ' Kopal 1959; Sahade 1960).
In fact, it is usually the less massive component that is losing
mass. Accordingly, we will assume the injection of particles
into the system by the/a.component.

Lettvﬁbe the velocity of ejection with respect to that
point of the stellar surface from which the particle is ejected.
If the secondary component is rotating axially as a rigid body
with an angular velocityfzg“dth.respect to a stationary frame
of reference, any. partlcig th%y is attached_g9 the surface
rotates with a velocity @ X Kz K where {, is the radius
vector of a point on the secondary surface from its center. Since
Ege center of the secondary revolves with a unit angular velocity_
4& in the z-direction in its orbit, the ejection velocity in
the Xyz coordinate system is given by '

‘{/7' —V_->+( - )XK (31)

-

In order to compute the C values of ejected particles, we
can take advantage of the fact that the surface of the
secondary coincides with the secondary lobe of the Sl surface.
Thus, it follows from equation (1) that

If axial rotation and orb1ta1 revolutlon of the secondary SKL)
component are synchronized ,

CCV

' While the particles ejected from the secondary component
has values always less than'Cl according to equation }32), the

-

C values corresponding to those periodic orbits

‘close to f'ff" © " the 17/L component are
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greater thgn Cl‘ It becomes evident that before the ejected
particles accumulate to form gaseous rings close to the primary
componeng
they must have collided one another many timeé.such that‘C;s '
of some particles have been increased to the necessary values
to make the ring formation possible. Because of the conservation
law given by equation (3) we may expect that c’s of other
particles must have been reduced as a result of collisions. Since
particles of small C correspond to high velocities, they will |
~easily escape from the system, It can, therefore, be concluded
that the formation of gaseous rings of small radii around the
primary component must be accompanied by dissipation of mass
from the systen.

If’Drshould be very large, it would be doubtful whether
the velocities of an appreciable amount of particles can be
reduced by collisions to make ring formation possible. Therefore,
we would suggest that the ejection velocities from the secondary
are in general, small if gaseous rings are observed around the
primary component. That is wﬁy we have classified ejection
-~ leading to the ring formation as a slow mode (Huang 1963).
3. Evolution and Physical Significance of Rotating Gaseous

Rings

The gaseous rings around the primary component formed by the
material from the secondary component cannot be permanent.
Because of the tidal friction, the rapidly rotating ring will
gradually lose the angular momentum to its original source of
orbital motion. As the angular momentum of rotating particles
decreases, they fall into the primary. Therefore, without
other disturbances, the rotating rings represent only an
intermediate step in the transfer of'mass from the secondary
_to the primary component. If the ring will be dissipated easily,
its presence can only indicate an acfive’éecondary at the epoch
of observation. '
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We know solar surface activities because they provide us
with a disk to observe. 1In the case of stars, little can be
learned about their surface conditions because they appear to
us as point sources, although eclipsing binaries have revealed-

some of the secrets of the stellar surface. Now from the :

" observable behavior of gaseous rings we can derive, according

to the present idea of ring formation, the mode of ejection of

. mass from stellar surface. Thus, if the ring can maintain its

existence only when matter is continually supplied to it by the

secondary component, its fluctuations in intensity or even its

disappearance and re-emergence, which have been actually observed

(Wyse 1934; Joy 1947; McNamara 1951) can only reflect the
manner in which matter from the secondary is ejected. '

Rings may disappear when the secondary ceases to eject:
matter. In this case, their disappearance would be gradual.
Rings may also disappear when the secondary suddenly ejects a
large number of particles of high velocities. The latter
simply sweeps all rotating particles off their orbit. Im this
case, the disappearance of rings would most likely occur
suddenly., Perhaps the fluctuation of light intensity of gaseous
rings and sometimes their total disappearance actually observed
are due to the second cause. '

In any case, from what has been observed of the gaseous
rings the ejection of matter from the stellar surface does not
resemble a continuous steady process such as the evaporation
from a liquid surface. If there is ever a steady background
flow out of the secondary, it is superimposed by intermittent
bursts 1like the prominencé activities on the solar surface.
Thus, by observing the variation in intensity and structure of
the emission lines that are produced by the rotating rings we
will be able to learn something about the manner of how a
component star loses its mass when its evolutionary stage of
expansion brings it to touch the S, surface. Since such an
empirical knowledge is unlikely to be found elsewhere, the
importance of observing gaseous emission in binary systems
cannot be exaggerated.n
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There remains the question whether a rotating ring or
disk can be formed around the secondary (less massive) component
when the primary component is losing mass. It is obvious that
* the ring would be less stable around the secondary than around
the primary because,of iv}arger perturbation in the first case.
Also the avallablgmrlné formation is smaller in the first
than the second case.: But there is no a priori reason to believe
that rings cannot be formed around the secondary component. :
However, observationally we have never found a gaseous ring
around the secondary component.

Actually we have found few binaries whose more massive
component has filled the primary lobe of the Sl surface while
those of less massive components remain small compared with the
secondary lobe of the S1 surface. Therefore, the impending
question is not why we have not found any gaseous ring around
the less massive component, but rather why systems whose more

massive component injects particles into the secondary lobe

. 'should be so rare., Presumably, some selection effect plays a

role here, but it is unlikely that this is the sole cause.
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LEGEND

Figure 1 - The Forbidden Zone - Particles with given C and h

at any instant cannot be found in a certain region of space,
called the forbidden zone. Three forbidden zones in the Xy plane
are illustrated here for three pairs of (C, h). They are

(3.5, 1), (3.5, 0.6) and (3.5, 0.3). Because of symmetry with
respect to the x-axis, only one half of each zone is shown here.
.The forbidden zone corresponding to (3.5, 1) lies between two
curves, while that corresponding to each of the other two pairs
of (C, h) lies inside a single closed curve. The sign of
dh/dt%is marked at each corner of the four quaﬁ?ants formed by

X =0 and y = 0.5. '



TABLE 1

A Comparison of Velocities at Points

on the x-axis Obtained from Equation

(14) and from Periodic Solutions

+ IFrom Periodic

X ‘Un From Eq.(14) f? Solutions

.054472 -1,492 +1.525 -
~.450000 -1.529 -1.556 -

.001841 -1.775 41,791
-.400000 ~1,794 ~1.809
-.049380 =-2,148 +2.154
-,350000 : -2.156 -2.,164
-.,099858 -2.,724 +2.726
-.300000 -2.,727 -2.730
~.149986 "-3.949 +3.949
-.250000 =3.950 ~3.950
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