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Relativistic Rotation and the Disk Problem
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from the rotating disk problem may be resolved with-

William C. Orthwein

ABSTRACT

22300

It is shown that the Ehrenfest paradox arising

out resorting to a non-Euclidean geometry on the

rotating disk, and without postulating a radial con-

traction to compensate for the circumferential

Lorentz contraction.

Einstein concluded that the geome‘bry of a rotating disk must be non-

¢

paradox was proposed in 1909.% Using a qualitative argument in 1911,

INTRODUCTION - /

{CATEGORY)

s

|
Disk rotation has been spora{tdically studied ever since the Ehrenfest

- Euclidean as & result of circumferential shortening with no radial con-

traction. Lorentz® took issue with this view, and in 1921 stated that he
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had worked out the case of a thin, infinitely rigid disk and found that

if v were the velocity of the rim, then the radius would be shortened
"in the ratio of 1 to 1 - v3/8¢3," and that the disk surface would, there-
fore, remain Euclidean. Eddington;‘ using a different method, confirmed
this result and, hence, the Euclidean geometry of a rotating disk, ig 192k.
Some 14 years later Einstein and Infeld® reiterated the belief that disk
geometry was non-Buclidean, and in the next year, Levy'6 repegted this

view. Berenda’ supported Einstein's conjecture in 1942 by an analytical
study of disk rotation in which he claimed that the hypercurvature of the

dlisk surface was given by
3R/ - (P17

In developing this relation it was, however, necessary to ignore the
vanishing of the Riemann-Christoffel tensor and to independently construct
a so-called intrinsic geometry. Hill,® in 1942, assumed that relativis-
tic rotation of itself could not limit the size of a rotating disk and
employed a kinemaf;c argument to propose that the Ehrenfest paradox might
bést be resolved by a nonlinear speed-distance law; that is, that the clas-
sical definition of uniform rotational motion must be abandoned. Four
years later, Rosen® ‘redefined the conditions for rigid body rotation and
affirmed that "no rigid body woulé have a radius equal to, or exceeding,
vl/ﬂ, but that there seems to be no reason why an idealized body with a
smaller radius could not rotate %ccording to the liﬁear law." In defining
spatial distance in a rotating system, he introduced a coordinate system

_ similar to Berenda's, which‘reqpired that the surface of a rotating disk

' be:non-Euclidean.
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A partial reconciliation of the viewpoints represented by Einstein
and Eddington was presented in 1952 by M;z‘ller,?'-o who noted that regardless

of whether the disk surface was Euclidean or not, the relation
p = 2na

vhere p and a represent the stationary measurements of the disk cir-
cumference and radius, respectively, is not a rotational invariant.

Instead, he suggested that the relation should be

_ ora.
b= [1 - (Pa2/c2) 132 (1)

His ensuing discussion of the geometry of the disk surface depended upon

a metric tensor of the form used by Berenda, which M¢ller also specifi-
cally interpreted as implying a non-Euclidean geometry on the disk surface.
In 1961 Weberll repeated this line of reasoning and wrote that the sur-
face of a rotating disk was non-Euclidean.

All of the sbove investigators either implicitly or explicitly used

an N-tra.nsformaf,ion12
zd = x! cos x4 + x2 sin x4 W
22 = -x1 sin % + x2 cos (x* - g
(2)
z3 = x3
z4 = x4 |
| J

' 1
to relate the uniformly rotati?g coordinates z* to the stationary coor-

i

! ,
dinates x~. Claims for nonorthogonality, such as those of Berenda and

o

Rosen, are dependent upon a misinterpretation of this nonorthogonal trans-

formation in the four-dimensional relativity space. In the subseqpent‘
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development it is shown that the conclusions, but not necessarily the
analyses, of Eddington and Lorentz were substantially correct; that is,.

that the geometry of the rotating disk is Euclidean.

Space-Time O-Transformations

Transformation (2) demands that
(ds)z - (dzl)z + (dza)a' + (dﬁ)s)2+.2ﬂ(zl - 23) | |
- e (z?-)a]} (3)
in the rotating space, while | |
(as)2 = (ax*)2 + (ax®)? + (ax3)? - c2(ax*)2 (h).
-represents arc length in the s;tationary frame.l® Since it may be easily

shown that the Riemann-Christoffel tensor vanishes in the 2z% frame

attached to the disk, it follows that the rotating space is still Euclidean.

This observation is unchanged if ax3 = az® = O, as in Berenda's analysis.
Consequently, the off-diagonal terins in the rotating metric merely indil-
cate use of a nonorthogonal coordinate system for the description of a
Euclidean space. It has been shown'S that Eq. (2) is, in fact, _nothir;g
more than a classical Newtonian N-transformationl® from a stationary
orthogonal system to a rotating nonorthogonal system.- Tra.nsféfma.tion to.
an orthogona.i cylindrical coordinafie system yl on ‘t;.he rotating disk may,

- ]
however, be accomplished with the ?ﬁ-transformation

s = gl S )

¥2 = (82 - Qgs)

. . > (5)

y =¢§ ,
™ y4 = 7(E4 - ag?) J
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in which §1 represents a stationary circular cylindrical coordinate

system. Its inverse is

§1=y1 W
2 = y(y® + ay?) g
(6)
% = y°
£* = 7(y* + o)
J

in which the transformation parameters 7 and o are defined in terms of

the angular velocity 0 and'the radial distance r =; £ -%; y"L according

to _
. va\-1/2 .
: r-(2-% (1)
- @
and } ’ )
v=Qr (9)

vhere the notation r =; yt =; gl‘ indicates that r is a transformation
parameter. It takes the magnitude of y1, or gl ;» but does not play the
same role as eithe’r yt or gl.

Calculation of the metric of the space seen by a rotating observer

depends upon the relationsl? ' .

biy T Canfit]
where' ‘
glin = a_'gm/ayi and Cil J Caz = 1, Caz2 = rzy_ Coq = ¢
and where ’\ '
el =1 83 =1
£2 = 7 2=

2= Es =7




Thus, we find that

b1y = bas =1

baz = 72(12 - c2a?) = 2
(2 - v2) = -c?

which provés that the space seen by the rotating observer is indeed

Euclidean. Moreover,
’

bij =Cij-

Although the transformetion parameters contain factors proportibnal

to y! and ¥4, or £l and &4, they appear as constants in
3¢"/3y" ana dy*/oe™ | (20)

because they have no geometrical significance, as was shown.'® Such param=
'eters frequeﬁtly appear whenever a transformation includes a change of
units which is position depegdent. For example, consider the two circular
cylindrical coordinate systems X' and Z“, both stationary in Es, such
that X° is the usual radian measure of position and 2Z2 is a measure

of length, say meters, along a circular arc, according to
f

zt = x* )
72 = rx2 y  (11)
z3 = x° -

where r =; X* =; Z1.' Certainly the geometry of space is not affected by
| A
the choice units; that is, neither the orthogonality of the coordinate lines ¥

nor the lines themselves, as shown/in Fig. 1, is altered by the choice of

!

units for measuring distance aloné\these lines. Regardless of the measuring

a
units chosen, the arc length ds is given by (ds)2 = Gun an de = Hop 42 dZB,

with

\\

Gii = Gaz = 1, Gz = (X})? | (12)

T 2 e 7o S

-




and
Hyy = Hop = Hag =1
Failure to recognize that r 1s a transformation parameter in Eq. (11)

(1.e., the erronecus use of r = X* = Z') will lead to an erroneous

metric; namely

(==}
=
[N
it
)
+
)
N,

Hoo

[}
&
W

]
[
-

which implies that the system has become nonorthogonal just as a conse-
gquence of the change of measuring units. This contradiction demonstrafes
that r must indeed be taken as a transformation parameter.

Thus the unraveling of the Ehrenfest paradox and the resolution of
the Einstein-Infeld versus Lorentz-Eddingtonbcontroversy is immediate.
The surfacetbf a rotating disk remains flat, as implied by the vanishing
of the Riemann-Christoffel tensor under either Eq. (2) or (5), and may
be simply described by Eq. (5) with x3 = Z3 = 0. The circumferential
shortening with rotation does not imply a non-Euclidean geometry, but

rather that the quantity 2x should be replaced bj 2y, as noted earlier.
. . i ,
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18The corresponding Newtonien O-transformation is

1= x* cos ¢ + %2

]
i

sin @

zZ = -x* sin @ + x% cos ¢
23 = 33
74 = x4

in which @ = Qt is a transformation parameter.'® Note that in R%
Newtonian O-transformations may correspond to translation, rotation, or
a combination thereof, in a hyperplane normal to the time axis, while
relativistic O-transformations correspond to rotation in.a hyperplane
conﬁaining the time axis.

17Tne Einstein summation convection is implied.
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Fig. 1.~ Coordinates used in Eq. (11).




r
1,L

23




