BLUNT BODY SOLUTIONS FOR SPHERES AND ELLIPSOIDS IN EQUILIBRIUM GAS MIXTURES

by Mamoru Inouye

Ames Research Center
Moffett Field, Calif.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MAY 1965
BLUNT BODY SOLUTIONS FOR SPHERES AND ELLIPSOIDS
IN EQUILIBRIUM GAS MIXTURES

By Mamoru Inouye

Ames Research Center
Moffett Field, Calif.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information
Springfield, Virginia 22151 – Price $2.00
An inverse method was used to calculate the flow field in the nose region of blunt bodies traveling at supersonic speeds in equilibrium mixtures of gases that may be present in other atmospheres. Calculations were made for air, nitrogen, carbon dioxide, argon, and a mixture composed of 50-percent argon, 40-percent nitrogen, and 10-percent carbon dioxide. Speeds from 10,000 to 70,000 ft/sec are covered for free-stream densities of 10^{-1}, 10^{-3}, and 10^{-5} times earth sea-level values. Correlations are presented for the shock stand-off distance, surface pressure distribution, and stagnation-point velocity gradient.

INTRODUCTION

The numerical calculation of flow properties in the nose region of blunt bodies traveling at supersonic speeds is described in reference 1 for a perfect gas and for air in thermodynamic equilibrium. The inverse method is used; that is, a shock-wave shape is assumed, and the resulting body shape is calculated. Discovery of a one-parameter family of shock-wave shapes that will produce spheres and ellipsoids to close accuracy in effect permits a direct solution to the problem.

In the present report the calculations reported in reference 1 are extended to include equilibrium mixtures of gases present in other atmospheres. Solutions have been obtained for air, nitrogen, carbon dioxide, argon, and a mixture composed of 50-percent argon, 40-percent nitrogen, and 10-percent carbon dioxide. Speeds from 10,000 to 70,000 ft/sec have been considered for free-stream densities and pressures of 10^{-1}, 10^{-3}, and 10^{-5} times earth sea-level values. The free-stream temperature was thus maintained constant for each gas at such a level that the free-stream gas was undissociated. Results for the shock-wave shape parameter, stand-off distance, surface pressure distribution, and stagnation-point velocity gradient are shown together with a tabulation of stagnation-point and shock-wave conditions.

SYMBOLS

A_5 shock-wave shape parameter (see eq. (1))

A_7 shock-wave shape parameter (see eq. (2))
speed of sound

body bluntness parameter, \((b/c)^2\)

semimajor and semiminor axes of ellipsoid

enthalpy

Mach number

pressure

radius of curvature of the body for \(y = 0\)

radius of curvature of the shock wave for \(y = 0\)

distance along the surface measured from the stagnation point

temperature

velocity

shock-wave shape

cylindrical coordinates with origin on shock wave and \(R_s = 1\)

isentropic exponent, \(a^2\rho/p\)

shock standoff distance

density

earth sea-level density, \(0.002377 \text{ slug/ft}^3\)

Subscripts

free-stream conditions

conditions behind normal shock

stagnation point on body
CALCULATION METHOD

Blunt-Body Solution

The inverse method is used for calculating the flow field around blunt-nosed axisymmetric bodies. The partial differential equations governing steady, inviscid flow of a gas in thermodynamic equilibrium are integrated by a finite-difference technique proceeding from an assumed shock-wave shape to the corresponding body shape. Iteration of the shock-wave shape is usually necessary to obtain the desired body shape, which is normally a conic section. Details of the numerical analysis and solutions for perfect gases and air in thermodynamic equilibrium are presented in reference 1. The changes made to obtain the present results are the extension to arbitrary equilibrium gas mixtures and a slight modification of the shock-wave shape as described in the following sections.

Thermodynamic Properties

Thermodynamic properties for various gases have been calculated by Dr. Harry E. Bailey of Ames Research Center following the assumptions and approximations made in reference 2. The properties for carbon dioxide are reported in reference 3. The data cover temperatures to 45,000° R and densities from 10^{-7} to 10^3 times a reference density based on a temperature of 491.7° R and a pressure of 1 atmosphere. The gases considered in this study are air, nitrogen, carbon dioxide, argon, and a mixture composed of 50-percent argon, 40-percent nitrogen, and 10-percent carbon dioxide. The domain of the thermodynamic data in a pressure-density plane is shown in figure 1. The boundaries are slightly different for the various gases.

For use in the blunt-body program, the calculated thermodynamic data have been spline fitted with cubics by the method described in reference 4, the coefficients being stored on magnetic tape for the various gas mixtures. Aside from the shock-wave relations which require the enthalpy, the blunt-body solution requires only the speed of sound as a function of pressure and density. Values for the speed of sound and enthalpy obtained from the curve fits have been checked and found to agree with the original data within 1 percent, except for small regions where differences as high as 5 percent occur. At low temperatures perfect gas relationships are used with the appropriate values of the gas constant and ratio of specific heats.

Shock-Wave Shape

The success of the inverse method depends on being able to define a simple shock-wave shape that will produce spherical and ellipsoidal bodies to close accuracy. It was found in reference 1 that the shock shape given by the rational polynomial...
is successful in this regard. It was possible by varying the single parameter, A_5, to obtain spheres and ellipsoids over a wide range of free-stream conditions for perfect gases and air in thermodynamic equilibrium. One might expect similar success for other gases. However, the shock shape given by equation (1) does not have even symmetry about $y = 0$ because of the y^3 term in the denominator. This defect did not cause any numerical difficulties in reference 1, probably because of the smoothing procedure employed. A simple change eliminates this objectionable behavior and yields essentially the same shock shape. If equation (1) is squared and the denominator is altered so that X varies linearly with y for large values of y, there results

$$[X(y)]^2 = \frac{0.25y^4 + A_7y^6}{1 + \frac{4A_7y^4}{M_\infty^2 - 1}}$$

with the single parameter, A_7, which is the seventh term in the numerator polynomial. Comparison with equation (1) shows that $A_7 \approx A_5$ provided A_5 is small, which is true for spheres (~ 0.1). A few test cases showed that the results for spheres found in reference 1 could be reproduced with the shock shape given by equation (2).

RESULTS AND DISCUSSION

Spheres

The flow field around a spherical nose has been calculated for the following gases: air, nitrogen, carbon dioxide, argon, and a mixture composed of 50-percent argon, 40-percent nitrogen, and 10-percent carbon dioxide. The free-stream conditions selected were densities and pressures equal to 10^{-1}, 10^{-3}, and 10^{-5} times the earth sea-level value and velocities from 10,000 to 70,000 ft/sec, the upper limit being determined by the maximum temperature of 45,000° R. It is recognized that for some of the cases studied (at the highest velocities and lowest densities), the assumption of inviscid, equilibrium flow may be violated. However, these results are included to serve as reference values for assessing the effects of nonequilibrium flow when such calculations are available.

The output from a blunt body solution includes the coordinates of the shock wave and sonic line, and the flow properties on the body and in the shock layer including those on a line joining the body and shock in the supersonic region. The latter data can be used as input to a method of
characteristics program to continue the solution downstream over an afterbody of arbitrary shape. A résumé of the solutions is presented in Table I. In the following paragraphs, there are presented results and correlations that are useful for the calculation of radiative and convective heating to spherical noses.

Values of the shock-wave shape parameter, A_7, required in equation (2) to produce spherical noses are shown in Figure 2 for the gases studied. The effect of changes in the free-stream velocity on the shock shape is generally greater than the effect of changes in the free-stream density. However, in regions where dissociation and ionization are occurring, the shock parameter changes drastically.

The ratio of shock standoff distance, Δ, to the radius of curvature of the shock at the axis of symmetry, R_s, is shown in Figure 3(a) for all the gases as a function of the density ratio across the normal shock, ρ_∞/ρ_2. There is no significant effect of gas composition on this ratio; moreover, good agreement is observed with the constant-density solution of Hayes and Probstein (ref. 5) given by the following equation:

$$\frac{\Delta}{R_s} = \frac{\rho_\infty/\rho_2}{1 + \sqrt{8\rho_\infty/3\rho_2}} \quad (3)$$

(The values of Δ/R_s for argon at 10,000 ft/sec are not shown because they exceed 0.11; however, they are also correlated by eq. (3).) The dependence of the standoff distance on the density ratio can be explained on the basis of mass conservation. If the density behind the shock increases, the standoff distance must decrease in order for the mass flow away from the stagnation point in the shock layer to remain nearly the same.

The designer is more interested in knowing the standoff distance in terms of the nose radius, R_b, as shown in Figure 3(b). The results from the present numerical solutions for $0.04 < \rho_\infty/\rho_2 < 0.16$ can be correlated by a straight line defined by

$$\frac{\Delta}{R_b} = 0.78 \frac{\rho_\infty}{\rho_2} \quad (4)$$

This correlation was originally obtained by Seiff (ref. 6) from a collection of experimental and theoretical results for air and perfect gases. Since the constant-density solution (ref. 5) does not yield the nose radius, it is necessary to assume, for example, that the shock and body are concentric in order to relate the standoff distance to the nose radius. This assumption is not valid as shown in Figure 3(b).

The variation of standoff distance with free-stream velocity and density for each of the gases considered is shown in Figure 4. The symbols represent results from the present numerical solutions, and the curves represent the simple linear law of equation (4). The latter curves require solution of the normal shock relations for an equilibrium gas, a calculation that requires
much less effort than a blunt body solution. Since the standoff distance is just a linear function of the density ratio, the curves of figure 4 actually represent the variation of the density ratio across a normal shock with free-stream velocity and density. It is to be noted that for a perfect gas the density ratio approaches a limiting value equal \(\gamma (\gamma - 1)/(\gamma + 1) \) as the Mach number becomes infinite. For a real gas the density ratio decreases with increasing free-stream velocity and decreasing free-stream density as dissociation and ionization produce more particles per unit volume behind the shock. When the chemical composition does not change appreciably, the density ratio remains nearly constant. The curves for standoff distance in figure 4, in general, reflect this behavior.

The ratio of \(R_b \) to \(R_s \) for the present numerical solutions is shown as a function of the density ratio in figure 5. Combining equations (3) and (4) yields the following correlation equation:

\[
\frac{R_b}{R_s} = \frac{1.28}{1 + \sqrt{\rho_\infty / 3 \rho_2}}
\]

For a perfect gas the results of reference 1 show that the surface pressure (normalized by the stagnation-point pressure) in the subsonic region of a spherical nose has nearly the same distribution for all Mach numbers greater than about 10. In addition, the surface pressure distributions show little dependence on \(\gamma \) as shown in figure 6 for \(M_\infty = 30 \). These results can be correlated by equation (6)

\[
\frac{P}{P_{st}} = 1.0 - 1.25 \sin^2 \left(\frac{s}{R_b} \right) + 0.28 \sin \left(\frac{s}{R_b} \right)
\]

which yields values of the pressure between the predictions of modified Newtonian theory with and without the centrifugal correction. The surface pressure distributions for all the gases and free-stream conditions considered in the present study are also correlated by this equation. A typical set of results is shown in figure 7 for \(\rho_\infty / \rho_0 = 10^{-1} \) and for \(V_\infty \) from 10,000 to 50,000 ft/sec. However, if one is interested in the pressure gradient along the surface, equation (6) may be inadequate, and the exact blunt body solution should be used.

The velocity distribution along the surface in the subsonic region is nearly linear for the present results as exemplified in figure 8 for the specified mixture of argon, nitrogen, and carbon dioxide. Thus the stagnation-point velocity gradient, which is required for calculating the heating rate, describes the velocity distribution in the subsonic region. According to Newtonian theory, the velocity gradient at the stagnation point is given by the following equation:
The results from the present solutions are as much as 15 percent higher than Newtonian theory (ordinate equal to unity) as shown in figure 9. The following equation, which has the form given by the constant-density solution of reference 5, correlates the present results as a function of the density ratio across a normal shock:

\[
\frac{dV}{ds} = \frac{1}{R_b} \sqrt{\frac{2p_{st}}{\rho_{st}}} \]

The shock standoff distance expressed in terms of the shock radius, \(R_s \), is not a function of the body bluntness for constant free-stream conditions. However, the body size, characterized by its radius of curvature at the stagnation point, \(R_b \), increases with body bluntness so that the ratio, \(\Delta / R_b \), decreases slightly with increasing body bluntness as shown in figure 11. The stagnation-point velocity gradient expressed in dimensionless form as shown in figure 12 increases slightly with body bluntness.
The present results can be applied to determine the effect of nose bluntness on the flow field around a family of ellipsoids with the same base radius. For an ellipsoid, the ratio of the radius of curvature at the stagnation point to the base radius is equal to the square root of the body bluntness. Therefore, as the body bluntness increases, the shock standoff distance would increase and the stagnation-point velocity gradient would decrease.

SUMMARY OF RESULTS

The flow of an equilibrium gas around spheres has been calculated numerically by an inverse method for various gases over a wide range of free-stream conditions. The following results have been obtained:

1. The shock-wave shapes for spherical bodies can be expressed by a one-parameter rational polynomial.

2. The ratio of the shock standoff distance to the nose radius is a linear function of the density ratio across a normal shock.

3. A simple trigonometric expression has been found to correlate the surface pressure distribution in the subsonic region of spheres for all the gases and free-stream conditions considered in the present study.

4. The stagnation-point velocity gradient can be expressed as a function of the density ratio across a normal shock.

5. The present method can be used to calculate the flow field around prolate and not too blunt oblate ellipsoids.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Feb. 15, 1965
REFERENCES

<table>
<thead>
<tr>
<th>p_1/p_2</th>
<th>γ</th>
<th>ε_1</th>
<th>ε_2</th>
<th>ε_3</th>
<th>ε_4</th>
<th>ε_5</th>
<th>ε_6</th>
<th>ε_7</th>
<th>ε_8</th>
<th>ε_9</th>
<th>ε_{10}</th>
<th>ε_{11}</th>
<th>ε_{12}</th>
<th>ε_{13}</th>
<th>ε_{14}</th>
<th>ε_{15}</th>
<th>ε_{16}</th>
<th>ε_{17}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.5</td>
<td>0.899</td>
<td>0.924</td>
<td>0.949</td>
<td>0.974</td>
<td>0.999</td>
<td>0.899</td>
<td>0.924</td>
<td>0.949</td>
<td>0.974</td>
<td>0.999</td>
<td>0.899</td>
<td>0.924</td>
<td>0.949</td>
<td>0.974</td>
<td>0.999</td>
<td>0.899</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>1.6</td>
<td>0.899</td>
<td>0.924</td>
<td>0.949</td>
<td>0.974</td>
<td>0.999</td>
<td>0.899</td>
<td>0.924</td>
<td>0.949</td>
<td>0.974</td>
<td>0.999</td>
<td>0.899</td>
<td>0.924</td>
<td>0.949</td>
<td>0.974</td>
<td>0.999</td>
<td>0.899</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>1.7</td>
<td>0.899</td>
<td>0.924</td>
<td>0.949</td>
<td>0.974</td>
<td>0.999</td>
<td>0.899</td>
<td>0.924</td>
<td>0.949</td>
<td>0.974</td>
<td>0.999</td>
<td>0.899</td>
<td>0.924</td>
<td>0.949</td>
<td>0.974</td>
<td>0.999</td>
<td>0.899</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Résumé of solutions for spheres

<table>
<thead>
<tr>
<th>p_1/p_2</th>
<th>γ</th>
<th>ε_1</th>
<th>ε_2</th>
<th>ε_3</th>
<th>ε_4</th>
<th>ε_5</th>
<th>ε_6</th>
<th>ε_7</th>
<th>ε_8</th>
<th>ε_9</th>
<th>ε_{10}</th>
<th>ε_{11}</th>
<th>ε_{12}</th>
<th>ε_{13}</th>
<th>ε_{14}</th>
<th>ε_{15}</th>
<th>ε_{16}</th>
<th>ε_{17}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.5</td>
<td>0.899</td>
<td>0.924</td>
<td>0.949</td>
<td>0.974</td>
<td>0.999</td>
<td>0.899</td>
<td>0.924</td>
<td>0.949</td>
<td>0.974</td>
<td>0.999</td>
<td>0.899</td>
<td>0.924</td>
<td>0.949</td>
<td>0.974</td>
<td>0.999</td>
<td>0.899</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>1.6</td>
<td>0.899</td>
<td>0.924</td>
<td>0.949</td>
<td>0.974</td>
<td>0.999</td>
<td>0.899</td>
<td>0.924</td>
<td>0.949</td>
<td>0.974</td>
<td>0.999</td>
<td>0.899</td>
<td>0.924</td>
<td>0.949</td>
<td>0.974</td>
<td>0.999</td>
<td>0.899</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>1.7</td>
<td>0.899</td>
<td>0.924</td>
<td>0.949</td>
<td>0.974</td>
<td>0.999</td>
<td>0.899</td>
<td>0.924</td>
<td>0.949</td>
<td>0.974</td>
<td>0.999</td>
<td>0.899</td>
<td>0.924</td>
<td>0.949</td>
<td>0.974</td>
<td>0.999</td>
<td>0.899</td>
<td></td>
</tr>
</tbody>
</table>

Note: $\phi_1 = 0.2577 \pi, \phi_2 = 0.2577 \pi$
TABLE II.- RÉSUMÉ OF SOLUTIONS FOR ELLIPSOIDS

[Mixture composed of 50-percent argon, 40-percent nitrogen, 10-percent carbon dioxide; \(\rho_0/\rho = 10^{-3} \); \(p_\infty = 2.116 \text{ lb/ft}^2 \); \(\rho_\infty = 0.2377 \times 10^{-5} \text{ slug/ft}^3 \); \(T_\infty = 634^\circ \text{ R} \)]

<table>
<thead>
<tr>
<th>(V_\infty), ft/sec</th>
<th>(A_7)</th>
<th>(\frac{R_b}{R_S})</th>
<th>(\frac{\Delta R}{R_S})</th>
<th>(\frac{\Delta R}{R_b})</th>
<th>(\frac{R_b}{R_S})</th>
<th>(\frac{\Delta R}{R_S})</th>
<th>(\frac{\Delta R}{R_b})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>-0.0893</td>
<td>0.7759</td>
<td>0.0782</td>
<td>0.1008</td>
<td>0.0255</td>
<td>0.8036</td>
<td>0.0784</td>
</tr>
<tr>
<td>20,000</td>
<td>-0.0243</td>
<td>0.8418</td>
<td>0.0488</td>
<td>0.0580</td>
<td>0.0360</td>
<td>0.8593</td>
<td>0.0489</td>
</tr>
<tr>
<td>30,000</td>
<td>-0.0134</td>
<td>0.8424</td>
<td>0.0493</td>
<td>0.0586</td>
<td>0.0517</td>
<td>0.8607</td>
<td>0.0494</td>
</tr>
<tr>
<td>40,000</td>
<td>-0.0157</td>
<td>0.8597</td>
<td>0.0456</td>
<td>0.0531</td>
<td>0.0488</td>
<td>0.8765</td>
<td>0.0457</td>
</tr>
<tr>
<td>50,000</td>
<td>-0.0173</td>
<td>0.8809</td>
<td>0.0496</td>
<td>0.0562</td>
<td>0.0424</td>
<td>0.8998</td>
<td>0.0496</td>
</tr>
</tbody>
</table>

| \(\frac{R_b}{R_S} = 1.5625 \) |
|-----------------------|----------|----------------|----------------|----------------|

<table>
<thead>
<tr>
<th>(V_\infty), ft/sec</th>
<th>(A_7)</th>
<th>(\frac{R_b}{R_S})</th>
<th>(\frac{\Delta R}{R_S})</th>
<th>(\frac{\Delta R}{R_b})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>0.1400</td>
<td>0.8530</td>
<td>0.0788</td>
<td>0.0924</td>
</tr>
<tr>
<td>20,000</td>
<td>0.1725</td>
<td>0.8901</td>
<td>0.0490</td>
<td>0.0550</td>
</tr>
<tr>
<td>30,000</td>
<td>0.1940</td>
<td>0.8932</td>
<td>0.0495</td>
<td>0.0554</td>
</tr>
<tr>
<td>40,000</td>
<td>0.1931</td>
<td>0.9058</td>
<td>0.0458</td>
<td>0.0505</td>
</tr>
<tr>
<td>50,000</td>
<td>0.1778</td>
<td>0.9319</td>
<td>0.0497</td>
<td>0.0533</td>
</tr>
</tbody>
</table>

| \(\frac{R_b}{R_S} = 2.25 \) |
|-----------------------|----------|----------------|----------------|----------------|

11
Figure 1. Domain of thermodynamic properties.
(a) Air, $T_\infty = 514^\circ \text{R}$.

Figure 2.- Shock-wave parameter for sphere.
(b) Nitrogen, $T_\infty = 500^\circ R$.

Figure 2.- Continued.
(c) Carbon dioxide, $T_{\infty} = 784^\circ R$.

Figure 2.- Continued.
Figure 2. - Continued.

(d) Argon, $T_\infty = 711^\circ$ R.
(e) 50-percent argon, 40-percent nitrogen, 10-percent carbon dioxide, $T_\infty = 534^\circ R$.

Figure 2.- Concluded.
Figure 3.- Shock standoff distance for a sphere as a function of density ratio across normal shock.
(b) Δ/R_b

Figure 3.- Concluded.
Figure 4.- Shock standoff distance for a sphere as a function of free-stream velocity and density.

(a) Air, $T_\infty = 514^0$ R.
(b) Nitrogen, $T_\infty = 500^\circ$ R.

Figure 4.- Continued.
Figure 4.- Continued.

(c) Carbon dioxide, $T_\infty = 784^\circ$ R.
(a) Argon, $T_\infty = 711^\circ$ R.

Figure 4.- Continued.
(e) 50-percent argon, 40-percent nitrogen, 10-percent carbon dioxide, $T_\infty = 634^\circ$ R.

Figure 4.—Concluded.
Figure 5.- Ratio of nose radius to shock radius for a sphere as a function of density ratio across normal shock.
Figure 6.- Effect of γ on surface pressure distribution in subsonic region of spherical nose, perfect gas $M_\infty = 30$.

Modified Newtonian theory,

$$\frac{p}{p_{st}} = \cos^2 \left(\frac{s}{R_b} \right)$$

Modified Newtonian theory with centrifugal correction,

$$\frac{p}{p_{st}} = 1 - 1.25 \sin^2 \left(\frac{s}{R_b} \right) + 0.284 \sin^4 \left(\frac{s}{R_b} \right)$$

\[\begin{align*}
\gamma & = 1.6667 \\
& = 1.4 \\
& = 1.2857 \\
& = 1.2 \\
& = 1.1
\end{align*} \]
Figure 7.- Surface pressure distribution in subsonic region of spherical nose for real gases, $\rho/\rho_o = 10^{-1}$.
Figure 8.- Velocity distribution in subsonic region of spherical nose for mixture of 50-percent argon, 40-percent nitrogen, and 10-percent carbon dioxide; $T_\infty = 634^\circ R$, $\rho_\infty/\rho_0 = 10^{-3}$.
Figure 9.- Stagnation-point velocity gradient for a sphere as a function of density ratio across normal shock.
Figure 10.- Shock-wave parameter for ellipsoids in mixture of 50-percent argon, 40-percent nitrogen, 10-percent carbon dioxide; \(T_\infty = 634^\circ \text{R} \), \(\rho_\infty / \rho_0 = 10^{-3} \).
Figure 11.- Shock-wave standoff distance for ellipsoids in mixture of 50-percent argon, 40-percent nitrogen, 10-percent carbon dioxide; $T_{\infty} = 634^\circ \text{R}$, $\rho_{\infty}/\rho_{o} = 10^{-3}$.
Figure 12.- Stagnation-point velocity gradient for ellipsoids in mixture of
50-percent argon, 40-percent nitrogen, 10-percent carbon dioxide;

\[\frac{R_b}{ds} \left(\frac{2}{p_f} \right) \]

\[B_b = \left(\frac{b}{\rho} \right)^2 \]

T_0 = 634, R_b, \rho, \rho_p = 10^8.
"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

—National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in connection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities but not necessarily reporting the results of individual NASA-programmed scientific efforts. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546