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HYDROMAGNETIC STABILITY 

by 
S. P. Talwar 

Goddard Space Flight Center 

SUMMARY 

In this article, the problem of hydromagnetic instability is 
reviewed. The emphasis throughout is on the physical under- 
standing rather than the mathematical rigor. The problem of 
gravitational instability is discussed in detail, and the effects of 
finite Larmor radius, finite Larmor frequency, and resistivity 
are reviewed. Only macroscopic instabilities are dealt with, and 
no attempt is made to cover all aspects of plasma stability., 
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HYDROMAGNETIC STABILITY" 

bY 
S. P. Talwad 

Goddard Space Flight Center 

INTRODUCTION 

Investigation of the stability of a physical system is of paramount importance, since every 
system in nature is subject to many perturbations, small or large. The stability of magnetized 
plasmas finds application in various astrophysical situations, such as magnetic stars, solar phe- 
nomena, interstellar matter, and plasma confinement in the laboratory for realization of con- 
trolled thermonuclear fusion. 

In investigating stability, we inquire as to how a configuration of equilibrium (not nec- 
essarily static) responds to a perturbation. Specifically we ask, "If the system is disturbed, 
will the disturbance die down, or will it grow in amplitude with time?" We say that the system 
is, in the former case, stable with respect to the particular disturbance and, in the latter case, 
unstable. If therefore, the perturbation is time-dependent of the form et , the problem reduces 
to a characteristic value problem for n . It can, in general, be real or complex. If n is real, then 
n > 0 implies that the system is unstable and n < o implies stability (n = o defining the states of mar- 
ginal stability). If n is complex, the system will be stable if Re(n) < O  (periodically damped). If 
Re(n) > 0, the system is said to be "overstable" in that the system becomes subject to restoring 
forces which, during an oscillation, push the material back toward the undisturbed state with a 
velocity greater than its original outward velocity; and thus the system is rendered unstable 
through growing waves. 

In discussing the question of stability, we should remember that in the most general 
sense the system is stable only if it is shown to be stable for all conceivable perturbations 
to which it could be subjected. Even if the system is unstable to a very special, and rare, type of 
perturbation, it must be considered unstable. 

We also should remember that the perturbation analysis  used in the stability investigation 
emphasizes the smallness of the perturbation; and so it is possible that a system in stable equi- 
librium for small perturbations ceases to be so for finite amplitude disturbances. Similarly it 
could as well happen that an initially unstable perturbation of small amplitude ultimately may be 

*Text of a lecture given by the author to the Theoretical Division of Goddard Space Flight Center on November 2, 1964. 
tSenior Research Associate of National Academy of Sciences (on leave from the Department of Physics, University of Delhi, Delhi, India). 
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replaced by an oscillation of a large, but limited, amplitude. Under that situation, the linearized 
analysis of the perturbation theory ceases to be valid and the subsequent behavior of the system 
will be governed by nonlinear equations whose analysis is, in general, difficult to carry out. 

The above remarks about stability are il- 
lustrated by the examples in Figure l. In Fig- 
ure  l(a), the ball is resting in equilibrium at 
the top of a hill, and any small perturbation 
causes a large displacement and represents 
instability. In Figure l(b), the ball rests at the 
bottom of a valley where it oscillates about the 
position of equilibrium, representing stability. 
In Figure l(c), it rests in a small depression 
on the top of a hill; and so the ball, although 
stable for small oscillations, will go over the 
ridge and become unstable if the perturbation 
is large enough. Finally, in Figure l(d), the 
hill is only a small hump in the bottom of a 
valley; and the instability is limited in ampli- 
tude by the walls of the valley. 

( 0 )  ( b )  

( C )  ( d )  r n J  Again, it should be mentioned that in an un- 
Figure 1 -A mechanical example illustrating stable and 
unstable states of equilibrium. The ball i s  in  unstable 
and stable states in (a) and (b), respectively; (c) depicts 
stability for only small displacements; and (d) shows in- with the characteristic time of observation on 
stability of restricted amplitude. the system. Various astrophysical configura- 

tions may be inherently unstable, but the insta- 
bility may develop extremely slowly so that the system appears to be permanent and stable. 
In plasma confinement problems, the upper limit is several seconds for a fusion reactor of rea- 
sonable size and magnetic field, in the temperature range of 10 to 100 kev. This is adequate for 
the thermonuclear problem, and we need to confine a plasma in stabilized form for times of this 
order. 

stable situation we are  primarily interested in 
the rate of growth of instability as 

The question of the stability of a system is investigated, basically, in two major ways: by the 
normal mode analysis, and by the energy method. 

In applying the normal mode analysis, w e  set up the linearized perturbation equations, derive 
a single perturbation equation in a single perturbation parameter, and solve this equation under a 
set of appropriate boundary conditions for the system. This then gives a dispersion relation for 
n, the parameter determining the stability of the system. This method is quite general and has 
extensive applications. It yields complete information about stability, including the growth rates 
of any unstable perturbations. However, in many problems the normal mode equations are ex- 
tremely complicated in solution; and, in such cases, it is profitable to obtain information, although 
limited in scope, about stability by employing the energy method. 
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The energy method consists in examining the sign of the change in potential energy of 
the system under all displacements. If the potential energy characterizing the system decreases 
under some displacement, the kinetic energy is available for motion away from the equilibrium 
state; and the system is unstable. This method is particularly useful in handling complicated con- 
figurations, but is applicable only to a static system characterized by a constant potential energy. 
Naturally, therefore, it is not applicable for dissipative systems and systems endowed with initial 
kinetic energy of fluid motions. In such systems the energy of steady motion may well  be con- 
verted into the kinetic energy of instability without causing any decrease in potential energy; in 
fact, the potential energy may even increase while instability occurs. One merit of the energy 
method is that it makes the energetics of the problem clear; that is, it tells what particular form 
of energy is enhanced, and which is depleted, during instability. 

A plasma carrying a magnetic field may be subject to a "jungle" of instabilities, depending 
on its character. The various instabilities may be classified roughly into two main categories: 
macroscopic, and microscopic. The first group (macroscopic, or low-frequency instabilities), 
which we discuss mostly in this review, comprises those arising in dense plasmas which a re  de- 
scribed by collision-dominated single fluid equations. The microinstabilities, on the other hand, 
a re  associated with deviations of the velocity distribution of particles from Maxwellian character 
[e. g., a peak in Maxwellian tail, difference in longitudinal and transverse (to magnetic field) tem- 
peratures, or mutually streaming beams]. Such instabilities arise in dilute plasmas where col- 
lisions a re  not frequent enough to insure isotropic distribution, and may result in local fluctuations 
of density and electromagnetic fields in plasma. 

ENERGY PRINCIPLE FOR A GRAVITATING CONFIGURATION 

An energy principle for a static hydromagnetic system with zero dissipation has been devel- 
oped by Bernstein et  al. (Reference l), among others. We shall develop in outline the energy prin- 
ciple for self-gravitating, ideally conducting plasmas. It is worthwhile to mention that, in fact, 
three energy principles-based on the hydromagnetic equations, the double-adiabatic fluid equa- 
tions (Reference 2), and the Vlasov equation-have been given to date. In the hydromagnetic energy 
principle, we deal with a collision-dominated plasma in which collisions are so strong that the gas 
pressure is isotropic but still so weak as to neglect resistance. The double-adiabatic energy prin- 
ciple corresponds to less dense plasmas in which the collisions are not strong enough to keep the 
pressure isotropic but are yet sufficiently strong to render heat flow negligible. The energy prin- 
ciple based on the Vlasov equation refers to no collisions and in the limit that gyration radius for  
each type of particle and Debye length are infinitely small compared with macroscopic quantities. 
We shall, later, compare the results regarding stability as obtained from these three energy 
principles. 

The general equations governing a hydromagnetic fluid are written as follows. 
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a, J x B  
P Z  = - v p - p w + 7  

and 

PV - p ( " . V ) v  t 3 0 0 - v  t p u v v  , 

(7) 

Here p, p ,  u denote the pressure, density, and gravitational potential; and v , B,  J , E stand for the 
velocity and electromagnetic vectors at a point. The last two terms in Equation 1 represent vis- 
cous forces, and E in Equation 7 includes energy dissipation due to finite electrical conductivity, 
viscosity, and thermal conductivity. The terms on the left-hand side of the vertical line are the 
ones defining an ideal nondissipative static plasma. Thus the terms on the right side of the ver- 
tical line a re  discarded in the hydromagnetic energy principle. These terms (like fluid motions, 
viscosity, finite resistivity) may have a profound influence on the stability, but their inclusion can 
be done only by normal mode analysis. We shall see later how each term influences the character 
of stability. It may be mentioned that, in the above equations, displacement current and space 
charge have been neglected in the spirit of hydromagnetic approximation. An order-of-magnitude 
analysis shows that the electron inertia term, Hall  current term, and electron pressure term con- 
tribute significantly only when the plasma is dilute and is characterized by high temperature and 
high magnetic fields. 4 

Using Equations 1 to  9, we may write finally the perturbation equation for displacement i- in a 
nondissipative, initially static plasma: 
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where 

1 ~ ( g )  = V[ypoV-g + [g-V)po] + ;i;;[(" x Bo) x b + [v x b )  x Bo] 

+ 476 P i g  - P,V x x + v- (Po() mr, 1 (11) 

where quantities with the suffix 0 denote the unperturbed values and b stands for the change in 
magnetic field at a point; x is an arbitrary function of space coordinates satisfying the equation 

v x v x x  = M V X  (p&) . (12) 

The operator F , containing equilibrium quantities and their space derivatives alone, can be 
shown to be a self-adjoint operator. This leads to an important conclusion about the stability of 
a static, nondissipative plasma: that the eigenvalues are either real (positive or negative) or pure 
imaginary. Thus, complex values of n in the expression e" for time-dependence of perturba- 
tion are ruled aut, meaning that a static, nondissipative plasma cannot become "overstable." The 
expression for the change in potential energy is written (to the second order in 5 )  as 

where the integration is over the unperturbed volume of the configuration. 

It may be noted that SW should be a point function rather than a path function of displacement; 
otherwise, SW will  not be unique. This is, however, guaranteed by F's being a self-adjoint opera- 
tor. For a confined plasma we may write 

where SWv , SW, , 6WF respectively stand for the contribution to change in potential energy from 
the vacuum region, deformed surface, and the plasma fluid region. Each contribution is sepa- 
rately written as 

and 
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here quantities with caret on top refer to the vacuum region, and the double brackets stand for the 
difference (along the direction of normal no) in the quantity on the two sides of the interface. 

Among various important conclusions regarding plasma stability as derived from the appli- 
cation of the energy principle, we may particularly mention "Teller's Criterion,'' which says that 
the configuration of a field-free, homogeneous, nongravitating plasma separated from a vacuum 
region having a magnetic field is stable only if the lines of force on the interface are everywhere 
convex toward the plasma. This follows quite easily from Equation 15. We see that 6Wv > 0 , 
6W, > 0 for a homogeneous, field-free, nongravitating plasma and that 6 W s  is written as 

Clearly, 6 W s  also is positive if  n;R is negative everywhere on the surface (that is, the sur- 
face is convex toward the plasma). Teller's Criterion shows therefore that the static pinch carry- 

ing surface current and the mirror geometry (Figure 2) 
should be grossly unstable, whereas the configura- 
tions produced by one, two, or four wires carrying 
currents (as shown in Figure 3) should be stable. An 
equivalent requirement for 6ws > o is that the vac- 
uum magnetic field should increase outward from the 
plasma surface, and this forms the essential basis of 
plasma confinement in a "mirror -cum-cusp" kind of 
geometry given by Ioffe recently. 

PLASMA 

FIELD 

( 0 )  

VACUUM 

0') 
It may be emphasized that Teller's conclusions 

about guessing the stability from the curvature of the 
lines of force does not apply if there are two plasmas 
1 

( b )  
or if the plasma itself carries a magnetic field. Only 
detailed calculation of 6w from each region can de- Figure 2-Two thermonuclear fusion geometries 

are shown: (a) the "conventional pinch," and (b) 
the "mirror geometry." cide the question. 

RAYLEIGH-TAYLOR INSTABILITY IN PLASMAS 

The classical Rayleigh-Taylor instability arises, as is well known, whenever density in a liq- 
uid increases upward anywhere in a downward gravitational field. Its analogue in hydromagnetics 
w a s  first worked out by Kruskal and Schwarzschild (Reference 3), who showed that the configura- 
tion of a semi-infinite, uniform, incompressible ideal plasma separated from a vacuum region is 
unstable gravitationally when both plasma and vacuum carry uniform (but unequal) parallel 
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magnetic fields along the planar interface. In 
particular, they found that for flute disturbances 
(which do not bend the lines of force)the growth 
rate of instability is my where k(=2n/h) is 
the wavenumber of perturbation. This result is 
identical, as expected, to that given by the clas- 
sical Rayleigh-Taylor formula when one fluid is 
replaced by vacuum. The calculations may be 
generalized to include the effects of two ideal 
plasmas superposed on each other and partaking 
in a uniform rotation, the axis being parallel to 
the direction of gravity. The dispersionformula 
obtained for nondissipative incompressible plas- 
mas is written as (Reference 4) 

4RZnZ 1.>”’. (17) p’ t ( k * V Z ) ’  

A general result which emerges from this inves- 
tigation is that both the rotation and the magnetic 
field have a stabilizing influence, the former 
for large wavelengths and the latter for short 
wavelengths. It may be noted that, whereas the 
stabilizing effect of the field vanishes for flute 
disturbances for which k .B = 0 ,  that of rota- 
tion does not. 

The gravitational instability, as worked out 
by Kruskal and Schwarzschild on hydromagnet- 
ics, was  later reconciled on orbit theory by 
Rosenbluth a d  Longmire (Reference 5). They 
showed that a at the interface leads 
to a charge separation, since both ions and gion is depicted by crosshatching.) 

( C )  

Figure 3-Three plasma configurations, stable in Teller’s 
Criterion, are given: (a) a single wire carrying cur- 
rent, @) two wires carrying opposite currents, and (c) 
four wires carrying current as shown. (The plasma re- 
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electrons drift in opposite directions along the interface under the action of gravity. This results 
in an electric field which produces an increase in the amplitude of perturbation (instability) due to 
the charge-independent E x B force (Figure 4). Later experiments with mirror geometry revealed 
that the mirror geometry, although unstable, is not as violently unstable as demanded by Rosen- 
bluth and Longmire's theory. Also, we know that the Van Allen radiation belts, unstable on ideal 
hydromagnetics, do show (particularly the inner belt) a reasonable amount of stability. The ques- 
tion therefore arises as to how the violence of the gravitational instability could be reduced. Some 
of the possibilities suggested a re  as follows. 

Z 

Figure 4-The mechanism for gravitational instability. 

Shear Field 

If the plasma and vacuum regions carry nonparallel uniform magnetic fields along the inter- 
face, clearly a perturbation for which k * Bo = 0 everywhere in the configuration cannot be invoked. 
Thus the perturbation must result in bending the lines of force, thereby producing a restraining 
influence on the growth of perturbation. In particular, if 

By(z) = a P B O ,  Bx(z) = 0 , (Plasma region, z > 01 

= aV Bo, = Bo , (Vacuum region, z < 0 )  

then the stability requires 

where k (= {m) denotes the wavenumber of perturbation. 

For kx = 0 and ap = uV = a ,  the above condition for stability reduces to 

u2 B: > gpoX . 

Thus the effect of shear in a magnetic field is to suppress the short wavelength instability. We 
therefore may surmise that,in natural situations like the Van Allen belts, instability may be 
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suppressed because of a shear in the prevailing magnetic field o r  because of finite B (the ratio 
of kinetic to magnetic pressure), as even then any perturbation should result in a change in the 
magnetic field and hence to restoring forces. 

Conducting End Plates 

As the cause of gravitational instability is basically the charge separation due to gravity drift, 
it can be suppressed if we can somehow short circuit the charge separation. This can be achieved 
by two conducting plates perpendicular to the prevailing magnetic field. In the Van Allen belts 
such short circuiting has to be provided by the upper parts of the ionosphere. 

Finite Ion Larmor Frequency 

An implicit assumption of the hydromagnetic description of gravitational instability is that the 
Larmor frequency of charged particles is effectively infinite. Lehnert, who recently (Reference 6) 
investigated the effect of a finite ion Larmor frequency, found that small wavelength instability 
can be effectively suppressed because of the finiteness of ion Larmor frequency wi . The argu- 
ment is somewhat as follows: The charge-dependent gravitational drift plays a double role. In 
the initial stages it drives the instability but, if the gravitational drift is f a s t  enough so that the 
time required to drift a half wavelength is smaller than the growth time of instability, then the 
initially unstable charge distribution may be reversed in phase, causing a stable oscillation. Thus, 
only the first role has been included in Rosenbluth and Longmire's theory. 

In the framework of hydromagnetics, the finite ion Larmor frequency can be taken care of by 
using a generalized Ohm's law (i. e., including the first three terms on the right side of the verti- 
cal line with the terms on the left side in Equation 8. 

Finite Ion Larmor Radius 

In Rosenbluth and Longmire's description of gravitational instability, the Larmor radius of 
the charged particles was assumed neglibibly small. Rosenbluth, Krall, and Rostoker (Reference 7) 
showed that a reasonable amount of stabilization for short wavelengths can be effected if the 
effect of finiteness of the ion Larmor radius (which is much larger than the electron Larmor ra- 
dius) is included. Their reasoning is somewhat as follows: Because of the different Larmor ra- 
dii of electrons and ions, the mean electric field as seen by a gyrating electron is different from 
the mean electric field as seen by an ion. Thus, the characteristic velocity c/B2 ( E x 8 )  withwhich 
the particle moves in the direction of gravity to give rise to instability is different for the ions 
and the electrons. The ions drift along the direction of gravity more slowly than the electrons, 
with the result that a current along the direction of gravity is generated, tryingto build up a charge 
distribution out of phase with the original charge separation, because of gravity drift, responsible 
for producing flute instability. They showed that, when the inequality (aik)' > ndw, is satisfied, 
the monotonic flute instability is replaced by a stable oscillation. Here ai is the Larmor radius 
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for the ion, k is the wave number of perturbation, and no and u1 respectively denote the growth 
rate given by the hydromagnetic theory and the ion Larmor frequency. 

Roberts and Taylor (Reference 8) pointed out that the finite Larmor radius effect can be in- 
corporated into the hydromagnetic equation by including certain transport-like terms. These 
represent a type of viscosity, independent of any collisions, where the mean free path is replaced 
by the ion Larmor radius. They recovered the results obtained by Rosenbluth et al. by using hy- 
dromagnetic equations which include the modifications to both the ion pressure term and Ohm's 
law. 

NONIDEALIZED HYDROMAGNETICS AND RESISTIVE EFFECTS 

In the last section we discussed situations (mirror geometry and the Van Allen belts) which 
are found observationally to be less violently unstable than predicted by ideal (infinite electric 
conductivity, infinite Larmor frequency, and zero Larmor radius) hydromagnetic theory. We 
tried to invoke some operative mechanisms which could suppress instability. We also may come 
across cases which in actual observation reveal gross instability, although shown to be completely 
stable in ideal hydromagnetics. One such typical example is the "hard corepinch." In such cases, 
again, some mechanism must be operating which is responsible for instability and which is not 
taken care of in the ideal theory. We have seen that finite Larmor radius and frequency produce 
a stabilizing influence on the system. Looking at the various terms on the right-hand side of the 
vertical line in Equations 1 to 9, we find that the only operative mechanism not discussed so far 
(except for fluid motions) is a finite dissipation in the medium (e. g., finite resistivity). Resistiv- 
ity (and other dissipative forces) may play a vital role in deciding the question of a system's sta- 
bility. It is clear that the eigenvalues need not be real  o r  pure imaginary, for the equations a re  
not self-adjoint as against the case for static nondissipative plasmas. 

Exhaustive work on resistive instability has been done by Furth, Killeen, and Rosenbluth (Ref- 
erence 9) who, treating a sheared field in a slab geometry, found three resistive modes labeled 
rippling, tearing, and gravitational modes. Recently Coppi (Reference 10) studied the joint effect 
of resistivity and finite Larmor radius and found that the growth rates of resistive modes a re  
slowed down by the finite Larmor radius, although not completely stabilized. The gravitational 
mode is most strongly affected through a viscosity-like term in the equation of motion, whereas 
the tearing mode is slowed down by a Hall  term in the generalized Ohm's law. 

Physically speaking, resistivity plays a dual role in the stability determination. We may think 
that finite transport processes should be stabilizing since they (finite conductivity or viscosity) 
lead to dissipation of energy by converting ordered motion into random motion (e. g., Joule heat); 
and, since an instability is a particular type of ordered motion, should they not cause instabilities 
to be damped? If resistance (and viscosity) were to occur only in the energy equation (Equationv), 
this probably would be so; but, in addition, viscosity appears in the equation of motion (Equa- 
tion l), and the electrical resistivity in the electromagnetic induction equation (Equation 9). In the 
equation of motion the viscous stresses are forces tending to restrict the relative motion of 

' 
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neighboring elements of the fluid, and this is a stabilizing effect. The presence of finite resistiv- 
ity allows matter to slip across the field, and thus the restraining influence of the field in infinite 
conductivity (glued field) is lost-which means that finite conductivity has a destabilizing influence. 

If the Joule term in the energy equation is neglected (i. e., currents a r e  kept constant, as in 
F'urth, Killeen, and Rosenbluth's work), the finite resistivity effect is destabilizing. It may, how- 
ever, be noted that with the change in conductivity we may envisage a corresponding change in 
the electric field and/or the current density; and the effect of resistivity with constant cur- 
rent or constant electric field may be quite different regarding the stability of the configuration. 

COMPARISON OF THE THREE ENERGY PRINCIPLES 

A s  noted previously (page 3), three energy principles dealing with the different limiting situa- 
tions of a static, nondissipative plasma have been worked out. The method of establishment is 
basically the same. We can, therefore, state a comparison theorem for the potential energy varia- 
tions derived from the ideal hydromagnetics, the Chew-Goldberger-Low (CGL) double-adiabatic 
approximation, and the Vlasov equation in M/e - 0 limit. The theorem applies for a system which 
initially is in static equilibrium with isotropic plasma pressure. When the collision time is much 
larger than the oscillation or growth time of instability, the pressure will not remain isotropic 
during the course of perturbation. The ideal hydromagnetic equations could not be used consis- 
tently, since they assume an isotropic pressure to prevail at every instant of time. 

The results obtained for the change in potential energy for plasma with an initially isotropic 
pressure distribution are 

This shows that the CGL approximation gives the most optimistic prediction of stability. Con- 
versely, if we obtain stability in the MHD approximation, the stability is certainly guaranteed in 
the more exact and tedious kinetic theory in the M/e - o limit as well  as in the CGL approxima- 
tion. Thus we need only to insure that a system having isotropic equilibrium pressure is stable 
for ideal hydromagnetics. It must be remembered however that, if the unperturbed system is 
characterized by anisotropic pressure, new instabilities can arise which a re  not given by the ideal 
MHD theory-a typical example being the "fire-hose" and "mirror" instability in a homogenous 
dilute plasma subject to a uniform magnetic field. 

CONCLUSION 

In addition to the macroscopic instabilities, the plasma may suffer from a bewildering variety of 
microscopic instabilities, and their number seems to be ever increasing. The best solution, perhaps, 
is to  eliminate the intolerable instabilities and learn to live with the ones which cannot be eliminated. 

(Manuscript received November 17, 1964.) 

11 



1. 

2. 

3. 

4 .  

5. 

6. 

7. 

8. 

9 .  

10. 

12 

REFERENCES 

Bernstein, I. B., Frieman, E. A., Kruskal, M. D., and Kulsrud, R. M., "An Energy Principle 
for  Hydromagnetic Stability Problems,'7 Proc. Roy. SOC. A 244: 17-40, February 25, 1958. 

Chew, G. F., Goldberger, M. L., and Low, F. E., "The Boltzmann Equation and the One-Fluid 
Hydromagnetic Equations in the Absence of Particle Collisions," Proc. Roy. SOC. A 236:112- 
118, July 10, 1956. 

Kruskal, M., and Schwarzschild, M., "Some Instabilities of a Completely Ionized Plasma," 
Proc. Roy. SOC. A 223:348-360, May 6, 1954. 

Talwar, S. P., "Stability of a Conducting Rotating Fluid of Variable Density," J. Fluid Mech. 
9(4):581-592, December 1960. 

Rosenbluth, M. N., and Longmire, C. L., "Stability of Plasmas Confined by Magnetic Fields," 
Ann. Phys. l(2): 120-140, May 1957. 

Lehnert, B., "Stability of a Plasma Boundary in a Magnetic Field," Phys. Fluids 4(7):847-854, 
July 1961; and "Stability of a Plasma with a Continuous Density Distribution," Phys. Fluids 
4(8): 1053-1054, August 1961. 

Rosenbluth, M. N., Krall, N. A., and Rostoker, N., "Finite Larmor Radius Stabilization of 
'Weakly' Unstable Confined Plasmas," Nuclear Fusion Suppl. Pt. 1: 143- 150, 1962. 

Roberts, K. V., and Taylor, J. B., "Magnetohydrodynamic Equations for Finite Larmor Radius," 
Phys. Rev. Letters 8(5):197-198, March 1, 1962. 

Furth, H. P., Killeen, J., and Rosenbluth, M. N., "Finite-Resistivity Instabilities of a Sheet 
Pinch," Phys. Fluids 6(4):459-484, April 1963. 

Coppi, B., "Influence of Gyration Radius and Collisions on Hydromagnetic Stability," Phys. 
Fluids 7(9):1501-1516, September 1964. 

i 

NASA-Langley, 1965 
~ 

I 


