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AN APPLICATION OF GENERALIZED MATRIX TINVERSION TO
SEQUENTTAT, TLEAST SQUARES PARAMETER ESTIMATION

By Henry P. Decell, Jr.
Manned Spacecraft Center

SUMMARY

The theory of generalized matrix inversion is utilized in formuwlating a
recursive algorithm for least squares parameter estimation. This algorithm
allows the parameter estimation to begin after the first "observation" has been
made and affords a means of computing the nth parameter state from the (n-1)st
"parameter state" and the nth "observation."” The problems associated with sin-
gular matrices encountered in iterative least squares procedures do not affect
the algorithm.

INTRODUCTION

In the theory of linear least squares parameter estimation, the matrix
equation Ax = Db 1is encountered, where A is an n X ¥ matrix, x is a
k X 1 '"parameter" state vector, and b is a n X 1 "observation" vector.
There is usually no vector x that will satisfy this matrix equation so that
in some sense a "best solution” is to be found. In the least squares theory
the "best solution" is defined to be that k X 1 vector X such that

£(X) = (A% - b)T(A:?c - b) is minimum. It is well known that if X minimizes
f(x), then X must satisfy the normal equations ATA§ = ATb. If ATA is
nonsingular and f(x) has a minimum then, indeed, that minimum is attained at

~ -1
X = (ATA) ATb. It will later be shown that, in any case, the matrix equation

ATAX = ATb always has some solution and, in fact, may have infinitely many
solutions. In case ATA is singular, a particular solution that has physical
meaning can be chosen.

Nonlinear parameter estimation problems are usually handled by linear ap-
proximations of the actual parameter state in a neighborhood of a nominal pa-
rameter state. The resulting equations are of the same general form Ax = b;
however, in this case x denotes the deviation from the nominal state, and b
denotes the deviation in "observed" and "computed" values. The solution to this
equation requires iterative procedures and involves problems of singular matri-
ces. The recursive algorithm to be developed will not be affected by these sin-
gulsrity problems.



The recursive algorithm differs from a similar algorithm developed by
Gainer (ref. 1) in that no matrix inversion is required as a result of waiting
for a sufficiert number of observations to accumulate. The estimation proced-
ure may begin after the first observation is made. The parameter state can be
estimated at a fixed epoch in time (in dynamic systems) and, hence, is useful
in trajectory calculations as well as in guidance procedures. There 1s no need
for matrix inversion (and associated storage requirements) in onboard calcula-
tions.

SYMBOL.S
Capital letters matrices
Lower case letters vectors (unless otherwise stated)
Greek letters scalars
A? transpose of A
I inverse of A
A% generalized inverse of A
diag 2,5 s 8y diagonal matrix
Z zero matrix
0 zero vector

]l Il euclidean norm
THE GENERALIZED INVERSE

A. Bjerhammar (ref. 2), E. H. Moore (ref. 3), and R. Penrose (ref. 4) inde-
pendently generalized the concept of matrix inversion. The generalized inverse
of a singular and nonsquare matrix possesses properties which make it a central
concept in matrix theory. Only real matrices are considered in the definitions
and theorems to follow. However, for complex matrices, the definitions and
theorems are identical if the word "transpose" is replaced with "conjugate
transpose.” The following fundamental theorem due to R. Penrose (ref. L) is
stated without proof. '




THEOREM I. The four equations

AXA  =A (1)
XAX =X (2)
(xa)T = xa (3)
(ax)T = AX (%)

have a unique solution X for each real matrix A.

The solution X in THEOREM I is denoted as X = A+ and called the gener-
alized inverse of A. Tt is easy to see that the defining equations for A%
imply that AA% and AfA are, respectively, orthogonal projection operators
on the range spaces of A and Af. For the sake of completeness the next the-

orems will give some well known properties of the generalized inverse.

THEOREM II. ILet A be an arbitrary real matrix. Then, for scaler XA # O
and unitary U and V

a4 TaT =t = AT (") Tat (5)
ataaT = AT = ATant (6)
(@H* =a (7)
(AT)+ _ A+)T (8)
At =t for nonsingular A (9)
()" =2t (10)
(ATp)* - A+(A+>T (11)
(wav)t = viatut (12)
T 3

A = E:Aq and AA, =2

i i3
ATAi =7 for i# J > (13)
imply

- EA’T

1




Tf A is normal (i.e. ATA = AAT)
then, A™A =an" ana (a)* - (a+)n (1)

A, ATA, A" ana ATA all have renk equal
to trace A'A (15)

A = (aTa)*aT (16)

Note that equation (16) reduces the problem of computing A+ to that of

computing the generalized inverse of a symmetric matrix A?A. Moreover, such
a matrix can always be diagonalized by a unitary transformation, that is,

D= U(ATA>V diag (al, ceny an)

Now equation (12) implies that

T +
(AA)+=VDU=Vdiag<l, ...,—1->U
a a
1 n
It is tacitly assumed that if a:.L = 0, the corresponding term in
diag i g eeey % is zero. It is not usvally an easgy task to determine the
1 n

unitary transformations U and V. Methods for computing the generalized in-
verse have been given by various authors (refs. 2, 5, 6, 7, and 8).

The following is a theorem of major importance, characterizing all solu-
tions of the matrix equations AXB = C which have some solution X.

THEOREM III. For the matrix equation AXB = C to have a solution, a necessary
and sufficient condition is

amter's = ¢
in which case, the general solution is
X =AcB" + Y- atavss®

where Y is arbitrary to within the limits of being consistent with dimension
in the indicated multiplications (ref. 4).

Proof: Suppose X satisfies AXB = C. Then,
+ _+
¢ = AXB = AATAXBE'B = AATCE B

+ +
Conversely, if C = AA CB B, then A+CB+ is a particular solution. Clearly,
for the general solution AXB = O must be solved. Any expression of the form



X =Y - aAtaves’
is such a solution. Moreover, if AXB = 0, then,
X =X - ATAXEB'

The only properties required of A+ and B+ in the theorem are AA+A = A and
+
BB B = B.

Corollary A. The general solution to the vector equation

Px = ¢
is

x =9+ (1-2'P)y

where y is arbitrary, provided a solution exists.
Corollary B. A necessary and sufficient condition for the equations

AX =C
and

XB =D
to have a common solution is that each have a solution and AD = CB (ref. L4).

Proof: If AX =C and XB =D have a common solution, then clearly each has
a solution, and

AXB = CB
AXB = AD

so that
CB = AD

In order to obtain the sufficiency, it is assumed that
X = Ac + DB" - A*ADB'

which is & solution if AD = CB, AA'C = C, and DB'B = D.



THEOREM IV. The terms

ata, AAT, T-ATA, and T - ALY are symmetric idempotents (17)

and

+
H is a symmetric idempotent which implies that H =H (18)

THE RECURSIVE ATLGORITHM

An easy consequence of equation (6) is that the matrix equation
+
ATAx = ATb always has a solution. Indeed, x = A b is a solution. In fact,
if A"A 1is nonsingular, this solution is unique and is the usual least squares

+ +
solution. Moreover, according to corollary A, x =A b + <I - A A)y, for
arbitrary y, gives all solutions. The triangle inequality also implies that

+
x =A b is that solution with minimum norm. When x 1is a parameter state

deviation vector (i.e. the nonlinear estimation case), x = A+b yields the
estimate of the parameter state deviation that has minimum norm. Physically
speaking, this means that among all possible estimates of the actual parameter
state, the estimate of the actual parameter state obtained by correcting the
nominal parameter state by x 1s as close as possible (in norm) to nominal
parameter state.

The possibility of ATAX = ATb having infinitely many solutions is

clearly equivalent to the singularity of the matrix ATA. In this case an
iterative procedure would halt. However, the adroit choice of the physically
meaningful minimal norm solution would allow the iteration to continue.

From a computational viewpoint, it is desirable to have a recursive
algorithm for the state estimation. The following theorem will give rise to
the recursive computation of the parameter state deviation.

THEOREM V. Iet a = (al, v an> # 0 be any row vector

n (-1
at = ——;L—E al = ;{:ai al (19)
[ =
and
as’ = (1) (20)



Lo

Proof: It will be shown that a+ = TrorE a~ satisfies equations (1) to (4).
a
_ al N Ha”2
el R
+ oot aT a aT - llall2 aT _ .t
=12 1=l® {]=]
( + )T__ ala ’ al +
a a -—m—l—é =H—a”—2-a=aa
(aa+)T== aa § _ aa’ _aat
=112/ Il=}]®

+
Greville (ref. 9) noted that a is a constant multiple of aT but does not
give this explicit form.

As a simple example, consider the vector equation

(1,2 (3) = (2)

This equation has a solution a =1, b = 1. In fact, the equation has infinitely
many solutions so that according to Corollary A the general solution is given by

@) = (1,17 (2) [(é i) - (1,1)+(1,1)]y

where 7y is an arbitrary 2 X 1 vector. ITet ¢ and 4 denocte the arbitrary

T
components of y and note that (l,l)+ = <%, %) to obtain

o Lie-a)
(b> ) G) ¥ é(c-d)

Since ¢ and d are arbitrary, c¢-d =f is arbitrary, and the following
equation results:




e

N
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1
1= ol

2f

These coordinates (see fig. 1) describe a straight line whose equation is
b =2 - a. Hence, any vector whose coordinates satisfy b =2 - & (e.g., R,
whose end point lies on the line) is a solution of the given vector equation.

Note that the solution with minimum norm is Ry = (1,1)T. In a practical sense,

the origin might be considered to be a nominal set of initial conditions, a
given nominal parameter state, and so forth. Figure 1 gives the geometrical
significance of the minimum norm solution.

THEOREM VI. The following theorem is

NASA-5-65-2838

N b due to Greville (ref. 9). Iet F be
(a,b) any m X p matrix, fp denote the pth
N\

N\ column of F, and Fb 1 represent the
N -
N 0.2 submatrix consisting of the first p -1

R AN columns of F, that is,

AN

1.1
F = (F : T
R \\ (p-l | p)
0 NAY 3

__J/// N then, letting
N
Nominal state S

T -F ¥ )f =g
b-2—a——J)>\‘ < p-1"p-1/"p P

N the following equation results:

+
F -cd
oo Pt PP
Figure 1. Graphical solution d
1Y
where
+
c =F
D p-1"p
s+ s #86
b P
d = —l
P 1+ cTc cTF+ s = e)
PP p p-1 p

THEOREM VII. Let A be any n X k matrix, a, denote the nth row of A,
and A
1=

that is,

1 represent the submatrix consisting of the first n-1 rows of A,

8




Then, letting

the following equation results

+ +
A _'(An-l - Ppdy pn)

where
+
9, = 8ptna1
+
h (hn # e)
n " T -1y T
(34 ol a7 ] (b, = ©)
Proof: If
A
a={.071
a
n

Clearly <A§ 1 ag) has the form described in THEOREM VI with n = p,

T _.T _ T T+ T _ + T
Fn-l = An-l’ fn = an, and sn = (I - An-lAnpl)an = CI - An-lAn-1>an'
Hence,
T
+ Afn £T %%
N
4a



where

+
s (s # 9)
n n
dn = -1
(l + c e ) cTAT+ G; = e)
n n n-1 n
A" = (A+ - atel dT>
n-1 nn-: n
. +\T + . . .
Noting that Sn = hn and B, = ® if and only if hn = 0, the following
equations result:
T +
€n T anAn-l
n (h # e)
m n
a = -1
" 1+ b ) N
°n®n n-1%n (hn = 6)

so that defining pn = dE and a, = cg completes the proof of the theorem.

Using the results and notation of THEOREM VII, the least squares solution
of Ax =D can be realized as a recursive process. To this end it need only be
noted that the least squares solution after all n observations are made is

given by

2 =a"p
n

+-
so that writing A b in partitioned form the following equation is obtained:

where bn—l

is a column vector of the first n-~l1 observations and bn is a

1 X1 wvector corresponding to the nth observation. Multiplication yields

10
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A~ +
= - +
Xn An-lbn-l pnqﬁbn-l pnbn

X1 = Ppdpbpg * Prby

Now since qn = anA; 12 the last expression may be written as
*n T a1 Pnanxn-l * pnbn

(I - Pngn>£n-1 * pnbn

Note that this recursive algorithm-involves at most the generalized inver-
sion of the row vector ailéi- A;-lAn-l>' A1l other quantities are either
known from the (n-1)st state, or they are simple functions of the nth obser-
vation. The generalized inversion of the row vector an(I - A+ A ) is

n-1 n-1
Lrivial in light of THEOREM V.
THE COVARTIANCE OF THE ESTIMATE

Consider the vector equation Ax -« b = e where e disan n X 1 error
vector. In the absence of weighting it is usually assumed that E(e) = 0 and

E(eeT =T, where E denotes the expected value operator. The covariance
matrix, C(xn,xn>, of the nth estimate is given by

The equation Ax - b = e may have infinitely many solutions; however, the
minimal norm solution x = A+(b + e) is chosen. With this solution and the

least squares estimate ﬁn = A+b, the following equation results:
C(%,,%,) = F [(A+b - x)(a"p - x)?]
E [(Afe)(A%e)T]
+ T, 4T

E (A.ee A )

2*E (ee) AT

1]

]

= a1t 2 oata

11



The recursive computation of C(xn,xn) from C(Xn-l’xn-l) and the nth
observation is achieved in the following way:

+ +T T

C(Xn’xn> =AM = (An-l - Ppdp i pn) (An—l - Py pn)
T

(A+ A + T
n-1 "~ pnqn) n-1 - pnqn) PnPn

o+ T + TT +T TT
- An-lAn-l - Ap1 4Py - pnann-l PP,

Since
qn = anA;-l
then,
¢ (}A‘n’ §n> =C <§n—l’ % 1) -C (’A‘n- 1% 1) agpn
- pnanc(ﬁn-l’ﬁn-l) * pnanc(ﬁn-l’ﬁn-l)agpg

WEIGHTED OBSERVATIONS

To minimize (Ax - b)TW’l(Ax - b), that is, weighted least squares, note that
W 1s usually a positive definite symmetric covariance matrix and hence there

exists a matrix @Q such that QTQ = W_l. For Kl= QA and b = Qb the theo-

retical results are the same.

CONCIUDING REMARKS

The recursive least squares equation, by its very nature, does not involve
singularity problems. In nonlinear parameter estimation procedures the minimal

norm solution of the parameter state deviation is always gilven by A+b. The
minimal norm solution is the only solution when ATA is nonsingular. However,

in iterative procedures the singularity of ATA would not bring the iteration
to a halt. In any case, the state estimation may begin after the first obser-
vation is made. An additional computational feature of the algorithm is a small
machine storage requirement. Note that the computation of ﬁn only requires

storage (from computation of Qn-l) of the %k > k matrices A+ and

A
+ 47 n-1"n-1.

A and the estimate X_ .. Such a feature would be important, for in-
n-1 n-1 Nne-1

stance, in onboard spacecraft computations.

12
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