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APPLICATION OF INTRINSIC DIFFERENTIATION TO ORBITAL
PROBLEMS INVOLVING CURVILINEAR
COORDINATE SYSTEMS

By James C. Howard
Ames Research Center

SUMMARY Z;Q;L5q

Absolute or intrinsic differentiation has been shown to be an effective
tool for solving a certain class of vector problems, In many cases, the solu-
tion of problems involving the rates of change of vectors may be obtained more
directly by this method than by conventional methods, A single formula with
sufficient generality to handlie a wide range of problems renders application a
purely mechanical process, requiring little or no ingenuity on the part of the
analyst, In order to demonstrate its utility, the method has been used to
process certain fundamental vectors assoclated with the orbits of planetary
bodies or space vehicles, The processing of these vectors leads to Lagrange's
planetary equations, It is shown that the method has distinct advantages when
used for obtaining the rate of change of the argument of perifocus of an

orbiting body,. ﬂ 9;3
uT#

INTRODUCTION

It is well known to students of tensor analysis that problems involving
the rates of change of vectors of any variance are conveniently solved by the
method of covariant and intrinsic differentiation. This method of dealing
with vectors, and the more general entities called tensors, has found little
or no application to the problems of ordinary vector analysis probably because
all such problems are amenable to solution by conventional methods. However,
when covariant and intrinsic differentiation are divorced from the complexi-
ties inherent in tensor analysis, it is found that certain problems can be
solved more directly and with much less ingenuity on the part of the analyst
than is required by conventional methods. This is a consequence of the geo-
metrical simplification inherent in the method when curvilinear coordinates
are used. For example, intrinsic differentiation may be used to determine the
influence of perturbing forces on the time rates of change of certain funda-
mental vectors associated with the orbits of planetary bodies or space vehi-
cles. When this is done, a more direct determination of the rates of change
of some of the orbital elements is possible. In particular, the intrinsic
derivative of a vector which lies in the orbital plane, and points in the
direction of the perifocus, leads more directly to a rate of change of the
argument of perifocus which includes the influence of changes in the longitude
of the ascending node. Furthermore, since the orientation of a plane is
uniquely determined by the normal to its surface, the orientation of an orbi-
tal plane in space is determined by the angular momentum vector. This fact
may be used to advantage in finding the time rates of change of the elements




defining the orientation of an orbit plane in the presence of perturbing

forces.

The intrinsic derivative may be used to obtain the rate of change of

the angular momentum vector and hence the rates of change of orbital plane
inclination and nodal longitude. These two examples have been chosen to

illustrate the utility of the method. Moreover, the method may be applied
with equal facility to any situation in which vector changes are involved.

=1

at(x)

A4 (x)

at(x)
ai(x)
BI(y)
Bj(y)
bY(y)

b(y)

of

813
gtd

=l

o]

NOMENCLATURE

vector

contravariant vector components in the x coordinate system
covariant vector components in the x coordinate system

the semimajor axis

unit vector which lies in the orbital plane and points in the
direction of the perifocus

system of base vectors reciprocal to aji(x)

system of base vectors in the x coordinate system

contravariant vector components in the y coordinate system
covariant vector components in the y coordinate system
system of base vectors reciprocal to gj(y)

system of base vectors in the y coordinate system
eccentricity

vector lying in the orbital plane and pointing in the direction
of the perifocus

angular momentum vector

orbital plane inclination

mass of central body

mass of space vehicle or planet

perturbing force vector




R

position vector
T coordinate transformation
t time
v velocity vector
x* components of the position vector in the x coordinate system
yj components of the position vector in the y coordinate system
[id,k] Christoffel symbol of the first kind
{;k Christoffel symbol of the seccond kind
a% constant coefficients
4 true anomaly
Si Kronecker delta
u dynamical constant, G(M + m)
Q longitude of ascending node line
w argument of perifocus as measured from ascending node line
i w+ Q
Superscripts
i,5,k,12 indices of contravariance
Subscripts
i,d,k,1 indices of covariance

ANATYTICAT CONSIDERATIONS

Transformation Laws for Scalar Components and Base Vectors

Scalar components.- When referred to a general curvilinear coordinate
system, a vector A may be expressed in the following form

A = Alg; (1)
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If in some expression a certain index occurs twice, this means that the expres-
sion is to be summed with respect to that index for all admissible values of

the index, that is, n

. i
Alay =ZA ai

i=1

where A' are the tensor components of the vector A, and 33, a system of
base vectors. In accordance with established notation, tensor components will
be denoted by superscripts and the corresponding base vectors by subscripts.
In the literature, these vectors are referred to as contravariant vectors, to
distinguish them from other vectors which are denoted by subscripts. For the
problems considered in the present report, the distinction between these vec-
tors disappears. However, it is necessary to keep the distinction in mind,
because if general coordinate transformations are contemplated the transforma-
tion law for the components of a contravariant vector denoted by superscripts,
differs from that for a vector denoted by subscripts. The latter vectors are
referred to as covariant vectors. Ior a coordinate transformation T from

a coordinate system x +to a coordinate system y given by

i i n

y =Y (xlx% e o ey X ) (2)
the law of transformation for the components of a contravariant vector At is
given by (see appendix A and ref, 1):

B(y) = %ﬂ At (x) (3)

where A%(x) are the contravariant components in the x coordinate system and
BJ(y) are the components when referred to the y coordinate system. For the
same transformation of coordinates, other vectors, such as the gradient of a
scalar point function, obey a different transformation law. These are the
covariant vectors denoted by subscripts. The appropriate transformation law
for these vector components is (see appendix A)

(1) = 25 a5 ()
Y

where Ai(x) are the covariant components in the x coordinate frame and
Bj(y) are the covariant components when referred to the y coordinate frame,
As the following argument shows, the distinction between these two transforma-
tion laws vanishes when the transformation T is orthogonal Cartesian., Let
x* be the components of a position vector T when referred to the x coordi-
nate system which is orthogonal Cartesian, Likewise, let yJ be components
of the same vector when referred to another orthogonal Cartesian system, The
transformation of coordinates T is given by




vt = el (5)

where the a3 are constants., The position vector T is invariant with

respect to coordinate transformations, Hence the square of the vector is also
invariant. Therefore

xIxd = yiyi = a%aixjxk = Sﬂxjx
therefore

o = o] (6)

where Bﬂ is the Kronecker delta, that is, (see ref. 2)

j 1 for J =Xk
8k=
0 for j#k

Equation (6) is the orthogonality condition which may be used to solve equa-
tion (5) for xJ, If both sides of equation (5) are multiplied by ai

k}
idi ii
asax” = Gy
therefore
i J k i i
Therefore,
] ii
From equation (5), it is seen that
i .
O = o} (8)
dxY
and from equation (7)
J i
o o (9)
oy*

It follows from equations (8) and (9) that

Byi _ dx
ST =51 (10)




As a consequence of equation (10), the distinction between contravariant and
covariant vectors disappears, when coordinate transformations are confined to
orthogonal Cartesians systems, This also explains why there is no preoccupa-
tion with these vectors in the study of ordinary vector analysis.,

Base vectors,- Subscripts assigned to a system of base vectors aj
indicate that they are covariant in character, and obey the convariant trans-
formation law, See equation (4) and appendix A, Therefore, 1f ai(x) are a
system of base vectors in the x coordinate system, and bj(y) are the cor-
responding base vectors in the y coordinate system, then

Bi(y) = gz;—J 5 (x) (12)

In this connection it should be noted that to every system of base vector aj,
there exists a reciprocal system of base vectors &% with the following
property

EJ. €i=5§_=§i- -é,'J (12)

where
1 for j=1

0 for § # i

A superscript is assigned to the reciprocal base vectors to indicate their
contravariant character, and to emphasize the fact that they obey the contra-
variant transformation law. (See eq. (3) and appendix A.) Hence, if =al(x)
are the reciprocal base vectors in the x coordinate system and bd(y) are
the corresponding vectors in the y coordinate system, then

Bi(y) = 2 Fi(x) (13)
dxt

In a curvilinear coordinate system the base vectors are, in general, not unit
vectors, but are functions of the coordinates; that is,

7, =55 . .., ¥ (14)

o]
.
}

= E‘j(xlx2 .o 0 ey %) (15)

The base vectors may be obtained as follows: let dr be the differential of
a position vector T and let ax! be the corresponding differentials of the
position components, Then by substituting dT for A, and dx% for At in
equation (1), we have

dT = dxiazj (16)
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From equation (16) the base vectors =aj are given by
- oT
aj = ——= (1)
oxt

In an orthogonal Cartesian frame of reference, the base vectors @i consti-
tute a triad of mutually orthogonal unit vectors, that is, vectors of unit
length, However, in problem formulation, it is usually convenient to use a
more general curvilinear coordinate system., When this is done, the magnitudes
of the base vectors generally differ from unity.

Vector Derivatives and the Christoffel Symbols

The scalar product of any two base vectors aj and aj may be defined as
follows:

i+ 85 =8i3 =85 - 24 (18)

1

Likewise, the scalar product of the reciprocal base vectors &~ and S may be

defined as

.l =gl =g gl (19)

The symmetry of 8ij and gij follows from the nature of the scalar product,
Certain combinations of the partial derivatives of the scalar products with
respect to the system coordinates are useful in obtaining the derivative of a
vector, or in formulating the equations of motion in a general curvilinear
coordinate system, The definitions that follow are ascribed to Christoffel
and are called Christoffel symbols (see ref, 3). There are two of these
synmbols, the first of which is defined as

[ij, k] == (20)

2\ dxJ axt axk

1 (O8u | %k 5gij>

The Christoffel symbol of the second kind is
k| _ ki...

The utility of the Christoffel symbols is immediately apparent when an attempt
is made to find the partial derivative of a base vector, or its reciprocal,
with respect to any system coordinate. Any vector A may be expressed in the
form of equation (1). Furthermore, since the base vectors are in_general
functions of the coordinates, it follows that the derivative of A with



respect to any coordinate must involve the Christoffel symbols. From equa-
tion (1), the partial derivative of the vector A with respect to the
coordinate x¥K is given by

A dal 5 al §§E

oxE ¥ * dxK
However, since aj - aj = 81i]
dgi s  Oas — oz 4
=iy =1 .3 P
Sk k% TSk (23)
Likewise,
a . . —
_§i5 = ééi Ey +Ey - §E§ (2k)
x1  oxt oxt
and
gy 084 OB
== —= &y + a;s » — (25)
g oxd T
Since
3. = OT
17 %3
it follows that
B 3 (dF) . > (7). % (26)
dxd  oxd \oxi Axi \oxJ ox1
From equations (23) through (26)
da;
—= . 3 = [1], k] (27)
Socd k P

From equation (12), the rate of change of the base vector a; with respect
to Xj assumes the form
EW _
—1 = [13, k)2 (28)
oxY

Equation (28) gives the required rate of change of the base vector, with
respect to a system coordinate, in terms of the Christoffel symbol of the
first kind and the reciprocal base vectors. A more convenient form is
obtained if both sides of equation (28) are multiplied scalarly by the recip-
rocal base vector 3#! to yield

35
i glo (43, KJak . gl (29)
OxY

From equation (19), it is seen that




—

therefore

By 3 . . k1

— . 8" = [i], klg (30)
dxd

In terms of the defining formula (21), equation (30) may be rewritten as

follows:
o {J} (31)

Ja
Lo {13} 3 (32)

By substitution of equation (32) in equation (22) the partial derivative of a
vector A with respect to the system coordinate xK is

& eafls (33)

Therefore,

xk  dxk

The indices i and I in the second term on the right side of equation (33)
are dummy* indices, and may therefore be replaced by any other convenient
indices., In order to have a common base vector aji, equation (33) may be
rewritten as follows

dA oal s i}>_
2 = (2 4 a0 {1} g 4
3k \oxk k) * (34)
Furthermore, since
DE axt _ dk
dxk dt dt
and
b et ant
dxk dt dt

the intrinsic derivative, or the derivative with respect to time, may be
obtained from equation (34) in the following form:

aa _ faal i) g axK
at ~\at +{jk A7 dt> (35)

1As already indicated, a repeated index implies summation with respect to
that index. Since the surmation index can be changed at will, it is usually
referred to as a dummy index. Of course, the range of admissible values of
the index must be preserved.




In an orthogonal Cartesian reference frame

PCI R
g1y =83+ 8y =05 =78 =8

Therefore, since all these scalar products are constants, it follows that the
Christoffel symbols vanish. In this case, the covariant derivative, (34)
reduces to the sum of the partial derivatives of the components along a set
of fixed axes

JA aAl
Bxk Bxk

Likewise, the intrinsic derivative of a vector reduces to the ordinary time
rates of change of the components along a set of fixed axes.

ai 1i=1,2,3

For a general space of three dimensions, equation (35) assumes the form

N 3
N R € A RO

ey e )o@ e - )

e - e L) a7
w-[file - el EEEEaw

i A3<{321 s {322 o {323}%'{; } .

te [Al<{11 {12 {13} i A2<{§l FARR A {233} %3—>

af J3 | axt 3| ax® 3 ax®
T+ A <};1 a. {52 T {;3}'?ﬁf ] (39)

The formidable looking equations (36) through (39) for the intrinsic deriva-
tive of a vector in a general space of three dimensions contain 27
Christoffel symbols. Because of the symmetry of the Christoffel symbols,

L4

)42}

10



and the number of independent Christoffel symbols reduces to 18. Furthermore,
for the three-dimensional spaces most commonly used, equation (36) reduces to
a manageable form. If a base vector of unit length be denoted by al, then
in a cylindrical coordinate system,

ap = 81 , €11 =1

—_ . 2

as = xt8s , goo = (x1) (1)
- PN

as = a3 , B3z =1

As a consequence of eguations (hl), there are only two nonzero Christoffel
symbols in a cylindrical coordinate system, embedded in a space of three

dimensions. These are
14 _ _2

and (42)

{12} S

Hence, a vector referred to this coordinate system has a time rate of change
as follows:

£ (e n e [ )05 o )] )

(43)
In three-dimensional spherical coordinates,
ay = 41, g1 = 1
Bz = x'&: , Bo2 = (Xl)2 (Lk)

. ~ . 2
= x1 sin x%as , gz3 = (x* sin x2)

o
[
|

In this case there are six nonzero Christoffel symbols. These are

)
{éé}_= _xt {;%}-: -sin x2 cos %
e ) T
{313} = -x! sin2 x2 {233} = {332} = cot x° )




.

When these values of the Christoffel symbols are substituted in equation (35),
the time rate of change of a vector, referred to a three-dimensional spherical
coordinate system, assumes the following form:

a _ dA? >
at 22 33
anz |, 2 (0 ax2 | e axt), s [2 d_xi] 2
" _d_t+{12}<A st TN dt>+A {33} at | 2
_dAS 3 1 dx3 3 d_X 5 dx= —

APPLICATIONS

Intrinsic Derivatives of Certain Fundamental Vectors Assoclated
With the Orbits of Planetary Bodies and Space Vehicles

Certain fundamental vectors associated with an orbit in space, and which
are subject to change in the presence of perturbing forces, provide a useful
area of application for intrinsic differentiation. One example of such a
vector is the angular momentum vector h which lies in the direction of the
normal to the orbital plane. This vector may be used to determine the orien-
tation of an orbital plane in space. Furthermore, the rate of change of
this vector in the presence of perturbing torques may be used to determine
the rates of change of orbital plane
inclination and nodal longitude.

The intrinsic derivative of a vector
e, which lies in the orbital plane
and is directed to the perifocus,
may be used to determine the rates
of change of the argument of peri-
focus and the eccentricity. A

third vector may be used to complete
the orthogonal triad,

The angular momentum vector.-
Equation (35) may be used to obtain
the rates of change of the angular
momentum vector, and hence the
rates of change of the orbital ele-
ments defining the orientation of
an orbital plane in space. In
spherical coordinates, equation (35)
assumes the form shown in equa-
tion (L46). The coordinate uses are
Sketch (a) chosen as follows (see sketch (a))

12




1. The #&; axis is taken to be coincident with the angular momentum
vector h.

2. The ap axis is in the direction of increasing polar angle, that
is, in the direction of increasing orbital plane inclination.

3. The third axis 4z is in the direction of the ascending node line
and completes the mutually orthogonal triad of axes.

In this coordinate system the base vectors are given by equations (44). Let
the vector A appearing in equation (46) have components as follows

A*=h, Ay=A3=0 (47)

When substitutions are made from equations (Lk), (45), and (47) in equa-
tion (46), it is found that

dA _ dh _ |an 1, ax®).1s , 1/, ax3\ .1 . _2a
Felialirral [—— 8, + <}— h ——j> X as + <§ X~ sin xTas

at x1 = at %1 dt
therefore
di _[dh & Ax2 a . 2 ax>
3t “\gt 81 + h 33 82 + hosin x¥ = T (48)

These are the component rates of change of the vector ﬂ, referred to the x
coordinate system with base vectors zj. However, it may be more convenient
to use some other reference frame, Assuming that the perturbing forces are

referred to the radial and transverse direc-

tions in the plane of the orbit, and in the bs b
direction of the normal to the orbital A

plane, the vector dh/dt should be trans- b,

formed to a reference frame having these Grontal
directions. If the coordinates in this ref- at’%B plane

erence frame be denoted by yl, where i=1,
2, 3, a coordinate transformation Ty must be
determined before the components of dh/dt
can be referred to the y coordinate frame.
Let bj(y) ve a system of base vectors in %2 Y,
the y coordinate system (see sketch (b)).

In terms of the notation already estab- w
lished, the transformation of base vectors
assumes the following form 7
/
b1 = -sin(y + w)és + cos(y + w)8s 73
bo = -cos(y + w)8s - sin(y + w)8s (49) ’//
A A
s = 8y %2 9
Sketch (b)
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It Ai(x) are the components of dﬁ/dt in the x coordinate system and
Bd(y) are the corresponding components in the y coordinate system, the
transformation law, equation (3) gives

(y) = 22 at(x)
dxt

However,

See appendix A. Therefore, equation (3) may be written in the following
alternative form

B (y) = (by + 41)a%(x) (50)
From equation (48)
2 3
Al = dh 2 = p dx As = . o dx
T A o h sin x® = (51)

Substituting from equations (51) in equation (50), and using equations (49)
we obtain the transformed components of the vector dh/dt as follows

\ ax= e dx®
1 = - = =
Bi(y) = -h sin(y + w) T h cos(y + w) sin x TT
ax® 2 ax°
B2(y) = -h cos(y + w) &= - h sin(y + w) sin x® =— (52)
at at
3 dh
B T —
(v) =
However,
db _Fx 7P
at

where T dis the position vector of the planet_or space vehicle in the y
coordinate system with base vectors bj, and P is the perturbing force
vector. Therefore,

T X ? = I'-Bl X (ngJ) ° ? W
T X P = I"B]_ X (blgl + 6232 + 63.63) ‘ f (53)
T X ID. = I‘(.E)\g,gg - .6263) ¢ :_P J

1h



From equations (52) and (53), it follows that
3 2
in x2 & : axz
h cos(y + w) sin x = - b sin(y + w) 35 = 0©
. . > ax° ax® W 5
h sin(y + w) sin x Ir th cos(y + w) rrals r(bs * P)
-g.% = I‘(b2 ° ?)
These equations give
ax® _rocos(y +w) (.3 I
= - (bs + P) (54)
ax3 _ r sin(y + w) (6 - B) (55)
dt h sin x®

Equation (54) gives the rate of change
rate of change of nodal longitude.

The orbital vector €.- Con-
sider the vector €, which lies in
the orbital plane and is directed
to the perifocus. (See sketch (c)
and ref. 4.) In a cylindrical ref-
erence frame with coordinates
denoted by x%, the base vectors

a4y have the following values:
Ty = &
Bz = x4, (56)
asz = 83

In this case, it should be noted
that x2 1is the nodal longitude.
In the case previously considered,
X2 was the orbital plane inclina-
tion. In this reference frame,
which 1s chosen because the influ-

of inclination, and equation (55) the

2

- X2

X2

A

a,

Sketch (c)

ence of nodal longitude and orbital plane inclination appear in the formula-

tion, the vector e has components as

e (}os way +

e =

e
x1

that is,

sin w cos 1

I— _ a1z
A"ay = A*ay +

follows (see appendix B and sketch (c)):

as + sin w sin 153>

a—
A2§2 + A as

15



where

Al = e cos W
A2 = (e sin w cos i)/x* (57)
A® =e sin w sin i

In cylindrical coordinates, equation (35) assumes the form shown in equa-
tion (43). Substitubing from equations (42) and (57) in equation (43) gives

— 2 . .
@.:{[_O'l_(e cos w) - x1&X°5, e sin w cos 1]§1
dt dat & 1

t bid
d (e sin w cos i 1 ax= dxt sin w cos i 1a
+ | L + = X cos w+ e x*4
[dt < 1 > X1 <e at © at 1 >] 2

d . . .\ A
+ 55 (e sin w sin 1)a3}-

Therefore,
de _ & cos W - e sin wo - e ax® sin w cos 1) &
at at 1

* . . hd . di . . . d_X'Z o
+{e sinwcos i +ewcos weos i - e == sin wsin i + e == cos w) 45
dt at
+—<é sin w sin i + e® cos w sin i + e %% sin w cos i> ég} (58)

These are the component rates of change of the vector € referred to the
coordinate system with base vectors 3j. As in the case of the angular
momentum vector, it may be more convenient to use some other reference frame.
Assuming again that the perturbing forces are referred to the radial and
transverse directions in the plane of the orbit, and in the direction of the
normal to the orbital plane, the vector dE/dt must be transformed to a ref-
erence frame having these directions. A coordinate transformation T must
be determined before the components of dé/dt can be referred to this coor-
dinate frame. Let the base vectors in this reference frame be again denoted
by b, then the base vectors b and a; are related as follows:

by = cos(y + w)&1 + sin(y + w) cos ids + sin(y + w) sin ids

A A A . -~

bz = -sin(y + w)ay + cos(y + w) cos ias + cos(y + w) sin ias (59)
A

bs = -sin 18, + cos ids

Corresponding to the transformation of coordinates Tz, the transformation
law for the components of the vector d€/dt is given by equation (50). In
this case, the components Al(x) appearing in the right side of equation (50)
may be obtained from equation (58). They are

16




1 . 3 . dxe . .
A" ={e cos w-ewsinw- e 75;—51n w cos 1
- . . R 1 . . 2
A® = <% sin wecos i + e cos wWeos i - e %% sin w sin i + e %?%— cos é> ? (60)
3 - . . . . . . 'y di . .
A ={é sin wsin 1 + el cos wsin i + e 3 sin wcos i J

When substitutions are made from equations (59) and (60) in equation (50), it
is found that the vector gE/dt has the following components in the direc-
tions of the base vector bj

. . dx2 )
BY(y) = (& cos 7 + e sin ¥y + e e sin y cos i
P . . . ax= .
B (y) = (—e sin 7 + eW cos 7 + e —— cos 7 cos %) f (61)
BS(Y) =le 4 sin w - e sz sin i cos w
at at j

In order to express the rate of change of the vector € as a function of the
perturbing force vector P, it is necessary to examine the equation of motion
of a particle in a noncentral, gravitational force field. It is shown in
equation (B19) that

de ch A2 re _. ~n hprt re _. ~ o 5
— = |= biby - { L= sin by + = byby ) - == sin 9bsbs | * P 62
T [;1 1b2 T 7b2b2 - bz 1> - 81n 7bs 3] (62)
By equating components from equations (61) and (62), and remembering that in
this case ax?/dt = d9/dt, we obtain the following equations:

€ cos ¥y + ek sin y = %? (bs * P) - e %% sin ¥ cos i (63)
ewcos ¥ - & sin y = - (%9 sin.)%z + 2 %;) + P - e 3 o0 y cos i (64)
h H at
dai _. _ ae . . = _ re .. I 6
e gf sin w - e 3¢ sin i cos w — sin 7{(bs - P) (65)

The rate of change of the eccentricity é and the rate of the change of the
argument of perifocus may be obtained by solving equations (63) and (64).
When this is done, it is found that

o h . r o £ . Py - 4f :
W= [- T cos 7(%1 P) + = sin 7(2 + e cos 7)(bs * P) 3% ©os 1] (66)

17



It is seen that the influence of changes in the longitude of the ascending

node is given by the third term on the right side of equation (66), that is,
§$ = -cos i (67)

oQ

However, if the argument of perifocus as measured from the inertially fixed
X' axis is denoted by ®, then

é):d)+§2 (68)

In this case, the total contribution from the rate of change of the nodal
longitude is

20 =00 - cos 1) = 2 o (3) (69)
From equation (55)
v - rsin(y +w) (& B
b= ey (s - F)
therefore
%g Q= % sin(y + w)tan <% i>(b3 . P) (70)

Substituting from equation (70) in equation (68) gives

W= {;<ﬁé cos Z) by + g% sin 7(2 + e cos ¥)bs + [E sin(7 + w)tan<% %)]b%}-?

(1)

The derivation of this result should be compared with the approach used in

reference 4, where spherical geometry had to be used to determine the influ-
ence of inclination and nodal longitude, In that case, the problem had to be
solved in two parts, whereas in the present case the problem is solved in one

step without appeal to system geometry, subsequent to the choice of curvi-
linear coordinates.

Likewise, on solving equations (63) and (64) for &, it is found that

¢ = {(Bom )b v [cos 72 + & cos 1) + ] S} - B (72)

If required, the rate of change of the semimajor axis may be obtained with the
aid of equation (72) and the following relationship

o)
n

h2 = pa(l - e2)
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therefore

2h %% = u(l - e®)ad - 2paeé
therefore
6 =-—=2ae ¢, _2h dh
p(1 - e?) u(l - e2) at
therefore
. 2ae - 2hr ~ =
a = e + b * P
G- 'mm-e ®e 0 P
Therefore,
. 28,2

as]|

(73)

o
n

= [e sin 70y + (1 + e cos 7)b2} .

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Feb. k4, 1965
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APPENDIX A
TRANSFORMATION FORMULAS FOR THE BASE VECTORS AND THEIR RECIPROCALS

The transformation formulas and, hence, the covariant or contravariant
character of the base vectors and their reciprocals may be obtained as
follows: Let the differential of a position vector be denoted by_ dr. Then
if @i(x)are the base vectors in the x coordinate system, and bj(y) the
base vectors in the y coordinate system, the differential dr may be
expressed in the following alternative forms

_ . _ . _ J .
dr = ai(x)dxl = bj(y)dyJ = bj(y) %i; ax* (A1)
therefore
_ 3vd —
=) = 95 55() (a2)
Likewise,
= () Xt 4. J
5 (x) 53 b;(y)dy
therefore
- Bxi _
. = = F. A
By(1) = 5 Ey(x) (3)

It is seen from equations (A2) and (A3) that the base vectors a; and b s
obey the covariant transformation law; consequently, the use of subscripts
is Justified.

Reciprocal Base Vectors

To each system of base vectors 7&; there exists a reciprocal system of
vectors @J with the following property

3+ 8 =8 =8 -5 (AL)

where 8% is the Kronecker delta, that is,

0 for § #1

Scalar multiplication of each side of equation (A2) by b9(y) gives on using

(Ak)(see ref. 5)

pd(y) -« ilx) = %Li (A5)
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Similarly, from equations (A3) and (A4) it is seen that
ah(x) - byly) = & (a6)

Equation (Al) referred to the reciprocal system of base vectors assumes the
form

dr = Ei(x)dxi = Ej(y)dyj (A7)
therefore

ay; =b3(y) - F(x)ax;
therefore

dyj = %?% dxy (A8)

and

axj = v9(y) - a3(x)ay;
therefore

axy = 9L dy (A9)
3t
From equations (A7) and (A8)
Fi(x)ax; = b(y) g_}yfj ax;
therefore

ai(x) = 2 $i(y) (A10)

)

Likewise, from equations (A7) and (A9)

Bi(y) = gﬂ () (A12)

L
From equations (A10) and (Al1l), it is seen that the reciprocal base vectors
al, obey the contravariant law of transformation; therefore, the superscript
notation is Justified.

Vector Transformations

Equations_(A10) and (A1l) may be used to obtain the transformation law
for a vector A, where

A = A%g; = A/ (A12)
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If A= Ai(x)gi(z) when the vector A is referred to the x coordinate
system, and if A = BJ(y)bj(y) when referred to the y coordinate system,
invariance of A requires that

BI(y)b3(y) = AL(x)7;(x) (A13)

From equations (A2) and (A13), the appropriate transformation law is obtained
as follows:

. aji
Bd(y) = ggf AL(x) (A1)

Equation (Allk) is the contravariant transformation law for the components of
the vector A. When A is referred to the x coordinate system with base
vectors #ji(x), which obey the covariant transformation law, the components
Al(x) obey the contravariant transformation law, and, hence, the use of
superscripts is Jjustified. If A 1is referred to the reciprocal base system
a1, then from equation (Al2)

A= Aiai

On a transformation of coordinates from the x coordinate system to the vy
coordinate system, the invariance of A requires that

A3 (x)3H(x) = By(y)od(y) (A15)

From equations (A10) and (Al15), the appropriate transformation law is obtained
as follows

By(y) = %ﬁ% Ag(x) (426)

It is seen that when a vector A is referred to a coordinate system by use
of reciprocal base vectors, which obey the contravariant law, the correspond-
ing components of A obey the covariant law, and the use of subscripts is
therefore justified.



APPENDIX B
EQUATION OF MOTION OF A PARTICLE IN A NONCENTRAL GRAVITATIONAI FORCE FIELD

The equation of motion of a particle of unit mass moving in an inverse-
square law, central force field is
dZr u

A
= -0

ate - T rz "t (81)

Vector multiplication of each side of equation (Bl) by the angular momentum
vector h gives

Pt —_ a -
AT wn=-L (b; xh) (B2)
ate r°
h=TxV = (r2y)bs (B3)

On substitution from equation (B3) in equation (B2) it is seen that

cr o 1 s\

—= X h = b

Py (u7)b2
therefore

d (Vxh d #

—_ = .— Db BJ-l—

at \_ u ) at ot (B4)
The integral of equation (B4) is given by

Vﬁh=bl+€ (B5)

where € 1is a constant vector of integration. The vector € may be
expressed in terms of its scalar magnitude and a vector of unit length as
follows:

€ = efd (B6)

where & is a vector of unit length. See sketch (c). Substituting equa-
tion (B6) in equation (B5) gives

IXDBopy +ed (B7)
Equation (BT) may be solved to obtain the position vector r. Scalar multi-
plication of each side of equation (B7) by T gives the following equation

for T:
f.@-—ﬁ—@>=r+e(f'é)
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Therefore
(rxV) - h_ r(1 + e cos 7)
o
and

2
S v/ R (8)
1l +ecos ¥y

It is seen that e, the magnitude of the constant vector of integration
appearing in equation (B6 is the orbital eccentricity. Vector multiplication
of each side of equation (B7 by h gives

EX (Vxh) =ph X (b, + e8)
Therefore,

v =% [62 + e(bs X a)} (B9)

With the notation of sketch (c), the unit vector 4 may be expressed in the
following form:

= (cos 7)gl - (sin 7)32 (B10)

If the assumption of an inverse-square law central force field is not satis-
fied, the equation of motion must be modified accordingly. In the presence
of a perturbing force P, the equation of motion becomes

av

at"P'

SR

(B11)

Furthermore, in the presence of the perturbing force vector P, the assumption
of constancy no longer applies to the vector €. Hence,

ag _ [av M s T v
pa-{dtxh+V><(rXP) rs[(rXV)Xr]} (B12)
Therefore,
dz av
hE = <dt+— Xh +V X (F XP)
and
“%=-§XE+VX(Y‘X_P) (B13)

The first term on the right side of equation (B13) may be written in the fol-
lowing alternative form:

P X h = h(bibs - beby) * P (B1k)

ol




Likewise,
T X P = r(bsbs - bobs) « P (B15)

When substitutions are made from equations (B9) and (B15), the second term on
the right side of equation (B13) assumes the form

Tx(ExP =5 {Elﬁz + e[;{,z + (bz + a)baba J} .7 (B16)
Substituting for & from equation (B10) in (B16) gives
Vx (FXP) = %? [((1 + e cos 7)§1£é - e sin 7(62€2 + gsgs)] « P (B17)
From equations (Bl4) and (B17) it follows that
Pxh+Vx(FX?P) = [(Eh)ﬁlﬁg - <-‘-*-rh—e sin ybobs + m?gﬁl) - -“—;‘3 sin 78383] . P
(B18)

Therefore,

~

de _ Jon A~ . S e hl2d i
-d—i— = {—l:- bl 2 - l:%g sin '}'(babg + b3b3) + E bgb]_]} e P (Blg)
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