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DEFINITION OF SYMBOLS AND UNITS
Definition
attitude angle

angle between reference and inertial
velocity vector

angle of attack

control deflection angle

velocity of vehicle relative to air
velocity of vehicle

wind velocity

direction normal to reference
direction normal to vehicle centerline
vehicle longitudinal axis

total thrust of the vehicle booster
total mass of the vehicle

vehicle moment of inertia about the CG

engine moment of inertia about hinge
point

drag force

engine first moment of inertia about
hinge point

dynamic pressure

thrust normal slope of control engines
aerodynamic normal force slope
aerodynamic moment coefficient
aerodynamic bending moment coefficient

control force coefficient

Units
rad

rad

rad

rad

m/s
m/sec

m/sec

m
kg

kg-sec®/m

kg-m-sec?

kg-m-sec®

kg

kg-sec?

kg/m®

kg/rad

kg/rad
1/sec?

kp-m/rad

kp-m/rad



DEFINITION OF SYMBOLS AND UNITS (Cont'd)

fg = XKeg = Xg

s N *E
Mgk

Zsk

Csk

U)Sk

Xk =

Definition
control moment coefficient
displacement gain
rate gain
angle of attack gain
accelerometer gain

distance from vehicle CG to accel-
erometer

distance from vehicle CG to the CP

distance from engine gimbal to vchicle
CG

distance from engine gimbal to engine
mass CG

slosh mass

slosh mass displacement, normal
to reference

slosh damping
slosh frequency

distance from engine gimbal to
slosh mass CG

distance from vehicle CG to slosh mass
CG

cross sectional reference arca
generalized displacement of the ith
mode (usually denoted as '"normal

coordinates'")

generalized mass

vi

Units

1/sec?®

sec

sec®/m

rad/sec

m

kg-sec®/m
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GJ

Y. (%)

Y (%)

¥ )y

Y:L (X)Tl
Y (%)
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YL (x)
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DEFINITION OF SYMBOLS AND UNITS (cont'd)

Definition
bending [requency
bending mode damping
normalized® displacement at Sta X

d
11 Yk = e— .
normalized SlOpC [Yl(x)]

displacement at Sta x due to i‘P bending
mode

angular displacement at Sta x due to ith
bending mode

angular rate at Sta x due to ith
bending mode

angular acceleration at Sta x due to
ith bending mode

generalized force for the ith mode
force distribution over the length of
the vehicle for all forces acting upon
the vehicle

mass

moment of inertia

distance to the vehicle Sta % as
measured from the vehicle gimbal point

distance between two vehicle stations
damping

angular frequency

rad/scc

rad
rad/sec

rad/sec®
kg

kg /m

kg-see®/m

kg-scc™

m

rad/sec

* The bending displacement is normalized to '"+1'" at the vehicle

gimbal point,
ment,

vii

The slope is a function of the normalized displace-
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SUMMARY

This report presents under one cover, the equations of motion and
the basic control theory applicable to stability and response analyses
for a flexible launch vehicle, using a unified coordinate system and
notation. To provide some background and insight in the control of
large flexible boosters moving through the earth's atmosphere, five of
the basic control problems are discussed,

The flight system coordinates and notations are shown and the rigid
body equations are derived for both the pitch and yvaw planes. A con-
ventional control system is introduced which containsa position gyro,
rate gyro, accelerometer and angle of attack meter., The gains of the
control mechanism and the vehicle parameters are related to the frequency
and damping of the rigid body. Both the "Drift Minimum" and "Load Mini-
mum'' control principles are developed.

The bending and slosh equations are derived by writing the energy
expressions and then applying Lagrange's equation. The method of com-
puting bending modes and frequencies for a flexible body is shown for
both a simplified continuous mass model and a lumped mass model.

The construction of a synthetic wind profile for control system
studies using the 95 or 99 percent probability of occurrence wind speed
profile and the 99 percent probability of occurrence wind shear envelope
is discussed and illustrated, and the method for superimposing a gust on
the synthetic wind profile is shown.

Block diagrams and the Laplace transform are introduced to relate
the system equations in a form which can be studied in terms of general
feedback theory.

Routh's stability criterion, Hurwitz's stability criterion, root
locus, frequency response methods, and Nyquist criterion are discussed
and are applied to a vehicle containing one bending mode, a control
filter and an actuator, The corresponding root locus plot, Bode plot,
Nyquist plot and Nichols plot are drawn,

The basic elements of an example adaptive control system are dis-
cussed and its corresponding block diagram shown.



The appendices contain the block diagram and transfer functions for
several sensors and engine actuator, A summary of the flexible body
equations, including the effects of engine inertia, bending motion and
slosh motion, and a derivation of the bending moment at any station
along the vehicle longitudinal axis are also given in the appendix.

I. TINTRODUCTION

During initial design phases of a vehicle, numcrous trajectories
are computed using various degrees of sophistication, Almost invariably
it is assumed that the vehicle is controlled perfectly and does not
deviate from the desired trajectory. Once the trajectory has been
defined, it is then the job of the guidance and control groups to
specify a means of controlling the vehicle response in order to mini-
mize errors in position and velocity,

The overall guidance function is to determine the position and
velocity of the vehicle and reduce these variables to a pitch and yaw
command. These pitch and yaw commands are then the reference inputs to
the control system,

The basic control function is to produce the desired output of a
variable based on the reference input to the control system, This can
best be illustrated by the functional block diagram shown below,

R + E ENGINE B VEHICLE C

- ACTUATOR »1 DYNAMIGS

SENSORS

FIGURE 1, TFUNCTIONAL BLOCK DIAGRAM OF CONTROL SYSTEM



Here the reference input to the control system is R, and the
desired output is C, The system contains the necessary secnsors to
detect the desired output and may be in the form of attitude, attitude
rates, etc, The comparison between R and the feedback signal B results
in an actuating signal E that is the difference between these two
quantities. The actuating signal produces an engine deflection {3
which correspondingly produces the desired output. This system is
called a closed-loop control system since it compares the output and
input quantities to maintain the output at a desired value,

The control system must contain the necessary sensors to detect
the translational, rotational and vibrational motion of the vehicle.
The commonly employed sensors are the rate gyro, position gyro, acceler-
ometer and angle-of-attack meter.

The translational and rotational motion are conveniently controlled
by deflecting the thrust vector or by use of movable surfaces on aero-
dynamic fins, When aerodynamic control surfaces are used, jet vanes
must be included in the rocket engine exhaust to produce the control
force until the dynamic pressure builds up enough for the aerodynamic
control surfaces to become effective, Thrust vector control is more
desirable than fins due to a weight advantage. The vibrational motion
consists primarily of fuel slosh and structural bending. This motion
can be easily sensed, but is difficult to control, The vibrational
nature of the vehicle is specified in the early design phases. The
structural bending characteristics are determined by the structural
stiffness and weight distribution and cannot be simply altered once the
vehicle is manufactured. The fuel slosh characteristics are largely con-
trolled by the tank geometry, internal tank baffles, and location of
propellant tank relative to the center of gravity of the vehicle.

In designing a control system for a flexible booster moving through
the earth's atmosphere, there are generally five major problem areas that
must be considered,.

1, Drift from reference trajecctory.
2. Aerodynamic loads.
3. Structural bending feedback,
4, Fuel slosh,
5. Adequate response to disturbances.
The author acknowledges Mrs, Joyce Harmon for her contributions to

the section on Methods of Stability Analysis and Mr. John Livingston for
his contribution of the Section on Wind Representation,



II, DISCUSSION OF BASIC CONTROIL PROBLEMS

A, Drift From Reference Trajcctory

The drift of a vehicle from a desirced trajcctory can be detri-
mental to the overall success of the mission. Most missions depend on
the accuracy with which a vehicle can place the payload into a given
volume of space with a predeterminced velocity and direction, Since
drift during the boost launch phase results in large position errors
at later stages of flight, it must be held to an absolute minimum,

The primary disturbance affecting drift is duc to winds aloft,
Other items which cause drift are thrust misalignments, gyro drife,
center of gravity variations, etc.,, but these are of sccondary impor-
tance compared to wind disturbances.

Wind speeds can be of slowly varying naturc, sudden gust or a
combination of both, For a particular launch site, wind speed design
profiles are determined based on numerous wind speced versus altitude
measurements., Generally, 95 or 99 percent wind profiles are used in
control system design and specify the maximum wind spced versus alti-
tude for a 95 or 99 percent probability of occurrence., Also embedded
gusts of varying wave lengths, pcak-to-pcak amplitudes and number of
successive gusts can be superimposed on the wind speed profile to study
the response of the control system, The wind speed profiles are con-
structed by building up to the 95 percent or 99 percent maximum value
using the 99 percent probability of occurrence wind shears as shown in
Section VII.

B. Structural Loads

The aerodynamic forces imposed on a vehicle during its launch
trajectory aflfect the dynamic response of the vehicle to control system
commands. These forces may be significant from time of liftoff until
the vehicle stages or cmerges from the effective atmosphere, The magni-
tude of these forces are dependent on the angle of attack, dynamic pres-
sure, Mach number and the aerodynamic characteristics of the vehicle,

Although the dynamic pressure (q) is not large during the
initial phase of flight, the pitch program is usually initiated during
this phase resulting in relatively large angles of attack (), and, hence
appreciable values og. These loads caused by pitch over command can be
critical when a step change in commanded attitude is programmed, The
loads can be greatly reduced by changing the programmed command to a
ramp function. The aerodynamic loading is typically most severe in the



high dynamic pressure region and occurs in the range of altitudes where
winds and gusts are at maximum intensity. It is often necessary in the
high dynamic pressure region to constrain the angle of attack to small
values so that structural design limits are not exceeded.

The magnitude of the aerodynamic force is obtained by integrat-
ing the distributed loads duc to pressure and viscosity along the length
of the vehicle, The resultant aerodynamic force is then recsolved into
a normal force component perpendicular to the longitudinal axis and a
drag component along this axis. The normal force component acts at the
center of pressure and is one of the primary influences affecting the
translational and rotational motion of the vehicle,

The location of the center of pressure (c,p.) relative to the
vehicle center of gravity (c.g.) is an important consideration as it
places a requirement on the amount of control torque necessary to main-
tain stability and control of the vehicle, The location of the c,p. is
primarily a function of (1) the position of the cones, flares and fins
which make up the vehicle configuration and (2) the Mach number,

Vehicles having the c.p. forward of the c.g. are aerodynamically
uns table and tend to deviate from the direction of the relative velocity
vector, In the case where limited control torque is available, it may
be necessary to introduce fins at the base of the vehicle to shift the
c.p. aft, The vehicle is aerodynamically stable when the c.p. is aft
of the c.g. and tends to align its longitudinal axis along the relative
velocity vector. Generally, [ins are not required for this case.

In the case where loads become a problem, it may be necessary
to include a load relief feature in the control system. Some load
relief systems are designed to operate only in the region where the
lateral acceleration or the product of angle of attack and dynamic
pressure, (g, exceeds some presct limit. The preset limit is dependent
on the structural limitations of the vehicle. Once the preset limit
is exceceded, gains are produced which are proportional to the lateral
acceleration or angle of attack depending on the type of sensors utilized.
This gain then becomes a dominant part of the engine command signal.

The effect of this added engine command signal is to turn the
vehicle into the wind, thereby reducing the angle of attack and ulti-
mately the engine deflection itself. The decrease of both of these
variables reduces the bending moments which are directly proportional
to the angle of attack and the engine deflection,



The most common load relief system considered in the past is
designed to blend load minimum control gains in and out as a function of
time. The time interval chosen generally corresponds to the maximum
dynamic pressure region where aerodynamic loading is the most severe.

Since load reliel type control systems attempt to align the
vehicle attitude along the relative velocity vector, there is no pre-
dominant control of the vehicle attitude :.. Therefore, g can assume
large values, and the vchicle will drift away from the desired trajectory.
Application of load relief type control is acceptable for short durations
provided a deviation from the desired trajcctory is permissible.

The bending loads imposed on the vehicle structure are depen-
dent on the type of control law used since for cach type of control law
a different response in engine gimbal angle 3, and hence <, results,.
Appendix G shows that the bending moment [or a rigid vehicle can be
cxpressed as

bending moment = (M&Ju + (M&)p.

The form of the 3 response is dependent on the type of feed-
back included in the control law, For an attitude control law, the
cngine response contains signals from both a position gyro (g) and rate

gyro (%) and is of the form 2 = a o + a.i where ay is the attitude gain
and a, is the rate gain, 1If angle of attack (.) is included in the con-
trol law, the 7 response is a linear combination of -, §, and < is of
the form

B = ag, +ayl + by

where b, is the gain on angle of attack. The mcthod for determining the
gains is discussed in Section IVD,

Figure la [10] shows a comparison of the effect of three control
laws on bending moments due to a triangular-shapcd wind profile of unit
amplitude. The maximum bending moment is plotted in each case versus
the wind spike duration for a typically large vehicle at the time of
maximum dynamic pressure., The wind spikes of short duration in this
figure correspond to a high shear, high fundamental frequency wind,

The longer duration wind spikes correspond to a low shear, low funda-
mental frequency wind,



‘ Control Frequency = ,25 cps

Maximum Bending Moment per Unit Wind Spike Amplitude in-1bs x 10°

20 L Control Damping Ratio = .6
B=a,p+ta1d+ by
T
Wind
Spike
Amplitude
(9]
[]
n I‘_ Wind Spike——l
& Duration
Attitude “ontrol
b, = 0
10 -
Minimum Drift
Control
Minimum &
Control
ag = 0
(Reference 10)
! |
0 5 10

Wind Spike Duration, Sec.

FIGURE la., EFFECT OF CONTROL LAW AND WIND SPIKE DURATION ON BENDING
LOADS AT MAXIMUM DYNAMIC PRESSURE FOR A SATURN CLASS

VEHICLE



It is seen that attitude control produces lower bending
moments for short duration wind spikes while both types of control
employing v feedback are most effective in reducing loads due to long
gradual wind spikes.

C. Structural Bending Feedback

One of the problems associated with the control of a flexible
missile is the control of the rigid body such that structural bending
is not reinforced. This problem arises because of the fact that struc-
tural bending modes may be excited by control actions required for
maneuvering, or by aerodynamic loading due to sudden wind gusts., The
elastic vibrations are sensed by the attitude, attitude rate, acceler-
ometer and angle of attack sensors and are fed back into the control
system,

Since these sensors are mounted on the vehicle elastic axis,
they detect the resultant motion of both the rigid body and the elastic
vibrations. The elastic vibrations comprise various frequency components
and would ordinarily be included in signals to command engine deflection.
Without some form of compensation of the elastic vibrations, there is
the possibility that resonance would occur between the bending mode fre-
quency components and the control frequency producing an undesirable
amplification of the bending mode.

Conventional methods of compensating for structural feedback
are

1. Placing an electrical filter nctwork in the feedback
loop which passes the portion of the sensor signal
in the low band of control frequencies and supprcesses
the higher frequency signal which can be associated
with the elastic vibrations,

2. Location of feedback sensors to minimize excitation
due to structural vibrations, e.g., mounting the
rate gyro near an antinode of the first bending mode,
or mounting the accelerometer at the [irst mode node,.

3. Placing notch filters in the fcedback loop to suppress
sensor signals in a selected small range of frequencies,
the center of the range or '"motch" being the frequency
of the bending mode.



Another item of importance in considering the structural bend-
ing of a vchicle is obtaining accurate mode shapes and slopes of the
bending modes., The complex structure (multiple tanks and engine clusters)
and large size of some boosters make it extremely difficult to obtain
accurate theorctical and experimental data describing the vehicle's
clastic properties, The modes shapes are thercefore inaccurately known
and vary considcrably during flight because of wmass distribution changes
from propcllant depletion.

D. Fuel Slosh

Some of the basic paramecters which influence the stability and
control of a vchicle are (1) the magnitude of the slosh mass™, (2) the
frequency of the slosh mode, and (3) the position of the slosh mass along
the longitudinal axis. Since more than 90 percent of the total weight of
the vehicle is liquid, special attention must be given to the influence
of fuel motion on the stability of the vehicle.

The magnitude and frequency of the slosh mass are largely a
function of the slenderness ratio i/d (length-to-diameter ratio) of the
tank, For long cylindrical tanks, i.c., large slenderness ratio, the
ratio of the slosh mass to total mass of fluid in the container is small,
while for short tanks a large percentage of the mass is sloshing,

For cylindrical tanks with large slenderness ratio, the slosh
mass for the first mode remains constant as the propellants are depleted
from the tank until the fluid surface is about one diameter in height
from the bottom of the tank. Thereafter, the slosh mass decreases
rapidly. The magnitude of second mode slosh mass is less than 3 per-
cent of the first mode slosh mass and the mass of successively higher
slosh modes is even less. 1In most practical cases, therefore, all
slosh modes higher than the first can be neglected,

Tanks having large diameters, i.c., those with small slender-
ness ratio, have two undesirable characteristics: the slosh mass
increases and the natural {requency decreases. The increased slosh mass
magnifics instability depending on its location along the vehicle longi-
tudinal axis. Considering only a rigid vehicle with ideal control and
one propellant tank, a danger zone for instability occurs when the
slosh mass is loacted between the c.g. of the vehicle and the instantancous

A portion of the total liquid mass assumed to move as an cquivalent
spring-mass-damper system, The magnitude of the slosh mass is dependent
on tank geometry and fluid density.



center of rotation.” The instantaneous center is on the order of 10

to 15 meters forward of the c.g. for a typically large vehicle, For
increasing slosh mass in this region, more damping is required to
guarantee stability and the maximum amount of damping is required when
located at the midpoint between the instantaneous center and c.g. This
is generally the region where maximum bending displacements occur also.
Considering the elastic vehicle, the danger zone for instability
increases both forward of the instantaneous center and aft of the c.g.,
and also more damping is required as compared to the rigid vehicle.
Ideally, the stability can be improved by locating the slosh mass in
the region aft of the c.g. if there is a large separation ratio between
the slosh frequency and the control frequency.

Tanks with large diameters exhibit low natural frequencies,
This tends to restrict the choice of the control frequency since the
slosh frequency should be as far above the control frequency as possible
to prevent resonance. As would be expected, the forces and moments on
the tank due to fluid motion are magnified considerably near the resonant
frequency of the fluid. Subdividing a large tank into smaller containers
may be necessary to increase the separation between the slosh frequency
and control frequency. This also reduces the slosh mass, which is a
more important effect,

The addition of baffles in the tank is eciffective in increasing
the damping of the fluid motion. This method is commonly used to improve
stability even though there is an associated weight penalty.

Control sensors can enhance the stability of the vehicle con-
siderably. Proper selection of type, location, gain values and vibra-
tional characteristics can be used to suppress the hazard due to fuel
slosh.

E. Adequate Response to Disturbances

A primary requirement of the control system in addition to
maintaining stability and control of the vehicle is to maintain a desired
transient and steady state response for any given disturbance. The pri-
mary disturbance is due to winds aloft and may vary randomly in speed,
direction, and frequency.

Instantaneous center of rotation - as used in the discussion above the
instantaneous center of rotation is taken with respect to the engine
gimbal point and is the point (xj. = Xeg t+ Z/¢) on the longitudinal
axis about which the vehicle has onlv an angular velocity.

10



The control system must be designed such that the transient
response to a disturbance does not impose excessive loads on the vehicle
as would be the case for a very fast responding system, and yet not so
sluggish that large errors accumulate in the vehicle's attitude, angle
of attack, engine deflection, etc, Two parameters which are indicative
of the transient response are the natural frequency, wh, and damping
ratio, {. The values of wu, and { for the rigid body transient generally
are chosen, based on peak overshoot and settling time requirements., The
time of peak overshoot occurs when the product ugt = x radians, where
g = tp N1 o= CE is the damped frequency. The maximum peak overshoot
for a second order system due to a step input is

Maximum Peak Overshoot = 100e 1-¢ percent

and is only a function of {. 'In most control systems, a peak overshoot
of 5 percent is desirable and corresponds to ¢ = 0,707, Accordingly,
the damping ratio ¢ may be called a figure of merit, which identifies
the maximum overshoot of the system variables due to wind inputs.

The settling time for the transient response of the rigid body
mode can be identified with its natural frequency, The system is con-
sidered to have reached steady state when the response remains within a
specified tolerance band. The settling time is defined as tg = k/uwp,
where k is obtained from the transient response curve as shown in Fig-
ure 2, The value of k will vary depending on the value of damping

Unit Step Input

1,05______//T_§\_ ________
| —
|

wlo

1.0
0,95 pb— — H — — — — — — — — T — — — — —

i
‘t\\\__ | | Tolerance Band
Transient Response Curve

/a
p—
o

|
4 .

Mn€>-

|
i

FIGURE 2, TIDENTIFICATION OF PEAK OVERSHOOT AND SETTLING TIME
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ratio (f{) or natural frequency (wp) chosen. For a given un, the settling
time becomes longer as ! is decreased due to the larger overshoots in

the response, The effect of w, on settling time can best be seen by
comparing two different systems having the same f, TIf the response

shown in Figure 2, which is plotted in nondimensional coordinates,
applies to two different systems having the same [, then the system
having the largest natural frequency will have the shortest settling
time,

The natural frequency of the rigid body mode should be kept
sufficiently low so that there is a wide separation with frequencies of
other degrees of freedom., Generally, the first slosh mode frequency
establishes the upper limit on the control frequency of the rigid body
mode since the first slosh mode contains the lowest frequency component
as compared to the other degrees of freedom, The control frequency for
the rigid body mode should be selected such that it is sufficiently
below the first slosh mode frequency so that strong coupling does not
exist and vyet not so low that long settling times result.

The transient and steady state response curves for a large
vehicle are shown in Figures 3 through 6 for a step input wind distur-
bance of 44 m/s. This corresponds to a wind angle (h, of 5% as shown
in the illustrations, These figures illustrate the cffect of damping
on the overshoot and scttling time for this particular vehicle. The
control frequency w; is held constant for each case of .30 cps and the
damping ratio is varied from .30 to .80,

The curves in Figures 3 and 4 indicate that the vehicle with the
damping ratio ranging from .3 to .5 contains oscillations which persist
for a relatively long period of time. For this low damping case, the
overshoots are generally large and the settling time of the transients
are around 6 seconds. Increasing the damping produces two desirable
effects: it decreases the overshoot and reduces the settling time.

The curves in Figures 5 and 6 show a morc desirable response
since they contain less overshoots and shorter scttling times, The
transients in these figures make one overshoot and then settle out to
the final steady state values, The steady state values in each of the
above four cases are secn to be independent of damping for this particular
system with the exception of z, which continucs to increase with damping.

Increasing the C,/C. ratio (aerodynamic to control moment coef-
ficient; see Section IV) has the effect of increasing the overshoot on
the transient response. This 1s primarily due to an increase in the

=Cunt
magnitude A for a sinusoidal transient of the form Ae € sin (gt + ).
Smaller vehicles generally have a large C;/C. ratio which decreases as
the size of the vehicle increases.

12
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The natural frequency of the rigid body mode should be widely
separated with frequencies of other degrees of freedom, The guidance
mode establishes the lowest frequency existing in the system. The
period of this mode is several orders of magnitude longer than the con-
trol and elastic modes. The control mode in this case can be considered
as uncoupled from the guidance mode. The upper bound on control fre-
quency is established by the first slosh mode frequency or the first
bending mode frequency whichever is less. The control frequency for
the rigid body should be chosen so that it is sufficiently below the
upper bound frequency to reduce mode coupling effects, and yet not so
low that long settling times result.

TII, FLIGHT SYSTEM COORDINATES

The orientation of the missile axes in inertial space is shown in
Figure 7.

Vehicle
C.G.

Z . \\/
k *y ~
N
~ 1

k ~
////)( ™ X
Z

FIGURE 7. VEHICLE COORDINATE SYSTEM

The XYZ-coordinate system is defined relative to the reference tra-
jectory as follows: The X axis is directed along the desired velocity
vector V, the Z axis is normal to the plane of the desired trajectory,
and the Y axis is in right-hand relation to X and Z, The vehicle orien-
tation is defined by the xyz-coordinates where the x axis is directed

15



along the vehicle longitudinal axis, the y axis is directed along the
vehicle yaw axis, and the z axis is directed along the vehicle pitch
axis. The origin of the xyz~coordinate system is located at the vehicle
C.g.

The pitch attitude ¢, and yaw attitude 7, define the direction of
the missile longitudinal axis in the XYZ-coordinates. These angles are
assumed small so that the equations of motion may be linearized.

The degree of frcedom along the X axis is eliminated by allowing
the coordinate system to accelerate with that of the vehicle c.g. in
the X direction., The cquations of motion, therefore, will allow only
accelerations relative to the XYZ-coordinate system in the Y and Z direc-
tions. The orientation of the coordinate system is chosen in this man-
ner since we are only interested in the attitudc deviations and position
and velocity deviations from the reference trajectory.

Figurc 8 below shows the orientation of the vehicle relative to
the reference trajectory and the inertial coordinates XY, This is the
geometry used in making a fixed time point study for a control system
in the pitch plane. 1In this case, it is permissiblce to reduce the

Ref. Direction

X
at Launch ///(

i
Reference T : X ¢
Direction

at Launch /
i
- /
Vehicle C.G. - ’//////" -
—
/ — .
Tangent to

7/ \ —
Reference
Trajectory

\\\~—- Reference Trajectory

AT A A AV v A A S A O A AN iV S A A AV SV AV AR S A A T

FIGURE 8. PITCH PLANE GEOMETRY
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problem to two dimensions since the cross coupling between the yaw plane
and pitch plane is assumed small, Also shown in this figurc are the
angles X and ¥, where ¥X. is the attitude commanded by the pitch program
and % is the actual attitude of the vehicle. The angle ;. is obtained
from the reference trajectory and is input to the vehicle autopilot, As
can be scen from Figure 8, the pitch attitude -, = <. - ¥, The variable
n s used in the control system cquations rather than %. and % since it
represents a small angular deviation from the desired directions X,

Figure 9 below shows the orientation of the vehicle relative to
the yaw planc of the reference trajectory,

| A

— X
Plane of f
Reference

Trajectory

FIGURE 9. YAW PLANE GEOMETRY

Again the problem is reduced to two-dimensional motion in the yaw
planc by assuming the cross coupling between the pitch plane and yaw
plane is small.
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IV, RIGID BODY EQUATIONS

A. Derivation of Equations

The free body diagram for a rigid vehicle moving through the
earth's atmosphere is shown in both the pitch and yaw planes of flight
in Figure 10 and Figure 11, respectively. The cquations of motion are
similar in both the pitch and yaw planes of flight; the discussion which
follows will be for the pitch plane of flight. Subsequently, it will be
shown how the pitch plane equations can be reduced to represent the yaw
plane equations.

The equations of motion are written for a nonrotating earth,
In this case V represents the instantaneous velocity of the vchicle rela-
tive to earth, The vehicle attitude is commanded by %Xc to align along
the X direction to maintain the desired velocity Vd. Due to the wind
disturbance Vy, the attitude error is ¢ = X, - X and the resulting
velocity error is given by V.

The angle y denotes the bias of the reference direction X
(direction of the nominal acceleration) from the desired velocity Vd.
For a gravity tilt trajectory the commanded rate X, is adjusted to cancel
the component of gravitational acceleration normal to V. 1In this case
X lies along Vd and y is =zero.

The coordinate system (X, Y) is oriented relative to the local
vertical at launch by the commanded attitude X.. The vehicle x axis is
oriented relative to the X coordinate by the attitude error ¢. All
forces acting on the vehicle are positive in the x and y directions.
Moments about the vehicle center of gravity are positive when they pro-
duce angular accelerations in the positive direction’of «¢. The angles
Py O Oy D and y are assumed small and the angle J is negligible during
the entire boost phase of flight. All angles are positive in the pitch
plane for a counterclockwise rotation.

The angle % is used with the wind velocity Vi and flight
velocity V to determine the wind angle of attack /x;. When computing the
wind angle, the assumption is made that y = i = <+ = 0 and V,; << V. The
geometry for the condition is shown in Figure 12. The wind angle is

defined as follows:
Vw cos XC
= -1 1
Oy tan <V - Vy, sin X;) : ()

In the yaw plane the angle X, is zero and the wind angle for
Vv << V becomes

Vw Vw
ij = tan~?! v A v (2)
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FIGURE 10, RIGID BODY COORDINATES, PITCH PLANE
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FIGURE 12,

WIND ANGLE OF ATTACK Oy,

The acceleration of the vehicle is obtained by finding the
rate of change of velocity in the (X, Y) coordinate system.
expression for the velocity of the vehicle is

The
Q =V cos 9i + V sin 83 3
The acceleration then becomes
d\-] hy n . « % :-.L g . i
A — =V cos 9L - Vsin § 91 + V cos § 5=— + V sin 9]
dt dt
43
+ Vcos 3§ 935 +Vsin 3 T
)
The unit vectors (1, 3) have an angular velocity,
o= - % K, (5)
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then

Frs = wxil=- XCE xi= - ch
d_' - - VIR R = Y
_-tl =wx j=- XCk X j= XCl

Substituting equations (6) and (7) into equation (4)

A= (V cos ¢ - V sin g b + Vsin § X J i+ TV sin
L ¢ L

+Vcos §3-Vcos 9 kc] ]
where equation (8) can be written as
A= [X +V sin g kc] i+ {? - V cos 9 XCJ j

since the following terms in equation (8) are

\ : c'—..(;i_ ﬂ=_i. =”
Vcos § - Vsin 9§ 3 It [V cos 3] dt(X) X.
¥ sin 04+ V cos § 3 =% [Vsin o] = iL(?) =Y

VYT 4t sinv dt :

The external force acting on the vehicle is

F

f = L(Ff+pn cosB-D)cos ¢ - N sin ¢ - chin 3.sin ¢ - mg cos (X -

-
+ 'l(Ff+FC cosp-D)sin ¢ + N cos ¢ + F.sin 3 cos ¢ - mg sin e -

22
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Substituting equations (9) and (12) in Newton's equation
f=mA (13)
we get,

/e .
m\x + V sin ¢ XC} =(Ff+FC cos{3=-D) cos o, - N sin -, - F.sin . sin °

Y

- mg cos (/g - ) (14)

N
m(& - V cos kc\ =(Ff+Fc cosf3-D) sin -, + N cos - + Fcsin . cos ~
\ /

- mg sin (X, - 1. (13)

At this point equations (l4) and (15) can be linearized by
using the small angle approximations,

sin ¢ ~ ¢ sin B =~ (3 sin (o + 7)) =~ o+ 7
cos ¢ ~ 1 cos 3= 1 cos (u + ) ~1 - oy ~1
v~ 0,

and neglecting the products of small angles., Using the above approxi-
mations in equations (14) and (15) and solving for the highest deriva-
tives, we obtain

/Ff + Fc b .
\ - - g cos AC (16)

b
I

. F +F_-D g T .
[ =t + =3+ VX - gsin /. (17)

The degree of freedom along X is eliminated by allowing the origin of
the coordinate system to move with the velocity Vy and acceleration
X. The influence of this degree of freedom on the stability behavior
of the vehicle is considered negligible,
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The aerodynamic forces are obtained from

D = CD qs (18)
oC
N 1
N = 5o 95 o N'@ (19)
PR Wi (20)

The thrust component normal to the vehicle x axis is defined
as

R

R =F = 3P 5 =R'B. (21)

Substituting equations (19) and (21) into cquation (17) and denoting
the total thrust as F = F¢ + F., the resulting linearized equation of
motion becomes

v _[E-D /N R : :
Yz(T)WKF)O”(RmB+V><c-gsm><c- 2
N

In equation (22) above the last two terms account for the
difference between the centrifugal and gravitational acceleration.
Most trajectories are shaped such that the vehicle flies a "gravity

o
1w

turn trajectory. For this condition, the pitch rate Xc is commanded
such that

. g sin XC

Xe = 7 (gravity tilt) (23)

and the last two terms of equation (22) are zero. In some cases
"sravity turn' trajectories cannot be flown due to various trajectory
shaping constraints; in this case, the two terms should be included.

An additional equation is required to describe the rotational

motion of the vehicle. This equation is obtained by summing moments
about the center of gravity as follows

. — .s 1. - - . =
j{; MCg I + d'§ + (xCg xcp)N + (xCg Xh) F.sin 8 = 0, (24)

*Also called "zero lift" and "zero angle of attack' trajectories.
24



where the aerodynamic damping term d' is included, For most vehicles
without large lifting aerodynamic surfaces, the term d'Q is negligible.
Equation (24) may be written as follows using equations (19) and (21)

d g T e g "
G+ 5T o+ L2 Na+ FE——"r's=0 (25)

and describes the rotational motion of the vehicle about its c.g.

In some cases, an accelerometer is used in a control system
to sense the accelerations normal to the vehicle longitudinal axis.
If the accelerometer is located at the vehicle c.g., the acceleration
sensed by the accelerometer can be obtained by summing forces along
y, Or

\V\
y F o=m ¥ - N - F.sin =0 26
L y Yeu c B (26)
and
. _ N' R'
Yeg = m o+ — B (27)

If the accelerometer is located at an arbitrary station x,
along the vehicle, the rotational component of acceleration due to &
must be included or

A S N2 (28)

To control the attitude using thrust deflection, a control
mechanism is assumed with the following form

B=a,p+ ap+ bat gay. (29)

Equation (29) above embodies three of the more conventional
types of control depending on the sensors used in the control system.
The type of control is commonly called 'gyro control'" when both the b,
and g. terms are zero, "angle of attack control" when the g. term is
zero, and "accelerometer control" when the b, term is zero. Generally
both the b, and g. terms are not used simultaneously in a control

system,
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Substituting for ¥ in equation (28) and letting as = - gz(xcg- Xy),
the control equation can be written in the alternate form

B = app + a1p + agp + boO + goVeg,

where

a3

az

bo

g2

attitude gain

attitude rate gain
attitude acceleration gain
angle of attack gain

lateral acceleration gain.

(30)

The control equation shows the engine command B composed of signals from the
attitude ¢ as measured by a space-fixed gyro, ¢ measured by a rate gyro, and
either o measured by an angle of attack meter or the local lateral accelera-
tion measured by an accelerometer.

In summary, the following equations are used to describe the
pitch plane equations of motion.

Pitch Plane Equations

Y = (% é #) e+ <§?> a-+<%%> B+ ch - g sin XC

ng

CRCL

@~ (3 =-7)=0Ca-= 0y

26
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V cos X
. c

= -1
%, = N Ty Sin X
w C

agp + a1 + bya + goy

6:
y =y

Y
I~y

- (x

cg ~ Xa) 9

(35)

(36)

(37)

(38)

The yaw plane equations of motion are obtained from the pitch

plane equations by equating X =X, =y =0, y =z and Y = Z,

Yaw Plane Equations

o+

o

(xcg

- X

)
CP)N

(Xcg - xh)R' )

F

I

m

o+

feg <N?> ot <RF> °

™
1

I

SRR

B_

0

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)
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When making fixed time point studies, the coefficients of «, &
and ¢ in the above equations are assumed constant and defined as follows:

L 1
. - (xCg XCP) N . - (xCg Xh) R
1 1 = I
1 1
Kl=F D K2=1_\I_ K3=R_.
m m m

In analyzing the control dynamics of the vehicle, it is important
to relate the coefficients of the differential equation expressing rota-
tional motion to the frequency and damping of the rigid body. The vaw
plane equations given above can be reduced to the following two relations

by eliminating ¢ and B in equations (39) and (40).

r r
<1 - 8o L(Xcg - Xa) CE + KB‘])E&"- a]_CQC.P + Lcl + C: (ao + bO) +

-V -
+ g5 (CKp - Cle)}P = C_—V_W> [Cl + Cobo + go (CoKp - Cle)J (47)

. 1
(1 - gQKB) Z = 82K3.q.) + alK3q) + HKl + Kz + (ao + bO - gEKl) KZJ ©

/. -V
C Ky + Ks by) <iv—w> (48)

Equation (47) describes the rotational behavior of the missile
about its c.g. and is of the form

$+ 20 v+ wip = F(L). (49)
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Comparing equations (47) and (49), the natural frequency is given
by

(02 — Cl + Cn(ao + bo) + gq(C-’)Kq - Cj_Kj) (50)
n 1 - gz[(xCg - Xa) C- + Kx] ’

and the ratio of damping to critical damping is

¢ = a; Co
Zmn (1 - gz[(xCg - xa) Co + K3)1

. (51)

Equations (50) and (51) establish the desired relations between
the frequency, damping and gains of the control system,

To obtain an expression of the path reaction to the rotary
motion the term

from equation (47) is substituted into equation (48). The resulting
expression is obtained:

Z = Byg + By + B, (52)

where

- = agp (C'}K'D - ClKi) + Kl[C;L + Cgbn + gd(CgKB - ClKl)]

Po €y + Czbg + g2(CoKo - C1Kx)
B. = - a; (CK- - CK4)

T Cp 4 Cobg + g2(CKs - C1K3)
B _ Kg + boK3 + ao@gKe - CTKZ_Z

- Cl + Czbo + gg(CEKS - ClKB) :
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B. Drift Minimum Condition [4]

It is desirable that the gains in the control system be selected
in such a manner that the lateral drift accelcration 7 equals zero., This
condition is called the '"Drift Minimum Principle'’ and is determined for
the steady state case (i.e., § = § = Z = 0). Referring to equation (52),
then for this condition the equation reduces to

Byp = 0O (53)

or

- ag (CoKs - C;K5) + K [Cy + Cobg + g2(CoKz - CiKz)] = 0. (54)

C
- =1 K
2" 2N C c
_ 2 S | -1y,
C( Kl / ag C2 bO g2 <K2 C2 K.)>' (55)

Equation (55) above establishes a relationship between the
gains ag, bg and g, for the drift minimum condition. The drift minimum
condition can be maintained by using angle of attack control for which
go> = 0 or accelerometer control for which by = 0, Equations (50) and
(51) then provide two additional equations for obtaining the gains for
angle of attack control or accelerometer control where the frequency wn
and damping { must be specified for the rigid body. The frequency and
damping are selected based on the desired transient response.

The drift minimum control case defines a control mode such that
the sum of the force components normal to the nominal flight plane is
zero for the steady state condition only., A claim for zero drift can-
not be made since in transient motion {, ¥ and 7 have finite values,

During the quasi-steady-state condition the first and second
derivatives of the variables approach zero and the attitude, angle of
attack, and engine deflection approach limiting values. The q.s.s.
attitude can be found from equation (47) for & =& = 0.

_ B VW Cy + Cobg + g-(CoKo ~ CiK) (56)
Pgss v C; + Colag + bo) + g2(C-Ko = CiKs)”
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The gq.s.s. valucs of 7 and » are found from cquations (39), (40)
and (44) and are given below,

-V - a C.
) = /Z W> 2 . (57)
qss N (C, + C.(ay + by) +g.(CK - CiKy)
7 - V N a Cl
5= w> 2 , ) (58)
gss vV /Cp+ c(,(aO + bo) + g.(C.K. - CiK.)

The steady state drift in response to a wind speed V,,, derived
in Section VIII, is

\
W
. v (CzKo - CiKz) ay
ss aL (58a)
Cyp + Co(ay + b)) + (CKi - CiKz) (82 + )
\Y
= il (58b)
(C-K, - CiKy)g., +Cy + C(a +Db )~
1+ v S
L (C. K. - CiK:) a; j

C. Load Minimum Control

From equations (57) and (58) it can be seen that by reducing the
gain a, to zero the values of 0 qq and qus also go to zero., Since the
forces normal to the missile axis are functions of these angles (N = N'C,

R = F'B) by reducing the gain to zero, the loads are correspondingly
reduced. Under this condition the missile longitudinal axis is aligned
along the relative velocity vector. Since there is no control on ¢, it

can assume large values, and the missile will drift from the nominal flight
plane. Application of load-minimum control for short durations is accept-
able provided a deviation from the nominal flight plane is permissible.

D. Gain Selection

It is necessary that the rigid body natural frequency ', and
damping t be specified to compute the values of the gains. Generally,
the selection of the rigid body control frequency depends on the fre-
quencies of other degrees of freedom existing in the system (i.e., slosh
modes, bending modes, etc.). In order to prevent strong coupling effects,
rigid body control frequency should be selected below the lowest frequency
cxisting in the system. A fast well damped transient response can be
obtained by selecting a damping ratio ¢ between 0,4 and 0.8,
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The gains for the control system are found from the expressions
listed below for angle of attack control, gyro control, and accelerometer
control., The corresponding q.s.s. angles are also listed. The gain
relations are obtained from equations (50), (51) and (55) and the q.s,s.
angles are obtained from equations (56) through (58),

Angle-of-Attack Control

b 2 K, - 21K,
n —= CA 2
I ee—————— % = 5
a, TR where H Kl (59)
- Ca 60

bo = Hao - 3 (60)

2t w
ay = =g (61)

Quasi-steady-state conditions:

_ Z - Vw f Cy + C-by (62)
Pgss vV |C; + Caao + bo)

_ z -V [ - a0 Co (63)
Ugss V| Ci + Ca(ag + bo)

- Z - V‘V ( ao‘Cl (64)
qus \Y | Cy + Ca(ao + bo)

Vw

;- (64a)
ss €, ¥+ C.(a_+b)

| 4V 4O 0}

41(CSK2 - CiK3) a;
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Gyro Control

wn2 - Cl

a = —__E;—_— R (65)
Zgw

a; = ——, (66)

Z - v et
Vqss =~V [Cl n cgao} ’ (67)
2. - Vw T o-agy C, -
= 68
aqss v {Cl + CQaOJ’ (68)
Z - Vo oa G
= 69
qus Y [Cl + Cgao}’ (69)
7 = V. (69a)
ss W
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Accelerometer Control

34

CoK
2 _ + 2
wn (Cl C2K2 - CLK}

g =
2 Cg(Kl + Kg) - C1K3 + wnz[(xcg - Xa) C_’j +

_ C1Kj
Q Klg2 + C2K2 - C1K3

o]
I

[

a1 = ¢ 1 ge[(xcg x )02 + K3l

Quasi-steady-state angles:

Z - -
= VW Ci + go(CoKy - CiK-)
Pqss v 1 C1 + Coagy + 8.(CKy - CyRy)
- Z - Vw | - ag C.-
aqSS v | Cy + Coap + go(CoKe - CiKz)
_ Z - Vw | an Cq
qus v | €1+ Coag + 80(CoKe = CyKy) | 7
Vw
Zes T (C.K. - CiKy)g.. + (Cy + C;ao))
1+vV -
-{ (C.K: = C3Kz) ay J

P (70)

71)

(72)

(73)

(74)

(75)

(75a)



V., FLEXIBLE BODY EQUATIONS

A. Bending Modes and Frequencies

1. Homogencous Body

Free Vibrations of Vechicle

The differential cquation of motion of a slender beam in which
the cross-sectional dimensions arc small compared with the length and
for which the rotary inertia and transverse shear deformations are
neglected may be written

2 ~Ne [
m(x)§?§+i}-|

.

ETI(x) %i%i = w(x, t). (76)

In order to solve equation (76) in closed form for the bending
mode shapes and {requencies, consider the vehicle as a uniform beam with
a constant mass distribution m(x) and bending stiffness distribution EI(x).
To determine the natural mode shapes and frequencies of the
vehicle, the forcing function w(x, t) = 0. Equation (76) can be solved
by scparation of variables such that the solution assumes the form

ulx, t) = q(x) n(e). (77)

Substitution of (77) into (76) yields

"

1 IBIG q(0"]
PR T @8

where a prime denotes derivatives with respect to x and a dot denotes a
derivative with respect to time. Since x and t are independent variables,
the ratios in (78) are equated to a separation constant w® and we get two
ordinary differential equations.

T+ Wy =0 _ (79)

[EI(x) q()"] - m(x) o q(x) = 0. (80)

35



For a constant stiffness distribution EI(x) and constant mass
distribution m(x) equation (80) reduces to

d WF
3 -2 a4= 0, (80a)

where a2 = EI/m.

The solutions to equations (79) and (80a) are, respectively,

1 =A sin wt + B cos wt (81)
q(x) = C sinh~w/a x + D cosh~w/a x (82)

+ E sinvw/a x + F cos~Nw/a' x.

The constants A and B in (81) must be found from initial conditions in
displacement and velocity at t = 0, and the constants C, D, E, and F are
obtained by specifying four boundary conditions on the ends of the beam.

The four boundary conditions for a vehicle unrestrained at
each end are obtained from the condition that the shear forces and bend-
ing moments at the nose and hinge point are equal to zero. The expres-
sions for the bending moment and shear at any station x along the vehicle
axis are, respectively,

d2
M= EI Ix (83)
and
_dM _ d=
V = ax EI = (84)

applying equations (83) and (84) for the conditions M = V = 0 at the
engine hinge point, x = 0, and nose, x = £, the four boundary conditions
become

2 2
jx ) = 0 jx (5) = 0 (85)
3 3
ijs (0) = 0 —q‘jxg (4) = O. (86)
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Applying the boundary conditions (85) and (86) to equation (82), the
four boundary equations are

D-F=20 (87)

C-E=0 (88)

C cosh~w/a +« £+ D sinhwNw/a' « £ - E cosNw/a' + £+ F sin Nwla's £ =0
(89)

C sinhNw/a' » 4+ D cosh~Nw/a' « £ -E sinNw/a's £ - F cos~Nw/a' - £ =0,
(90)

The constants E and F in the above four equations can be
eliminated to yield the two equations,

(sinh Nw/a' « 4 - sin~w/a' -« £) C+ (coshNw/a' « £ - cosNw/a' - £) D=0

(91)
(coshNw/a' « 4 - cosNw/a' - £) C+ (sinh~Nw/a' « £+ sin~w/a' - £) D = 0.
(92)

A nontrivial solution to this set of equations in C and D 1is
obtained by setting the determinant of their coefficients equal to zero.
Expansion and subsequent reduction of the determinant yields the fol-
lowing transcendental equation in terms of frequency w.

cosVuw/a + 4 = L . (93)

cosh.Jzyzﬂ - £

This equation is solved graphically in Figure 13 in terms of
the parameter Nw/a' * 4, and it is found that an infinite set of the
eigenvalues w, satisfies the equation. Also corresponding to each
eigenvalue (,, there is a corresponding eigenfunction q,.

From Figure 13, the frequencies (eigenvalues) for the uniform
unrestrained vehicle are

L\)O=O

2
oy = <1_5_}&__£> SET
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1
coshNw/a': ¢

FIGURE 13, GRAPHICAL SOLUTION OF TRANSCENDENTAL EQUATION
FOR A UNIFORM UNRESTRAINED VEHICLE

&

2 .2
N\ f———m
= (; + L (;3;-) VEI/m . (n sufficiently large)
. 2 Nt

The frequency wp = 0 corresponds to the rigid body mode shape.

This can be shown by substituting wg = 0 in equation (80a), which will
reduce it to

[a% faR
RS

= 0, (94)
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Integrating (94),
q = C4x> + C3x% + Cox + Co. (95)

Applying boundary conditions (85) and (86) we find the constants
C; = C, =0, and

q = Cox + Cy, (96)

which is the rigid body mode shape. Thus, the rigid body mode shape is
described by a rigid body translation and rotation, Generally, the mode
shapes are defined relative to the rigid body axis. In this case, equa-
tion (96) is unnecessary since q = 0.

Equations (87), (88), and (91) can be solved to find the con-
stants C, E, and F in terms of D, When this result is substituted into
equation (82), the equation of the flexible mode shapes is

— —
cos Vuh/a 4 = cosh Vbh/a N ) S ras
q (x) =D [<; (sinh VQh/a x + sin'Quh/a X)
n

- { ' . !
1nh'duh/a £ = sin wmh/a y)

il
ST RIS £
+ (cosh \;'wn/a x + cos ~ wn/a x) 1. 97)

4

The mode shapes (eigenfunctions) g, 9~, ..., dp can be com-
puted from equation (97) by substituting the corresponding frequencies
W1s Wo, seey wn Obtained from the transcendental cquation (93). The
mode shapes for a homogeneous vehicle with unrestrained ends ('"free-free'
beam) is shown below in Figure 14, The complete solution for the flexible
motion of the vehicle with no end restraints is obtained by substituting

equations (8l) and (97) into (77)

- N
u(x, t) = L(}%{) sin wpt + (’g | cos uip € qn(x). (98)
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FIGURE 14, MODE SHAPES OF ASSUMED HOMOGENEOUS VEHICLE WITH UNRESTRAINED ENDS
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Since equation (98) is a solution for any value n, the sum of
the solutions is also a solution.,

00
B —

= 1 . 1
u(x, t) ‘SJ l_An sin o t + Brl cos wnt} qn(x). (99
1

A

/
n=

Forced Motion of Flexible Vehicle

In the previous section, the motion of the simplified vehicle
has been found for the case of free vibrations in which no external
forcing function w(x, t) was acting on the vehicle. For the case of
forced motion, the mode shapes obtained previously for the free vibra-
tion case are normalized by the deflection gn taken generally at the
engine hinge point, 1In this case the mode shapes define only the
relative displacements and will be denoted by yi(x).

The displacement due to the load w(x, t) can be expanded in a
series of eigenfunctions such that

0

U.(X, t) = y‘ yi(X) ”i(t)’ (100)

[A—

n=1

where yi(x) are the normalized natural mode shapes and ni(t) are the
normal displacement coordinates., Substituting equation (100) into the
beam equation given by equation (76) yields

Zrn(x) y, () 1, (0) + Z[EI(X) Y1601 n(0) = wx, t). (101)
n=1 n=1

The function w(x, t) denotes the forcing function acting normal to the
rigid body center line and arises from engine forces, aerodynamic forces,
propellant sloshing forces, etc.
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Equation 10l can be reduced to a simple form by using the con-
ditions of orthogonality between the eigen functions or mode shapes,
The condition of orthogonality is given by

2
\/pyi(x) yj(x) m(x) dx = Mj 6ij (102)
o
1 i=3j
ij={0

(103)

where the eigenfunctions

yi(x) and yj(x) are orthogonal to each other
with respect to the weighting function m(x).

Multiplying equation (80) and (101) through by Y and integrat-
ing both sides with respect to x gives the following two equations,

% :\2 [ ,? [_,?
T, .y, mdx + 3;1 . v/ EI y)" y, dx = w(x, t . dx
- '1_/ 717 L, Ty, J v By
n=1 o n=1 0 0
(104)
£ £
ny' = 2
b/\(EI yi) yj dx wf h/\m Yi yj dx. (105)
0 o
Replacing the second term of equation (104) by equation (105) gives
0 ) Il b )2
. . 2 =
551 T \/ﬁ vy, yv. mdx + EJ I ws \/ﬁ v y, m dx J[‘ w(x, t) y, dx,
n=1 o} n=1 o o} (106)
which reduces to the following, using equation (102)
Q.
ot o =gt (107)
J
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The quantities on the right hand side of (107) are

£
Mj = \/n my? dx (generalized mass) (108)
o
£
Qj = b/\ w(x, t) yj dx. (generalized force) (109)
0

Equation (107) gives the response of the jth mode to the forcing
function Qs. If w(x, t) is independent of the motion of the beam, the
modes are uncoupled and can be solved separately. 1In the actual case
the aerodynamic forces, thrust forces and sloshing forces are coupled
with the flexible motion of the vehicle,

In practical applications each of the bending modes possess
some dissipative forces which provide damping. This dissipative energy
is small in comparison to the elastic and kinetic energies and its
effect can be approximated by including a viscous damping term in
equation (107).

iy

Q.
2 = ﬁi (110)

20wy g g T

The damping ratio may vary between .0002 = ¢ = .025.

To illustrate the response of the flexible mode to a forcing
function assume that the forcing function is aerodynamic loading and is
uniformly distributed over the length of the vehicle. The aerodynamic
loading will be given by w(x, t) = w(x) sin @, where « is the angle of
attack., If we let the angle of attack vary with the control frequency
we such that o = wct, the generalized force will be

£
Q, = sin u.t \/ﬁ w(x) yi(x) dx. (111)

1
o
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Then,

¢

)y
JFw(x) yi(x) dx

w4+ 2 1.+ W, =
Ig b oAby g g Tup oy M srn et (112)

The transient solution of cquation (112) is obtained by setting
Q;/M; = 0 and is

-Gt
., = Ae sin (udt - gi) (113)
where wq is the damped natural frequency,

[ — e

wy = ow N - g (114)

d

The particular or steady-state solution of cquation (112) is
= i £ - . 1
iy Bi sin (wc ), (115)

where the amplitude is

Y

f w(x) v, (x) dx
O

B_l = 2 - U)\b VE (116)
o 1 - 2F &
Ml wi [( > <g LJ o/ J
and the phase lag is
“e
25 w;
= tan~! ———s . (117)
“e
L - w, <
i
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The complete solution of equation (112) consists of the sum of the

transient and steady-state solutions given by equations (113) and (115),
respectively.

. -tut
5, = A0 sin (uyt = ¥) + By sin (ut - 0. (118)

Two initial conditions are required to determine the constants
A; and ¥ in equation (118), and can be found by specifying that the
initial displacement and velocity are zero; u(x, 0) = u(x, 0) = 0 at
t = 0. The corresponding normal displacement and velocity 71;(0) and 71,(0)
must also be zero as can be verified by substituting these initial condi-
tions in equation (100)., The constants in equation (113) subject to the
initial conditions n(0) = 7,(0) = 0 become

2 2

Ye ([ u)d wc
TI— 1(2! (7> +<2€2 | -ar)

i d 7i i L i

w A Z w A7
(22) + (- %)

2.1/z2

)

y/
/ﬂ w(x) yi(x) dx
O\/

(119)

and

zgi (]. _ giz)l/E

_— . (120)
2.2+ (1 - i
1

57

= tan-?
IjJri

The resulting motion of the elastic displacement relative to the longi-

tudinal rigid body axis due to the distributed aerodynamic loading is
then

-cwit
ulx, t) = j;jyi(x) Aie sin (wdt'- wi) + Bi sin (wct - Q)}'. (121)
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The tramsient term in equation (121) becomes negligibly small
as time becomes large due to the exponential term e~SWt, The second

term remains sinusoidal with its amplitude and phase angle dependent
on ¢; and w./wj. The familiar resonance condition occurs as the con-
trol frequency w. approaches one of the bending mode frequencies Wy

2, Nonhomogeneous Body

Space vehicle, configurations are sufficiently complex in their
structural makeup that a lumped parameter idealization of the system
is often used in computing the mode shapes of the vehicle., The basic
data required for the calculation of the natural mode consist of
(1) the distributed mass m(x) and rotary inertia y(x), and (2) the
bending stiffness EI(x) and shear stiffness KG(x) distribution,

For a typical space vehicle, a set of curves representing
the structural and inertial properties are shown in Figure 15. Here
the curves of u(x) and KG(x) are not shown, but are of the same general
form. In the discussion that follows, the rotary inertia u(x) and KG(x)
will be neglected. It has been shown [1] that the rotary inertia can be
neglected without appreciable error in mode shapes but the effects of
shear flexibility KG(x) should be included.

In beam theory, the total linear or angular deflection of any
point can be represented as the sum of the deflections at that point pro-
duced by individual forces and moments, This is a statement of the
principle of superposition for linear systems and is expressed mathe-
matically as

q. = Z cC F,, (122)
i ij ]
j=1

where Fj is an arbitrary force or moment called a '"generalized force"
and qj represents the linear or angular displacement and is called a
"generalized coordinate.'" The constants Cij are called the flexibility
influence coefficients.

If we let F; represent forces and q; represent linear displace-
ment, then Cij repreSents the deflection at station i due to a unit load
at station j.” Using D'Alembert's principle, let the forces Fj represent
the appropriate inertia forces; then,

F, =-m, 4q,. (123)
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FIGURE 15. TYPICAL MASS AND BENDING STIFFNESS DISTRIBUTION
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If we consider harmonic oscillations of the system, the particu-
lar solutions of the system are of the form

iwt

45 = 94 (124)

. _ . iwt

a3 = 1w qje (125)

. iwt

d = - F qje (126)
or

Fosm o qjert. (127)

Now substituting equations (127) and (124) into (122) and dividing
through by welwl ) we get

n
= C.., m, .. 128
oz }: i ™5 95 (128)

When written in matrix form, equations (128) become

— - - — —_— e
q1 Cqq my Cir mp ... Cip my qq
9z 1 Copmy  Coomp ... Con mp 9z
. —= = . . . (129)
w
4, Cny my Chz Mz «.. Cpp mp 9,
L - | . L. -

Since the relative magnitudes of the displacements q1, qz2 ... qp
are sufficient to define the shape of the mode of vibration, it is con-
venient to normalize equation (129) by the deflection q; taken generally
at the engine hinge point. The resulting quantities will be referred to
as components of normalized eigenvector, defined by the expressions

g q q
Y179 72T g T q,
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After normalizing then with respect to a. equations (129) become

Y1 Ya
Yo Yz
Vo o

Written in this matrix form, equation (131) represents a set of n

simul taneous equations of motion and can be solved by matrix iteration
for the natural frequency u of the first mode of vibration and the cor-
responding normalized amplitudes y5, Y-, .u., ¥yn = 1, which define the
shape of the elastic deflection curve,

The square matrix on the right side of equation (131) is the
dynamic matrix and is seen to consist of the product of the elastic
matrix and inertia matrix, or

i) o [ ) (32

To compute the shapes and frequencies of higher modes than
the first mode, it is necessary to suppress the dominant tendency of
the equations of motion to converge to the shape and frequency of the
first mode during the iteration process, This can be effectively
accomplished by introducing the orthogonality relationship between
principal modes of vibration, i.e.,

s (133)

where yjr and y-S are the normalized amplitude of the r and s mode,
respectively, r # s. The orthogonality condition, equation (133), can
be written in a slightly modified form by multiplying it by the ratio
Cin/ynr shown below to eliminate,say the nth degree of freedom and
yields the n equations,

n r
i s
C, m.{—=]y.” =0, (134)
XT in ] <§n;> yJ

/.
j=1 49



The above expression can be written as follows and represents the
modified form of the orthogonality condition.

r r
Y1 S s s
Cin m,y - vy, + Cip mo Vyo t+ .. F Clnmn %1 =0
n
Y Yy
er s v.© s s
Con my V1 + Cop Mp &=y, + ... + Conmp yg = 0 (135)
yn yr
* r T s
Chpn M1 n y1 + Cpn mp " Vo2 + ..+ Cupmp vy =0
Yn Yn

Writing the expanded form of equation (131) to define the shape and
frequency of the s flexural mode, we have

s s s s

yi = w(Cigmy ¥y, + Cipmoys + e+ Cipomy vy )
s s s s

Yo = & (Cop my yy + Copmpys + .u. + Cop mp yp ) (136)
s s s s

Yo = w?(Cny my ¥y + Cppms yo + ...+ Chp mp vp ).

By subtracting the first equation of (135) from the first
equation of (136) the second equation of (135) from the second equa-
tion of (136) etc., y,% can be eliminated from all but the nth equation
and the orthogonality relationship introduced. Performing these operations,
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T.
Yy
s V1 s s k \ s
Vi =‘-"21:<C11'Cln :.> myy; + <012“C1n X&:) moys + ...+ <Clk'cln — ) m Yy :!
y /

n n Yn

Y™ 7
s s
Yo =w2{:(021'02n ‘ZJQ myy; + <C22'Czn Xi) may2t ... <C2k'czn ) m Yy J
Yn

T
y
V1 s ¥yo s k
y_S=u® (bnl'cnn m;yy +{ Ch2-Cpn meys + oo | Chp-Cpp mYy s
n \ r r r k
Yn Yn Yn

(137)

where k = n - 1,
Excluding the nth equation of (137), there are (n-1) equations
in the (n-1) parameters y;S, ys5, ..., ¥pn-1%. A solution to this set

of equations is also a solution to the original n equations.

Putting equation (137) in matrix form yields

r— o r— e —
r.
y
s Y1 Vo k s
Ya <?11‘Cln f) my <?12’Cln r> mz ... (Elk'cln __%> mel (Y2
T r r
Yn ¥n Yn
s X]r y r\ ykr s
Yo <?21‘Czn ) my (bzz‘can . P (ézk'czn ) m |2
1 T N r/ r/.
= = y Yn Yn
W
s z]r Vo ykr s
Yk <bk1'ckn ;) my <?kz-ckn r> Mz ... <%kk'ckn ™| 1Y
r r
Yn Yq Yn
L. L J4 L
(138)

where k = n - 1 and yks =1,



The above expression embodying the orthogonality relation can
now be solved by matrix iteration for the natural frequency and corres-
ponding amplitude y;5, y.S, ..., y,_1° for the s flexural mode. Once
the iteration is carried to convergence, y;%, y-5, ..., y,_1% are known
and the value of y,® can be solved for using the orthogonality relation-
ship, equation (133), and becomes

T S r S r S

s (ml Yi Yi tmzyz Yo o to...mpoy VN

y o= - ) (139)
n \ r

mn yn

B. Derivation of Bending Equation [9]

The equations necessary to describe the bending dynamics of a
flexible vehicle are obtained by applying Lagrange's equation of motion
to the expressions for the energy and forces acting on the system, The
energy consists of kinetic energy, potential energy, and dissipative
energy. The energy expressions are written for three separate categories
of the vehicle: the empty airframe, the swivel engines, and the liquid
propellant,

The expressions for the kinetic energy T, potential energy V,
and dissipative energy D are given below,

Airframe Energy

2
_ 1 e ca 3
T, =3 fmA <,- (xcg-xaf)(p+ )— i s Yi/, dx
i
(140)
— 2
l 1 b . 1
+2f10<w+>“, qui> dx
i
Vo=l uFm i Frbm B - x ) o (141)
A 2 2: i i 4 2 n cg at’ ¢
i
bo=1 ) 2w ot 52 (142)
A T2 ©p my 8y Ty
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where

MA = mass per unit length of empty airframe

I' = mass moment of inertia of empty airframe per unit length about
the c.g. of elemental segment

1. = amplitude of ith bending mode

i
Yi = normalized bending deflection of ith mode
Y; = slope of bending mode
w; = natural frequency of bending mode
/’\ m >
m, = m' Y.% dx + / I' Y'© dx
i J i J o i
¢, = structural damping ratio of ith mode
m' = mass per unit of length of airframe with propellant
- _F-D
& m
X, ¢ = location of empty airframe c.g.

The first term of equation (l40) represents the translational
kinetic energy due to rigid body translation and rotation and also due
to the flexible body motion. The second term represents the rotational
kinetic energy due to rigid and flexible body motions. The first term of
equation (141) represents the potential energy due to elastic deforma-
tions written in terms of the kinetic energy. The second term represents
the potential energy due to a rotational displacement in the acceleration
field g. Equation (142) represents the energy loss of the airframe due
to structural damping.
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Swivel Engine Energy

_1 , LN L
i i
~ (143)
— «
1 . . '
+ 35 I <§ + B+ Zij¢l Y (x})>
i
Vs 1L f (BBt m B(x - %)
E 2 °E YE ¢ 2 Mg cg *h
- \2
1 -
- 0 + LY
Fm B iy <@+5 }Vir,iYi(xh/)/) (144)
i
N R T
Mg VAP T “h L@ ST |
i
D=-1—Ic(fs-p)2=1r o, (- B)7 (145)
E 2 'E E E °E E '
where
IE = mass moment of inertia of swivel engine about hinge point
iE = mass moment of inertia of swivel engine about its c.g.
ﬁE = length from engine hinge point to engine c.g.

v = natural frequency of swivel engine
CE = damping ratio of ecngine

= engine mass.
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Propellant Slosh Energy

2
Z m {z - (g %) B Zﬁi Yi(xo)}
i

2
— . — . 3 " R
S 0 X 150 SR P

H
1l
o) =

2
+ Zni Yi(xs) + Zs)}
i
V. = L wCm_ ZZ + = ﬂm (x  =-x) + ‘njm (x  -x )1 g @
s 2 / s s s 2 o o 211 5 cg s’ | & @
(147)
o '
- }jms g Zs {cp+ E_:n Y (xs)}
i
D == ) 20 m ¢ 22 (148)
s 2 s 8 °s s
where
m_. = fixed mass for fuel slosh anology

I, = mass moment of inertia of fixed mass of propellant about its
C.8.

mg = slosh mass for fuel slosh anology
Xo = location of fixed fuel mass c.g.

Zg = displacement of slosh mass lateral to vehicle centerline.
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b
I

s location of sloshing mass c.g.

natural frequency of oscillating propellant

£
7]
I

ue
(4]
]

damping ratio of propellant.

In order to use Lagrange's equation, the following derivatives
are necessary.

i o
(149)
- ] (4 hd 1 1
fI <(P+Z T']‘.Y>Y1 dX
i
oT s -
d—igﬁ_é=z/’\mfl\Y dx-qi]m'ﬂ de+> fm Ygdx
i v e
(150)
. | 1 ] 1]
- ¢ f I' Y. dx - _JT] IOY dx
oV
L i
aDA
M_i= zzwi m 8y 7y (152)
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oT ) — .
E hd [ . e 1
3h;  E Y00 % 7 Feg® Tt Z”i Y 0q) = g ($FB* /T Yi(xh)>}

i i

' ' . . 7
- Sp Y0 F 7 Pt Zi:”i Y5O 1

1

- (153)
L] - '
- IE 4 (X1) )LCP + B + > Ths Y'(X'h')}

1

SL v {3 B v ) h e

1

aTE

at of; E L R ZZJ”i Y Gq) - Ay <§ P *—jgini Yi(xh):b

5, Y10 {? - gt j{:ﬁi Yi(xh)}

(154)
.e b i e [} w
- IE Y;(xh) o+ B8 + };ni Yi(xh)j
i
ST YGg) (BB }:ﬂi Y;(xh)}
i
ov T }_ ) .
E — = 1 l. - Y‘. ) \ . Y,( )
'552 = +5, 8 Yi(xh) o+ B+ / i (%) m, g Y, (x é{)nl : (5
(155)

e Er o+ T o)
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= =0 (156)

BTS — r. -
5_7']'_ = > mey Z - ,20(:[) + 2:‘1 Yi(XO)} Yi(xo)

i — .
1
§;1I b+ jjl? Y (x,) Y (x,) (157)
VA LA S i e

~

1

+ ;{j m {? - L0+ ;llni Yi(xs) + ZS Yi(xs)j

—

5 oo N |
dt o - Yi(xo) 21{“0 {? - Lo t Zi;”i Yi(xozf

o '
- Y‘i(xo) ZIO {Eﬁ + /E_,.ﬁi Y‘i(xo)} (158)

" o g
b . N e w0
+ Y (%) st {Z - A G ) i Y (xg) + Zgr

-

R\
S _ ' :ﬁ =
dn, Yi(xg) ) omg8 L (159)
D
—= = 0. (160)
i

Using the above derivatives and the Lagrange equation, the
bending equation becomes



(St oee T s o v bio o s, o

1 1

- iE Y;(xh) - 241HOZOY1(XO) - ZEjIO Y;(xo) - }jlns ZS Yi(xs)
+ 1 2d .o [ 1 ' '2 - '2
1), ¥2 xcp+~JmAYidx- I YT dx - I YT ()

o NG - "
+ Lmo Y2 (x0) - > I, Y'iz(xo) + st Yf(xs)}ﬁ - I YiGg) B

. i .
+ Ems T 25 zwi mng t Zzwi mo by Ny

+omp Y, () Z - beg® * Z.ﬁ Y000 - [&‘5 + B+ Z.ﬁi Y'i(xh)L'
. . ) . )
- SE Y;(xh) Z - Ecg¢ + ZLJﬁi Yi(xh)j-+ IE Y;(xh) &+ 5+2{jﬁiY£(xh2f

<

5y B Y6 9 B g Y'i<xh>} S E Y0y ) g TG

- my g Y () <P+) uh Y'i~(i<h)}+ g } Yi(x)m Z_ = Qnu. (161)

Equation (161) can be simplified by noting that the coef-
ficients of Z and % represent mass and inertia terms taken about the
vehicle c,g. Since the linear and angular momentum is conserved for
the normal modes of vibration, then

U/X?A Yi(x) dx + >Lln° Yi(xo) + >;1ns Yi(xs) =0 (162)

i i
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and

Mol Y, (Xg) - } I, Y'i(xo)

—

[~]

] T ]
- JmA ﬂaf Yi(x) dx + IE Yi(XE) -

+ Smszs Yi(xs) + flé Yi(X) dx = 0 (163)

—

and, therefore, the first two terms containing 7 and { drop out.

The coefficient of % in equation (161) can be defined as the
generalized mass by letting

T3
= T2 _ 1 12 _ T 12 2
m, fmA Yy dx fIO b4 dx IE Yo dx + Lmo Yi(xo)
SN v Pey ¢ ) m Y2(xe) (164)
o "y 7o /s TiNTSO

Now using expressions (162), (163) and (164) and regrouping
some of the engine terms, the bending equation can be written as follows:

\'_7

TR .
m Yi(xs) Zs g LYi(XS) mg Zg

T+ m,
mef Foamg e Gy

+m, of y, +
i i 71

1

>~

Ip YiGq) B+ [ml ¥i0q) - Sy Y'i(xh)J LZ " heg®* Zy‘i Yi(xh)J

[“‘EEE Yi0q) - Iy Y'i(xh)] [@3 B+ }:.ﬂi v (Xh)}

L

Mg 8 {'Y'i(xh) Zni Y0+ od YIG) [q} + B+ Sjﬂi Y’i(xh)]

A _.‘

-+

¥ G [cp + Zni Y'i<xh>]} = Q - (165)
1
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The generalized forcing function Qﬂi is defined as

£
Qﬂi = \/ﬁ w(x, t) Yi(x) dx (166)

(o]

where w(x, t) is the external forces acting on the vehicle and Yj(x)
defines the mode shape., The two primary forces which affect bending
are the thrust and aerodynamic normal forces. They are as follows:

Thrust
wox, t) = R'p (167)
(T) _ o1
Q= I Y 6] b (168)

Aerodynamic

e Cy

v, (%, t) = Cﬁ%(X) - o q S; Cﬁj ST (169)
QéA) =q8S k/\ CﬁU(X)a Y, (x) dx
: ;

(170)

=qs ZilCﬁa(Xn) a (Ox,) Yi(xn)‘

n

The generalized forcing function of the bending equation is
then

o]
|l
L]

o

l L 1
(171)

[R' Y.(xp)]l B+qs ;{jcﬁy(xn) a () Y, (x).

n
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The bending equation can now be written as

'ﬁi + ZQimiﬂi + L.Jzi iy = mi,’ (172)
1
where
Y. (x) g Y (x )
F __ \ \
m, m / Mk “sk * m 2JHEk %k
N k t Kk
__L> f ) o Y e | 4 T (e Y (k)
m, /, (E h‘EthJ ey O Y0,
i
j#i
. LR . .
- SE Yi(xh) Yj(xh)}'rﬁ + ng'liJ 1?i(xh) Yj(xh) + Yi(xh) Yj(xh)
]
j#i
by YL(x) YL ( )1‘ -—E-] ()-”Y'()Z 173
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+ a; {?E(Xcg - Xy + 4 ) Y. (xh) - SE(XCg - xh) Yi(xh) -IEYi(xh)j*Q
=5 Fre s
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Equation (172) above describes the bending dynamics of the flexible
vehicle for each ith mode of vibration. FEquation (173) represents the
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forcing function due to k propellant slosh modes, engine dynamics and
aerodynamic forces. Frequently, the 7:, 7n:, Z, § and ¢ terms are small

s
in comparison to the other terms in eq&atign (173) and are neglected.

The open-loop coupling between each orthogonal bending mode
(ni_to 1) can occur through the following forces: (1) aerodynamic
damping,~ (2) engine thrust and engine inertia, and (3) engine gimbal
bearing friction. Some of these effects have been neglected in the
forcing function of equation (173),

The open-loop couplings between the nonorthogonal modes in equa-
tion (173) are

€] n; to mode Z,, coupled inertially and elastically,
(2) ny to mode B, coupled inertially and through thrust forces,
(3) n; to mode q, coupled through aerodynamic forces.

The closed loop coupling of r. to mode 7. depends on the trans-
mittance from mode to control system, 1.e., the wgy in which the mode is
sensed by the control system,

VI, SLOSH EQUATIONS [9]

The motion of liquid propellants in cylindrical tanks can be
described by the well known spring-mass model. This method gives the
engineer an insight into the problem and lends itself to a description of
the liquid motion which is readily adapted for digitat and analog simulation.

This mechanical analog duplicates the hydrodynamic forces and moments
acting on the tank which are simulated by replacing the slosh mass by an
equivalent rigid mass for each fundamental slosh mode. Reference 2 con-
tains the necessary graphs to determine the slosh mass, slosh mass loca-
tion, associated spring constant and damping constant, and other slosh
variables versus the liquid column height-to-tank-diameter ratio for
tanks with circular and annular cross sections,

The balance of the propellant exclusive of the slosh mass is assumed
rigid and is included in the total mass and mass moment of inertia of the
vehicle,

The pendulum analogy used to duplicate the motion of the sloshing
propellants is similar to the spring-mass model. In this case, the slosh
mass is replaced with a rigid mass suspended by a massless link in length
£ as shown below.

63



PENDULUM SLOSH MODEL

In this case, the length £ is chosen in such a way that the ratio
of the longitudinal acceleration g to the length of the link £ represents
the square of the natural frequency of the liquid mode. This model
describes the motion of the liquid propellants equally as well as the
spring mass model, but the equations will be shown for the spring mass
model only.

Generally only the fundamental mode of oscillation is considered
since the slosh masses of successively higher modes have less influence.
Also test experience indicates that a great deal of turbulent mixing
accompanies high frequency tank oscillations, and that damping effects
are greater, further reducing their significance in control analysis.

The slosh model and the flexible body configuration are shown in
Figure 16, The equations of motion for the slosh mass using the spring-
mass-damper system can be conveniently derived using Lagrange's equa-
tions. Only the fundamental slosh mode will be considered for each of
""i" tanks mounted along the vehicle center line., It will be further
assumed that the motion of the slosh mass is only influenced by rigid

body translation, rigid body rotation, and bending oscillationms,

Before applying Lagrange's equation an expression for the kinetic
energy T, potential energy V and dissipative energy D must be written.

.2
1 . . : .
T=Ems{ -Esw+zniyi(x8)+zs} (174)
i
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FIGURE 16.

SPRING MASS DAMPER SLOSH MODEL
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The Lagrange equation is

d oT oV D _
dt aqi * aqi * aqi Qs

where the generalized coordinate, qi = Zg,

Taking the respective derivatives, we get

oD .
3 % %
Q, = 0.

The slosh equation now becomes

T ~

= = = 2 z ;
V=3 kg Zg + mog L% - mg & Zg 99 + Zijni Y;(xs)}
i

(175)

(176)

(177)

is the one of interest,

m LF + Zs - ﬂsé + K;jhi Yi(xsi}+ ks ZS -m g {é +

a

1
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Since 2fg wg = Cg/mg and w2 = kg/mg, the slosh equation becomes

. . - Z TN 1
+ o - e ' Lo \ e
Z 2§Sms ZS + W3 Zs £+ 8 {é + Ty Yi(xs)J i? + / i Yi(xs)ju
I e

1

(184)

The right-hand side of equation (184) represents the forcing
function of the sloshing mode, The propellant sloshing modes are forced
only by inertial coupling with the vehicle rigid and elastic body modes.
The coupling of the sloshing modes back into the vehicle is a combination
of both inertial and elastic coupling.

If the flight control system directly senses propellant motions,
then it responds to these signals and reacts on the body modes; these
in turn affect the propellant modes. If the flight control system does
not sense propellant motion directly (the more common case), then it
sees these motions only as the body modes (which is the case with con-
ventional sensors). In either case, the slosh modes must have their
loops ""filtered" by the body modes. It follows then that these pro-
pellant modes will only couple significantly with modes in their
immediate frequency range or with modes having a large enough pass
band to encompass the slosh frequencies.

VII, WIND REPRESENTATION

The following is a brief outline of the method to be used in
applying the MSFC "synthetic wind profile" to control system studies,

The quasi-steady state nondirectional wind condition used will not
be exceeded more than 5 percent of the time for the worst monthly period.
This corresponds to a 95 percent wind speed profile envelope as shown in
Figure 17. For example, from this profile the value of the wind speed
is 75 meters/seconds in the 10 to 14 km region, commonly referred to as
the "jet stream'" region. The aerodynamic loading is typically most severe
in this region since this is also in the range of altitudes where the
maximum dynamic pressure occurs during the boost phase of flight.

Figure 18 gives the 99 percent probability-of-occurrence vertical
wind speed change spectrum envelopes as a function of altitude (y) and
scale-of-distance (Ay). These curves define the wind buildup rates
(shears) which for the given scale of distance will not be exceeded
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more than one percent of the time for the worst wind month, The shear

data arecompiled for altitude layers to 5 km in depth. By starting with
the wind speed given by the profile envelope for the altitude of interest
and subtracting shear for each altitude layer, the wind buildup may be
determined over a 5 km layer. The procedure for obtaining the wind buildup
is shown in Table I where the selected altitude was 13 km, The 95 percent
wind speed corresponding to this altitude is obtained from Figure 17 and
found to be 75 m/s. The values of AY and AVy shown in Table I are then
obtained from Figure 18. These tabular data are then plotted as shown in
Figure 19,

The angle of attack due to wind, ¢4, may now be constructed by
using the relation

V cos %K
A

_ c .
R Vw i XC (pitch plane)

or

\Y
W
A 1
o 7 (yaw plane)

where V is the vehicle velocity in (m/s) and Xe is the tilt angle measured
from vertical at launch. The ¢&; curve can be computed for a frozen
time-point study (constant coefficient study) or for a time-varying

study.

For a constant study, the V and X, at t = t [(Vwmax)] could be
used or the velocity, and tilt angle could be used corresponding to the
trajectory time from t; = t[h (Vi) - Skm] to to = t[h (Wg,,)]. The
wind curve Vy(t) appears in Figure 20, A line can be faired into the
curve at t; from Vyu(t) = 0, without affecting peak transient values.

The wind starting point should be 2 seconds before t;. The wind max
plateau (P) may hold for a short time or simply be a peak. There are
no published data which state statistically how long the wind maximum
conditions may exist., From past observations, the altitude layer over
which the maximum wind peak may be held at the 95 percent maximum wind
speeds will not exceed three kilometers. After the plateau, wind shears
< 99 percent shears may be used to fair the curve into the quasi-steady-
state wind speed envelope curve,

The relationship between established gust and/or embedded jet
characteristics and the idealized wind speed profile envelope is shown
in Figure 21. The embedded jet is found in the 4 to 15 km region, and
is statistically independent of the wind shears. The gust in Figure 21
is a typical oune. The gust may be superimposed on the top of the
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quasi-steady-state wind curve in Figure 20. When the gust and 99 percent
shears are combined in this fashion, they should be reduced by 15 percent
to maintain a more likely probability level. This method is applied in
Table TI.

Figures 22 and 23 illustrate the typical response for a large
vehicle for two types of wind disturbances, 1In the first example, the
C4 curve contains the 99 percent shear buildup into the 95 percent pro-
file. 1In the second case, a quasi-square wave gust is added.

The preceding figures are used primarily for a rigid vehicle. For
nonrigid studies, sinusoidal gusts are of major interest. For simula-
tion of the sinusoidal gusts, wind speed changes for Ay scale distances
< 1000 meters should not be used to construct wind buildup rate portion
of profile. The gust wave length, the peak-to-peak amplitude, and
number of successive gusts are given in Table ITII for use with the
quasi-steady-state winds. The sinusoidal gust curve will appear as
shown in Figure 24,

For a time-varying wind response study starting at liftoff, the
synthetic wind profile constructed in Figure 19 is used except that the
curve will originate from an altitude of zero and connect with the curve
representing the statistically designed wind shear (wind buildup rate)
curve at 8 kilometers altitude as shown in Figure 25. To obtain the
wind relationship above this altitude (13 km), one may back off from
the peak using the same wind speed change rates as for the buildup, and
then fair into the quasi-steady-state wind speed envelope curve. Also
one could fair the curve to the wind speed envelope curve with less (AVy,)
wind speed change rates than for the buildup curve. The wind curves
should be constructed for any altitude in the same fashion.

The wind tables and graphs included in this section are shown:for
illustrative purposes only. Since wind data is constantly being revised
and updated, it is suggested that the latest wind data be obtained from
the Aerospace Environment Office, Aero-Astrodynamics Laboratory, before
attempting to apply the methods for wind construction discussed in this
section.
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WIND SPEED BUILDUP FOR 8KM TO 13KM ALTITUDE

TABLE I

95% Wind Speed Ny
YA\ y at 13 km for Altitude Layer | Wind Speed
Meters | Meters m/sec m/sec m/sec
0 13000 75 0 75
100 12900 9 66
200 12800 14 61
400 12600 22 53
600 12400 27 .4 47.6
800 12200 31.7 43,3
1000 12000 35.3 39.7
2000 11000 48 27
3000 10000 55.2 19.8
4000 9000 59.2 15.8
5000 8000 61.5 13.5
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TABLE II

WIND SPEED vs ALTITUDE INCLUDING GUST

95% Wind Speed Vg Wind Speed
YA\ y at 13 km reduced by 15%
Meters Meters m/sec m/sec m/sec
+ 50 - 300 | 13050 -» 13300 0 75.0
+ 0 5250 | 13025 - 13275 7.65 82.65
+ 25 | 13025 7.65 82,65
0 | 13000 75. 0 75.
100 | 12900 7.65 67.35
200 12800 11.9 63.1
400 | 12600 18.7 56.3
600 | 12400 23.29 51.71
800 | 12200 26,945 48,0555
1000 12000 30.005 44,995
2000 | 11000 40,80 34,20
3000 10000 46.92 28,08
4000 95000 50.32 24,68
5000 8000 52.275 22,725
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TABLE III

SINUSOIDAL GUST CHARACTERISTICS [13]

A, Gust Wave Length A, Peak-to-Peak No. of Successive

(meters) (Amplitude (m/s) Cycles
50 3.5 10,0
100 5.0 8.0
200 9.0 6.0
300 11.5 5.0
400 13.5 4.0
500 15.0 3.0
600 16.5 3.0
700 17.5 2.5
800 18.5 2,0
1200 21,0 1.8
1600 23.0 1.7
2000 24.8 I.6
2400 26.0 1.5
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VITI, TRANSFER FUNCTIONS AND BLOCK DIAGRAMS

The transfer functions contained in the block diagrams are most
generally shown in the Laplace variable S.

The Laplace transform of a time function f(t) is defined as

oQ

F(s) = L[f(t)] = f £(e) e 5% g,

O+

where S is a complex variable. For F(s) to be meaningful, the integral
must converge and f£(t) must be defined for t > 0 and equal to zero for

t < 0. There are limitations on the functions f£(t) that are Laplace

transformable. To assure convergence of the Laplace integral requires
that (1) f£(t) be piecewise continuous over every finite interval and (2)
that f£(t) be of exponential order,

Consider for example, the Laplace transform of the derivative of x(t)
It is

which gives the result

L

gz;-} - s X(x) - x(0%),

L. -

where x(0+) is the initial condition.

Similarly, the Laplace transform of the second derivative of x(t) is

= +
L(-S—-C%J = 32 X(s) - S x(0%) - d x(07) zéo ,
L
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where
s x(0+)
and

dx (01

dt

are initial conditions. The Laplace transform of other functions commonly
used in control theory can be found in References 7 and 8. The outstand-
ing features of the Laplace transform are its ability to convert a dif-
ferential equation into an algebraic equation, its ability to handle
initial conditions directly, and its wide range of application.

A transfer function expresses the dynamic relationship between out-
put and input. In general, the output quantity of any linear component of
a system is related to the input by a gain factor and combinations of
derivatives and integrals with respect to time.

For example, consider the second order differential equation
X + ax + bx = K(¥ + cy).

The right-hand side represents the input or forcing function of the system,
K represents a gain factor, and x represents the output or response of the
system,

The Laplace transform of this equation is
dx (0ot
$2x(s) - s x(0h) - —E%E—l + a[SX(s) -~ x(01)] + b X(s) = K[SY(s) - y(0O") + cY(s)]

and

+
*y 4 9200 0t) - y(ot
K(S + C) ¥(S) , § x(07) + = a x(07) - y(07)
ST + a8 + b S= + aS + b

X(s) =

The first term on the right-hand side of this equation represents
the transfer function and the second term represents the initial condition
operator. Frequently in control system studies, the initial conditions
are made zero for simplicity. 1In this case for zero initial conditions,
the ratio of output to input becomes

X(8) . _K(8+ 0O
Y(S)  S® + aS + b’
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The roots of the numerator in the above expression are called zeros, and
the roots of the denominator are referred to as poles,

The Laplace transform of the yaw plane equations shown in Section IV A
are summarized below assuming zero initial conditions. These equations
are written in terms of the wind angle ¢ ,(s) and represent the rigid body
equations using a control law of the form

B=ayptap+ b+ gz,

. T
Als) = (1 - g.Kz) 8% + !% (K. + boKs) + a;C- | 8%
L 4
+ [Lcl + C(ag + bo) + (CKo = CiKz) (5 + g:)_} S (184a)
[ , |
+ v L(C:K: - ClKB) (ao - Klgg) - (Cl + (,bo) KlJ
a (s) w
(P(S) = - A(S) ]7(C2Kg - ClKj) g: + CEbO + Cl—J S (184]3)
L
o (s) ]
a(s) = XO) L(l - Kzgo) ST+ Coa,S + Cgaoj S (184c¢)
aw(s) - g
hd CXW(S) i o
Z(S) = _A.G_)_ (K: + KBbO) S< + (C;K; - ClKB) a]_S
B (184e)
+ (C-Ko - CiKy)(ag - Kign) - (€1 + Cobgy) KlJ
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a (s)
Als)

.Z.(S) = I:(Kz + bio) 52 + (C2K2 - ClKj) alS
(184¢)

+ (C2K2 - ClKB) ao} S-

Equation (l84a) above is called the characteristic equation of the
system, Equations (184b) through (184f) are transfer functions of the
respective variables with respect to the wind angle 0, (s). When drift
minimum gains (ag, by, gs) are used, the constant term in equation (184a)

and the drift equation (184e) are zero, or
(CzKz - C1K3) (agp - Kig82) - (C; + Czby) Ky = 0. (184g)

In this case, an S can be factored out of the A(s) equation and the
numerator of the Z(s) equation as follows:

1
A(S)DM = S{(l - g2K3) 82 + {:V(K2 + bOK3) + angJ S + {Cl + Cg(ao + bO)

. (184h)
+ (CoKs - C1Kz) (5% + g2)J}—.
. a (s)
Z2(s) = Z%ES;;‘ {(Kg + Ksb,) § + (CKp - CiKs) al} s, (1841)

where the subscript DM denotes "drift minimum."

Notice that substituting A(s)py in equations (184b), (184c), (184d),
(184f) and (184i), the S factor in both the numerator and denominator cancel
as a result of the drift minimum gain relation (184g). Solving for the
three roots of A(s)py = 0 in equation (184h) reveals that one root is located
at S = 0. Since this root is located at-the origin of the S plane, it is
commonly referred to as the '"drift root pole."
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An additional Laplace transform theorem which is useful in control
theory applications is the final value theorem. This theorem states that
if a function f(t) and its first derivative f'(t) are Laplace transformable
and if the poles of S F(s) lie inside the left-hand S plane, then

lim S F(s) = lim f(t).
S5 0 t— o0

This theorem is applied below to the expression for i(s) to find
the steady state drift for a wind profile given by

Vv
_ W - At
aw(t) - v < - € > ]

where Vy,/V is a constant, The transform for this expression is

(VW/V)A

Oéw(s) - S(s + A) °

(1843)

Substituting (184h) and (184j) into equation (184i) and applying the
final value theorem gives

lim Z(t) =
t—>o0
(V/wx S[(Ks + Kzbg) S + (CoKy - C3Kz) aql y

Lim [s(s ¥ h)] j
S 0 s{(l- g2K3)82+[ (KoHKsb +a1Cp) ]S+C1+Cx(a +bo)+(C2Kn-ClK3)C—l¥g )}
and

) (Vy,/V) (CoKs - CiKz) ay (184K)

Z =

SSs

— .
Cy + Co(ap + bo) + (CKs - Cle)Cj} +g:)
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The same result could have been obtained for Zgg by using a step
wind o, (t) = (V,/V) or any other wind profile which converges to a final
value (VW/V) as t — . Hence, the.final steady state drift is independent
of the wind profile o4,(t) as long as it converges to a final constant
value,.

To illustrate application of Laplace transform theory to obtain
transfer functions and the subsequent construction of the block diagram,
consider the following simplified rigid body equations with attitude (g)
and attitude rate (¢) control. The drift (Z) and wind angle (c4,) are
ignored in these equations,

$+ Ca+ Cp=0
¢-a=0

B = agly - o) + a1

In this system of equations, ¢, is the commanded attitude of the vehicle
and acts as the forcing function. The output of the system or the con-
trolled variable is q.

Taking the Laplace transform for zero initial conditions, solving
for the transfer function ¢ to p and using the first two equations results
in the following rigid body transfer function

g8) _ - Cs
B(S) 2+ ¢ °

This can be represented by the following block diagram and is referred
to as open loop control.

B(s) o §2’-TC%I @(s)
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The third equation in the above system of equations represents the
engine deflection g in response to the commanded attitude ¢, and feed-
back from the attitude gyro ¢ and rate gyro ¢. This equation is repre-
sented by the following blocks and summing junction,

¢, (s)

4o — (3(s) = iao + a;S) ofls) -~ a cpc(s)
+

! aO + als \‘_m)

Combining the above two block diagrams results in the following closed
loop attitude control system.

RIGID BODY
L. - G q)\s)
+ S2 + ¢

¢, (s) - 3(s

\

1

ag + a,8

POST"7i7 AID

AU LR

Most practical control systems are much more complicated than the
simplified illustrative example given above and often contain multiple
feedback loops and several inputs.

By means of block diagram reduction theorems (References 7 and 8),
every block diagram can be reduced to isolate parameters in a transfer
function (if necessary to study its effects) or can be reduced to the
basic block diagram as shown in Figure 26. The block diagram reduction
provides a technique to reduce the system to a form which can be studied
in terms of general feedback theory.
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The block diagram shows a pictorial representation of the control
systems operation and the manner in which signal information flows
throughout the system. A rectangular block represents a transfer
function, lines represent paths of signal flow, arrows indicate direc-
tion of signal flow, and circles represent summing junctions.

The basic block diagram of a negative feedback control system is
shown in Figure 26.

R(s) t E(s)

@—8) 1 a(s) C(s)

B(s)

H(s)

FIGURE 26. BASIC BLOCK DIAGRAM FOR A FEEDBACK SYSTEM

The variables
R(s)
E(s)
B(s)
G(s)
H(s)

C(s)

in the block diagram are defined as follows:

reference input to control system
= error signal

= primary feedback signal

= forward transfer function

= feedback transfer function

= controlled variable.
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From the block diagram shown above, the following relations can
be written relating the variables of the system.

E(s) = R(s) - B(s) (185)
C(s) = G(s) E(s) (186)
B(s) = H(s) C(s). (187)

Solving equations (185), (186) and (187) for the control ratio
C(s)/R(s), we obtain the closed-loop transfer function

C(s) _ G(s)
R(s) 1 + H(s) G(s) °

(188)

Solving equations (186) and (187) for B(s)/E(s), we obtain the
open-loop transfer function

td

E%%l = H(s) G(s). (189)

The characteristic equation of the system is the denominator of
the closed-loop transfer function or

1 + H(s) G(s) = O, (190)

The foregoing equations are written assuming both G(s) and H(s) are
positive. Obviously, G(s) and H(s) may occur with other sign combina-
tions, Negative feedback will always occur, though, when the feedback
signal B(s) and input sighal R(s) differ in sign, and positive feedback
will occur when they both agree in sign. Positive feedback systems are
often unstable since this signal has the correct phase for regeneration
to take place around the feedback loop; and, if the amplitude of the
feedback is sufficient, sustained oscillations will result,
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IX. METHODS OF STABILITY ANALYSIS

A. Routh's Stability Criterion

Routh's Stability Criterion is a technique for determining the
number of roots of a polynomial equation with positive real parts,
When applied to the characteristic equation of a control system, (e.g.,
equation (190)), it provides a simple test for absolute stability
because a stable control system cannot have any roots of the charac-
teristic equation with positive real parts.

Let the following equation represent the characteristic equa-
tion of a control system:

B,ST + Bpo1S™"t + BrooSTTE 4+ ... 4+ By = O, (191)

The coefficients of the characteristic equation are arranged in the
first two rows as shown below. These coefficients are then used to
evaluate the rest of the constants to complete the array.

Sn Bn Bn—2 Bn_4 Bn_6 e e
st=1 | Bpo1  Bpes  Bpos  Bpo7 ...
sn=2 | Cy Co Cs ..
(191a)
sn== | d, do .o
st 21
s© B,
The constants C;, C,, Cs, etc., are evaluated as follows:

Bn-1 Bn-2 - Bn Bn-:3

Cy, = (192)

Bn- 1

89



Co = (193)

Bn- 1 Bn- 6 = Bn Bn- e
Cs = (194)
Bn- 1

This pattern is continued until the rest of the C's are zero. The
constants d,, ds, ds, etc.,, are formed using the S1~! and SM~% row and
are

Cy Bpos - Bp-y Co

dl = Cl (195)

Cl Bn-5 - Bn—l CB

ds = & (196)

This procedure is continued down to the S and S rows, which
contain one term each. Once the array has been found, Routh's criterion
states: The number of roots of the characteristic equation with positive
real parts is equal to the number of changes of sign of the coefficients
in the first column. Therefore, the system is absolutely stable if the
terms in the first colummn have the same sign.

In forming the Routhian array, the following theorems may be
used:

1. The coefficients of any row may be multiplied or
divided by a positive number without changing the
signs of the first column,

2. When the first term in a row is zero but not all
the other terms are zero, substitute a small positive
number o for the zero and proceed to evaluate the
rest of the array; or substitute in the original
equation S = 1/x and then solve for the roots of x
with positive real parts. The number of roots x with
positive real parts will be the same as the number of
S roots with positive real parts.
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3. When all the coefficients of one row are zero,
the Routhian array can be completed by replac-
ing the zero row with the coefficients obtained
by differentiating the auxiliary equation
formed from the preceding row. For example,
assume all the coefficients d,, d-, ... of
the SB=3 row of (19la) are zero; the auxiliary
equation obtained from the SM-2 row is

C, 8" 2 + ¢, 8"t 4+ Cy 80"+ L., =0,

To complete the array, the auxiliary equation
is differentiated and becomes

(n - 2)Cy SN2 + (n - 4)C, SP"5 + (n - 6) C5 ST + ... =

The coefficients of this equation are inserted in the
SN-3 row of equation (191a) and are

o
-
]

(n - 2)C,

d., = (n - 4)C,

In order to illustrate an application of Routh's criterion,
consider the following system of equations for a rigid vehicle with
attitude, attitude rate, and angle of attack control:
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$+Cat+t Cp=0 (197)

Z -Kyp-Kox-Ksp=0 (198)
4

v-oe- <o t o, (199)
B =app t+ a;p + bya. (200)

This system of equations can be reduced to three equations
in three unknowns by eliminating the Z variable between equations (198)
and (199). Then taking the Laplace transform of the system for zero
initial conditions of the variables ¢, @, 8 and Z, we get

$2¢ + €10 + Cop = O (201)
K\ K-\ K=z = -
- =L - =22 _ =2 = .
<s v>“7 <s + V>o¢ 7 B s o (202)
(ap + a18)p + byt - =0 (203)

or, written in matrix form,

e —

L — -
s= Cy Cso D 0

<s - K—Vl> - <s + %) - <5§> 2| o= |-sa, | 208

(ag + a49) bo -1 B 0

= - L L. -
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L A %{s) = F(S)] ) (205)
. a0 L

The characteristic equation for this system is the determinant
of the [A] matrix. For this set of equations to have other than trivial
solutions, the determinant of coefficients must vanish, or

se C, Co

0. (206)

1}
N
1
<|F
1
/’;T\
+
<|F
1
7N
<|7
S
I

4]

From equation (206) the characteristic equation is

\

s> + <§2 + Raba Coay S2 + [cl + Cs(ag + bo) + AalJ S

v v ,
/
(207)
1
Co Ky bg  Cq Ky _
+ [%ao v 7 J 0,
where
A = <F? Ko = Gy K3}, (208
i)
The form of equation (207) is
BS° + BoSZ 4+ B;S + By = O. (209)
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The Routhian array for equation (209) is

s= B B,
s= Bs Bo
B-B; - BB
1
S —4-—1—3—932
s© Bo

and, for absolute stability, the coefficients of the first column must
all be positive. Since By > 0 in our case, the remaining terms are

BE=%+51VEI+ Coaqy > 0. (210)

v \ v

~

- . N\
BBy = BsBo _ (x4 g % . <c21<l + C.Ko + clKj) by + (CoKp )\> o

+ (R C1Co) ag + C3 agag + c§+—3—K7‘ a;bo
v Vv
) (211)
K=C K-C
+—3V—2aobo+C27\a‘32_+—3V—2b§ >0
B, = Mo - —d—c’ff by - —-J—J-CVK > 0. (212)

If at this point we solve for the values of Bo, (B=sBy - BxBo)Bol,
and Bp, and find that B, < 0 and all other elements of the first column
are positive, then there is one change in sign between elements Bz and By
and between elements B, and (BsB; - BxBo)BZt'. Since there are two changes
in sign, the system has two roots in the right half of the S-plane, and
the system is unstable, Similar reasoning can be applied for any com-
bination of signs for the elements of the first column.
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In the above case, we were able to determine the stability of
the system for a particular value of gains ag, a; and by and system
constants Ci, Ki and V. A better picture of the system stability can
be shown by plotting the stability boundaries in the gain plane (ag, bo),
(ap, a;) or (a;, bp). The stability boundaries correspond to the roots
of S for which the real part is zero. 1In this case, equations (210),
(211) and (212) are equated to zero and the equations of the stability
boundaries are

K. K3b0 )
v T v + Cxa; =0 (213)

7 A
C C-Ky; + CoK-» + C4K CgKa ;
. ~

—2— + C,Cs ) a4 + C2 agaq + C‘ + Ezﬂ (214)
1 %/ 1 2 8dpd1 K

+53%230b0rc‘2?\a +E"TC’2bO_O

K CK C 'ﬁ“—J'K?
?\ao'C\P]lbo- 1]___bo+.6_l.']2._<_(———CL—>ao=O.(215)

Equations (213) and (214) represent the dynamic stability
boundary and correspond to the elements of the first column of the
Routhian array exclusive of the By element. Equation (215) represents
a stability boundary which can be recognized as the "drift minimum' con-
trol gain relation. This relation is referred to as the '"static'" stability
boundary, or simply the trim condition for stability.

In order to plot the stability boundaries in the (ay, bg) plane,
equations (213) through (215) are written in the following form:

bo = ki3 (By = 0) (216)
kg ks . -1
b + aobo bo + do + = O, (BEBl - BZBO) 32 =0 (217)
ko . .
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bo = kgag + ks, (Bo = 0). (218)

Typical values of the constants for a large booster at the time
of maximum dynamic pressure are

C, = - .387 K, = 20.81
Cs = 1.343 Ko = 5.134
vV = 508 K5 = 17.66
and therefore,
__c + K-/V _
k1 _EEﬁETV‘E" 38.66
ks = 5592 = .04671
ks = <662 + 532) a, + 2o T CKo + O1F = 1.8595
2 v Vv
= (0 an 4 2 ) - 1.5231

ks = Co Maq% + <§§1 + C1C%>al + (K, + Kg)%f L4142

<%2 - K
ke = = = ,4911
; - )
C
- [ =1 =
<;%> . +.288

The stability boundaries, using the above constants and equa-
tions (216) through (218) for a constant gain of a; = 1, are shown in
Figure 27. We see that the Bp = 0 stability boundary is a straight line
with a slope m = 0 and b, intercept

. = - (821 + Ka/V
- K/V :

k7
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For a; = 1.0
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©
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~-80

FIGURE 27. STABILITY BOUNDARIES IN THE (ao, bo) GAIN PLANE USING
ROUTH'S STABILITY CRITERION
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The B, = 0 stability boundary is also a straight line with a slope

Ko - £ K
M= — L2 =
Ky
and by intercept
C
= .21
k‘? Cg.

The stability boundary for (BoB; - B=Bo)BZ! = 0 is a hyperbola as shown.
To find the region of stability, we now apply the inequalities given by
equations (210), (211) and (212). Equation (210) is satisfied for all
points above the B, = 0 boundary, equation (211) is satisfied for all
points below the Bg 0 boundary, and equation (212) is satisfied for
all points above the upper half of the hyperbola and below the lower
half of the hyperbola. Therefore, the three inequalities are satisfied
simultaneously only in the area labeled '"stable region."

Any set of gains (ag, bo) for a; = 1 selected from the stable
region in Figure 27 and used in the given control cquation

B =agp + al¢ + bo

would insure that the resulting system was stable.

From the above discussion, we find that Routh's stability cri-
terion provides information about absolute stability of the system and
very little information about the relative stability., Selecting gains
from the stable region would not provide information about speed of
response, transient decay times, overshoot, etc.

B. Hurwitz's Stability Criterion

The Hurwitz stability criterion is similar to the Routh
stability criterion in that it provides information about absolute
stability without actually solving for the roots of the characteristic
equation. The primary differences between these two criterion are the
method of expressing the coefficients in the Routhian array anc the
principal minor determinants in Hurwitz's criterion,
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The roots of the characteristic equation determine the form of
the transient response and can be obtained from the closed-loop control
ratio

k k-1
C(s) Ak S T ALS A FAISH A
R(S) - n n-1 = D(S)’ (219)
Bn § +B S T+ ...+ B35S+ B

where in this case the control ratio is expressed as the ratio of two
polynomials. The characteristic equation for the system is

-1
D(s) = Bs" +B 8"V 4 ...+ B8+ B = 0, (220)

In a physical system, the coefficients Bn, By.1, ..., Bo are
usually real numbers. A polynomial equation with real coefficients can
have either real or complex roots. Any root of D(s) = 0 with a negative
real part is a stable root and the transient solutions will be of the
form

or
K. e (sin wjt + &)

which decay with time. For the system to be stable, all roots of the
characteristic equation must contain negative real parts.

The Hurwitz stability criterion establishes the conditions

under which all the roots of D(s) = 0 have negative real parts without
actually solving for the roots of the polynomial equatiom.
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The nth order Hurwitz determinant is constructed from the
coefficients of equation (220) as follows:

B B 0 0 0 0
n-21 n
B B B B 0 0
n-3 n-:’ n-21 n
My = . . . . .. ) .. (221)
. . . . . - Bph-. Bpos
. 0 BO

The principal minor determinants Aj of the Hurwitz determinant
Ap are defined as

A1 =By, (222)
Baer Bn

Np = (223)
Bp-y Bnop
Bn—l Bn 0

Ny =Bn.s Bn.n» Bp-oaf. (224)
Bn-y, Bn-sa Bnp-s

The Hurwitz criterion then can be stated as follows: The
necessary and sufficient conditions that all roots of the polynomial
D(s) = 0 have negative real parts arc that B, > 0, ~y >0, A» >0, ...,

A 0.
C. Root Locus

The root locus method was [irst devisced by W. R. Evans in
1948, Since that time, it has become a very useful method of analysis
and synthesis of control systems,

The root locus is a plot of the roots of the characteristic
equation as a function of gain in the complex S-plane. The poles of
the transient response mode C(s)/R(s) are related to the zeros and poles
of the open-loop transfer function B(s)/E(s) and the gain K, The rela-
tionship is shown below, where G(s) and H(s) are expressed as the ratio
of two polynomial equations,
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= Ni(s)
G(s) = 55 (225)

H(s) = Nels) (226)

Do(s)
B(s) _ _N; N
E(s) - 6 H(®) = 57 (227)
C(s) _ G(s) ____N4/D
RG) T T 6(s) Ws) ~ L Nohg - (228)
D, Do

The roots of N; N, = 0 in equation (227) are called the zeros
of the open-loop transfer function G(s) H(s) and the roots of D,D, = 0
are called the poles of the open-loop transfer function G(s) H(s).
Similarly, the roots of 1 + N,N./D;D, = 0 are called the poles of the
closed-loop transfer function C(s)/R(s) and determine the operating
root locations corresponding to the system time constants. The numerator
N,/D, of the control ratio C(s)/R(s) merely modifies the coefficients of
the transient components,

The characteristic equation of the system is from equation (228)

L + G(s) H(s) = 0 (229)
or

G(s) H(s) = - 1, (230)

The location of the roots of the characteristic equation vary
as the gain K is varied, The plot of these roots as a function of the
gain K, where K varies from zero to infinity, is called the root locus.

To establish two important criteria that are useful in plotting
the root locus, it is convenient to express the transfer function G(s)
H(s) as the product of linear factors .in the following form:

RK(S = 2)(8~-2)(8~23) ... (8- 2)

G(s) H(s) = N n+ N =m,
S'(S = Py)(S = P2)(S = Py) ... (S~ Py




In the factored form shown above, the Z's denote zeros and P's
denote poles, and pairs of these quantities may be complex conjugates,
The quantity K is the gain factor of G(s) H(s). For most physical
systems, the order of S in the denominator is n + N, and is greater than
or equal to the order of the numerator m,

Fach linear factor of equation (231) can be represented by a
magnitude and phase angle and is therefore called a phasor. The S-plane
representation of the phasors, shown in Figure 28, is seen to originate
on the poles and zeros,and terminates at the point S.

Zeros
Poles

— +0

N Poles

FIGURE 28, PHASOR REPRESENTATION OF LINEAR FACTORS OF

6(s) H(s) = — K(S + 2)(S — Z,)
§(S = P1)(S - P3)(S =~ Px)
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The magnitude of a particular phasor, say (S ~ P,;) where
S ==-g + jw and P, ==0p, *+ jwp,, will be

= —_ =+ ’7_ 2 — 2
rPl IS Pll N{(-g + GPl) + (w wP:L) (232)

and the corresponding phase angle will be

4, =/S=P;, = tan”?t <?;——i21 . (233)
Py g + Op
b

The linear factors in rectangular form can then be related to the polar
form as follows:

ig
- - Z3
S Zl rzle
g
- Zo
S 22 = rZ‘?Q
o (234)
N N N
S = r e
PO
i
- = 1
S - P,y rPle
i
S-Po=1re P2
Po

103



Upon substituting equation (234) into equation (231), the
entire G(s) H(s) transfer function can be written in polar form.

J

J&

5 jy 2
K, ¢ D@y e 29 .. (ry ¢ ™)
G(s) H(s) = —E— T (235)
N JNFPO Jﬂpl Jp
N n
(rp e ) (xp @ ) eee (rp e )
Kr bo . T JRE R 5% (N 4 oLt
_ 7, 2 w V7, V)T R e P’
= e
rN r r
Po P, 77 TP,
=Kr er,
where
r r see I
r= = (236)
r r ees L
P, Py Py
and
= (0 + ...+ - (NUL 4+ U 4+ ..+ ). 23
IIJ' (L‘Zl ) Zm) ( ‘JPO ; Pl Pn) ( 7)

The phase angles () are measured positive counterclockwise from a line
parallel to the o-axis.

From equations (230) and (235) then

G(s) H(s) = K1 e ¥ = -1, (238)
where

eI? = cos ¥+ j osin .
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The magnitude of G(s) H(s) is
|G(s) H(s)| = |K r (cos ¥ + j sin Wl = |Kr| =1. (239)

The gain factor K may be positive or negative. For K > 0,

G(s) H(s) Kr (cos ¢y + j sin §) = -1
(240)

= cos |y = -1,

since K r =1 and j = 0 for G(s) H(s) to be a real number. From equa-
tion (240) the phase angle of G(s) H(s) becomes odd multiples of =,

¥y =& 7, £ 3x, £ 5x, ...

(241)
= (2k + Dx, k=01, £2, ...
For K < 0,
G(s) H(s) = = Kr (cos ¥y + j sin y) = -1
(242)
= - cos §y = -1,
and the phase angle becomes even multiples of =,
¥ =0, £ 2n, = 47, .,
(243)

il
N
=

A
~

I
[}
I+
f—
I+
N
.

In summary, the two criteria that are required in plotting
the root loci of a system are the phase criterion and magnitude criterion,

Phase Criterion

m n
@ - | N¢ +Z;J!> 2k + 1) = K >0
ZJ Zi < Py = P; (244)
l:

= 2km K <O
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Magnitude Criterion

=1, (245)

where II denotes the product of the r's.

The root locus is plotted by finding all points in the S-plane
which satisfy the phase criterion. After the locus is completely plotted,
the magnitude criterion is used to scale it in terms of the values of
gain K that correspond to particular roots along the locus. The follow-
ing procedure is helpful in constructing the root locus:

1. Obtain the open-loop transfer function and put it
in the form

K(S=2)(S=25) «.. (8-2)

sN(S = P1)(S = P) ... (S P)

G(s) H(s) =

(246)

and plot the zerosZj and poles P; in the S-plane
using the same scale for both the real axis and

imaginary axis. Continuous curves start at each
pole of G(s) H(s) for K = 0 and terminate on the
zeros of G(s) H(s) for K = =,

2. Draw the loci along those sections of the real axis
which are to the left of an odd number of real poles
and zeros when K is positive. When K is negative, the
locus lies to the left of an even number of real poles
and zeros, This rule is a result of applying the phase
angle criterion to a point S as it is moved along the
g-axis. The net phase angle contribution of phasors
originating from complex conjugate poles and zeros to
the point S on the o-axis is zero and may be neglected.
For the particular pole zero configuration shown below,
the real axis portion of the root locus is shown by
application of this rule,
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- : i i] +jw
/" -
O'J— P

3. The real axis intercepts of the asymptotes are
located at the centroid of the poles and zeros or

Q%p
VR A
i=]1 i=1

(N + n) - (m)

m
R"l

(247)

centeroid = g, =

The number of asymptotes can be found by inspection
of G(s) H(s) and is equal to the number of poles minus
the number of zeros or

number of asymptotes = (N + n) - (m). (248)

The angle at which the asymptotes intercept the
g-axis is found from

_ (2K + Dx
Qésymptote " (N+n) - (m) ° (249)

For example, let

K(S - 1)
SZ(S + 1)(S + 2 - j2)(S + 2 + j2)

G(s) H(s) =
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Then, the number of asymptotes = (2 + 3) - (1) = &4,

5 - (-1 - 2+ j2 - Z - I = (D) L 4

X, 3x
AT

J = &
“asymptotes

‘+jw

(=2 + j2)
X 442
/

Centroid
3n

2 Poles
)(///_- — o

O

Asymptote

X +-2
(-2 - j2)

FIGURE 29, LOCATION OF CENTROID AND ASYMPTOTES FOR

_ K(S = 1)
G R = m T DS+ 2= 3D G 27 32
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4, The breakaway point between two poles or zeros located
on the g-axis is shown below in Figure 30. The loci

f+io
|_— O'b——-
’ e (]
=0 | K0
FIGURE 30.

BREAKAWAY POINTS

originate at the poles for K = 0 and coalesce at the

breakaway point o}, and enter the complex region. For
two zeros located on the g-axis, the locus enters the
real axis at the breakaway point and terminates on the

zero at K = o,

In both cases the loci are perpendicular

to the real axis at the breakaway point. The breakaway
point can be found by assuming values of o, between the
poles or zeros until the following equality is satisfied:

;f 1 N Ez 1 _ }: 1 N Ez 1
[, oy + Py |Ub+zri op t 245 o * Pyl

where

ith pole to

th pole to

ith zero to

ith zero to

(250)

the left of trial point
the right of trial point
the left of trial point

the right of trial point.

109



5. The angle of departure in which the locus leaves a
complex pole or enters a complex zero can be deter-
mined by adding up all the phase angle contributions
to the pole or zero in question., Subtracting this
sum from 180° gives the required direction, For
example, the angle of departure for the locus leaving
pole P, in Figure 31 is found from

- + g+ = °
@Zl (QJPO QP1+>UP2 )ZPB) 180

or

pp = 180° + (Qfo + gPl + QPB) - gzl.

n(ﬂézl I \:{31\ [\Q%_

FIGURE 31. ANGLE OF DEPARTURE

6. The preceding five steps provide enough information
to construct only a portion of the root locus and to
determine the manner in which the root locus will
behave, The remaining branches of the root locus
located off the real axis can be found by starting
at a breakaway point and successively selecting trial
points immediately above the breakaway point until
the phase angle criterion is satisfied or starting at
a pole located off the real axis and selecting trial
points along the tangent defined by the angle of
departure until the phase angle criterion is satisfied.
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To show

Once the phase angle criterion for this point is
satisfied, a new trial point is chosen and adjusted
until the locus terminates on a finite zero, becomes
tangent to an asymptote, or enters a short distance
into the right half S-plane. Only the upper portion
of the root locus need be determined since it is
symmetric with respect to the real axis, The lower
portion of the root locus can be constructed by
symmetry. Generally, the important part of the root
locus lies in finite portion of the S-plane around
the origin,

The use of a spirule greatly facilitates the
search of the roots satisfying the phase angle cri-
terion, It is essentially a device for measuring
the net phase angle of the phasors drawn from poles
or zeros to any point S.

Once the locus is completely drawn, it is calibrated
in terms of the gain K using the magnitude criterion

of equation (245).

the relationship between the root locus and the cor-

responding time solution, consider the following second order dif-
ferential equatijon relating the attitude ¢ to the commanded attitude

Pc:

o+

2b0, ¢+ W @ = ufy 9. (251)

The transfer function of this second order system is

©(s)

w2

= L (252)

e (8) T 8= 4+ 2tuwn S + Z% ?

and the corresponding transient response to a step input on e is

S,t
p(t) = Cyre 1 +Coe

Sat 4 (253)
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a) Underdamped - stable, ¢ <1
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+jw
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'A +jw
Sl=+ju)d=j(.dn i(

A 9%
1.0 _—— —
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d) Undamped - sustained oscillatioms, { = 0

FIGURE 32,

RELATIONSHIP BETWEEN ROOTS IN THE S=-PLANE

AND THE CORRESPONDING TRANSIENT SOLUTION IN THE TIME DOMAIN
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where the roots obtained from the characteristic equation are,

S1 o7 = Luwpy = Jup NCZ -1 = -0 % ju,, 0<t <1

S1,2 = fiw,, ¢t = 0. (254)

A plot of the roots S;, S- in the S-plane and the corresponding
transient solution of ¢ for a step input of @ is shown in Figure 32.

When the roots S;, S, are located to the left of the jw-axis,
the system is stable, and the transient part of the response decays to zero.
When the roots are located on the jw-axis, the system contains no damp-
ing, and sustained oscillations result. As the roots move to the right
of the jw-axis, the amplitude of the oscillations increases with time,
and the system is unstable. The above statements are true regardless of
the order of the system, In the complex S-plane, horizontal lines repre-
sent constant damped frequency, wg; vertical lines represent a constant
rate of decay, o; radial lines through the origin represent constant
damping ratio, {; and circles concentric about the origin represent
constant natural frequency, wp.

D. Frequency-Response Method

The frequency-response metnod for the analysis of feedback con-
trol systems may be described as the study of system behavior with pure
sinusoidal inputs. It is always assumed that the sinusoidal input has
been applied for a long time so that the transient response has decayed
and the steady-state condition has been reached. If the input to a
linear system is sinusoidal, then the driven response throughout the
system must be sinusoidal also and of the same frequency, differing only
in amplitude and phase. The frequency-response approach is the study
of the amplitude and phase angle of the response of a component or a
system as a function of the sinusoidal frequency.

Using the frequency-response approach, the frequency and damping

of the system cannot be obtained, but enough information can be obtained
to indicate whether compensating networks are needed,
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To obtain the steady-state frequency response let S assume
values equal to jw. The control ratio as a function of frequency is

Cw) _ G(jw)
R(jw) 1+ 6w HGw) ~

(253)

For each value of frequency, equation (253) yields a phasor quantity
whose magnitude is 1C(jw)/R(juD\ and whose phase angle is the angle
between C(jw) and R(jw).

The plots in the frequency domain that are used in the analysis
of feedback control systems are of two categories. 1In the first category
are the plots of the magnitude of the output-to-input ratio and the cor-
responding phase angle versus frequency. These plots may be made in the
rectangular or logarithmic coordinates. The standard procedure is to
plot 20 log [G(jw) H(jw)| (magnitude in decibels) and the phase angle
versus log w. This plot is often called the Bode plot. The plots in
this first category are particularly useful in representing the transfer
functions of individual components. In the second category are polar
plots of the output-input ratio, called Nyquist plots, and plots of 20 log
|G (Gw) H(jw)l versus phase, called Nichol's plots. The Nyquist plot and
Nichol's plot have frequency as a running parameter. These plots are
generally used for the open-loop response. The polar plots when used for
Nyquist's stability criterion must be drawn for frequencies from -w to +w
(corresponding to the jw axis of the S-plane).

In applying the Nyquist stability test, it is required that:

1. the system be represented by a set of linear differential
equations with constant coefficients.

2., the order of the denominator be equal to or greater than
the order of the numerator of the open-loop transfer
function G(s) H(s); that is, the lim G(s) H(s) — O

S -0
or a constant,

E. The Nyquist Stability Criterion

The Nyquist stability criterion relates the number of zeros
and poles of the characteristic equation that lie in the right-half
S-plane to the polar plot of the open-loop transfer function G(s) H(s).
It can be stated as follows:

Given any open-loop transfer function G(s) H(s), which
is the ratio of two polynomials in the variable S, let § = juw.
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The amplitude and phase polar plot of G(jw) H(jw), as the
frequency is varied from -« to +w, encircles the (-1 + jO)
point N times. With counterclockwise positive and clock-
wise negative,

where Pp equals the number of poles of G(s) H(s) in the
right-half S-plane and Zg equals the number of zeros of
the characteristic equation in the right-half S-plane.

Since a stable system can have no zeros of the characteristic equation
in the right-half S-plane, the net number of rotations N of G(s) H(s)
about the (-1 + jO) point must be counterclockwise and equal to the
number of poles that lie in the right-half S-plane.

If G(s) H(s) experiences a net clockwise rotation about the
(-1 + jO) point, Zg > PR and the system is unstable. If there are zero
net rotations, then Zp = Pp and the system may or may not be stable,
depending on whether Pg = 0 or PR > 0, respectively. If PR > 0, the
number of poles in the right-half S-plane can be determined by applying
Routh's criterion to D;D, (denominator of open-loop transfer function
in equation (227).

If Nyquist plot representing a system is complicated, it is
sometimes difficult to determine if the curve encircles the (-1 + jO)
point, and, if it does, how many encirclements it makes, To determine
if a system is stable or unstable, trace the curve in the direction of
increasing frequency. If the (-1 + jO) point is always to the left of
the curve, the system is stable.

If the open-loop transfer function were to pass through the
(-1 + jO) point, a condition of sustained oscillations would exist,
representing a marginally stable system. The closer the open-loop
frequency response characteristic curve comes to passing through the
(-1 + jO) point the closer the closed-loop system is to being unstable,
The degree of stability of the system is measured by two factors - gain
margin and phase margin.

Gain margin is the measure of the factor by which the gain of
a system would have to be increased to make it marginally stable.
Phase margin, 6py, is a measure of how much additional phase lag is
required to make a system marginally stable if the gain is unchanged.
A minimum of 6 db gain margin and 30 degrees phase margin is considered
to be acceptable margins for system stability in control system design,
A minimum of 6 db gain margin and 30 degrees phase margin is considered
to be acceptable margins for system stability in control system design.
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On the Nyquist plot, the gain margin is the reciprocal of the
value of G(jw) H(jw) at phase crossover (the point at which the frequency
response curve crosses the -180° axis). The phase margin is 180° plus
the phase angle at gain crossover (the point on the plot at which the
magnitude is unity).

Using the Nichol's plot (log magnitude versus phase angle), a
system is stable if the O-db, -180° point is always to the right when
tracing the curve in the direction of increasing frequency. Gain
margin and phase margin can be determined quite readily from the
Nichol's plot. The gain margin (in decibels) is measured where the
curve crosses the -180° axis. The phase margin is 180° plus the phase
angle at the point where the curve crosses the 0-db axis. Quite
often the magnitude of the response (in decibels) is plotted versus
phase angle plus 180°, For this plot the origin is the 0-db, O phase
margin point instead of the 0-db, -180° point. This plot c¢nables one
to read phase margins at a glance.

On the Bode plot the gain margin is measured in decibels on
the log magnitude curve where the phase-shift curve crosses the -180°
line. Phase margin is measured on the phase-shift curve at the fre-
quency where the log-magnitude curve crosses the 0-db line.

The easiest step in adjusting for a satisfactory system response
is to adjust the gain. If satisfactory response cannot be achieved by
gain adjustment alone, then compensating techniques must be used,

A root locus plot, Bode plots, Nyquist plots, and Nichol's
plots have been drawn for a system of equations to illustrate many of
the things that have been discussed. The following set of cquations,
considering only one bending mode, was used:

$=-Ca - CB (254)
S (255)
Pg =@t > Y (xpdmy (256)
. . rl . .

bp =9+ ) Y GH (257)
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R'Y.(x,)B + B ( 4. Y. (x,) - I, Y'(x )]
i“"h hmE E "i h E "i*h | (258)

+ 26, w, 7. + W7 .
gl wl nl wi T]:L mi

i,

Bc + ZCc ©c Bc + wi Bc B wi € (259)
¢ = app + a1d - agpe (260)
By = T(B, = By (261)
Bo+2t, w B +uf B =uf B, (262)

By substituting equations (255), (256), and (257) in the other equations,
the system equations are reduced to six equations in six unknowns.

$ =-Cp - CHB (263)
iy 2wy ﬁi + wi Ny = ke [mEEEm:i(Xh) - Y;H(Xh)] - (264)
éc + 26w, éc + Wi B, =Wl e (265)
e=ag +a, ZE:YE(XQ)ni +ahp + a; j{1Y;(x¢)ﬁi - a g, (266)
By = T(B, = By) (267)
Bt 22w BoHuE BT By (268)
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The Laplace transform equations are
(8% + €1) = -CPB (269)

IVR'Y.( ) + 52 g Y () - I Y >]B
(8% + 26, w.S + WDF, = +—= T oo mf T B ih | (270)
1

2 2\R = 2 T
(8= + 2§C wCS + wC)BC Wl € (271)
€= (a;8 + a)p + [als zgj Y;(x¢) + a ;{jY;(XQ)]ni - ao¢C (272)
(s + T)QA = TSC (273)
2 2Y% = ,2 B
(5= + 2§E wES + mE)B wy By (274)
where
gc = control filter damping ratio
w. = control filter frequency
T = actuator lag time constant.

By combining equations (273 and 274), the equations can be reduced to
five equations in five unknowns.

(SZ + C1)§ = - CB (275)

i 1 t .‘I"
LR Yo (k) sz(mE/zE Y. (x) - Ip Yi(xh)ia
m,
1

2 oye
(8= + 2§i wiS + wi)ni (276)

2 2\a = 2
(8 + ZQC wCS + wC)BC W € (277)
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AN

€= (a8 + ay)y + {als zgj Y;(x¢) +a_ z? Y;(X@)Jﬁi - aoéc

[(s + T) (S + 2ngEs + “’E)JB = T“f; Bc'

These equations may be represented by the following block diagram:

(278)

(279)

Rigid Body
T
—— G r
Forward Loop Engine &
Filter Actuator
- + - R B'
e < c
— {lo L——@——— GC GE
Flexible Body

. G

Yl

@ F

Flexible Body Gyro Feedback

- ay g,
5 Y{(X@) + ay S).Yi(x¢)

Rigid Body
CGyro Feedback

1+ &g

o

FIGURE 33. BLOCK DIAGRAM OF FEEDBACK CONTROL SYSTEM
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where

B'=-8 (280)
Te 2
Cp " 5+ D (52 rEz 2 (281)
CpogS t o)
_ %
GC_SE+2§wS+w2 (282)
c C C
— C'-)
G$ = EE—:TTEI (283)
~ [R'Yi(xh) T8y Y G - I Y‘i(xhj -
€ T m (5% + 26,08 + u)) | (259
A= [als ZiJY;(xé) + a_ ZL‘ Y;(Xw)]. (285)

The block diagram shown in Figure 33 can be reduced to the basic single-
loop feedback control system as follows:

(a) Move the flexible body feedback loop into the rigid
body feedback loop.

31

Qe
7| 5

a_ + a;S$
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(b) Combine the elements in the feedback loop.

at
1)
mr

Y]

—_— aO /—.+§ GC GE ch 9-

The above block diagram in (b) can now be reduced to the following form:

e a : € G(s) @
o
Ps
H(s)
where
G(s) =G_G_. G (286)
AGT
H(s) = ag + a;8 + E—i . (287)
@
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Open-Loop Transfer Function

—= = G(s) H(s)
€
= GC GE [(ao + a;8) GCP + A Gﬂ]
2 2
) T We W (B + Q)
(S + T)(S=+C;) (8% + 2618 +w2E)(82 + 26 .S+ wi) (s + 2L 0.8 + wi)
(288)
where
= 2 b4
B = Cx(ayS + ag)(s< + 26w, S + wi)
o 'Y()+SE{_£Y(X)-IY'()
C=|a Y (%) + a;S \ Y'(xg) i L . E i h E “h
0 ive =/ ¢ m,
Closed-Loop Transfer Function
¢ 6(s)
agde T 1+ G(s) H(s) (289)
?_ i a, GC GE G@
B, 1 + Gc GE [(ap + a4S) ch + A G"ﬂ]
(290)

o TuZ W2 (2 + 26w, S + oF
a_ Cz Tup of (s Ciwi wi)

D, + D> + D>
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where

Dy = (S + T)(8% + C1) (5% + 26 w8 + uE)(SZ + 26 0 S+ wi)(s2 +2twS + wi)
D, = Tm% wi Co (a;S + ag) (S? + 26 0,8 + wi)
Ds = Twﬁ wi (82 + Cq) [als Z{j Y;(X@) + a :{j Y;(X$%

m,
L

[R'Yi(xh) + SFmyey Y 0q) - I Yi(xh)J

Characteristic Equation

1 + G(s) H(s) = 0 (291)

or
D, + Do + D3 = O. (292)
The closed-loop transfer function and the characteristic equation

can also be found by expressing the system equations (equations 275
through 279) in the following matrix notation:

- —>
AX=agl (293)
where
-5 -0 -
B 0
x=|0 v= |° (294)
Be Pe
[ & 0 |
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S&+C, Co 0 0
R'Y. ( )+S2< £.Y (% )-1 Y ( )>
0 i"h EEih E L “n -(52+2g.w.s+w?) 0
mi 1 1 1
= 2 =
A=l 0 0 0 (s +2¢ w Stuw)
r O
(a;S+ag) 0 Lals )_ Yi(x(.P)-f-aoYi(x(P)J 0
0 (S+T) (s2+2ngEs+m§) 0 -mg

(295)

The closed-loop transfer function (p/cpc may be obtained by setting

- —— (296)

_
where A% is the matrix with agyU replacing the first column (the column
describing the contribution of @ to the homogeneous equation).

0 Co 0 0 0
R'Y. ( )+§{ £.Y . (x ) -L_Y'( )>
0 1xh mEE 1xh E 1xh (S +2§.w.S+(f) 0 0
mi 11 1
(‘b =
0 0 0 (s2+2gcwcs+w§) -we
a,9c 0 ‘}Va 1S E Y'i (X§D)+aoY'i (x@)] 0 -1
2

i 0 (S+T) (32+2ngEs+u§) 0 -Tug 0
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By determinant expansion of the numerator and denominator, the closed-
loop transfer function becomes

2 .2 (g2 -
a Co Tup w? (s= + 20, 0.8 wi)

- D, + D- + Dx (298)

GII €l

@]

which is the same as the closed-loop transfer function obtained from
the block diagram,

The characteristic equation is given by D; -- D» + D-, which has the
same roots as one plus the open-loop transfer function. The open-loop
transfer function is given by (D, + D.)/D,, which is the same as the
open-loop transfer function obtained from the block diagram.

To obtain the root-locus plot, the characteristic equation was
programmed on a digital computer. The computer calculates the coef-
ficients of the characteristic equation as the gain ay is varied from
zero to very large values, and then solves for the roots of the result-
ing polynomial equation.

The root locus plot for a typical large booster at the time of
maximum dynamic pressure is shown in Figures 34 and 35. The system is

initially unstable when the gain a, = 0 since one root is located at

where in this case the aerodynamic center of pressure location (X.,) is
forward of the vehicle center of gravity location (xcg), making this
root lie in the right-half S-plane,.

This system remains unstable until a, is increased to .25. The
system again becomes unstable for a gain ag > 1.5 due to the pair of
complex conjugate control filter roots entering the right-half S-plane.

The poles of the open-loop transfer function could also be obtained
from the characteristic equation since

1 + G(s) H(s) = Dy + D.. + D5 = O

(299)
1+ Do+ D _ 0
1
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Then the open-loop transfer function is
D~ +
G(s) H(s) = —25—~91 . (300)
1

It was shown in Section IX (C) that the roots of D; = 0 are the
poles of the open-loop transfer function; therefore,

Dy = (S+T) (82 + C1)(S% + 26,08 + mg)(s2 + 28 w8+ wi)(sz + 26 0.8 + w§)=o,

(301)

and

= - i i ““1 - 2
S Cpog = 4 %k bg <1
= : f 2
S= - chc x Juw, N1 - Cc e <1
= o + 3 | _ 2
S giwi_.Jwixl. gi . ¢ <1
These nine roots are the starting points for the root locus when
the gain ag = 0, and are shown in Figures 34 and 35.
The roots of D, + D3y = 0 in equation (300) are the open loop zeros

as shown in Section IX (C). 1In this case Do + Dz = 0 can be written
as the following fifth order polynomial:

BsS® + B4S% + BS® + BoSZ + B;S + By = 0, (302)

where
—_ a ]
B5 = a Y (Xc.p) K4

(o]
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By =-Y (Xq)) Ky

N X
By = =2 <Cs - Y'(x.) [C1K, + K
5= 3o Y e (o 4 Kol

= a_-L - '

Bg Zgiwi Cg ao + Cg Y (X(p) [ClK4 + K5]
By = 2t.w. Co + o2 | Cou? - Y'(x,) KuC
1 i*i 2 ag 2 i C.P SVl
Bo = cgw§ - (xcp) KsCq.

Mplp Y Oq) - I Yi0g)
my
R'Yi(xh)

m,
1

Ky =

K5=

For typical values of the constants in the B; coefficients,
equation (302) becomes

S® 4+ 3.85 S* - 200.45 S° + 1462,45 $2 - 20710S- 18785 = 0, (303)

and the five roots are

S =13

S = -20

S =-.85

S =2 *9i,

These are the points on which the root locus terminates as the
gain approaches infinity. They are shown as small circles in Figures 34
and 35. Since there are nine open-loop poles and five open-loop zeros,
four of the loci must terminate on zeros located at S = o,

To illustrate Routh's criterion, the characteristic equations
for an ag of 1.4 and 1.5 were set up in the Routhian array (Table 4).
For an a, of 1.4, all signs in the first column are positive, indicating
a stable system; for an ap of 1.5, there are two sign changes in the
first column, indicating two roots in the right-half S-plane and hence,
an unstable system,
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ag

+1.
+2,
+2,
+3.
+4,
+5.
+7.
+4,
+2.
+2.

+1.
+2.
+2.
+3.
+4.
+5.
+8.
+2.

-1

+3.

130

000
864
632
714
534
887
155
227
599
626

000
864
632
714
531
691
452
900

.075

126

A

+00
+01
+04
+04
+06
+05
+07
+06
+08
+07

+00
+01
+04
+04
+06
+05
+07
+06
+08
+07

+2,
+4.
+5.
+1,

+1
+1

+7.
+2.

+2.
+4,
+5.
+1,
+1,
+8.
+8.
+3.

436
347
815
807

.487
.002

045
626

436
347
810
804
506
312
036
126

+03
+04
+06
+06
+08
+07
+08
+07

+03
+04
+06
+06
+08
+06
+08
+07

TABLE 4

ROUTHIAN ARRAY

+2,

+1

+1.
.745

+1

+9.

+2,

+2.
.981

+1

+1.
+1.
+1.
+3.

722

.982

611

068
626

720

627
694
052
126

+05
+06
+08
+07
+08
+07

+05
+06
+08
+07
+09
+07

+6.

+1

+6.

+1

+1.
+3.

269

.845
+9.
+2.

254
626

312

.811

074
126

+06
+07
+08
+07

+06
+07
+09
+07

+3.322 +07
+2.626 +07

+3.861 +07
+3.126 +07
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X. ADAPTIVE CONTROL

As a booster vehicle moves on its trajectory from the dense atmosphere
at low altitudes to the rare atmosphere at high altitudes, extreme changes
occur in the aerodynamic parameters and mass distribution., A fixed set
of gains and compensation time constants may be incapable of providing satis-
factory performance throughout the trajectory. Instead, a gain scheduling
procedure is required in the control elements as the surrounding condi=-
tions change. This procedure is not particularly attractive for several
reasons,

First, accurate information is required about the aerodynamic and
structural characteristics of the vehicle and its environment. Second,
there is the need to measure air data, Third, the cstablishment of the
gain scheduling is a long difficult process,

The attractive features of a self-adaptive control system are that
it eliminates the need for accurate information about the controlled
system and it adjusts the control parameters on the basis of the amount
of deviation existing between the actual and desired output response,

Various types of self-adaptive control systems have been developed
in recent years, No attempt is made to discuss the various types of
self-adaptive control systems, but only a description of one of the most
prominent systems which is applicable to the control of aerospace vehicles
is presented,

The following adaptive control system was developed by Minneapolis-
Honeywell [3] for a large, highly elastic booster vehicle. The two out-
standing virtues of this system are its inherent ability to self-adjust
its control gain to compensate for changes in control moment and its
tolerance to variations in aerodynamic characteristics and structural
mode shapes and frequencies,
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A, Model Concept

The model concept utilizes a simple lag filter (the model) to
shape the attitude error signal which serves as a command to a relatively
fast attitude rate inner loop. By making the band width of the attitude
rate loop at least three times larger than the bandwidth of the model,
the over-all response between attitude error (attitude rate command) and
vehicle attitude rate is essentially established by the model.

The block diagram shown in Figure 40 can be reduced to the
simplified block diagram as shown in Figure 41.

The closed-loop transfer function is obtained by solving the
following system of equations obtained from the block diagram in Fig-
ure 41 for the ratio ¢/d..

Tp = M() Pe (304)
T =T - Bf (305)
G = Ko A(s) € (306)
Fg = B(s) . (307)

The closed-loop transfer function then is

KC A(s) M(s)

1 + K, A(s) B(s) L
Ke

A(s) M(s) ‘ (308)
+ A(s) B(s)

&
e

If the control gain K. in equation (308) is increased to large
values the transfer function between an attitude change and an attitude
command approaches a fixed second order characteristic:

- K TS+ 1 K /T
lim Q _ M(s) _ < L )( = = ¢/ . (309)
KC ~> Pe B(S) Tms + 1/ Tms + 5+ KQD 82 + _1__ S + EQO.

Tp, T
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Here it can be seen that the desired frequency

>

m

and damping

B S
Cm 2ANK T
¢ m

are controlled exclusively by the model time lag T, and attitude gain
Kep if the control gain K, is maintained at a sufficiently high value,

The action of the control system in forcing the vehicle toward
the desired frequency and damping is illustrated by considering the locus
of the closed-loop poles of the system as a function of changes in gain
K. as shown in Figure 42, 1t is evident from this plot that increasing
control gain forces the unstable vehicle poles toward the pair of zeros
established by the combination of rate feedback plus the fixed model
time constant and fixed attitude gain. These zeros are established at
the desired natural frequency and damping ratio by choosing appropriate
values of Tp and Kep for Ko —» ». TFor this case the frequency and damping
was chosen to be

Frequency: 1,87 = 2
Tm

Damping: .68 = %- E;fg
K¢
then,
Ky = 1.4
T, = .4
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The open-loop transfer function is

K
1 5, 1
K Cs S+ o (CzKz = CiKz)1(5% + ¢ S + Tg)
C L]

Kc A(s) B(s) = R X 7
(S® + =2 82 + ¢;S - ==L)(S + =
v v Tr

(310)

Using the values of *C;, Cs, K;, K5, K5 and V given in Section IX-A and
the values of Ky and Ty above,equation (310) becomes

1,363 K_ (S + .0219) (S + 1.25 + 1.393) (5 + 1.25 - 1.393)
(S + .647) (5 - .596) (S - .042)(S + 2.5) y
(311)

K. A(s) B(s) =

The zeros are contained in the numerator and the poles are con-
tained in the denominator of equation (311). These are plotted in
Figure 42, The arrows indicate the direction of movement of the closed-
loop poles as the gain K, is increased.

jw

++2

L 11
T = .4
m
K, = 1.4
7 — et g
Tn

Zeros Established By
Fixed Model and
Attitude Gain

L -1

FIGURE 42, ROOT LOCUS OF SIMPLIFIED ATTITUDE CONTROL SYSTEM 41



If the control gain K¢ can be made sufficiently large, the basic
system is highly tolerant to changes in vehicle characteristics as can
be seen from equation (309) where the rigid body transfer function com-
pletely drops out. It becomes increasingly difficult though to achieve
the necessary high inner loop gain as additional control lags (low fre-
quency structural bending modes) are introduced in the control loop,
unless some means of controlling the loop gain is employed.

B. Adaptive Gain Control

If the vehicle aerodynamic and structural data are known
accurately and if there is adequate separation between the desired
rigid body frequency and the lowest structural mode, adequate control
can be achieved by scheduling control gain in an open loop manner, e.g.,
changing gain as a function of time. Basic to this approach is the
requirement for adequate rigid-body and structural mode gain margins,
Current trends in the design of booster configurations make this
increasingly difficult to accomplish.

With adaptive gain control, specified gain margins are
unnecessary because the gain level established in the system is based
on measured inflight characteristics rather than predicted values.

The adaptive gain changer operates to maintain the inner loop gain
either at its maximum stable value or at some fixed percentage depend-
ing on the mechanization employed.

The rate loop stability is discussed first to establish the
basic premise on which the gain changer concepts are founded. For
simplicity, only the rigid body will be considered and the results
are applicable in principle even when all system dynamics are included.

The simplified rate loop block diagram with unity feedback is
shown below.

5 - - - KS+K -
c S S< + ds + Cy
+ |
Variable Proportional Rigid Vehicle
Forward and Integral Transfer Function
Loop Gain Gains

FIGURE 43, SIMPLIFIED BLOCK DIAGRAM OF RATE LOOP
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0] ApS + Ky CoS
- -Co
¢~ Ke S ) <;2 T ds ¥ c#) (312)

- Co (K, KoS + Ky K.
S= + ds + C,

mS«

= G(s). (313)

The closed-loop transfer function is obtained as follows:

 tg G(s) ; -
:
€=9 - oy (314)
§=6(s)E=c(s) G- Gy (315)
& (1 - G()) = - G() § (316)
%‘ = I-f-%%%% (317)
N

Substituting the open loop transfer function from equation
(313) into equation (317) and rearranging we get the closed-loop
transfer function of the rate loop.

C. (KK S+ K,K )
T Zd +CCPK K ); j (C, ¥ C.K.K ° (318)
28Ry 1 2K K,

E.}e.. leq
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The characteristic equation for equation (318) is
2
+ . = 0.
S (d + CLKCKP)S + (Cy + C;KiKc) 0 (319)
For large values of KcC; and selected Kp and Kj, the terms

d = VI - aerodynamic damping

C, = aerodynamic moment coefficient
may be considered negligible. The characteristic equation then becomes

S? + Co KCKps + Co K K, = 0. (320)

Maintenance of K. at a value where the approximation of equation (320)
is valid is essentially the objective established in the development of
the gain changer concept.

The form of the characteristic is
SZ + 2twS + uw® = 0, (321)

and by comparison of terms, it is-seen that the bandwidth of the rate
loop is given by )

= “‘
. =~Cz KK (322)
and the damping by
C- KK K K
£ . —_<cp.__p < 323
r 20 2 K]._ ( )
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where

C, = control moment coefficient

-~
Il

forward loop gain

-~
il

p forward proportional gain

~
I

forward integral gain.

Except for the term C., the rate loop dynamics dominate all inherent
characteristics of the vehicle, By referring to equation (320), it is
evident that completely uniform characteristics are maintained by an
inverse variation of loop gain K. with C.,

Loop Gain K. Operating at Critical Value

Operating the loop gain K. at its critical value forces the
system into oscillatory motion (i.e., the operating poles move to the
jw axis), The oscillation develops into a limit cycle having a con=-
stant small amplitude at all flight conditions. From equation (322)
it is seen that maintaining K, at a maximum value provides the maximum
rate loop bandwidth and maximum rigid body stability margin., The limit
cycle frequency is determined by the frequency of the least stable root
locus crossing into the right half plane, On most large vehicles the
first bending mode will establish the practical limit to the bandwidth
of the attitude rate loop, The limit cycle to operate the gain changer
will then be close to the first bending mode frequency.

For a given sensor location and control dynamics, a gain cor-
ridor will be available similar to that shown in Figure 44, The width
of this corridor will depend on the compensating networks and the loca-
tion of sensors, The upper gain limit, which represents the high fre-
quency stability boundary, will be primarily determined by the attitude
rate loop dynamics, The lower gain limit, which represents the low
frequency stability boundary, will be determined by both the inner loop
(attitude rate) and outer loop (attitude and lateral acceleration) dynamics.

As the bending mode frequencies decrease, the upper gain limit
moves down; as the degree of static instability increases, the lower gain
limit moves up. The use of the automatic gain changer will keep the sys-
tem operating along the upper gain boundary and will provide maximum
rigid body stability margin, The operation of the gain changer is
described below with reference to the block diagram in Figure 45 and
root locus in Figure 46,

Input to the unit is applied to two filters from the signal
representing engine deflection, The down logic filter is a band pass
which passes frequencies near the chosen limit cycle frequency. The up
logic filter passes frequencies near the rigid body frequency.
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The output of the down logic filter is rectified and subtracted
from a constant voltage called the set point voltage E.. Any resultant
voltage Eg > 0 is integrated and applied to a multiplier which is in
series with the missile control loop so that the loop gain will rise.
The loop gain will continue to rise until the output of the down logic
filter cancels the set point voltage. Thus the set point voltage
establishes the stable limit cycle,

If sustained disturbances are present which contain large
amplitude frequencies near the down logic band-pass frequency, then
it is possible that the gain will be driven below allowable limits
dictated by rigid body stability margins. 1In this case any resulting
low-frequency rigid body oscillation is sensed by the up-logic filter
and its output voltage is summed with the set point voltage to drive the
gain up.

A bracketing of gain is thus achieved so that a compromise is
obtained between the allowed amplitudes of high and low frequencies for
all disturbance conditions.

The rate at which the gain is changed can be controlled by
adjustment of the proportional plus integral device in conjunction with
the limiter. These limits serve to minimize the effects of large
actuator excursions on the gain changer. The filter sets the static
gain of the gain changer and reduces transmission of large transient
voltages and rectifier ripple.

C. Gyro Blender

The gyro blender was developed so that a favorable total rate-
gyro signal for the first bending mode may be obtained at all times of
flight with minimum positioning of the gyros. One gyro is located
forward and one aft of the first bending mode antinode. The outputs
of two rate gyros are automatically blended to establish a desired
magnitude and phase relationship of the first mode pickup. The blender
is designed so that it will not affect the rigid body output but will
give a positive, negative, or zero signal for the first bending mode
depending on the system requirements.

Figure 47 is a block diagram of the gyro blender. The blend-

ing of the gyro signals is accomplished by a proportional servo used
to position two potentiometers.,
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Aft Rate Gyro

ABS Value
: (1-K)
® .5)2 Init, Cond,
A l " (1-»gs§%(1+13s)? N4 1
5 : [ Limiter
rop, + . - -
Setso '? %b"—’ 8y (Blended Signal to Autopilot) . % Esa
» l 2 Integrator
Pp A r Ky (1+12gé?z+hs)“' _\‘L
Forward Rate
Gyro
FIGURE 47. GYRO BLENDER BLOCK DIAGRAM
The forward and aft gyro signals are
3
3 = - + ‘ .
Pr T PR Z G W)y (324)
i=1
3
Ho= . + 'y 325
Pa T PR Z (¥, Wy (325)
i=1
where
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¢R = angular rate of change of missile rigid body
Y; = ith mode shape
ny = it mode generalized amplitude function.



Depending on the position of the blender input potentiometers, the
summed output sent to the autopilot is

G = (1 - K) ¢, + K Gy
(326)
3 - 3
= (1 - K) [‘ng + Z (¥, ﬁ)i] + K L(bR + E(Yi, ﬁ)i]
i=1 i=1
bp = Gp T Z[(l SR Y, T K Y'iF] iy (327)
i=1
3
i=1
where
?\'i =K Y+ (1 -K Y, (329)

and K is the blender potentiometer position expressed as some fraction
of unity.

Positioning of the blender potentiometer is accomplished by
rectification of two band-pass filters which peak at or near the first
bending mode frequency. Since the inputs to the filters are the gyro
outputs modified only by attenuator K, the blender potentiometers will
be driven to a position where the input to the integrator is zero.
Since the filters pass only the first bending mode frequency and both
signals at the summing junction of the filters are equal, we can write
the expression below:

KK Y| =[1-K| |Y;A|, (330)
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where K, is the fraction of voltage passed by the attenuator, assuming
the blender filters pass only the first mode frequency. An expression
can be derived for AY} which is the first bending mode slope sent to
the flight control system. By eliminating K from equation (329) using
equation (330), the bending mode blended slope is as follows:

1l -K VA4

Ay = ; : .
IKl YlFI + |YL§T

Since in this case the attenuator K; has been placed in the
forward gyro input to the blender, the blender potentiometers will be
positioned so that a greater portion of the forward gyro input relative
to the aft gyro output will be sent to the control system, Thus, by
placing K; in either one or the other of the aft or forward gyro inputs
to the blender, the magnitude and sign of A} can be controlled.

The magnitude of A} affects the separation of the first mode
poles and zeros, while the sign of A} determines the position of the
zero above or below the poles in frequency. If the potentiometer K;
is placed in the forward gyro input to the blender, the first bending
mode zero frequencies will be greater than the pole frequencies. The
exact position of the first bending poles and zeros in an actual mis-
sile system will be influenced by coupling effects. However, with
the stipulation that the blender filter circuits have sufficiently
attenuated all other frequencies, the blender can be made to position
the first mode poles and zeros to give the desired orientation.

The limiter in conjunction with the gain K, will limit the
rate at which the blender can be changed., Thus, short duration fre-
quencies other than the first bending frequency will have little
effect on the blender.
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APPENDIX A

ACCELEROMETER EQUATION
(Reference 9)

N
N
Vehicle Structure and \
Accelerometer Frame —_\\\\Q zy, ————
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FIGURE 48, LINEAR ACCELEROMETER WITH SINGLE DEGREE OF FREEDOM

The basic elements of a linear accelerometer are shown above in
Figure 48, The accelerometer is attached to the vehicle structure and
senses the resultant acceleration Zg. The axis of the accelerometer is
oriented normal to the vehicle longitudinal axis and measures the
accelerations due to lateral motion,

21 =Z - (xg - x) B+ Z'ﬁi Y (x), (A1)

i

F -D
and due to the lateral component of the longitudinal acceleration < - )

or,
Zo = z ; D [m 4-;2‘qi Y;(Xa)} . (A2)

i

151



The resulting acceleration of the accelerometer frame is

.. .o . o . F -
2o = %y + %, =2 - (xCg - xa)@ + <: — > 0]

+,Z [Yi(xa) iy * <F - X> Y (x)) "]J . (A3)

i

The accelerometer equation of motion becomes

m ¥, +C %2 +K z =-m Z (AL)

or
C Ka
.e _é. a =-.Z'
Za + m za + m za f (45)
a a
where
Ca
Ca - 2m
a
_ a
w = [ .
a m
a

The accelerometer's frequency is designed to be very high by
virtue of a small mass and a very stiff spring. Accordingly, there
would be very little displacement if it were used to detect low fre-
quency -oscillations in the missile airframe, It is convenient to intro-
duce the scale factor

z = ~——5A (46)
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to measure frequencies which are small in comparison with the acceler-
ometer natural frequency. Introducing equation (A6) into equation (A5),
the accelerometer reading becomes

Ay | 2o Ay
w2 M W * Aa - zf (A7)
a a
or
§2 .25 L 1\ == (A8)
;f Wy a Zf

and the accelerometer transfer function is

: <; _E_. >
-_— = . (A9)
Zf CH 288 4

) ()

a a

From equation (A9) for w << wg, it is seen that the acceleration
sensed by the accelerometer is approximately equal to the input accelera-
tion or

(A10)

The block diagram relating the input acceleration to the sensed accelera-
tion is shown below.

e
£

2ts
Wy

FIGURE 49, ACCELEROMETER BLOCK DIAGRAM
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APPENDIX B
RATE GYRO

(Reference 1)

Angular Rate
Input Axis

=

Gimbal Fixed to
Vehicle Structure

Output Axis

H, Angular Momentum

=1

P

FIGURE 50, RATE GYRO

The figure above shows the basic elements of a rate gyro. 1In
many control systems, it is sometimes necessary to measure the angular
rates of the vehicle, For this purpose the rate gyro is used.

The inner gimbal supporting the gyro is restrained by a spring
which permits an angular displacement §o. The outer gimbal is rigidly
attached to the vehicle structure. As the vehicle rotates about the
input axis at an_angular rate {., the rate of change of the angular

momentum vector H is ﬁ¢f which provides a moment M about the output
axis, The equation of motion of the rate gyro then is

T80 + Cho + Koo = H g (B1)
or
C K H
2 = ey = = &
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where

C‘g = 2 w (B3)

(l)g = ’\—]— . (B(,,)

The transfer function between the angular displacement and the
angular rate is then

8q _ H/J B5)
be S2 4+ 26 WS+ W= (
Cf ggg g

In most cases the angular displacement 0, is related to an output
voltage E,, using a potentiometer, where

Eo = KV 60. (B6)

The block diagram for the rate gyro is shown below.

K
b (s) + 1 1 60(8)

£ . L D K, Eo(s)

FS
FIGURE 51. RATE GYRO BLOCK DIAGRAM

E, = output voltage K, = pickoff sensitivity

C = viscous damping 8o = output angular displacement

J = gimbal inertia g = input angular rate ¢ + Z ﬁi Y;(xw)

K = spring constant { = angular momentum,
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APPENDIX C
RATE INTEGRATING GYRO [1]
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FIGURE 52, RATE INTEGRATING GYRO

The rate integrating gyro is used to establish an attitude reference
for the control system. The vehicle's course or attitude can be changed
by programming flight control commands into the command torques from a
computer, The deviation of the vehicle longitudinal axis from the atti-
tude reference provides the necessary error signal to command a deflec-
tion of the thrust chamber, .

The integrating gyro as shown in Figure 52 is designed so that any
turn of the gimbal works against the torque of the viscous restraint,
Céo. When the integrating gyro senses an angular rate ¢f about its input
axis, the gimbal has to overcome the torque of the viscous restraint in
order to precess,

Unlike the spring restrained rate gyro, the gimbal will continue to
preécess as long as there is an input. The resultant effect of a distur-
bance is to produce an angular rotation about the output axis that is

proportional to the integral of the input axis rate., The input distur-
bances come from two sources: command torcues and input axis rates,

The equation of motion is

(JS2 + CS) 0, = Hc'pf +K_ E, (Cl)
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and the respective transfer functions are

Command Torques:

E K, K
o _1_t p
E, S JS+ C
i
Input Axis Rates:
E 1 HK
Qo _=-_P
¢f SJS+ C

where
Eo = Kp 90-

The total transfer function is

1K/J
EO = E "E""“C (Hcpf + K¢ Ei)'
S+3

The block diagram of the rate integrating gyro is shown in

Figure 53.
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+
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Input Axis Rate
cs
E, = output voltage
C = viscous friction
H = angular momentum
J = gimbal inertia

Kp = pickoff sensitivity
K¢ = command torques gain
o = output angular displacement

b = input axis rate, ¢ + & ﬁi Y;(X¢)°

FIGURE 53. BLOCK DIAGRAM OF A RATE INTEGRATING GYRO
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APPENDIX D

AERODYNAMIC VANE TYPE SENSOR
(Reference 9)

~<—Parallel to Rigid
Vehicle Axis

£
Standard

Flight
Dircctian

Resultant Afrflow
Direction Relative
to Rigld vehicle

FIGURE 54. ANGLE OF ATTACK METER

The aerodynamic vane sensor is used to measure the angle of attack
between the vehicle longitudinal axis and the direction of the relative
velocity vector., The moveable vane type sensor is located at the nose
of the vehicle as shown in Figure 54,

From Figure 54 the following relations are obtained:

G =@ *F z Yi(x) ng - o ‘(DD

i
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Q, = ap - (D2)

Q
1

- o + ZY‘i(xa) Ny = Op- (D3)
i

The angle g7 is an induced angle, due to the bending and attitude
motion, given by

E: Yi(xa) ﬁi + (xCg - X)) O
%7 v (D<)

and the angles are defined as follows:

Q% = meter angle (output) between vane and boom axis

Q& = total angle of attack between resultant air flow and vane
axis including effects of bending and yaw motion

a = angle of attack of rigid missile
Xy = restoring angle of vane

;{:Y‘(xa) niy = elastic axis angular displacement

¢ = attitude error of rigid vehicle.

The angle-of-attack meter equation of motion is

. . - 2 2 =
o + 2§Aubpa 2§mu69§ + W, &y o, (D5)
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where

CA = aerodynamic damping ratio

Cm = mechanic damping ratio of meter

Wy = frequency of meter.

Substituting equations.(Dl) through (D4) into (D5) and dividing
through by uf, gives

& x
;g”(@A*“im)w—;Wﬁa +ZY'i(x05) ng
L(x) 2t, Y (x) Y'(xo)
i« A i . .t
) O ) ) = s
1 1

o) 2t X  -X
+;§+<A+ chO‘><’p.
o by

Choosing the sensor frequency w, >> 1, then

‘ (x - x)
1 . g .
a =« +Z Y'i(xa) gty Z Yi(Xa) ng + - v = 9] (D7)

i i
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APPENDIX E
ACTUATOR - ENGINE TRANSFER FUNCTION

The differential equation relating the output of the actuator to
the commanded input is given by

ARy + K M,
K

(By *EB +F B +GB) =1 B +B B +K B,

Ky K,
(E1)
where
Be = actuator command
BA = actuator output
B = control engine gimbal angle
K, = effective hydraulic spring constant
K; = open loop gain
Ko = valve pressure feedback gain
ML = effective load mass
BL = real damping at gimbal
KL = effective load spring constant
A = actuator piston area,
The transfer function across the actuator is then
B
= D(S® + Lg4 i)
- S® + ES* + FS + G’
Be
where
K1 Ko KL
D (E3)

T A(K, * Kp) Mg
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B, - S Ky K,

E = rT K+ K) A2 + AR, + K) (E4)
. K, K Ky K K By Ky K, By )
TR TR AR, T,
KK K )
AR, TR =

The differential equation relating the engine gimbal angle and actuator
output 1is

M B+ BB+ KB = KB, (E7)

and has the transfer function

B
£ . E8)
Ba (

The detailed block diagram of the actuator is shown in Figure 55,
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APPENDIX F
SUMMARY OF VEHICLE DYNAMICS INCLUDING BENDING AND SLOSH

The equations included in this appendix are written for a vehicle
in the X, Z coordinate system., The X axis is chosen tangent to the
reference flight path moving with the velocity and acceleration of the
longitudinal vehicle translation. Choosing the coordinate system in this
mahner eliminates the degree of freedom along X whose influence on the
stability behavior of the vehicle is considered negligible,

For stability investigations of the vehicle motion, only a short
interval of flight time is taken. The rotation of the standard flight
path direction is neglected, and all vehicle parameters (thrust, mass,
aerodynamic, ect.) are assumed constant,

The degrees of freedom of the vehicle are
1. lateral translation of the vehicle rigid body, Z

2, rotation of the vehicle rigid body relative to an
inertial system; ¢

3. rotation of the swivel engine relative to an inertial
system, v

4, displacement of k propellant slosh masses, Zg
5. amplitude of i bending modes, 7, and
6. the swivel engine compliance, 3 - B..
The total number of the degrees of freedom for this system is then
i+ k+ 4,
The following equations can be derived by application of Lagrange's

equation to the kinetic, potential, and dissipative energy of the system
as was done for the bending and slosh equation in Section V,
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Angular Acceleration about Center of Gravity.

b= O G + P+ G

g = R
I

o
. _ 1\ . F-D
Ys T I Zli{(xcg - xsk) Zsk * <' M > zsk}—msk
k

Z
p=- 2 ficg,a(x) ax) dx -

B o= 2 (L. +mg(x - )]"+rmﬂ F - D)

P T T Mg T melp (B T X IB L E'E\ M B

. 1 .

® T T Z{mE [xeg = %, ¥ 2g] Y 000 = [T +mpdy (ko - )] Y'i(xh)} i
i

F\ \ 1
7 }_{Yi(xh) - (g T ) Yi(xh)} My
i

where

F = Ff + FC.

Acceleration Normal to Vehicle Reference at Center of Gravity

e ooy 4y
Zg =2 %2+ 2 ]

£
.. - N !
7 = <%;3fl%}p + %T B+ %E “/ﬁcﬁa(x) a(x) dx
)
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Acceleration Normal to Vehicle Longitudinal Axis at Sensor Location, X,

Ef(xa) =Z- Eet&'5 + zg:Yi(Xa)ﬁi - <% é D> {§-+ zgzqi Y;(Xa)}-'
i i

Bending Equation for ith Bending Mode

1
b ) 2 = + + + +
g 28w ng ey T (Fn Fz_ Fcp Fo FB)

F
1 1 1 1
-M—‘11= -M—Z{mEY(x) [¥,0q) = £y V0T + Ty Yi0q) Yi0q)
3
#
+mogp Y () Y'(xh)}n Z{Y Gep) Y00 + Y Gx) Y, 0x)

j#i

- Ly i (%) Y3 (xh)} iy
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Slosh Equation for Slosh Mode
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1
F - D '
+ T {cp +Zni Yi(xs)}
i

Angular Relations
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bp = 9+ ) Ay Y6y

i
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i

Be = B +y gy YiGe)
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Oé=q3+ozw-v
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tan~1

{yvaw plane)

V cos %
W c

vV - Vw sin XC

(pitch plane),.
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APPENDIX G
BENDING MOMENT

The control of large boosters to maintain or reduce the bending
moment to acceptable levels is frequently an important consideration in
the design of control systems, The bending moment is produced as a
result of both external forces and inertial forces acting on the vehicle,
The structural members of the vehicle must be designed to carry this
bending moment as well as to maintain a structural margin of safety.

In deriving the expression for the bending moment, all forces are
resolved parallel and perpendicular to the vehicle longitudinal axis.
Since the parallel force components act along the longitudinal axis,
they contribute nothing to the bending moment. The bending moment con-
tribution from engine dynamics and slosh dynamics is neglected, and a
rigid vehicle is assumed,

The free body diagram with force components resolved normal to the
vehicle axis is shown below. M(xj) represents the bending moment at
station xj carried by the structural members.

MSerodynamic Normai
Load Distribution 7

1

R'BT —=] dx |-
R

-, !

X ——
cg

st
®—— Arbitrary Reference

FIGURE 59. FREE BODY DIAGRAM OF VEHICLE IN YAW PLANE
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The forces acting on an element dx are the aerodynamic normal
force,

dN = gs [C& (x)] o dx (G1)
(6
and the inertial force
dP = m' (x) Z(x) dx. (G2)
The prime in the two equations above denotes a derivative with respect
to x.

The moment at station x;. due to dN, dP and R' is

X, =X
i b

M(x) = R'B(xi - Xh) + ‘/ﬂ [dN + dP} (xi - X). (G3)
%,

After expressions (Gl) and G(2) are substituted into (G3),

X,=-

i
M(x) = R'B(xi - xh) + J[ {Fs [Cﬁa(x)]a + m' (x) 'z’(x)}'(xi - x) dx.
*b

The acceleration Z(x) in equation (G4) can be written in terms of @& and B,
since

Z(x) = Ecg - (XCg - x) (G5)

and, from equations (39) and (40),

By <E}T> o+ (Bm- B (c6)

x - x W (x - % )R'
4 = cg . cp q - —<& . *h 5. @7)
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Therefore,

v G WG - xcp).N':l . [R. G, - DG - Xh>R'} .
m I :

(G8)

Now writing equation (G4) in terms of ¢ and B using equation (G8) gives

1%
M(x) = R'B(Xi - x) + \/ﬂ {%;-m'(x) (Xi - x) dx
*b
(xC - X, N
+ & - P m' (x) (xCg - x) dx + gs C{\Ia(x)(xi - X) d%}-a
* 1

X =Xy

I (x - )R
JF {%; m' (%) (xi - x) dx + 2t Th m'(x)(xi - x)(xCg - x) dxr B.
*b

(G69)

Factoring the quantities outside the integral in equation (G9) which
are independent of x results in a bending moment equation of the form

MGx) = MGx)B + M G0 (610)
where
X =X
MS(Xi) = R’(xi - xh) + %T J[ m' (x) (xi - x) dx
b
X - (G11)
(x,, - 5 i™b
+ T b/\ m' (x) (xi - %) (xCg - x) dx.
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%1% 5%
_ N ' '
Ma(xi) == JF m' (x) (xi - x) dx + gs Jﬁ CNa(X) (xi - x) dx
X %

1
(x - x N
+ —<8 - cp w' (x) (x; - x) (x.q = %) dx. (G12).

X

b

Given the aerodynamic characteristics, the mass distribution, the
vehicle geometry and the control thrust per unit rotation (R'), the coef-
ficients My and Mg can be evaluated over the length of the vehicle at
discrete times of flight,

Typical values of My(x) and MB(X) are shown below versus the sta-
tion location.

Station in meters, x

0 [} 20 “30 40 50 9 70 8n 90 100 110
0 y T T 1
-4
-8} M () x 107
-1.2
I
Mﬁ(x) x 107
tir 1.6
1 bl
3
i

NOTE: Kp = kilopond = 2,205 1hs

Mct’ M.5<K

-4}

sal

FIGURE 60, My (x) AND Mﬁ(x) FOR A SATURN CLASS VEHICLE AT t = 93 SECONDS
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When a bending moment expression is required in making a control
study (i.e., shaping the ¢ and B response to reduce bending moment), the
point of maximum bending is the one of interest, For the vehicle above,
this would occur in a region around station 22 meters depending on the
time history response of ¢ and B. Assuming the response was such that

the bending moment is maximum at station 22 meters, the expression in
this case would be

K -m
M= -(3.178 + .57Q) x 107 —%—— . (G13)
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