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EQUATION OF STATE OF MATTER AT SUPERNUCLEAR DENSITY

E. R. Harrisont
Theoretical Division
National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland

We shall consider briefly the possible nature of the equa-
tion of state of mattervat supernuclear density;: This is of
interest in such subjects as cosmology and gravitational collapse
- By supernuclear density we mean a density exceeding that of
ordinary nuclear matter. Since nucleons in nuclei are spaced ap-
proximately 1 fermi apart, we have in mind proper densities of
p>10F g cm_s. Zel'dovitch (1962) has shown on the basis of a
vector meson model that as the supernuclear density increases in an
isotropic fluid the pressure tends to equal the energy density. Our
aim is to show that it is unlikely that Zel'dovitch's conclusion is
true.

The equation of state can be expressed in the form

p=(v-1)c¢

tNational Academy of Sciences - National Research Council,
Resident Research Associate




where P is the pressure and ¢ = pc® is the energy density. Both
p and v are matrices which can be dlagonalized for microscopic
elements of fluid. For a photon or neutrino gas, in which the

particles have zero rest mass,

where g = 1, 2, or 5 is the number of spatial degrees of freedom.

When the gas is isotropic, q = 3, and therefore according to (2),

v =4/3, and p = ¢/3. For a gas containing a class of particles
= 2 ] . .

of energy Ei = Yimic , where m, 1is their rest mass and v; 1is

the ratio of energy to rest energy,

if the interaction energy is ignored. By regarding the energy

contribution from the various interaction fields as a gas of real

(3)



and virtual bosons the effective value of v for the fluid can
be evaluated by integrating (3) over the various distribution
functions of the particles. Since v, < (g + 1)/q for all classes

of particles, we have in general

1<vps 9_345 ()

for all fluids. The lower limit is for a gas of zero pressure, and
the upper limit is for a gas containing only particles of zero

rest mass., It is also noticed that the velocity of sound is

v =c(dp/de) Fzc (v-1) Fscq? (5)

in the appropriate direction, and has its maximum value of v, = c
at g = 1, as one would expect. In an isotropic gas, which is of

main interest, (4) becomes 1 < v < 4/3 and therefore p < ¢/3, and



gives V_ < /3 % .

In spite of the complexity of the particle states at super-

nuclear density our classical picture indicates that 1 = v = 4/3

mist still hold true in an isotropic fluid. It would also seem

reasonable to suppose that at supernuclear density v has a value

close to 4/3. Using the adiabatic relativistic equation:

d (eV) + paV = 0

for a varlable volume V, we have from (1) Lhut

Assuming v 1s constant in a given density range, it

-V
€ <V

follows that

(6)

(7)
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and if v has a value close to 4/3. then ¢ o V-A/B, as in a
relativistic ideal gas.

The relatively simple picture outlined above has been thrown

into a state of confusion by Zel'dovitch's (1962) suggestion

that strong interactions increase the value of v, and that in the

limit of high density in an isotropic fluid, v - 2, and therefore

p - €& and v, = c. It isnargued that the range of variation of v

is 1 < v <2, and not 1 s v < 4/3 as given by the previous argument.

Anisotropy in such a fluid is now impossible as this would imply

that the velocity of sound could exceed the velocity of light.
éﬁﬁZel'dovitch's suggestion is based .on a simple model in which

stationary baryons interact through a vector meson field.va

The Proca equations (Morse and Feshbach, 1953) for a vector

meson (unit-spin) field are

A+ — J=0 (9a)

ws-L 23, 25+ 4kmp_ =0 (9b)
2 32 e =



with the gauge condition

(o3 | ond
4
1]
(o]

(o7
ct

where é;and % are the potentials, and Q’and pe are the current and
charge densities. These Lorentz invariant equations are for
"hyperphotons" (vector mesons) of rest mass y = #i/Ac. When p = O,
they reduce of Maxwell's equations for photons of zero rest mass.
Zel'dovitch assuﬁes static cOnditions and the Proca equations there-

fore become

e -22 =0

Hence, if gz/hc is the coupling constant, where g is the baryon

"charge", the solution is the Yukawa-type potential

(9¢)

(10)

(11)



Zel'dovitch then shows that if there are n baryons per unit

volume and m is the baryon mass, the energy per baryon is

and the energy density is therefore

¢ = rme? + 2mg2n2\2 (12)

If it is assumed that the range » of the interaction is independent

of density, it follows from (6) that the pressure is




Comparing (12) and (13) it is seen that in the limit of high
density we have p - ¢, and according to (1) v therefore approaches
a value of 2. The assumption that the potential (11) is density
independent means that the range )\ of the interaction at high
densities is large compared with the interbaryon distance. The
interaction therefore tends to become long-range and collective
rather than short-range, thus accounting for v approaching the
value of 2.

The following comments must be made regarding Zel'dovitch's
treatment. [;t supernuclear densities it is physically un-

realistic to ignore the high energy of the baryons imposed by

the exclusion principleé In ordinary nuclear matter the ideal
guas laws provide a gooé starting point for calculating the energy
shift (Weisskopf 1950, Bell and Squires 1961), and potential
functions are employed to obtaln improved approximations. When
the internucleon distance is less than the nucleon Compton wave-
length, of p > 107 gcm-s, the idea of stationary baryons is
completely unacceptable since the nucleons now have energies ex-
ceeding 1 GeV and there 1s coplous production, among other things,
of nucleons and hyperons (including their antiparticles)fi A

3

further unsatisfactory feature of the model is that it singles



out unit-spin mesons and neglects the rest of the meson multiplets:?

Let us, however, ignore the unsatisfactory nature of
-

Zel'dovitch's model and accept the potential (11) asta crude
phenomenological description of short-range interactions.. As

the density increases (and the available energy involvedﬁin the
inlernetions aloo ineecuses) Lhe higher mosses o Lhe meson hicr-
archy will progressively predominate in the interactions. In effect,
A will get smaller and the short-range character of strong inter-
actions will_be preserved. Thus, the potential (11) can no longer
be regarded as density independent. As an example, Ievy (1952)
points oul that the higher ordcr potentials bchave as exp (-xr/\)
and involve the exchange of x mesons. It is to be expected that
the range of the predominant interaction is comparable with the
interbaryon distance, and therefore A is related to density by

an expression of the kind A = an—é , where « is of the order unity.

Equations (12) and (13) now become

4

¢ = nme® + 2mgZa®n (14)
P = '25“11 ggazné- (15)
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and these equations have the merit that they yleld the physically
acceptable result that v has a maximm value of L4/3.

Despite the complexity of the interactions in matter at
supernuclear density it is unlikely that our earlier arguments
eoncerning the maximum possidble value of v are in error. Although
Zel'dovitch's model possesses several unacceptable features, it is
nevertheless interesting to notice that if it is applied in a
slightly more realistic-manner then the maximum possible value of

v in an isotropic fluid is also 4/3.
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