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FLAT PLATE AT MACH NUMBWS FROM 2.5 TO 4.5 

AND REXNOLDS lRMBEEG UP TO 69 x lo6 
By W i l l i a m  J. MDnta and Jerry M. Allen 

Langley Research Center 

SlJIWARY 

3 781 6 
A wind-tunnel investigation has been conducted t o  measure local  turbulent 

skin f r ic t ion  on a 10-foot-long flat-plate model a t  local Mach numbers of 2.46, 
2.91, 3.47, and 4.44 over a Reynolds number range between 5 x lo6 and 69 x lo6. 

The skin-friction values measured i n  this investigation averaged between 
0 and 5 percent above the predictions by the Sommer and Short T’ method, but 
these differences may be within the accuracy of the measurements. Skin-Friction 
balances with improved characteristics, together with surveys of the t e s t  flat- 
plate  model, w i l l  be necessary i n  order t o  assess the r e l i ab i l i t y  of the results. 

The accurate knowledge of the level  of slrin f r ic t ion  is  of great impor- 
tance i n  the design of efficient supersonic a i rcraf t ,  since skin-friction drag 
contributes such a large portion of the t o t a l  drag of the vehicle a t  cruise 
conditions. 
e r a l  hundred millions, significantly above 20 x 106 which is the upper l i m i t  
fo r  most supersonic skin-friction measurements, and the boundary layer w i l l  be 
predominantly turbulent. 
go into the higher Reynolds number ranges. 
data mount t o  15 percent between references 2 and 3 ,  even though each of these 
two are internally consistent and repeatable to much smaller increments. 

The cruise condition w i l l  be at  Reynolds numbers ranging t o  sev- 

The data of references 1 t o  4 a re  among those which 
The differences among the various 

The correlation of experimental turbulent skin f r ic t ion  has generally tended 
t o  depend upon averaging data from a number of different sources. 
and 6 ,  fo r  example.) 
a r e  required supersonically, and accuracy of measurements should be of prime 
importance. 
evaluate the instrumentation and t e s t  apparatus involved with floating-element 
skin-friction balances. Although the results are not as  good as desired, they 
do add t o  the body of available skin-friction measurements. 

(See refs. 5 
Therefore, more data i n  the higher Reynolds number range 

The present tests were conducted as a preliminary investigation t o  



The resul ts  were obtained from an experimental wind-tunnel investigation 
i n  which turbulent local  skin f r i c t i o n  was measured on a f la t -p la te  model a t  
Reynolds numbers between 5 x 106 and 69 x 106 and a t  free-stream Mach numbers 
of 2.50, 2.94, 3.50, and 4.53. Three skin-friction balances were located a t  
different  spanwise locations a t  a single longitudinal s t a t ion  near the t r a i l i n g  
edge of the plate .  
edge. 

Transition w a s  t r ipped a r t i f i c i a l l y  near the model leading 

SYMBOLS 

F l oca l  skin-friction coefficient, - 
%S 

Cf 

F 

M Mach number 

shear force measured by balance 

P pres sure 

P dynamic pressure 

RX Reynolds number based on free-stream conditions and the  p l a t e  length 
from leading edge t o  balance location 

S wetted area of disk, 0.785 square inch 

T t e q e r a t u r e  

X distance from leading edge t o  location of skin-friction balance 

Taw - Tm temperature recovery factor,  
TO - Tm 

Subscripts: 

a w  adiabatic wall 

i incompressible 

0 free-stream stagnation 

m f r ee  stream 

6 conditions at edge of boundary layer 

2 



APPARATUS AND TESTS 

Wind Tunnel 

This investigation w a s  conducted i n  the high-speed t e s t  section of the 
Langley Unitary Plan wind tunnel, which is a closed-throat, single-return tun- 
nel with provisions fo r  the control of the pressure, temperature, humidity, and 
Mach number of the enclosed air. The f ac i l i t y  has two t e s t  sections (48 by 
48 by 84 in.), and flow may be diverted from one t o  the other o r  can bypass 
both by means of an auxiliary piping arrangement. 
obtained by means of an asymmetric sliding block-nozzle arrangement. 
Reynolds number range w a s  obtained by varying the stagnation pressure. 

The t e s t  Mach nmibers w e r e  
The 

The nature of the asymmetric sliding-block nozzle gives r i s e  t o  Mach num- 
ber gradients within the t e s t  section. Unpublished calibration data indicate 
that there i s  a gradual variation of Mach number vertically of 3 percent at 
low values of Mach number t o  EL$ percent at the high values. Longitudinally 

the Mach number varies i n  a wavy pattern by a maximum of 3 / 2  percent, whereas 
l a t e ra l ly  there is essentially no change. A variation i n  M of up t o  1 per- 
cent occurs over the stagnation-pressure range, but this is accounted fo r  by 
the  tunnel calibration curves. 
for test-section stations between 20 inches and 50 inches w h i c h  indicate aver- 
age up-flow angles of 0.20 at M = 2.5 

Limited flow angle survey results are  available 

increasing t o  O.gO at M = 4.5. 

Model 

The f la t -plate  model ( f ig .  1) was 125.3 inches long by 48 inches wide and 
extended from approximately 21 inches ahead of the &-inch nominal t e s t  section 
t o  20 inches downstream. The plate spanned the t e s t  section of the tunnel w i t h  
the f lat  surface down and at the center l ine.  The plate w a s  sealed at  the 
sides t o  prevent flow leakage f r o m  one surface t o  the other. Additional m o d e l  
information may be found i n  reference 7. A t  the reamost section of the plate 
w a s  a housing with provisions for mounting skin-friction balances a t  three span- 
wise positions at a distance of 122 inches from the leading edge of the plate. 
The leading-edge thickness of the plate w a s  about 0.060 inch and the surface 
f inish of the plate  w a s  approximately 10 t o  15 microinches. 

Inst  rumentat ion 

A sketch of one of the floating-element skin-friction balances used i n  
The balances, which w e r e  designed th i s  investigation is  shown i n  figure 2. 

and bu i l t  by the Defense Research Laboratory, University of Texas, w e r e  loaned 
t o  the Langley Research Center. 
operation is  found i n  reference 8. 
i n  conjunction w i t h  a mill ivolt  potentiometer t o  obtain and read out balance 
output data which were recorded on punch cards. 

The description of the balances and the i r  
A four-channel carr ier  amplifier w a s  used 

The three balances used i n  t h i s  
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investigation had ful l -scale  ranges of approximately 0.0087, 0.0089, and 
0.0200 pound and were designated balances 1, 2, and 3, respectively. Each 
w a s  operated with a small preload which w a s  accounted f o r  i n  the calibrations.  
The preload was due t o  adjustment of t h e  balances so as t o  have the f loa t ing  
element sprung up against the  upstream edge of the  case when there  w a s  no shear 
load on the element. 

All three balances were calibrated i n  place i n  the model both before and 
a f t e r  the t e s t s  and the results indicated a sca t t e r  of approximately f2 percent 
of full-scale load about a l inear  calibration. 
load level. 

The sca t t e r  w a s  independent of 

The balances were sensit ive t o  change i n  ambient temperature. For the  
most part, the zero d r i f t  variations were repeatable, with a typ ica l  maximum 
d r i f t  being about 4 percent of ful l -scale  load f o r  the  highest t e s t  tempera- 
tu re .  
which repeated t o  within a maxFmum of 1 percent. 
t ions  performed on several similar balances indicated no change i n  sens i t iv i ty  
between temperatures of 750 F and 950 F. 

This effect  was minimized by u t i l i z ing  "hot zeroes" (see section "Tests") 
The results of bench calibra- 

The f loat ing element of each balance w a s  al ined with i t s  case so as t o  be 
several ten-thousandths of an- inch below the case. This procedure w a s  used i n  
order t o  assure no protrusion of the  element above i ts  case, as protrusion pro- 
duces a greater  increment i n  indicated drag than does a corresponding opposite 
alinement. The balance case was alined i n  the  same manner with 
respect t o  the p la te  surface. 

(See re f .  9. ) 

Tests 

The t e s t  conditions are summarized i n  the following table: 

7 

Computed* 
KO To, OF Po, Psis RX Taw, 9 

2.50 150 113 5 t o  30 8.6 x 106 t o  51.8 x lo6 
2.94 150 108 5 t o  50 6.8 t o  68.7 
3.50 150 102 5 t o  55 5 =1 t o  56.1 
4-33 1-75 119 15 t o  85 8.8 t o  49.8 

* 
Recovery factor  assumed t o  be 0.89. 

The t e s t s  were conducted by operating the  tunnel a t  the  desired test  Mach 
number and stagnation temperature f o r  a short time i n  order t o  permit the 
apparatus t o  reach equilibrium temperature, which is  essent ia l ly  adiabatic-wall 
temperature, before taking data. 
values of stagnation pressure after the  pressure had s tabi l ized.  
taken a t  intervals  both ascending and descending i n  pressure. 

D a t a  were recorded at  each of a number of 
Data were 
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Hot zeroes were taken at  each Mach number by diverting the flow past the 
tes t  section while at a low stagnation pressure t o  provide the desired no-flow 
conditions with instrumentation at normal operating temperature. 
were, i n  some cases, taken before recording data, but always after taking data 
at  each Mach number. 

The hot zeroes 

A l l  runs w e r e  made consecutively, as the Mach number w a s  changed remotely 
between each run while the tunnel w a s  operating a t  low stagnation pressures. 
The first and last runs were made at  the same Mach number (M = 2.94) t o  serve 
as check points. 

The m o d e l  w a s  ins ta l led at a geometric angle of attack of zero andt rans i -  
t i on  w a s  fixed near the leading edge of the plate with a band of No. 60 carbo- 
rundum g r i t .  

N o  measurements of plate  Mach numbers were made during the present tests. 
Velocity prof i les  measured i n  reference 8 on th i s  model were not measured with 
sufficient accuracy f o r  the present purposes. However, a boundary-layer rake 
w a s  cctlibrated, subsequent t o  the present tests,  on this  f lat  plate  a t  severdl 
conditions (x = 116 inches at  b&, = 2.49 and 2.98 and x = 41 inches a t  
I& = 4.06 and 4.65). 
ber at the  edge of the  boundary layer 
by 0.04, 0.05 ,  0.050, and 0.100, respectively. These values are i n  fair agree- 
ment with estimates (% - & = -0.01, -0.01, -0.045, and -0.09) =de by assuming 
the  f la t  p la te  t o  be a t  a negative angle of attack equal t o  the average test- 
section flow angle. 

The unpublished results indicate that  the local  Mach num- 
was less than these values of Ea, 

Values of % fo r  the present test  conditions have been obtained f rom the  

% - I%, 
unpublished probe results and are used i n  the computation of the skin-friction 
data. 
against 
corresponding values of 
i n  M on skin-friction coefficient: 

The Mach number correction w a s  obtained from a plot of measured 
I& and faired t o  yield the  values given i n  the  following table  w i t h  

Aq/q also shown t o  indicate the effect  of the change 

2.50 
2.94 
3.50 
4.53 

-0.040 
-0025 

I - .oq - 0087 

2.9 
2.1 
2.2 
6.0 

The values of % 
used only i n  the  absence of more applicable measurements. 

used i n  data reduction are t o  be considered as estimates, 

RESULTS AND DISCUSSION 

The loca l  turbulent skin-friction coefficients, 
Reynolds number, are shown i n  figures 3 t o  6 for  the  

plotted as a function of 
four tes t  Mach numbers. 
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The resul ts  are a l so  given i n  table  I. 
a different  balance. A s  a comparison, the  so l id  l i n e  represents the  loca l  
turbulent skin-friction coefficients which are predicted by the Sommer and 
Short T '  method ( r e f .  10). 

Each symbol represents the resu l t s  of 

A t  every Mach number the repeat points made during each run were i n  agree- 
ment from about k l  percent at the high loads t o  *2 percent at  the low loads.  
The check run at  M = 2.91 (not plot ted)  repeated within the  same l i m i t s .  The 
resu l t s  of balance 3 should be discounted a t  M = 4.44 
measuring loads that ranged from only 3 t o  13 percent of i t s  full-load capacity. 

since the balance w a s  

The several balances a re  seen t o  yield results t h a t  d i f f e r  from the  average 
by from k2 percent t o  3 percent depending upon the Mach number. The average 
l eve l  of the  loca l  skin f r i c t i o n  appears t o  be higher than tha t  calculated by 
the  Sommer and Short T '  method by a value between 0 t o  5 percent a t  each Mach 
number. 

Figure 7 i s  a summary plot  showing the r a t i o  of compressible t o  incom- 
pressible skin f r i c t i o n  plot ted as a function of Mach number at  a constant 
Reynolds number of 50 x 10 6 . 
dicted by the  Somer and Short T '  method. 
investigators are shown f o r  comparison with the  data of the present t e s t s .  The 
present data a re  seen t o  range from 3 percent below t o  8 percent above the pre- 
dictions of t he  reference theory, and f a l l  close t o  the l eve l  of the  r e su l t s  
of reference 2 and below the resu l t s  of reference 3 .  

Again, the  so l id  l i n e  represents t he  values pre- 
Only f la t -p la te  r e su l t s  by other 

The differences i n  the resu l t s  as measured by the  three  balances might be 
at t r ibuted t o  e i the r  of two sources: 
character is t ics  across the  test p la te  or differences i n  character is t ics  of the 
instal led balances. Note that ,  i n  reference 2, it w a s  found tha t  these same 
balances, when interchanged a t  a given location, did not provide ident ica l  
resul ts .  
of the instrumentation. 
of the resul ts  is  t o  be achieved, improved balance character is t ics  as w e l l  as 
surveys of the p la te  pressures and boundary-layer prof i les  w i l l  be necessary. 

spanwise variation i n  boundary-layer 

It is  possible tha t  the present data a re  within the  in s t a l l ed  accuracy 
In any event, i f  proper assessment of t he  r e l i a b i l i t y  

CONCLUDING REMARKS 

A wind-tunnel investigation has been conducted t o  measure loca l  turbulent 
skin f r i c t ion  on a 10-foot-long f la t -p la te  model at  loca l  Mach numbers of 2.46, 
2.91, 3.47, and 4.44 over a Reynolds number range between 5 X 106 and 69 x 106. 

The skin-friction values measured i n  t h i s  investigation averaged between 0 
and 5 percent above the  predictions by the Somer and Short T '  method, but these 
differences may be within the  accuracy of the  measurements. Skin-friction 
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balances w i t h  improved characteristics, together w i t h  flow surveys of the test  
f la t -plate  m o d e l  w i l l  be necessary i n  order t o  assess the r e l i ab i l i t y  of t he  
results.  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., April 28, 1965. 
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