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ABSTRACT 2937 7

Some theoretical and experimental developments of the last decade are
discussed with emphasis on techniques that can be used to calculate viscosity,
thermal conductivity, and diffusion coefficients assuming appropriate interatomic
or¥ intermolecular force laws. Three main topics are considered: First, inter-
molecular potential energy functions for which collision integrals are now avail-
able; second, heat conduction in chemically reacting gases; and finally, a closely
related topic, the heat con@uctivity of polyatomic gases. /5&ZZSKIJL'

INTRODUCT ION

This paper considers theoretical and experimental developments concefning
the transport properties since about 1954; in other words, since the publication
of "Molecular Theory of Gases and Liquids" by Hirschfelder, Curtiss, and Birdl,
which effectively summarizes most prior work. Furthermore, the discussion is
limited to techniques that have engineering usefulness - techniques that can be
‘used to actually compute transport properties algebraically.

Thus, three main topics are discussed: First, the collision integrals,
basic to transport property calculations, that are now available for a wide
variety of intermolecular force laws; secondly, heat conduction in chemically
reacting gases followed; finally, by consideration of a closely related subject,
the thermal conductivity of polyatomic gases.

In general this review will make reference to the literature rather than
presenting computational methods as such. Equations will be avoided except

insofar as they serve to illustrate t vior of various properties. Thus,

e
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in order to carry out any actual calculations, the reader must consult the
literature.
POTENTIAL ENERGY FUNCTIONS AND THE COLLISION INTEGRALS
The rigorous Chapman-Enskog theory yields the following expressions for the
transport properties of dilute monatomic gaseszz

Viscosity

1= 5 () @

»

Thermal conductivity

25 kT Cy
A= 22 __3;)_ A (2)
52 \ non(2,2)% J\ m

Self-diffusion coefficient

1
-3 A () 2

These formulas involve quantities such as the atomic mass m, the Boltzmann
constan; k, the temperature T, the heat capacity c (= % k), and the density
p, which are well known. However, the formulas also contain cross sectionms, or
more properly collision integrals 029(2’2)* and 020(1,1)*, and to compute
these the intermolecular force law must be known.

For a spherically symmetric potential, which may be written in a dimension-

less form as

o(r) P* = f({) = f(r*) (4)
€ o}

the collision integrals are obtained by a triple integration. (Here € 1is an
energy and ¢ is a distance characteristic of the potential.) First it is

necessary to compute the angle of deflection:
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X(g*,b%) = n - 2b* (5)

gk

where bD¥* = b/c is the reduced impact parameter. (The impact parsmeter b is
the distance of closest approach in the absence of the potential ¢.) Further,
r; = rm/c, where Ty is the distance of closest approach in the presence of
the potential, and g*z = % mgz/e is the reduced relative kinetic energy (g

is the initial relative speed of the colliding molecules).

Once the angle of deflection has bheen obtained as a function of g* and b¥,

8 velocity-dependent cross section is computed:

QD * () = 2 - (1 - coslX)b*db* (6)
[h_ 11 (1) ] 0
+ 1

*
Finally, the Q(Z) are averaged over all velocities, with an appropriate

weighting factor:

2
(1,8)% 2 -g*/T* 2843 (1)*
%) = * de* 7
; () (s+1)fT#52 | | © & e & ™)
2 (1,8)%

Thus the collision integrals o § are a function of reduced temperature
™ = kT/ec.

The purpose of presenting Egs. (5) - (7) is to show the manner in which the
potential energy ¢ influences the transport properties. The potential appears
explicitly in the integrand for the angle of deflection and is then averaged by
three integrations. Consequently, the collision integrals are insensitive to
the details of the intermoleculer potentisl, and we cannot expect experimental

transport property messurements to provide much information about the force law.

To put it another way, the experimental data cannot be used to determine the
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potential; the data can only be used to veto candldate potentimls.

For most potentiaml energy functions Egs. (5) - (7) must be evaluated numeri-
cally. The first such calculations for a realistic force law - the Lennard-Jones
(12-6) potentisl - were carried out independently by four different groupss's.
Furthermore, the Wisconsin graups showed that experimental viscosity data could
be fit rather well to yield moleculsr constants ¢ and ¢ in reasonable agree-
ment with corresponding parameters obtained from equation of state data.

The Lennard-Jones (12-6) potential

o(r) = ae [(g)lz - (g.)e] (8)
combines an inverse sixth power atiractive potential with an inverse twelfth
power repulsion. The attractive portion has a theoretical basis in the dispersion
forces, but the twelfth power repulsion was chosen merely for mathematical con-
venience. In view of the considerable success of the Lennard-Jones (12-6)
potential it 1s not surprising that the next step was to build some flexibility
into the repulsive part of the potential. This was accomplished by introducing
an exponential repulsion in place of the inverse twelfth power repulsion; the
collision integrals for these potentials, shown in Fig. 1, have been computed

7’8. The Lennard-Jones (12-6) potential is also shown in Fig. 1 for

by Mason
purposes of comparison.

The exponential-6 potential serves very well for the noble gases and other
molecules that are approximately sphericel. Figure 2 shows experimental viscosity
data for argon over a wide tempersture range; a curvé computed for rigid elastic
spheres is shown as a dashed line. The potentisl functions are also shown in

Fig. 2. The exponential-6 potential has been chosen8 to take account of equa-

tion of state and crystal properties as well as viscosity coefficients. For
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exsmple, the interatomic distance in solid argon 1s 3.8 Angstroms - just inside
of the minimum of the potential energy curve. The same potential also provides
a Batisfactory explanation of the thermal conductivity (Fig. 3) and self-
diffusion coefficient (Fig. 4) for argon.

Since theoretical calculations have been very successful in describing the
transport properties for valence-saturated nonpolar gases, it 1s not surprising
that the collision integrals have now been computed for potentials applicable to
other situations.

Molecules possesslng permenent dipole moments have an intermoleculer potential
that is not spherically symmetric. The dipoles give rise to a contribution to
the potential that depends on the orientation of the dipoles and the inverse
cube of the intermolecular separation. An appropriate potential for such

molecules is the Stockmayer potential

s 12 o 8 o 3
o sef (2] - (2 - () 2

Here 3 1is a function of the angular orientation of the molecules and also the
strength of the dipole moment. It has not as yet been possible to calculate
transport properties for this angle-dependent potential. However, collision
integrals have been calculsted for Stockmeyer potentials modified by assuming ©
a constantg. These potentials are shown in Fig. 5; at the extremes of 5 = +2.5
the long~range part of the potential is completely dominated by the inverse cube
term. (For comparison the Lennsrd-Jones (12-6) potential is shown as a dashed
curve (3 = 0).)

These collision integrals may be applied to polar gases if it is assumed
that the relative orientation of the colliding dipoles remasins fixed through

the important part of the collision trajectory around the distance of closest
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approach, The collision integrals are then averaged over all possible relative
orientationsg. Computed and experimental viscosities of steam (8 = 1.2) are
shown in Fig. 6. The fit of the data is not perfect -~ the experimental data
show a temperature dependence that is somewhat steeper that the theoretical
prediction - but it is an improvement over the fit obtained by using a simple
Iennard-Jones (12-6) potential.

Collision integrals have also been computed for the range of Morse potentialé
shown in Fig. 710. The potentials with the very broed wells can be applied to
interactione between atoms corresponding to chemically bound molecules (for
example, the %E interaction between two hydrogen atoms, which corresponds to
the hydrogen molecule). The potentials with the narrow wells have been used to
fit data on nonpolar, valence-saturated molecules.

Collision integrals also have been computed for a number of other potentials
including the repulsive exponential potentialll (for molecules at high tempera-
tures, as well és nonbonding interactions between atoms or free radicals), the
shielded coulombic potential12 (for repulsive interactions in ionized gases),
several (12-6-4) potent131513 (for ion-neutral interactions), several inverse

14, and also estimates for the attractive

power attractive and repulsive potentials
exponentiall5 (for low-temperature interactions between atoms or free radicals
corresponding to bound molecular states).

Thus the collision Integrals are now availaeble for a wide variety of
potentials. Hence, 1f the details of a potential energy curve are known, a

good match to it can be selected from the "library" of calculations already

at hand.
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HEAT CONDUCTION IN CHEMICALLY REACTING GASES

At high temperatures many gases are partiaslly dissociated and undergo =
variety of chemical reamctions. In reacting gases, heat transport may be con-
siderably lerger than in "frozen" (nonreacting) mixtures. Iarge amounts of heat
can be carried as chemical enthalpy of molecules that diffuse because of concen-
tration gradients. These gradients exist, in turn, because the gas composition
varies with temperature. For example, in a gas that absorbs heat by dissociating
a8 the temperature is raised, heat is transported when a molecule dissociates in
the high-temperature region and the fragments diffuse toward the cooler region.
In the low-temperature region the fragments recombine and release the heat
absorbed at high temperature.

When chemical reaction rates are very high, chemical equilibrium can be
asgumed to exist locally throughout a gas mixture. It is then possible, by
differentiating the equilibrium relationships, to relate the concentration
gradients to the temperature gradient. In this event one can define an equilib-
rium thermal conductivity %e independent of apparatus geometry:

Ne = Ap + Ap (10)
where Kf is the conductivity in the absence of reaction (the "frozen"
thermal conductivity) and %r is the sugmentation dvue to the reactions.
A general expression for the thermal conductivity due to chemical reactions

17 that 1s applicable to mixtures involving any number of

h@s been developedls’
reactants, inert diluents, and chemical equilibria, provided chemical equilib-
rium exists locally in the temperature gradient. For a simple dissociation of

the type A < nB the thermal conductivity due to chemical reaction is

D 2 XpX
)\r = AB AH ATB (ll)
RT

2 2
RT (nxA + xB)
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Here DAB is the binary diffusion coefficient between components A and 3B,
AH 18 the heat of reaction, and x,, Xy are the mole fractions of the com-
ponents. Note that unless both species are present, A. 1is zero. Furthermore,
since in & dissociating gas the gas composition varies with pressure, we expect
the heat conductivity to vary with pressure also. This is in contrast to the
behavior of nonreacting geses, for which the heat conductivity is independent
of pressure.

Experimental and theoretical conductivities for the N204-= ZNOZ gystem
at one atmosphere are shown in Fig. 818. The dashed curve indicates the frozen
conductivity. Thus %r is the major contribution to the heat conductivity; at
the meximum (where the mess fractions of N,0, and NO, are equal) the con-
ductlvity 1s comparable to that of a light gas such as helium,

The theoretical expression for a system involving two reactions has been
testedlg for the case of hydrogen fluoride vapor. At moderste pressures the
PVT behavior of hydrogen fluoride can be described in terms of a monomer-hexamer
eQuilibrium, while low pressure data suggest a dimer as well. Although the
actual state of the vapor is uncertain, it appears that at low and moderste
pressures the equilibria

7.4 keal

2HF 2 (HF), AHy

6HF 2(}11«")6 AHg = 40.5 keal

serve to specify the system rather well.

Computed and experimentalzo

thermal conductivities are compared in Fig. 9.
The solid line was computed assuming both dimer and hexamer equilibria, whereas
the dashed line was computed congidering only the hexamer equilibrium. Note the

extreme pressure dependence of the thermal conductivity. The maximum conductivity

is more than three times that of hydrogen at the same temperature and some 33
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times the frozen thermal conductivity expected in the absence of reaction. The
inclusion of a dimer equilibrium merkedly improvee the agreement between theory
and experiment in the low-pressure region.

The experimental studies on nitrogen tetroxide and hydrogen fluoride prove
the validity of the theoretical expressions for thermal conductivity of reacting
gases in chemical equilibrium. Recently the theory has been successfully applied
to data for the PCl5 ;:PClS + Cl2 equilibriumzl.

Thus far we have considered systems where the chemical reactions are so
rapid that chemical equilibrium preveils locally at all points in the gas mixture.
Let us now consider the reduction of heat transport caused by reduced reaction
rates. A general expression has been derived22 for the apparent "thermal con-
ductivity" of reacting mixtures in which a single reaction proceeds at a finite
rate. In contrast to systems where reaction rates are either very high or very
low, it 1is found that heet conduction depends on the geometry and scale of the
system and also the catalytic activity of the surfaces.

For a plane parallel plate geometry, with one surface noncatalytic and the

other surface a perfect catalyst, the effective "thermml conductivity" is
A
¥ o it
tanh @
Ap + A, B

(12)

where

N

RTZ

R1°

%e
® = X;X;
Here A& is the chemical reaction rate at equilibrium (that is the total rate
in either direction - not the net rate, which is zero, of course), and 1 1is

the distance between the plates. For simple systems it can be shown that

AN T
2 e Diff
Ar Tohem
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If the diffusion time Tpife is short in comparison with the chemical relaxation
time Topemr P ~ O, tanh cp/cp--> 1, and M* - kf. In other words, the concentra-
tioﬁ gradients are washed out by diffusion and the frozen conductivity is obtained.
On the other hand if the chemical time is short, the concentration gradients are ‘
meintained, ® = 1, tanh ¢/p = 0, and M = A_.

The theory has been applied to the low-pressure measurements18 on the
N204‘2'2N02 system, as shown in Fig. 10. The upper and lower dashed curves are
respectively, the computed equilibrium and frozen conductivities. The remaining
two curves are calculatlions of M for various reaction rates, assuming neg-
ligible chemical reaction on the surfaces. Nesr atmospheric pressure the experi-
mental data lie on the equilibrium conductivity curve, which is in agreement
with Fig. 8.

At low pressures the dissociation of N;04 1s a fast bimolecular reaction:

NoOy + M= 2NOp + M
The curve marked M = Nz has been calculated by using the rate data of Carrington
and Davidson®® for the dissociation of NpO4 1in nitrogen. The solid curve has
been calculeted by assuming the second order rate is sevenfold greater when

undiluted N0y - NOp mixtures dissociate; this is 1n conformity with the

24. The agreement between theory and experi-

experiments of Bauer and Gustavson
ment 18 very satisfactory.
THERMAL CONDUCTIVITY OF POLYATOMIC GASES
It is convenient to discuss the thermal conductivity of a polyatomic gas
in terms of its relationship to the viscosity through the dimensionless ratio
£ = Ni/ncy (14)

Here M 1is the molecular weight and C, 1is the constant volume molar heat

capacity. According to nltrasimplified kinetiec theory, f = 1; however, the
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rigorous Chapman-Enskog theory for monatomic gases predicts that £ should be
very nearly 5/2. This is due to the fact that translational energy is a function
of:molecular velocity; the molecules possessing the most energy are the most
raplid, have the longest mean free paths, and hence make an enhanced contribution
to the heat transport. Indeed, experiment confirms that f 1is about 2.5 for
the noble gases. This is illustrated in Fig. 11 where data for argon are shown
over a temperature from about 100° to 300° K. The data points represent measure—;
ments®° that provides a direct determination of f.*

For polystomic gases, f is less than 2.5 and tends to be smallest when the
molar heat capacity is largest and originates mostly from the internal energy
modes. Consequently, Ev.ckenz7 suggested that the transport of translation and
internal energy be considered separately, and proposed

£Cy = fyrans Oy 4rans + Tint Cint (15)
«%gtrans and Cint are the translational and internal contributions to the
total heat capacity Cv") Fucken assumed fi,.gng = 5/2, by analogy with the
monatomic gases. However, because there is little correlation between moiecular
velocity and internal energy, Eucken assumed fy, 4 = 1 (the result of the ultra-
simple theory that neglects the velocity-transletional energy correlation).

UbbelohdeZ®

pointed out that molecules with excited internal energy states
may be regarded as different chemical species and that the flow of internal
energy can be considered as energy transport due to diffusion of the excited

states. This concept leads to the result f, ., = pD/n, so that

*The method involves measurement of the adiabatic recovery temperature Tr
attained on a flat plate in a high-velocity subsonic gas stream. The recovery
temperature is related to the stream temperature T and total temperature
T through the recovery factor r = (Tp-Tg)/(T4-Tg). To & very good approx-

imetion f = Y/rz where y 1is the specific heat ratio.
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o == D
g Oy = T R+ % Cint (16)

For many realistic force laws pD/n ~ 1.3 over & large temperature range.
To justify this modified Eucken approximation [Eq. (16)] it is tacitly assumed
that inelastic collisions are rare. This is necessary in order that the
translational velocity distribution function should not be unduly perturbed,
so that the translational conductivity can be related to the viscosity as in
the case of the noble gases. On the other hand, there must be enough inelastic
collisions to maintain the internal energy states in equilibrium with the
local temperature.

Mason and Monchick29 have recently derived explicit expressions for

f

trans and fint from the formal kinetic theory of polyatomic gases. By

systematically including terms involving inelastic collisions they obtained
the modified Eucken expression as a first approximation, and, as a second
approximation, an expression dependent on the relaxation times for the various

internal degrees of freedom. For nonpolar gases their result may be written

2 C
15 D 215 D rot
ay Gy = B R+ 20 - E(3- ) (a7)

Here Crot i8 the rotational contribution to the heat capacity (R for linear
molecules, % R for nonlinesr molecules) &nd Lot is a colligion number for

rotational relaxation:

PTro’c

n

: (18)

Zpot, = Trot/Tcoll =
where 7., 18 the rotational relaxstion time and 7,,); = (ﬁ/4)(n/P) is the
mean time between collisions.

30’31, and hydrogen25

Experimental f values for nitrogen25, carbon dioxide
are shown in Figs. 12, 13, and 14. The upper dashed curves correspond to the

modified Fucken approximation [Eq. (16)], while the solid lines heve been
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calculated from Mason and Monchick's expression [Eq. (17)] by assuming the
temperatgre-independent collision numbers shown in the figures. The Eucken
approximations (ftrans = 2.5, fypt = 1) are shown as well for completeness.
The data on nitrogen and carbon dioxide lie midway between the Eucken and
modified Eucken approximations. In contrast, the hydrogen data scatter about
the modified Fucken approximation (Z = «»). Indeed, the hydrogen molecule is
unique in that exchange between translational and rotational energy is not
easy; collision numbers of a few hundred are predicted from theory and observed
experimentally.

Collision numbers determined from f, or recovery factor, are compared with
other measurements in Table I. The values from f are generally in accord
with those obtained by the other techniques, within the admittedly rather large
uncertainties associated with such determinations. The only serious disagree-
ment 18 in the case of carbon dioxide, where acoustical measurements indicate
that 16 collisions are required for relaxation. It seems likely that the
acoustic result is in error; it is difficult to see any theoretical reason why
carbon dioxide should relax so slowly.

A clessical theory for the rotational relaxation of molecules with attrac-
tive intermolecular forces (rough spheres and spherocylinders surrounded by
squere wells) has recently been developed by Sather and Dahlersz. In the case

of rough spheres the rotational relaxstion time 1s

T-l _ 3_—6. ncz (4:I/m02) 5 (ﬂkT ) g(g) (19)
[1+ (4I/mo?)] "

Here n 1is the number of molecules per cm5, I is the moment of inertia, m
is the mass, ¢ 18 the diameter of the rough sphere core, while g(o) is the

value of the radial distribution function at o¢. In the low-density limit,
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g(o) = exp (e/kT), where ¢ is the depth of the well at o.

Equation (19) possesses two noteworthy features. First, since the
quantity 4I/mc2 is generally less than 0.2, the relaxation time depends only
weakly on o, the position of the repulsive core. Secondly, since there is no
rotational energy transfer accompanying the velocity impulse at the outer edge
of the potential well, the only contribution to the rotational relaxation stems
from the impulse at the core. Consequently, the width of the well is unimpor-
tant; in fact, Eq. (19) should apply to a Sutherland potential with a rough
core - that is, a potential with an inverse sixth power attractive Qprtion to
account for Van der Waals forces. We might hope that this model would be suit-
able for molecules that are approximately spherical.

After combining Egs. (1), (18), and (19) we find

-1 51 4T
Z ~ 22 kT 20
2 Bt ) exe(efi) (20)

(The term 4I/m02 in the denominator of Eq. (19) has been neglected.) Some
experimental results are compared with predictions of Eg. (20) in Table II.
Methane, carbon tetrafluoride, and sulfur hexafluoride are approximately
spherical, as shown in Fig. 15; for these molecules the agreement between theory
and experiment seems very good indeed. The mass distribution parameter

4I/m020(2’2)*

varies more than threefold between methane and carbon tetra-
fluoride; thus the large collision number of methane is probably & direct
consequence of the molecule's small moment of inertia. Note that the effect
of attractive forces [exp(e/kT)] is appreciable and roughly doubles the

transition probabilities.

The calculations for ethylene and ethane were carried out using average

1

ot values calculated for ethane are in close accord

moments of inertia. The Z;
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with experiment, but in the case of ethylene the agreement is not so good.
From Fig. 15 it is apparent that the ethaﬁe molecule is approximately spherical,
whereas the ethylene structure is definitely less compact and symmetriec.
It appears, then, that the classical kinetiec theory for a rough spherical
molecule with attractive forces may provide a lower limit to the collision
probability for rotational relaxation, Z_l

rot’
such as CHy, CF4, SFg, and CoHg are reasonably represented by this model, whereas

for nonlinear molecules. Molecules

less symmetric molecules such as CpHy have large transition probabilities, or

31,33 £or the

shorter relaxation times. As a matter of fact the theory of Brout
relaxation of diatomic molecules such as nitrogen and oxygen also indicates
that the deviation of the intermolecular potential from spherical symetry is
an Important parameter.

Thus we conclude that Mason and Monchick's approximate theory for the heat
conducetivity of polyatomic gases is at least qualitativelycorrect. Furthermore,
the following factors seem of profound importance in determining rotational
relaxation times for nonpolar gases:

(1) The mass distribution (characterized by 4I/m02)

(2) The strength of the intermolecular attractive forces (characterized

by ¢/kT)

(3) The deviation of the molecular force field from spherical symmetry

CONCI@DING REMARKS

In the past decade there have been substantial advances in methods for

calculating the transport properties of gases and gas mixtures. Collision

integrals have been calculsted for a considerable variety of realistic potential

energy functions. The effects of chemical reaction and chemical rate phenomena
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seem to be well understood, and there is gratifying accord between theory and
experiment. Finally, the theory of Mason and Monchick29 shows great promise
as a description of the behavior of polyatomic gases.

What remains for the future? First, it is to be hoped that the relaxation
theory of Mason and Monchick will be extended to gas mixtures, and that there
will be further testing of the theory, both for pure gases and gas mixtures.
There is room for more work on the heat conductivity of polar gases. The con-
ductivities of highly polar gases seem anomalously low in relation to their
viscosity (in other words, f values are small), and it has been suggested29
that this effect is largely due to a resonant exchange of rotational quanta,
presumed probable on grazing self-collisions of polar molecules. However,
results of experiments designed to test this notion34 have been somewhat
ambiguous. Finally, theoretical studies on the kinetic theory of nonspherical
molecules should be encouraged.
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TABLE I. - COMPARISON OF COLLISION NUMBERS FOR ROTATIONAL RELAXATION31
Gas f Acoustical Low- Shock Impact
(determined pressure | thickness| tube
from thermal
recovery conduc-
factor) tivity
Ny 7 5.3,6,4-6 5.5 <7,<14
0, 12 2-4,4.1,12, 7
14,12-30
H, large 240-360 300 >150 160, 310
o, 2.4 16
CHy 9 14-17
TABLE II. - EXPERIMENTAL DATA FOR SOME NONLINEAR MOLECULES
COMPARED WITH ROUGH SPHERE THEORY
Methane Carbon Sulfur Ethane| Ethylene
tetrafluoride| hexafluoride
a1/mo2 (B 8)*  0.05 0.16 0.14 0.09 0.08
exp(e/KT) 1.7 1.6 2.1 2.1 2.2
z~1 cale 11 .33 .38 .25 .23
77t expt 11 .33 .36 .25 .42
Z expt 9 3.0 2.8 4 2.4
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