To be presented at NASA/Industry - . ‘s
PERT Jomputer Conference in
Houston, Texas, July 22, 1964 .

LEWIS-GODDARD NASA PERT PROGRAMS IN COMPILER LANGUAGE
65-29469

. /22152;-~‘___—_ﬂ1 by Elizabeth Ryan and Ross ‘C. Bainbridge

E-2714

Lewlis Research Center

Cleveland, Ohio (ACCESSION NUMBER)

/

INTRODUCTION);A?; 53 og

(MASA CR OR TMX OR AD NUMBER)
The program to be described is a PERT time program written entirely 1n
compiler language and with a capacity in excess of 30,000 activities. The
program was written at Lewls Research Center with the assistance of Hans Bremer
and N. H. Dillard of Goddard Space Flight Center. (Topological ordering by the
pushdown technique is described in the conference paper by Hans Bremer.)

To best understand the reasons for production of this new program, a brief
review of the history for writing the program and also of the programing
philosophy at Jewis Research Center will be presented.

The project was proposed by Lewis in March of last year as a solution to
several problems that had arisen in using the machine-coded programs. Briefly,
these problems can be summarized as follows:

(1) The machine-coded program could be run only on orne manufacturer's
equipment. This required sole source replacement of the computing equipment
when replacement was required for only 5 percent of the load.

(2) A great deal of time of systems personnel was being spent in maintain-
ing machine-coded programs and in modifying them each time a systems or hard-
ware change was implemented.

(3) The adoption of new hardware by an installation without a change of
manufacturer often requires extensive rewriting of the machine-coded programs.

- For example, the substitution of disks or drums for tapes requires cdnsiderable

program revision.

It appeared that these problems were typical to the exclusive use of
machine-language programs and that compiler-written programs designed to run
under a typical monitor system would eliminate these problems. A compiler-
written program would have the added advantage of discouraging the use of un-
documented binary patching to the program decks. Since modifications to a
compiler-written program can much more easily be made simply by recompiling a
source deck, language documentation would automatically be prov1ded for all
modlflcatlons

Lewis proposed to write this PERT progrem in FORTRAN IV because it is the
compiler that has been implemented by most computer menufacturers, and it is
the compiler language most used by industry as well as NASA. It is known that
for a given algorithm an optimum mechine-coded progrem is faster than an opti-
mum compiler program. But as the algorithm becomes larger or more complex,
practical considerations of time and personnel prevent the production of an

2

optimum machine language program whereas an optimum compiler-written program
can still be obtained. For example, Lewis has written several large systems
entirely in FORTRAN with excellent results. These include a production IBM
1401 SPS assembler written originally in FORTRAN II and a FORTRAN II compiler
and assembler written in FORTRAN II, which were more efficient in running time
than the FORTRAN II compiler and assembler on the IBM 7090. In fact, this
compiler and assembler have since been converted to FORTRAN IV and are still
heavily used 1in production status producing data reduction programs. A final
example of compiler-written programs is the SIFT program written in FORTRAN IT,
which made most FORTRAN 11 programs FORTRAN IV compatible.

PROGRAM DEVELOPMENT

In June 1963 the Lewis proposal was approved with the following restric-
tions:

(1) The program should be written in compiler language. Machine language
would be permitted only where large gains could be made in efficiency.

(2) The running time of the néw program should not exceed running times
of the existing program. '

(3) The program should have an ultimate capacity of 30,000 activities.
The use of a modular or skeletonizing technique to achieve this would he con-
sidered.

(4) The format of input and output data would not be altered.
Th

o

(5) The program should be compatible with the data processing equipment
then being used for PERT throughout NASA.

The first phase of the project - the production of a limited capacity
PERT time program entirely in FORTRAN IV - was completed in October. The pro-
gram, Lewis-Goddard PERT TIME I, has a capacity of 3500 activities and has
been distributed to the following installations and manufacturers:

NASA
Goddard Space Flight Center
Langley Research Center
Ames Research Center
Lewis Research Center
George C. Marshall Space Flight Center

Manufacturers
CDC
UNIVAC
Honeywell

il

Industrial
Bellcomm
Aerojet General
Westinghouse
Goodrich

SHARE

The program is in exclusive production use at Lewis, Ames, Goddard, and
Langley. The program is in operation at Aerojet and Bellcomm on an IBM 7040
and IBM 7044. It has been submitted to and is available through SHARE. The

number of installations that have received the program through SHARE is not
known.

PERFORMANCE DATA

Run times have been considered favorable on all machines used thus far.
The following performance data are for the first phase, PERT TIME I, as re-
corded on an IBM 7094, running tape to tape using 729V tape drives at 800 BPI
on two data channels. Times are exclusive of load time and reflect some time
savings obtained by the blocking of output at 5 lines per record.

Activities | Outputs | Time, min
200 3 0.2
200 5 .3
300 4 4
1000 5 2.5
1600 3 2.5
2830 4 7.5

Time studies were run using the configuration against the NASA PERT Mod-B
machine-coded program that was then still in production at Lewis. Comparative
timings on the machine indicate that the program is 50 percent faster than the
Mod-B PERT machine-coded program for networks under 1100 activities, requiring
no outrut merging; equal in speed for networks between 1100 and 2100 activi-
ties, requiring a single output merge; and within 10 percent for networks over
2100 activities and requiring multiple output merges.

Since the original time study was conducted, computer configurations have
been switched and the following times for a directly coupled IBM 7094 model II
IBM 7040 with a disk, drum, and four model VI tape units can be reported:

Activities Outputs | Time, min

0 to 1000 | 3 to 5 Under 0.5
1000 to 2000 | 3 to S Under 2.0
2000 tc 3000| 3 to 5 Under 5.0

4

Also on subnetted jobs where no more than a single merge is ever needed, sub-
netted Jjobs have been run with a total of 4000 activities in under 6 minutes.

The next set of performance data was provided by Mr. E. Kilroy of Computer
Usage Company subcontracted to Bellcomm of Washington, D.C., from runs made on
a 7040/44 direct couple system with partial use of disks in place of tape.

The overlay feature utilized when running on our 7094 was not necessary at
Bellcomm.

Activities | Outputs | Time, min

1839 3 7.4
204 3 .2
1330 -2 3.2

Again times do not include load time. Mr. Kilroy also estimated that this one
time conversion cost to an IBM 7040/44 system was approximately $3800. This
cost included personnel and computing. A complete rewrite of the program
would have an estimated cost in excess of $50,000. We feel this is a good il-
lustration of the cost savings of a compiler-written program.

Running times from Aerojet using an IBM 7044 with 10 tape drlves, 4 disks,
2 channels, and a 1401 off-line are as follows:

Activities | Outputs | Time, min
81 2 0.8
270 3 1.5
325 4 2.9
1300 4 3.0
2000 4 4.4

This actually shows a 24-percent reduction in running cost over the NASA

PERT B, which runs on Aerojet‘’s IBM 7094. These data were supplied by

Mr. T. C. Adams, a systems analyst at Aerojet General, Sacramento. The ap-
pendix is an internal memorandum written by Mr. Adams in which he evaluated
the Lewis-Coddard PERT time program summary on the IBM 7044 versus the Mod-B
program on the IBM 7094. We found this evaluation to be very informative as
to the use of an IBM 7044 as a PERT management production tool. The ease of
modifying the program is attestsd not orly by the variety of machines on which
it is running but also by the meany features that have been added by individual
installations.

EXTENSION OF PROGRAM TO HANDLE LARGER NETWORKS

The second phase of the project was begun in December 1963. Its aim was
to build the PERT TIME I program into a program of much greater capacity with
several new features. This was done while still retaining ability to process
all smaller networks already using the program. That program, Lewis-Goddard
PERT TIME II, has been in production and will be made available to NASA

5

installations along with a detailed system manual and a separate looseleaf
users manual that can be updated.

The capacity of the PERT TIME Il program is in excess of 30,000 activi-
ties. The increased capacity is obtained using a subnet technique. It is of
interest to note that it is possible to maintain the size of the basic subnet
at 2200 activities, which is felt to be more than generous enough for these
people having experience with the IBM Cost~Time program with the restriction
of a basic subnet size of 750 activities.

At this point it is best to define what is meant by a subnet. A subnet
is simply any collection of interrelated activities belonging to a PERT net-
work. 1In the PERT network shown in figure 1, where the circles represent
event points and the connecting lines represent activities, the shaded activi-
ties make up a subnet, as do the activities enclosed in the broken lines. Note
that there are three event points (with crosses in them) common to both sub-
nets. These events are called interface points between the two subnets. Sub-
nets can be connected only in this way, that is, by one or more interface
events. In practical terms, a subnet is often a logical entity of some kind.
For instance, in a network representing a project involving four contractors
(A, B, C, and D) there could be four subnets each representing the work as-
signed to one of the four contractors (fig. 2).

To facilitate this usage, it is not required that the interface points
have the same event number interior to each subnet in which they appear. This
eliminates the necessity of coordinating numbering of common events among many
contractors each of whom may be msintaining his own network. To eliminate this,
esch interface point is given ar sliphsbetic name, the Interface label, when its sub-
net is to be integrated. In figure 2, for example, the interface point that has
heen labeled Il may be known in contractor A's subnet as event 5000 and as
event 4 in contract B's subnet. With reference to the network as a whole, how-
ever, it 1s simply interface event Il. An equivalence card concept was used to
show this relationship. Lewis experience finds these very flexible without add-
ing excessive card input tc the program. Thls will be discussed later in more
detail.

PROGRAM FEATTURES

A useful feature of the program is the provision for a different type of
subnet, the sumary network. Suppose the subnet shown in figure 3 below the
dotted line is being maintained by a department for its own use. It may be
that only those events with upward pointing broken arrows need to be reported
to higher management. These events can then be made interfaces to a subnet,
which consists only of the interface events. The resulting subnet can be
represented by the figure above the dotted line. It is a summary of the
original subnet or subnets and shows not only event relationship but also PERT
network logical flow as indicated by the solid arrows. The program will com-
pute time estimates along each path of the summary network using the detailed
paths from the original. If requested, activity cards for the summary network
can be punched out with delta time estimates. This deck can then be sent on
to higher menagement to be run as this department's subnet in a larger network.

6

For truly effective management reporting, for example, summarized reports
are necessary as high levels of management are reached. This is illustrated
in figure 4 as a pyramid of PERT reports.

, Now with the ability to place time estimates into an output form (the
same form as the standard NASA input) with activity times that truly reflect
the interrelationships of the base network, a method of even further upward
reporting is established. : As shown in figure 5, the program could support
basic networks of 30,000 activities at Lewis, Goddard, and Langley. 1In turn,
various summaries are sent as basic subnets to the program running on a com-
puter used by NASA Headquarters. The program could support a base in the
example of 90,000 activities and still present top management only the few
hundred activities needed 2t the top level of command.

People who have had much contact with PERT networks are well acquainted
with dummy activities. There are several kinds of dummy activities, but this
is one of the most popular (sece fig. 6).

The activity connecting events 7 and 17 is a dummy inserted for the ex-
press purpose of inventing a place to hang the label END TESTING. What is
actually needed here is a way of identifying event 7 as the end of testing.
The insertion of the dummy has added an extra event and activity to the net-
work. This practice as a substitute for event nomenclature is quite common
and can cause a significant increase to the size of a network. While large
PERT networks may be regarded as a sort of status symbol, they can be expen-
sive.

By using the PERT TIME II program, the event 7 can be named directly by
the use of an event card:

000000 70000007 END TESTING

The event number is entered in both the predecessor and successor columns, and
nomenclature appears in the normal field. At report time, the event will ap-
pear in normal sort order with its expected and allowed dates and slack. The
event card does not in any way enter into the PERT calculation and so does not
increase the size of the network.

The updating or file maintenance technique used in PERT TIME ITI also
represents a new approach. Previously the master file has been nothing more
than a tape bearing the activity cards for a given network. When it was de-
sired to change the network, the tape was first updated to obtain a new master
file, and the new master file was used &s input for a complete reexecution of
the network. The PERT TIME II program performs updating as a part of the nor-
mal PERT run, thus eliminating duplication of operations. A tape developed as
part of the PERT calculation is used as the master file. This tape contains
not only the activity cards (in blocked form) but also all other information
needed to make reports directly from the tape without recalculation. All this
information is separated by subnet. Since many times not all subnets need be
changed on a given update run, only those that are changed need be recalcu-
lated. The master tape is read only once as updating and recalculation of a
subnet are overlapped. In addition to providing a fast and efficient update,

7
this technique eliminates dependence on the availability of a second computer.

As a further aid to maintaining networks, completed activities can be
automatically deleted from the master file as an option. This feature has two
important results. First, by eliminating past activities that no longer alter
the project schedule, it reduces the effective in-core size of the network.
Secondly, it has been found that a great deal of updating is done for the pur-
pose of removing completed activities. This type of routine updating can now
be completely eliminated.

Topological Procedures

The topological or network analyzing procedures used in the Lewis-Goddard
PERT time program are not the familiar topological sorting techniques used in
other PERT programs. The technique used here is an application of pushdown
lists or tables more commonly used in compilers and recursive routines. The
pushdown table is actually a memory device used to remember decision points or
alternate decision routes. TFor example, in the game or decision tree

® ‘9____,,(:)=:::::S;2(:)
—®
0

it is often desirable to know the branches (paths or decisions in a game tree
sense) not taken at points 2, 3, and 8. A pushdown table is used to do this
by placing the alternate routes not taken at 2, 3, and 8 into a table. Upoun
retracing the path that actually was followed, the last nonentered branch
would appear at the last entered position of the pushdown table. By extract-
ing this branch, the alternative decision or path can also be analyzed. For
example, in the figure taking path 1 to 2 to 3 to 4 would result in entering
in order in a pushdown table 2 to 8 and 3 to 5. Working back from the end
point 4 would result in looking at branch 3 to 5 and then the path from branch
2 to 8.

It now becomes arparent that the game tree figure actually can represent
a PERT time or cost network with the decision points 1, 2, 3, etc. as events
and the decisions or paths between them 1 to 2, 2 to 3, etc. as activities.
Program adaptation of the pushdown teble to analysis of PERT networks can ac-
tually be divided into three steps. The first step is getting the branch
activities into the pushdown table. The second step with taking the last
activity from the pushdown table and placing it into another table (the path
list) that in final form contains all the activities on a particular network
path. The third step then reduces the path list until a branch or start event
is located on the pushdown table.

This procedure can be illustrated as follows:

G- -~ - -
| AN

‘ N

| o

The activities in a table are as follows:

to
to
to
to
to
to
to

(o2 BN IO R NV
U300k W

The following analysis is performed:

Step | Pushdown table | Path list
(1) 1-2 | -----
(2) | —---- 1-2
(1) 2 -3 1-2 |
1-2
(@) | -m--- 2 -3
(1) 3 -4 1-2
3-6 2 -3
3-7
(2) 3 -4 1-2
3 -6 2-3
3 -7

End event 7 encountered with path -—» is located in the path list.
Expected and allowed times can be calculated at this point.

9

Step | Pushdown table | Path list

(3) 3 -4 1-2
3 -6 2-3

(2) 3 -4 1-2
2 -3

3 -6

(1) 3 -4 1-2
6 - 5 2 -3

3 -6

(2) 3 -4 1-2
2 -3

3 -6

6 - 5

End event 5 encountered with path — ——— — -»is located in the path list.

Expected and allowed times can be calculated at this point.

Step { Pushdown table | Path list
(3) 3 -4 1-2
2 -3
3 -6
(3) 3 -4 1-2
2 -3
2y | ee--- 1 -2
2 -3
3 - 4
(1) 4 -5 -2
2 -3
3 - 4
() | —aa-- 1-2
z -3
3 -4
4 -5

End event 5 again encountered with path ———————= is located in path list.
Expected and allowed times can be calculated at this point. Step (3) now
finds the activity list complete and will then go on to another start or if
no other starts exist into another program phase.

The expected times are calculated as a path is completed by the use of a
table of events. These event tables asre used to keep expected and allowed

10

times for each network event. The expected times are forward calculated and
replace the previously calculated event expected time in the events table
(TSUPE) only when the expected time now being calculated is greater. Allowed
times are calculated from the last to the first event with replacement of the
previously calculated allowed time in the events table (TSUPL) only when the
currently calculated allowed time is smaller.

When output reports are required, it becomes a simple matter to interro-
gate the events tables to get the predecessor and successor event times.

The following methods were used to modify the basic topological procedure
and to increase its efficiency:

(1) Sequential numbering of the events eliminated events table searching.
This sequential numbering also eliminated the necessity for retaining 1nter-
nally the actual event numbers.

(2) Retention of the activity position counter in an events table elimi-
nates any activity table searches. This in turn eliminates the necessity for
retaining internally the predecessor event of an activity.

(3) Experimentation with the expected and allowed time calculations re-
sulted in the determination that if an expected time was less than or an
allowed time greater than the previous value found in the events tables, then
the path analysis could be terminated at that point. This innovation results --
in a considerable savings in actual internal computing times.

By introducing the pushdown table techniques into the processing of PERT
networks, by doing as much in core processing as possible, and by limiting table
searching and unnecessary calculation; the FORTRAN IV program developed into
a highly efficient topological technlque. This technique also makes modular
networks easier to analyze and gives flexibility in experimentation with
faster methods.

REPORTING AND SORTING TECHNIQUES

In preparing reports it is necessary to determine the order, with respect
to several possible formats, of the activity records that make up each subnet.
Because this ordering must be performed many times during the execution of any
network, the procedure used must be as efficient as possible. The ordering
method developed for use in Lewis-Goddard PERT time is now described.

The activity buffer into which the activity records have been placed con-
stitutes a table of activities and their associated information. For each
activity on the network there is an activity record and each record contains
several storage words of information about its activity. Each item of activ-
ity information (predecessor and event numbers, expected and allowed dates,
slack, department code, etc.) is assigned a fixed position in the activity
record. With each item of information, then, can be associated two sub-
scripts; the first refers to the position of its activity record in relation

11

to all other records, and the second to the particular item's position rela-
tive to all other activity information in the record.

An item of information pertaining to the 10th activity and which was as-
signed the 4th word in the activity record would have subscripts 10 and 4.
That same item of information about activity 25 would have subscripts 25
and 4. Rather than rearranging the activity records themselves, which would
be costly both in terms of execution time and core storage usage, the ordering
routine rearranges their associated subscripts. At the termination of the
ordering procedure there will have been produced a list of subscripts whose
order indicates the order of their associated activity records with respect to
the given key.

The initial phase of the process is a scanning of the activity keys to
determine the extent of natural order as the records lie in core; both ascend-
ing and descending order is detected. The following list is constructed.
Position 1 of the list contains the number of activity records that make up
the first sequence of ordered records - the sign is made negative to indicate
ascending order or positive to indicate descending order. The second position
refers in the same way to the second sequence and so on, so that if the activ-
ity buffer consists of n such sequences, there will be n entries in the list.
(If the activities lie in the buffer as shown in step 1, the list produced
would be as shown in LISTl. The first four activities are in ascending order
as are the next 3. The four activities following the second sequence, how-
ever, arc in descending order so that the entry is positive. The 25 activity
records consist of 7 sequences as described in LISTl.)

The remainder of the ordering procedure consists of combining consecutive
pairs of sequences to form half as many sequences of combined length. The
smaller activity key from the first sequence is compared to the smaller from
the second sequence. The subscript of the activity whose key is smaller is
placed in the first position of a second list (depicted in step 2 as LIST).

If the smaller key came from sequence 1, the key for the next activity 1n se-
quence 1 is compared to the first act1v1+y s key in sequence 2. The subscript
of the smaller is placed in the second position of LISTZ. Comparisons con-
tinue until subscripts of all activities in one of the sequences have been
placed in LIST,. The subscripts from the remaining sequence are then placed
in LIST2 and the combining process is repeated for the next two sequences. As
each pair is combined, LISTy is revised to reflect the combined length of the
sequences. (Step 2 shows LISTy and LIST, following the first stage of sorting
whereby the 7 original sequences were r=duced to 4. LIST, then indicates that
the activities associated with the first 7 subscripts form a sequence as do
the activities associated with the next 10, etc. All entries in LIST; are now
left positive since after the first combination pass all sequences have been
constructed in ascending order.)

The four sequences given by LIST, are now combined in the same manner to
produce two sequences that are described by a list of subscripts in LIST5.
(The conclusion of this pass is represented in step 3.) Ordinarily at this
point, LISTz together with LIST; would be used to produce a new list that will
be placed in LISTp, so that LISTy and LISTz are alternately used and over-
written. In practice, however, once the number of sequences has been reduced

12

to 2 the activity whose key is smaller is simply written as output after each
compare.

TABLE I. - ORDERING PROCEDURE

Activi- Step 1 Step 2 Step 3
ties
Keys | LIST, [LISTy | LIST, LIST, | LISTx
1 3 -4 7 1 17 11
2 5 -3 10 5 8 1
3 7 +4 6 2 12
4 8 -8 2 6 S
5 4 +3 3 10
6 6 +3 4 13
7 9 +2 7 2
8 7 11 9
9 5 12 6
10 4 10 14
11 1 13 3
i2 3 9 8
13 4 14 15
14 6 8 4
15 7 15 7
16 9 16 16
17 11 17 17
18 10 23 23
19 8 22 25
20 6 20 24
21 7 21 22
22 5 19 20
23 1 18 21
24 4 25 19
25 3 24 18
SUMMARY

With the completion of PERT TIME IT Lewis is confident that it has ful-
filled its original goals.

1. The program is written in the FORTRAN IV compiler language.

2. The running times do not exceed those of the NASA Mod-B program.

13

3. The enlarging of the subnet technique has led to extended capabilities.
The use of summary networks and the pyramid use of the program at varying levels
of management are two examples of this. It is felt that both these features add
greatly to the power of a PERT time program and will prove extremely useful to
management groups at all levels. It is possible to handle over 30,000 activi-
ties with a maximum 1limit on subnets of 2200 activities.

4. Formats and outputs are compatible with existingestandards.

5. The program is capable of running on data processing equipment within
NASA. It has been found that the program is easy to use, as evidenced by the
number of installations presently using PERT TIME I, and correspondingly easy
to implement at @ndividual installations. Additions and modifications can
easily be made to adapt the program to the differing requirements of these
installations.

6. The entire project was completed by only two programers, each devoting
less than 1 man-year.

In short, it is felt that the Lewis-Goddard PERT TIME II is an efficient
and powerful program that is easy to use and can easily be implementéd. The
brogram should prove valuable especially to computer systems groups who have
long needed a standard PERT time program that can be used regardless of hard-
ware or system demands.

To:
From:

Subject:

14

APPENDIX
Distribution Date: 19 May 1964

_ TCA:mit:Ext.3090
T. C. Adams 2001A:2360

Lewis-Goddard PERT TIME-I for the 7040/44

Distribution: S. A. Chappell, F. W. Eagen, J. D. Poulsen, J. C. Richardson,

J. V. Rizzo, J. R. Soll, R. E. Stiermuller, E. C. Wolf

Copies to: Sacto: A. Feinberg, R. T. La Sarge, R. W. Lee, R. J. Machado,

File
Glendale: D. B. Cyrog

Enclosure: (1) Lewis-Goddard PERT TIME-I for the 7040/44

(2) Lewis-Goddard PERT TIME-I versus PERT System 'B'
(3) 'ASPERT, ' NASA PERT TIME System on the 7040/44

I. BACKGROUND

A.

The LG-PERT program (Job 24040) for the 7044 was compared to the
existing NASA PERT TIME program (Job 1041AA) for running time com-
parisons. The test data consisted of three 'stacked' networks
approximately 400 total activities. The results are below:

1041AA (7094) LG-PERT (7044)

Load time 0.16 1.20
Execute time 1.33 l1.62
Total time 1.49 2.82
Cost $295 - $7.35 $180 - $8.45

The results indicate the 1041AA is less expensive to run than the
new '44' version. The obvious reason for this is the excessive load
time cost which results while using the '44' version of LG-PERT.

Based on a statement by us, that this load time could be reduced
significantly, Project M-1 has requested Job 24040 be put into pro-
duction. The request also made provisions for the three (3) minor
modifications to LG-PERT proposed in the Lewis-Goddard PERT status
memo dated 3 April 1964.

II.

15

STATUS TO DATE

A,

The program is now in production with the binary program on the
systems library taps. The program is called for by a "$EXECUTE
LGPERT" card. The results with the previous test case data, run
under the production status conditions, are as follows:

LG-PERT (7044)

Load time 0.24
Execute time 1.82
Total time 1.86
Cost $180 - $5.58

We encourage you to use this new system. We have demonstrated it
is less expensive to run and expect you to take advantage of its
new features. (A cost savings of 24 percent was realized in this
test case.) Job reports explaining the program can be obtained
from the Divisional Librarian (ask for Job 24040). Additional in-
formation can be obtained from us (refer to COSMOS Ref. v-II, p-7).
An outline of the differences between Job 1041AA and Job 24040 have
been included with this letter (Enclosure (2)).

An outline of LG-PERT's features and capabilities has been enclosed
with this memo. The outline is organized by categories recommended
by Corporate Systems for PERT software evaluation (Enclosure (1)).

FMIRE ACTTONS

Vaiuvivg NS A e iy

For the first time since AGC 5-digit PERT was used by today's NASA
PERT users, Computing Sciences is capable of providing programer
support on the NASA PERT system. This means the requests for modi-
fications, new features, etc., proposed by you can now be processed.

Project M-1 has for some time requested the capability of non-
sequential data input to a NASA PERT program. Also they have been
interested in Master File Maintenance for NASA PERT. The enclosed
paper called 'ASPERT' (COSMOS Ref. v-II, p-9) is an overall PERT
systems plan for NASA PERT users. The plan provides an overall
framework for PERT user's needs; it is designed on the subsystem
concept and thus could be constructed in parts if so desired
(Enclosure (3)).

T. C. Adams, Analyst
Management Analysis & Programing
Computing Sciences Division

E-2714

WVAAAALER A
MU NN AAAAA
Peocccosscsssscssan

.o

®ttsscesavesectsrennsse
LAJLLICI IR I PP
®ecensens
A YT
“t000000 00000000000
®s0sss0000000 *sss0a
tsecc00ct0s0s 00000000
®ee00000ss0e0s000n0sae
R eoe

CS-33107

sees
*eesessosss
sesrse0esrensan

4e000000000anv0s

Figure 1. - PERT network.

E-2714

Contractor B

Contractor A :
l

=

—————_——

_J Contractor D

C
Contractor CS-33145

Figure 2. - Project network.

E-2714 .

> > > > >

Figure 3. - Summary subnet,

A
A
A
A
Summary level
A AA
i x= 2 a
A
A A
A A A
A
A
A
A
A
. A
Detail level
CS-33106

> > > > > >

»

E-2714

Summary

Lewis
top level

/ Summary \
(level 4)
[Summary \
(level 3)
Summary
/ (level 2) \

/ Summary \
/ (level 1) \
/ Basic detail network \
CS-33142

Figure 4, - Lewis PERT summary for management,

E-2714

NASA
top level

/ Summary
fevel
Basic detail

A

> indyno Alewwng

ANd LA

Lewis Goddard Langley
Direct couple, Direct couple, 1107, Direct couple,
30,000 activities etc., 30,000 activities 30, 000 activities

CS-33143

Figure 5. - Summary output becomes detail level input.

E-2714

Test B

End testing

@ 4 weeks

Test C

g
&)

Figure 6. - Dummy activity.

0 weeks

-—

CS-33144

NASA- CLEVELAND, OHIO E-2714

