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ON THE EFFICIENT USE OF PREDICTOR-CORRECTOR 
METHODS I N  THE NUMERICAL SOLUTION O F  

DIFFE RENTIAL EQUATIONS 

SUMMARY 

Basic interpolation formulas by Hermite can be used to generate large classes  of 
correctors  to be used in predictor-corrector processes for the numerical solution of 
differential equations. Conditions for the numerical stability of predictor-corrector pro­
cesses  a r e  known [ ref. 2, p. 20; 4, p. 197; 5, p. 2181. Only stable processes  should be 
used in any solution requiring more than a few steps. 

Predictor-corrector methods are not self-starting; therefore, they a r e  harder to 
program than starting processes.  If programmed so  that there a r e  few wasted applica­
tions of the corrector ,  however, then the predictor-corrector processes will have a 
significant computing time advantage over starting methods. 

The authors of this study a r e  faculty members of the Mathematics Department of 
Vanderbilt University, Nashville, Tennessee, serving NASA under contract NAS8-2559. 

SECTION I. INTRODUCTION 

The primary purpose of this paper is to show how a predictor-corrector process 
can compete with a starting (self-starting) process.  

Section I1 gives the derivation of Hermite interpolation formulas and their e r r o r  
terms. Also, the predictor-corrector process for solving differential equations is out-

Some specific correctorslined. Numerical stability and propagated e r r o r  a r e  discussed. 
a r e  derived, and comments on the choice of a method a r e  made. 

In section 111, the programming of predictor-corrector methods is discussed, 
analyzed, and illustrated. Comparisons with starting methods a r e  discussed and charted. 
The usual programming of predictor-corrector methods is modified so as to save com­
puting time, with no loss  in  numerical stability. 

Roundoff errolrs a r e  not discussed, but a t  least  four "guarding" digits a r e  main­
tained in all computations. That is, four digits beyond the accuracy of the method a r e  
car r ied  along. 



SECTION 11. PREDICTOR-CORRECTOR METHODS 

A. SOME BASIC FORMULAS 

We present formulas for approximating a function f (x )  when certain values 
of the function and its derivative are known. The function is assumed to be analytic in 
the interval under consideration, and the points at which the function is evaluated are 
regularly spaced along the x-axis. A general method of deriving such formulas is ex­
plained, and several  specific formulas (with e r r o r  t e rms  included) are given [ ref. 4, 
p. 128; 5, p. 2091. 

Let y (x )  be the function to be approximated, and let  X i  = x + ih, i = 0, i ,  . . . . 
Denote the actual values of y(Xi) and y ' (xi)  by Z i  and Z'i. Let yi, y ' i  be approximations. 
We shall consider formulas of the type 

-n 

'n+  	 i = ( A .  z. 
1 

+ h B. z ! ) .
1 1 1

i = O  

In the derivation of specific formulas of type (I), the following is important: 

mTheorem. If (1) is exact ( that  is, y + = zn + i  ) for y (x )  = x 

( m  a positive integer) ,  then (1) is exact for any polynomial y (x )  of degree not exceeding 
m. 

Proof: F i r s t  it is proved that if (1) is exact for y ( x )  = xm, then i t  is 
m-Iexdct for y (x )  = x . Suppose, 

m - a  a
is an identity in x and h. Equating coefficients of x h gives m + i equations 

2 




ni = c  Ai for  (Y = 0, 
i = O  

i
n + i =  2 ( i A . + B  i for a = I , a n d  
i = O  

for  a = 2 ,  3 , . . . ,  m. 

Here (z)is the usual binominal coefficient. Applying the rule (:) = 2(mi1) 
three times to the last equation in ( 2 )  gives 

for cr = 2,  3 ,  . . . , m-I. This implies that (I)is exact for 
m-Iy(x)  = x  . 

Next, observe that i f  formula (I)is exact for two functions fl and fZ, then it is 
exact for ci f i  + c2 f 2 ,  where cl ,  c2 a r e  arbi t rary constants. Hence the exactness of 

m m m-I
formula (I)for x implies its exactness for any linear combination of x , x , . . . , 
xo, and the theorem is proved. 

A formula (I)is said to be of order  m i f  i t  is exact for a polynomial of degree 
m but not exact for a polynomial of degree m + I. 

the number of "back points" is n + I.The requirement that theIn formula (I) 

formula be exact for z = x2n + is met by choosing Ai, Bi ( i  = 0, . . . , n) to satisfy a 
system of 2n + 2 linear equations. 

3 




In order  to interpret  formula (1) geometrically, suppose that the values of a 
isfunction z and its derivative z' are known for xo, xo + h, .. . , xo+ nh. If formula (I) 

of order  2n + I,then the application has the effect of fitting a polynomial curve of degree 
2n + 1 through the n + Igiven points so that at each point the polynomial and the function 
z have the same derivative. Then yn + is an approximation to Zn + 1. This is the wel l  
known "Hermite" interpolation [ref .  4, p. 961. 

Next a r e  l isted some Hermite interpolation formulas. They have the form of 
formula (1), with order  2n + 1. In each case the number of back points is n + I. The 
e r r o r  te rms ,  given in brackets, a r e  discussed la te r  in this section. 

(3 )  

yz = 520 - 4zi + h (22; + 4zi) .  [ 6 
z ( ~ )( s )  ] (4) 

3y4 = 47 Z O  + 192 ZI - 108 Z Z  - 128 2 3  + h ( I 2  Z; + 144 Z; + 216 z + 48 z;). 

6y5 = 131 zo + 1150 z1 + 600 ~2 - 1400 2 3  - 475 2 4  + h ( 3 0  Z; + 600 zi 

The derivations of the preceding formulas a r e  straightforward. Formula (3 )  is 
recognized as a Taylor expansion. For  the derivations of the other four, solve equations 
( 2 )  for Ai, Bi. For example, take n = 1 and m = 3 .  Then equation ( 2 )  becomes 
A, + Ai = 1, Ai + Bo + Bi = 2,  3 Ai + 6 Bi = 12,  Ai + 3 Bi = 8. Hence A, = 5, Ai = -4, 
Bo = 2 ,  Bi = 4, and formula (4 )  is obtained. Formulas ( 5) , (6)  , (7)  a r e  derived 
similarly. 

The justification of the e r r o r  te rms  is outlined in Hamming [ re f .  4 ,  p. 1031. The 
general e r r o r  term is: 

4 




The e r r o r  t e rms  in formulas ( 3 ) ,  .. . , (7)  are found by taking n = 0, .. . , 4. These 
e r r o r  te rms  represent the so-called truncation e r r o r  and should not be confused with 
roundoff e r ro r .  

8. 	 THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIOMQ BY PREDIC-
TOR-CORRECTOR METHODS 

The l i terature on the numerical solution of differential equations is vast  
[ref. 1; 4,p. 403; 5, p. 3891. Consider the differential equation y' = f (x ,  y)  with initial 
condition y(xo) = yo. There a r e  various methods for  producing points which l ie on the 
solution curve [ re f .  1, p. 79; 4, p. 212; 91. The Runge-Kutta method is widely used. 
Recently E. B. Shanks has developed s imilar  processes  which a r e  markedly more 
efficient from the standpoint of accuracy and computing time. Shanks' formulas a r e  
self-starting, and investigations of the present wri ters  and others show that these 
formulas a r e  ideally suited for problems in which computing t ime, accuracy, and e r r o r  
propagation a r e  important. 

Predictor-corrector methods have the disadvantage of not being self-starting. 
Before a predictor-corrector method requiring n back points can be used, a starting 
process must be applied n - i times. (Al l  processes  described in this paper use one of 
Shanks' formulas as a starting procedure. ) It is obvious that predictor-corrector pro­
cesses  a r e  harder  to program than starting processes.  The only motivation in investiga­
ting predictor-corrector processes is the possibility of gaining a time advantage in a 
particular problem o r  c lass  of problems. The degree of this time advantage is discussed 
in sections which follow. 

Let (xo, yo), ... , (xm, ym) be m + i regularly spaced starting points for  the 

equation y' = f (x ,  y) . A formula 

m 

can be used repeatedly to produce new points. Of course,  at each point the value of the 
derivative must be computed by using y' .  = f (xi, yi) . Usually it is w i s e r  to use 

1 

formula ( 9 )  each step to give a tentative o r  predicted value of yn +  i' 'In+ i and then 

to correct  the value of yn + i  by repeated applications of a formula 

5 



In this process,  formula ( 9 )  is called the."predictor" and formula (IO) the "corrector. '' 
In one step, formula ( 9 )  is used only once, but formula ( I O )  may be used more than 
once. Note that for  each application of the corrector ,  the function f ( x ,y) must be 
evaluated. The number of corrector  applications per  step is a significant factor in any 
time study. 

At first glance, one may be tempted to use only the predictor. This would cer­
tainly give an advantage in computing time, but the disadvantage is well-known. E r r o r s  
in yi a r e  propagated unfavorably. This is extremely ser ious and usually prohibits the 
use of the predictor alone if the solution is to be extended for  more than a few steps. 
For example, the s ize  of the coefficients in the predictor (see formula (5)) . 

indicates how unfavorably e r r o r s  in yi  are propagated. 

So w e  use a predictor-corrector combination. Furthermore,  the corrector  must 
be selected with care ,  or  else the unfavorable propagation of e r r o r  will persist .  

C. NUMERICAL STABILITY IN PREDICTOR-CORRECTOR METHODS 

Let (XO,yo) , . . . , (xm, ym) be start ing points for  y '  = f ( x ,  y) , and apply 

the predictor-corrector pair  

Suppose that in each step the corrector  is applied repeatedly until two successive values 

of Yn + i a r e  equal. (La ter  this wi l l  be weakened, and it will  be required only that two 

n +  i 
be "close" to each other.. A great  deal of computing timesuccessive values of y 

will thus be saved. ) 

6 



Take z = z (x )  as the exact solution of z '  = f (x ,  z) , and let ~i = zi - yi be the 
difference between the t rue solution and the solution given by equations ( i i ), ( 12) .  Sub­
tracting equation (12)  from 

m 
+ h 2 Di z ~ + R, - ~Zn + i  = 2 Ci z ~ - ~  ~ 

i = O  i = -1 

gives 

m~ _ _  m 
�n + i  = E  C En-i + h z  

1i i = -1 D . E 'n-i + R .  
i = O  

By the mean value theorem, there is a number t between yi and Z i  such that 

since E '  = f(Xi, zi) - f (xi ,  yi). We follow the usual procedure [ re f .  4,  p. 1971 in 

afassuming that h-a Y  = K . and R a r e  constants. Then h = K E .  
1
, and this with equation 

(13) gives the nonhomogeneous difference equation 

( C .
1 

+ KDi) + R = 0 
i = -1 

in E n-i' with C-i = -1. 

If the roots A,, .. . , Am of the l'characteristic" equation 

7 




are distinct, then the general solution ( E  n +I’ .. . , E n-m ) of equation (15)  is given by 

m 
c k = C  ai^k + r k  , 

i = O  

where ( rn +  I’  .. . , r n-m ) is a particular solution of equation ( 1 5 ) .  

From equation (17)  it is seen that it is desirable to have the characterist ic roots 
A,, . . . , A, less than Iin absolute value s o  that the propagated e r r o r  will be favorable. 
(This  las t  statement is not changed even if the characterist ic roots are not all distinct. 
For a discussion see [ref. 5, p. 2131 .) 

If h = 0, then K = 0 and one characterist ic root is 1. For  small h # 0, one 
characterist ic root wi l l  be close to I ,  but w e  require that the other characterist ic roots 
be within the complex unit circle. It is impossible to predict in all  situations what the 
range of values of K wi l l  be. Usually I KI  is kept smaller  than 0 . 4  [ ref. 3, p. 7; 4, 
p. 1981. 

W e  will use  only correctors  such that, for h = 0, the characterist ic roots (except 
I) are within the unit circle. There are many such formulas, but unless an investigation 
concerning the characterist ic roots for  h # 0 is made, Adams’ formulas appear safer 
from the stability standpoint. In some instances, there are more efficient formulas. 

For  h M 0 ( h  approximately equal to 0 )  , Fehlberg [ ref. 3, p. 51 has  given a 
method for  comparing the e r r o r  propagation of two correctors .  Since the authors have 
found this result  of grea t  use, it is reproduced here.  Set h = 0 in equation (13) to get 

and suppose there is a constant E defined by 

E k = E k h
m + 3  

Y 
( m + 3 )  

( s )  . 

This is the assumption that the e r r o r s  Ek are almost in ari thmetic progression 

equations (18) , ( 19)  give 

8 



m 
~ ( n + i ) = L  ci E ( n - i )  + C,  

i = O  

m 
if Y ( m  + 3) is assumed constant. Since C. = I,we have

1
i = O  

CE =  

i + T  i c i  
i x l  

If two correctors  are used on the same differential equation, the long-run pro­
pagated truncation e r r o r s  will be proportional to the corresponding values of E ,  pro­
vided the correctors  are stable. The result  is of great  use in choosing a corrector.  

D. SOME SPECIFIC CORRECTORS 

Correctors  of orders  3 ,  5, 7, 9 a r e  presented in this section. Each 
corrector is a linear combination of formulas of types (4 )  through ( 7 ) .  

Fi.rst w e  obtain correctors  of order  3. Formula (4)  gives: 

h4 
Y Z  = 5Yo - 4yl + h (2y6 + 4yi) + 6 y ( 4 )  (si) 

and reversing the order  of the points (XO,yo), (x i ,  yi) , (xz,yz) gives: 

A general formula for  yz is obtained by multiplying equations (21 ) ,  ( 2 2 )  by 5b + 1, b ,  
respectively, and then adding. The result is: 

9 



-- 
where C M b ++ , and s is between xoand x2. For h = 0, the characterist ic roots of 

1equation (23) are 1, -24b - 5. For numerical stability w e  require that -a < b < 6 '  

Hence we have an infinite number of acceptable correctors .  If w e  ignore the effect of 
roundoff e r r o r ,  the choice of a corrector ( in  this case,  the choice of b)  depends on two 
things: ( 1) the size of the step, o r  local, truncation e r r o r ,  C h4 y ( 4 )  (s); ( 2 )  the pro­
pagated truncation e r ror .  It is to be expected that there is no best  formula for  all 
problems . 

At one end, b = -+ , of the stability interval, equation ( 2 3 )  becomes Simpson's 
rule. A t  b = -1, the result  is 

4 

1
Simpson's rule has an attractive e r r o r  term,  - - h5 y (5 )  ( s ), but is likely to be unstable90
[ re f .  2 ,  p. 371. 

For b = -2 , the midpoint of the stability interval, equation ( 2 3 )  becomes Adams' 
formula 24 

For b = -1, the harmonic mean of - -1 and -1 , equation ( 2 3 )  becomes 
5 4. 6 

Computation of the ratio of E-values of equations (24)  , ( 2 5 )  indicates that equation (25 )  
will have the more favorable propagation of e r r o r .  Numerical examples support this 
conclusion [ ref. 3 ,  p. 91 . 

We investigated one other formula from the infinite number of third-order 
formulas. Taking b = - 109 in equation ( 2 3 )  gives

600 

1 0  



,Y2 

,,Yo 

(C -0.015) . ( 2 6 )  

The e r r o r  propagated by formula (26) is about one-third of the e r r o r  propagated by 
equation (25).  This agrees with the ratio of the E-values. 

Similar formulas of orders  5, 7, and 9 are now given. Fo r  the derivations, see 
Appendix I. 

1 9Y4 = 16I y3 + I + ,Y i  + 16 yo 

,898 yi + 373 Y d )  

(27) 

where C X -0. 00725. For  h = 0, the characterist ic roots are approximately 1, -0.800, 
-0. 069 f 0. 836 i. The largest  absolute value of a root is about 0. 84. A glance at the y­
coefficients shows that they are nearly in geometric progression. 

A similar  formula of order  7 is 

1 i i 
I 


Y6 = 64 y5 + 32I Y4 + 16I Y3 + ,y2 + p i  
+ 33 

+ 
430,080 

(128,627 y i  + 642,168 yi + 130,167 Y i  

where C X - 0. 00497. For  h = 0, the characterist ic roots have absolute values approxi­
mately I,0. 85, 0.91, 0. 91, 0.86, 0. 86. 

11 




A formula of order  9 is: 

+ 345,330 yb) + C h" y'l') ( s )  , 

where C M - 0. 00361. The absolute values of the characterisdic roots ( for  h = 0) are 
approximately I,0. 88, 0 .  8 0 ,  0. 80, 0. 90, 0. 90, 0. 95, 0. 95. 

Formulas (26) , (27) , (28) , (29) are examples of formulas with low truncation 
e r r o r  te rms  and a reasonably stable behavior. These formulas, as well  a s  Adams' 
formulas, are used to tes t  and illustrate programming techniques in section 111. Unless 
special circumstances arise, the authors prefer Adams' formulas because of their es­
cellent stability behavior [ ref. 8,  p. 291. 

E .  CHOICE OF A METHOD 

In case a great deal of computing time is at stake, a well-chosen predictor-
corrector  process  is likely to be better than a starting process  alone. Of course,  the 
former process  is harder  to program, but i t  can save time. If computing time is not 
critical, then starting methods, especially those developed by Shanks, are recommended. 
Also, it should be remarked that Shanks' formulas seem to be applicable to a large class  
of equations a t  large step s izes ,  without loss  of stability. This is an advantage not shared 
by all predictor-corrector processes.  

If a predictor-corrector is used, the appropriate characteristic roots should be 
within the unit circle.  If an  estimate of K ( see  section 11 - C)  is available, the charac­
terist ic roots should be examined further. If no such estimate is available, the appro­
priate Adams formula is recommended. However, it wi l l  be shown in sections which 
follow that in many cases  other correctors  are better. 

The corrector ,  rather than the predictor, controls the e r r o r  and stability 
behavior of these processes.  A fifth-order predictor ( formula (5), section 11) is used 
i n  nearly all of the processes  reported in this paper. A few other predictors w e r e  tried, 
but they proved inferior to the one just mentioned. However, our experiments with 
different predictors were few, and it may wel l  be that a small gain in computing efficiency 
would follow a more careful matching of predictor with corrector.  

12 




This report  does not include a comparison with methods designed specifically for  
second ( o r  higher) order  differential equations. The processes  presented are used to 
solve second-order equations in the traditional way, that is, by solving two first-order 
equations.. It is emphasized that the final program presented can be used to solve up to  
twenty first-order equations, o r  up to ten second-order equations, etc. 

SECTION 111. PROGRAMMING PREDICTOR-CORRECTOR METHODS 

A. INTRODUCTORY REMARKS 

Predictor-corrector methods usually require more than one back point. 
Consequently, a s ta r te r  (start ing process) is used to produce, from an initial point, 
the additional values needed for  the predictor-corrector. 

Special mention is now made concerning programming methods. All programs 
were done by an IBM 7072. Fortran,  with certain modifications, w a s  used. It has been 
observed that roundoff e r r o r  can affect the las t  four digits on runs of fewer than 2,000 
steps. Hence, single precision (8-digit accuracy) does not allow a genuine comparison 
of numerical methods, and double precision (16 digits) is used. Double precision 
statements a t  the Vanderbilt computer a r e  in modified subroutine form. In a Fortran 
program, these subroutines a r e  called by the statements 

R = FMDF ( A i ,  A2, B i ,  B2, C i ,  C2) 
R = FADF ( A i ,  A2 ,  B i ,  B2, C i ,  C2) 
R = FDDF ( A I ,  A2, B i ,  B2, C l ,  C2) 

These in turn produce the following.: 

ci + C2 = ( A i  + A2) ( B i  + B2) 
C i  + C2 = (AI  + A2) + ( B i  + B2)
ci + c2 = ( A i  + A2) / ( B i  + B2) 

In each case AI ,  B i ,  C l  a r e  the f i rs t  eight digits and A2, B2, C2 the second eight digits 
of Ai  + A2, B i  + B2, Cl  + C2, respectively. To illustrate, if  A i  + A2 = 0. 12234 
55678 88999 9 M I O i 5 ,  then A i  = 0.12234 556 x I O i 5  and A2 = 0.78889 999 x I O ’ .  
Double precision programming with these subroutines is quite cumbersome. Each 
multiplication, addition, o r  division must be programmed as a statement of the types 
represented above. This means the programming of a number of predictor-corrector 
methods would be greatly delayed if  each predictor-corrector were matched with a 
different starter.  However, in any single process ,  it is desirable to match the starter 
with the predictor-corrector so that they have the same order .  
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In the studies herein presented, the following s t a r t e r  by Shanks [ref. 9, p. 71 
w a s  used. 

I
k4 = h f [ x  + - h y  Y, + - I (17 ko + 12 ki + I 6  k2 - 9 k3)] ,

r 3 Io8 

I 
- h y  'r 

+ -
108 

( I1ko + 12 ki - 32 k2 + 9 k3 + 36 k4)] ,k5 = h f [ X
r + 3 

1
k6 = h f [ X  r + h, Y r  + - (-5 k, - 12 kl - 128 k2+ 81 k3 - 108 k4+ 216 k5)l ,44 

-
Y r +  I- Y r  

+ -
120 

( 11 k, - 64 k2 + 81 k3 + 81 k5 + 11 k6) . 

This s ta r te r  is of order  six (the e r r o r  is of order  h' y(') ( s ), where s is between X y  and 
xr + i) . Because many of the predictor-corrector methods were of orders  higher than 
six, additional accuracy w a s  obtained for the initial values by using a smaller step size 
for  the starting process  than for the continuing process.  For  example, if five initial 
values at h = 0 .01  are needed fo r  a seventh order  predictor-corrector, these can be pro­
duced as follows. From the given first point, produce eight new points at h = 0. 005. 
Denote the even numbered new points as (xi,  yl) , (x2, y2), (x3, y3), (xd, y4) , and denote 
the odd numbered new points as (xi , yi ) , ( X  , y ), etc. The e r r o r  from (x . ,  y.) to 

2 2 I T  13 1 1 

( X i  +i'Y i  +- ) is C 2-' h' y'') ( s ). Assuming that the e r r o r  builds up arithmetically, 
2 2 

we  have C 2-6  h' y ( ? )  (s) as the e r r o r  from (xi, yi) to  (xi + yi + ) .  F o r h =  0 .01  

this e r r o r  is approximately I .  5625 C y(') ( s )  x Thus we have points of sufficient 
accuracy for a seventh order  continuing process. Unfortunately, the technique does take 
additional time. 

14 




Another par t  of the program that is peculiar to our needs is that all coefficients in 
both predictor and corrector  a r e  in the form of data. Special branching is needed to 
generalize the usual programming. Such branching takes time. 

In the remainder of this section, w e  discuss the remaining sections and what w e  
hope to  accomplish. There a r e  two basic ways of programming pcedictor-corrector 
methods. In one, the corrector  is applied repeatedly at each step until two consecutive 
computed values are identical. In the. second basic technique, the corrector is applied a 
specific number of t imes pe r  step. In section B, the problem of these two techniques are 
presented and illustrated. An appropriate convergence technique and variations thereof 
are presented in section C .  The technique in section C saves considerable time over the 
technique of "complete convergence" in section B. Considerably more time can be 
saved, however, under the assumption that if convergence is approximate at one step, 
then it is approximate at another step. A program based on this assumption gave our 
best  results. This, our final program, is presented in section D. 

For  easy reference, we now list  all computing processes  and differential equations 
to be discussed in the remaining sections. The processes  a r e  called Pi  through P6, and 
the equations a r e  called E l  through E4. In each process the predictor ( see  formula (5)  ) 

is used. 

Pi  is the process in which Shanks' starting formula (30) is used as a continuing 
process. 

The other process  a r e  distinguished by their correctors ,  listed below. P 3  and P 5  
a r e  by Adams. The source of the others is given in Appendix I. (The symbols yi '  Yf 

a r e  omitted in the right members of the following. The indices a r e  in descending order.  ) 

p2' ' k + 4  
- _- 1 ( 1 + 2 + 4 + 9 ) + -

11,520 (3703 + 15,518 + 6168 + 10,898 + 1873)16 

N 167+ 
23,040 h6 y(6)  ( s ). 

p3' 'k+ 6 = (1 + o +  o +  o +  o +  0) +60 ,480  (19,087 + 65,112 - 46,461 + 37,504 

27 5- 20,211 + 6312 - 863) + 24, 192 h8 y(8)  (s )  . 
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-- _1 ( 1 + 2 + 4 + 8 + 1 6 + 3 3 ) +  
430,080 

(128,627 + 642,168
p4' 'k+ 6 64 

285+ 130,167 + 693,632 + 142,137 + 399,240 + 61,469) 7 -h8 y (8 )  (s)  .57,344 

P5. y
k + 8  

= (  l + O + O + O + O + O + O + O ) +  
3,628,800 

(1,111,267 + 4,137,094 

- 3,449,594 + 3,285,358 - 2,145,620 + 836,338 - 136,214 - 17,126 

+ 7297) 7 (-. 00936)h9y(9)  (s). (This is a modified Adams corrector.  ) 

1P6. yk + 8 
-- 2,560,016 (9784 + 20,133 + 41,040 + 79,775 + 159,816 + 319, 691 

+ 639,792 + 1,289,985) + 2, 560, 016 (725,340 + 4,150,740 - 280,710 

+ 6,541, 620 - 1,808,250 + 5,630,940 + 244,290 + 2,458,620 + 345,330) 

N 

+ (-0. 00361) hio y('O) (s). 

The equations to be solved numerically a r e  given next. Included are the initial 
values, the interval of the solution, and the correct  solution. 

E l .  y' = y. Initial value y(  0) = 1. Interval of solution x = 0 to x = 18. Correct 
solution y = ex, y (  18) = 65659 969.13733 05111 38786. 

E2. y I 1  
. =  - xg' + y . Initial values y (1 )  = y'. (1) = 1. Interval x = 1 to x = 19. 

( X Y ) 2  

Correct solution y =2/1 + 2 log x , y1 = , y ( l 9 )  = 2.62466 72090 63443, 
XY 

y' (19) = 0.02005 26675 40335 10. 

E3. y '  = -y. Initial value y (0 )  = 1. Interval x = 0 to x = 18. Correct solution 

y = e -X , y(18) = 0.15229 97974 47126 284 x lo-' : 

16 



E4. = -2 x y2. Initial value y ( ~ )= I. Interval x = o to  x = 18. Correct 
solution y = ( I  + x2)-1, y ( i 8 )  = 0. 00307 69230 76923 07692 31. 

Future reference to the preceding is made according to  the labels. For  example, 
P2 - E l  means the process  P 2  used to  solve equation E l .  

The equation E2 is solved by solving the pa i r  z' = -=, yl  = z. 
(XY)Z 

B. THE USUAL PREDICTOR-CORRECTOR TECHNIQUES 

Both of the two basic techniques for  programming predictor-corrector 
methods have definite problems. In solving differential equations, our  goal is always to 
obtain a given accuracy with the smallest  computing time. Because elegant starting pro­
cesses  exist, i t  becomes essential to  find an efficient and dependable predictor-corrector 
prograin to compete effectively with these starting methods. Neither of the common 
methods is both efficient and dependable. 

Predicted 

t 
CorrectedlValllesI 


FIGURE 1. USING A SPECIFIC NUMBER OF CORRECTIONS 

Figure I is an abbreviated flow chart  for one step of a predictor-corrector 
method. (LL is the number of corrections desired. ) Such a technique can be quite 
efficient as far as time alone is concerned. However, the method lacks predictability. 
If relative e r r o r  builds up arithmetically (normally i t  appears  to do s o ) ,  i t  is not apparent 
what this e r r o r  should be. At any given step, actual convergence may not occur until 
the tenth correction o r  later. E r r o r  approxiinations that arise from Taylor 's  se r ies  are  
based on actual convergence. As Table I shows, e r r o r s  may change a great deal as  the 
number (LL)  of applications of the corrector  p e r  step is varied. 
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TABLE I. 	 ERRORS FOR DIFFERENT NUMBERS OF CORRECTIONS. P 4  - E l .  
STARTERS PRODUCED AT ONE-HALF h 

Nu.mber 11
of 0 .4263  x 0.2252 x 

Corrections 

The unpredictability of this technique makes it impractical in general. 

Initial 
Values-

Predicted 
Value 

FIGURE 2. CONVERGENCE AT EACH STEP 

The abbreviated flow chart of Figure 2 i l lustrates another technique. A s  we  have 
mentioned, the e r r o r  te rms  which a r e  calculated from Taylor's se r ies  a r e  valid. Hence, 
this technique is predictable as to e r ror .  For  this reason, this technique is used very 
often. The drawback is its lack of efficiency. As  shown in Table 2, considerable time 
is used to "converge to z e " '  in many cases. Hence, this method is impractical. 
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Note: By "complete convergence" o r  "convergence to zero" we mean application 
of the corrector  each step until two successive values of yi are identical. 

TABLE 2. P4-El. STARTERS PRODUCED AT ONE-HALF h 

4 Corrections Per Step Complete convergence 

E r r o r  
I 

2.015 I 
7.196 I 

I 

14.99 I 
53.11 I 

I 

246. 9 I 

Time (min) E r r o r  

0.2920 2.019 

0.2477 7.215 

0.2261 15. 04 

0.1931 53. 36 

Time (min) 

0.4072 

0.3583 

0.3345 

0. 2964 

0.1603 I 248.8 1 0.2561 I 

C. APPROXIMATE ERROR RATIO CONVERGENCE 

Consider the seventh order  process  P4. In this, the e r r o r  t e rm Ei + i i s  

less than o r  equal to (285/57,344) h8 y(8)  ( s )  , where s lies between x.
1 

and xi + l. 

Normally, J T ( ~ )( s )  is not known because y ( 8 )  (x )  is seldom known and s is not predictible. 
However, it may be possible to approximate Ei + l  with some value E'i + l  calculated 

from what is known. Let (yi + and (yi + + be two successive approximations 

of Y i  + i with a given corrector .  We make the following definition of variations on con­

vergence. 

Definition I. (yi + 

) converges to ( y
i + l  

) 
j 

within a ratio r of the 

e r r o r  if I (yi - ( y i + i ) j + i (  I E i + i  1 a 

Definition 2. (yi  + ) converges to (yi + within a ratio r of the 

approximate e r r o r  if I (yi + - (Yi + + 1 5 I 1 . 

19 




- 
Let a given predictor-corrector technique require n back points. Define, for 

& 

'Yi +~ 11j '  where ( Y i +  - ( Y i +  i ) j within a ratio r of the e r r o ri = n ,  Y ~ - + 

Ei + i' By using this approximation of yi +  Iin place of yi +  i' we can calculate i +  2' 

Continuing the process  inductively, we  can approximate the solution given by the technique 
requiring complete convergence at each step. This new process  will  be called "er ror  
ratio convergence. ' I  If, instead of Definition I ,  w e  use  Definition 2 in approximating 

Y i  + I , w e  will  call the process of solving the equation "approximate e r r o r  ratio conver­

gence. This process  has the following flow chart  for one step. 

Initial Values 1 
t 

Predict  yi +u1Calculate E; + I 

1 Correct y
i+ ih ­

+ Yes 

FIGURE 3 .  APPROXIMATE ERROR RATIO CONVERGENCE 

We now give a useful way of obtaining E ' .  For the present,  assume tha.t the 
yi, y i ' a r e  exact. Fo r  y = y ( x ) ,  define backward differences Vy.

1 
= y.

1 
- yi - i '  and 

-n nV j + I  y.
1 

= vj y.
1 
- vj y

i - I' in the usual manner. Use h V y.
1 

as an approximation for  

y (n )  (xi) [ ref. 6,  p. 1281 . Normally, an n-th order  process requires n-I back points 

and has an e r r o r  E. of the form 
1 


E . = C h  
n + l  

Y 
( n + i )  

(si) for  si in ( xi - n + i '  Xi)1 
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We can then define E.'
1 

by: 

E! = C h Vn y; f o r i  z n ,
1 

where the exact values y!1 are replaced by the approximate values y!1 ,which are calculated 

by the process being used. This definition of E' is quite useful. 

For an n-th order  process ,  the calculation of E' requires  n Sack points, one more 
+an would be needed without this calculation. In all of the following sections E; is cal­

culated by using y!J for  j < i, and the predicted value of y!1 in place of y'i '  

We will use E!
1 

in three ways. First E'i + l  
can be calculated at each step with 

-
Y i  + i defined as (yi + l ) j  , where (yi  + - (yi + 

) within a ratio r of E ' .  This 

calculation of E! at each step does consume needless t ime, as we  wi l l  demonstrate. I n  
1 


Table 3 w e  see  the result  of using one process  with E! calculated at each step. ( r  is 
1 

taken to be 0.04. ) 

TABLE 3. P4 - E l .  STARTERS PRODUCED AT ONE-HALF h 

II Approximate E r r o r  Ratio Complete Convergence 
Convergence r = 0.04 Each Step 

h E r r o r  Time (min) E r r o r  Time (min) 

0.4232 0.4770 

0.15 2.018 0.4039 2.019 0.4072 

I o .  18 7.214 0.3397 7.215 0.3583 
I 

0.20 15.03 0.3083 

I O .  24 53.34 0.2600 I 53.36 I 0.2964 1 
-

1248.8 I 0.2561 I 

It is clear  that the calculation of E! does require some time. Also, an additional correc­
1 

tion is used needlessly to  show that (yi + - (yi  + 

) within a ratio r of E'i +  I' For  

(yi  + 
)5 within a ratio r of E!

1 +  1' we must find (yi  + 6 toexample, if (yi + --. 
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show that Definition (2)  is satisfied. Normally, if ( yi + i  ) n -( yi + ) within a ratio r of 

(yi + i )  6 within a ratio r of E'i +  i' 

It is possible to reduce this needless waste  of t ime by further changes in the pro­
gram. One change is given in this section, another in the next section. 

Define Fi, F; by 

If w e  use F! instead of E! in the  technique just  described, additional time is saved. 
1 1 

Essentially, the use of F. means that we a r e  taking the relative e r r o r  at the first step as 
1 

an approximation for  the relative e r r o r  at the i-th step. The use of F! is similarly inter­
1


preted. 

The following Table 4 shows the time gained by using F!. It is emphasized that 
1 

the values of y. produced by the two programs are identical. 
1 

TABLE 4. P 4  - E i .  STARTERS PRODUCED AT ONE-HALF h. r = 0.04 

Computing Time in Min 

Using Eli Using F; 

0.12 0.4989 0.4058 

0.4039 0.3303 
II 0.18 11 0.3397 I 0.2794 

0.3083 0.2541 
-_ 

0.2600 0.2161 

0. 30 11 0.2125 I 0.1784 

As before, it is still necessary to correct  each step an additional time in order  
to make the decision that enough corrections,have been made. This will  be remedied in 
the next section where the technique is modified again. In the new program, e r r o r s  differ 
only slightly from those obtained with the preceding technique. 
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D. 	 THE FINAL PROGRAM--AN ASSUMED APPROXIMATE ERROR RATIO 
CONVERGENCE 

The final program involves the additional, though trustworthy, assumption 
that if -(y.)  - (y . )  within a ratio r of the approximate e r r o r  E!, then, for  all i ,

J n  J m  J 
within a ratio r of the approximate e r r o r  E! o r  e lse  the deviation is so 

1 


slight as to be insignificant. 

This means that + needs to be computed only for the first step in which 

the predictor-corrector is used. At the first step, the number of corrections is computed. 
From that point on, the number of corrections p e r  step is constant. This gives our final 
program, an "assumed approximate e r r o r  ratio convergence" technique. Its flow chart  
is shown in figpre 4. 

In tables 5 and 6 we see  not only the time saved, but a lso the change in e r r o r ,  
when the final program is used in place of the one which requires complete convergence 
at each step. Comparison of table 6 with table 4 shows the time advantage of the final 
program over the two ear l ie r  methods. In tables 5 and 6, the "percent change in e r ror"  
entries should not be misinterpreted. For  example, the reading 2.17 in table 5 comes 
from comparing two relative e r r o r s ,  each of which is approximately 

In one instance, the time for the complete convergence process exceeded fourteen 
minutes, while the time for the final program w a s  0. 5672 minutes. This however, w a s  
unusual. Tables 5 and 6 represent typical time advantages. 
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FIGURE 4. THE FINAL PROGRAM 
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TABLE 5. P 2  - E l .  r = 0.08. 

2omplete Convergence Final Program Comparison 
~~ 

h E r r o r  
~I 0.12 67. 65 

)0.15 208.2 

p 521. 8 

I 0.20 887.1 

2220 

6805 

Percent Percent 
Zhange in Time 

Time (min) E r r o r  rime (min) Error  Saved 

0.4331 66.18 0.2464 

0. 3703 201.3 0. 2003 

0.3222 497.6 0.1692 

0.3033 837.3 0.1539 

0.2678 2048 0.1305 
~~ 

0.2314 6726 0.1180 

TABLE 6. P4 - E l .  r = 0. 04. 

2.17 43. I1 

3. 31 45.91 

4. 64 47.49 

5. 61 49.26 

7 .75  51. 27 

I.16 49.01 

Comparison 
Percent Percen 
Change in Time 
E r r o r  Saved 

0.11 25.16 

0 .19  28.29 

0. 26 30. 87 

0.33 32.41 

0.46 34.85 

0. 76 37.41 
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Com$ etc 

h E r r o r  

0.12 0.4232 
. _.. 

0. 15 2.019 

0. 18 7.215 

0. 20 15.04 

0. 24 53.36 

0. 30 48. 8 

2onvergencc 

Time (min)  

0.4770 

0.4072 

0.3583 

0.3345 

0.2964 

0.2561 

Final Program 

E r r o r  

0.4227 

2. 015 

7.196 

14.99 

53. I1  

!46. 9 

Time (min)  

0. 3570 

0.2920 

0.2477 

0.2261 

0.1931 

0.1603 



E. A NOTE ON MATCHING STARTER WITH PREDICTOR-CORRECTOR 

One of Shanks' sixth order  starters,equation (30), w a s  used with every process  
reported in this paper. Whenever the corrector  was of higher order  than the starter, the 
step size for  the starter was taken as a fraction of that of the continuing process .  For 
correctors  of order  seven, the starters were produced at half the regular step size ( see  
section 111 - A ) .  Similarly, s t a r t e r s  for  a ninth-order corrector  were produced at a fifth 
of the regular step size.  This w a s  an  obvious waste of time for  large step sizes.  

The e r r o r  of the starter is C, h7 y(?)  (sl), while the e r r o r  of an  n-th order  

corrector  is C2 h 
n +  i 

Y 
( n + i )  

( s2). For h = 0. 01 and n = 7 it is sufficient to  compute 
the starting points a t  half the regular step size. The results for  a ninth-order corrector  
a t  step s izes  0. 01 and 0. 02 are confused by roundoff e r r o r ,  even thouph double precision 

is used. For h = 0. 03 and n = 9, corrector  e r r o r  is 5.9049 ( C2 y ( I b )  Isz), .  For 

s ta r te rs  produced a t  h/5, the e r r o r  is approximately 5(2.79936) Ci y ( ? )  (si) or  

I ,  39968 ( C, y ( ? )  (s i ) .  The use of an eighth-order s t a r t e r  would reduce calculation 
time considerably. 

For la rger  step s izes  the s ta r te rs  may be produced more quickly. If h = 0. 3 and 

n = 9,  the corrector  e r r o r  is 5. 9049 ( C2 y('O) ( s2) .  If the s ta r te rs  are produced at 

11/22, then the s ta r te r  e r r o r  is approximately 2 (  I .  7) C1 y ( ? )  ( s i ) .  

It may be that using the starting process  for  so many steps is unnecessary in 
some cases ,  as the following table indicates. This particular aspect deserves attention 
in  future studies. The question, "How do inaccuracies in initial values affect the final 
results?" would be pertinent to such a study. 

The approximate values in Table 8 are useful in estimating the t ime wasted in 
producing initial values a t  a fraction of the regular step size. 
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TABLE 7. P 5  - E 3  


Starters Produced at 1/5 h I Star ters  Produced at h 
I 

E r r o r  Time (min) I E r r o r  Time (min) 

0. 1606 x 

0. 5402 x IOvi8  

0. 1478 x I O m i 6  

0.1791 x 

0. 5315 x 1O-I4 
~~ . ­

0. 6150 x 

1.2011 I O .  1325 x 

0.6514 Io .  3014 x 

0.4683 I O .  1058 x 

0.4037 I O .  1467 x lomi5  

0.3028 0.4729 x 

I. 1164 

0. 5667 

0.3834 

0. 3189 

0.2181 

0.1675 

TABLE 8. TIME USED.FOR PRODUCING STARTERS AT A FRACTION OF THE REGU­

LAR STEP SIZE 

Equation 	 Time (min)  forOne 
Star ter  Application- . - -

E l  0. 0026668 

E2 0.006342 
~ ._ ~~ -

E3 0.0026743 

E4 0.0035717 
.--

Seventh-order. Ninth-order. 
S ta r te rs  Pro- Star ters  Pro­
duced at 1/2 h duced at h/5 
-

0. 0160 I.0856 
~~ -. ­

0.0214 1 0.1143 
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SECTION IV. CONCLUSIONS 

Our results indicate that in a large number of cases  predictor-corrector processes  
may compete successfully with start ing methods. However, unless care is taken to re­
duce the number of wasted applications of the corrector ,  then the starting process alone 
is more efficient. 

The final program given in section 111 - D demonstrates clearly that predictor-
corrector processes  can save significant time when compared with very efficient starting 
processes.  

There is no single corrector  (of a given order)  which is the best  one for all 
differential equations. Two correctors  may compete differently when applied to distinct 
equations o r  when used at different step sizes.  The process  with the smaller e r r o r  term 
may be efficient and accurate in one situation, but unstable in another. 

If the number K of section I1 - C can be approximated in advance, . i t  is possible.to 
design a corrector specifically for a given problem. 
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APPENDIX I. DERIVATION OF FORMULAS 

The derivations of formulas (27) , (28) , and (29) a r e  outlined 

Equation (27). From section I, equation ( 5) , 

Multiply the preceding equations in turn by 1873, -710, -2470, -3703, and then add. 
This leads to (27) .  

Equation (28) .  From section I, equation ( 6 )  ,._ = 

3 y4 = 47 yo + 192 y1 - I O 8  y2 - 128 y3 + h ( 1 2  Yb + 144 Y 1 + 216 Y I  + 48 Y J )  3 

3 yo = 47 y4 + 192 y3 - . .. - h  ( 1 2 y 6 +  ... ) ,  

- h  (12yi ;+  . .  1 .  

29 
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Multiplying the preceding equations respectively by 184,407; 227,923; -103,472; -833,968; 
-884,509; -385,881 and then adding gives equation (28) .  

Equation (29) .  From section I ,  equation ( 7 ) ,  we have: 

alid s imilar  equations for 6 yo, 6 y6, 6 yi, 6 y7, 6 y2, 6 y8, 6 y3. As in the derivation of 
(27 ) ,  (281, use multipliers 11,511; 36,326; 33,364; -47,718; -135,347; -160,883; 
-101,217; -24,178. 

It is noted that formulas (27 ) ,  ( 2 8 ) ,  (29) a r e  l inear combinations of sets of 
formulas obtained from section I1 - A. Of course,  an infinite number of correctors  can 
be so generated. The ones just presented have their  y-coefficients in approximate geo­
metric progression. This makes the e r r o r  te rm attractive,  and for h = 0 the character­
ist ic roots a r e  within the unit circle.  At large step s izes ,  Adams’ formulas a r e  some­
times preferred because they a r e  l e s s  likely to become unstable. 

Adams’ formulas may be derived also by taking l inear combinations of formulas 
obtained from section I1 - A. Also, they are found in the l i terature [ refs. I ,  pp. IO, 536; 
5, pp. 194, 2041. They are givenby 

1 1 1 19
The first few coefficients a r e  Bo = 1, Bi = - -2 ’  Bz = -E,B3= - 24,B4 = - 720, 

3 863 275 33,953 - 73,647 
B5 = - 160’ B6= - 60,480 ’ B7 = - 24,192’ B8 = -3,628,800 ’ - - 9,331,200 ’ 

Equivalent formulas (without remai iders  l isted) are: 

h 
Y 2 = Y i + E  ( - Y I , + 8 Y i + 5 Y h )  5 

h iy3 = y 2 + 2 4  (yo - 5y;  + 1 9  Y;+ 9 YA) 3 
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Y4 = Y3 + 720 ( - 19 yb + 106 y; - 264 ya + 646 yi $. 251 y;) , 

y6 = y5+ 60,480 
( - 863 yb + 6312 y; - 20,211 ya + 37,504 y; -‘46,461 ya 

+ 65,112 yb + ‘19,087 y i ) .  

A similar  formula of order  eight is listed as P5 in section 111-A. 

31 




APPENDIX 11. TABULATED RESULTS. 


In these tables we.include the estimated loss of time mentioned in section III - E. 
Notations identifying processes  and differential equations follow that of the text. For P2 
through P6, the final program w a s  used (see section In). The constant r is the one 
defined,in section III. 

TABLE A-I. RESULTS OF E l .  

Star ters  Mins. 
h E r r o r  ~~ Time (min) Produced At ITime LOE~ 

~~ 

. 0 3  I 0 . 5 6 3 6 ~ : 0 - ~  ~ I 1.6075 

Process  

P I  

P 2  

( r  = .08) 

P 3  

. 0 6  

. I O  

. 2 4  

.03  

. 0 6  

. i o  

. I 2  

. I 8  
~ 

. 2 4  

. 0 3  

.06  I 

0.3443 x 10-1 0.8069 
__  

0.7100 x I O '  0.4881 

0.1186 x I O 3  0.2075 

0. 5482 x I O - '  0. 8305 

0.2057 x I O '  0.4789 

0.2660 x I O 2  0.2936 
_ _  

0.6618 x I O 2  0.2466 
~~-I - _  ­

0.4976 i o 3  0.1692 
_ _  

0.2048 x i o 4  0.1305 
- ~ ~­

0.1948 1 0 - ~  I.0475 

0.3231 x I O - '  1 0.5953 

0. 5128 x 10' 0.4070r = . 04) 1 .09  
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TABLE AI.  RESULTS O F  E l .  (Concluded) 

j Process  ~ h 
_.. 

E r r o r  
- .  

Time (min) 
Star ters  Mins. 

. I 2  0.3565 x 10' 0.3128 0.0160 

P 3  . I 8  0. 5245 x I O '  0.2186 

(cont. ) . 2 4  0.3385 i o 3  0.1720 i 
1 1 

.03 0.1219 x I.2289 0.0160--I.06  0.3269 x 0. 6850 
__ 

P4 . I O  0.1178 x I O o  0.4234 

( r  = .  04) . I 2  0.4227 x I O o  0.3570 

18  0.7196 x i o i  0.2477 

. 2 4  0.5311 x IO2 0. 1931 

. 0 3  0.7016 x io-* I.1992 h/ 5 0. 0853 
~ 

. 06  0.1566 x 0. 6503 

P 5  .09  0.3710 x io-' 0.4672 

( r  = .04) . I 2  0.3900 x 10' 0.4028 

. I 8  0.8225 x 10' 0. 3019 

. 2 4  0. 6763 x I O 2  0. 2513 1 

.03 0.1540 x I.5636 h/5 I 0. 0853 I 

. 0 6  0.3689 0.7744 

P 6  . I O  0. 5471 x 0.5377 

(r = .04)  . I 2  0.2833 x I O - '  0.4633 

. I 8  0.1059 x I O o  0.3414 
~ _ - ---

.24  0.1345 x 10' 0.2803 
________ 
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-- 

TABLE A2. RESULTS OF E 2  


-

Starters Time Losf 
(min)-

5.7336 

2.8706 
~ 

1.4403 
- -. I -~~ 

0.9638 
_ _ - ~_ _ _ _ _ ~  

0. 6467 
- _ _  

0.4881 

2.2150 h 0 

1.1203 I 1  0 

" 0 

Error- . .  - -. _ _  

0.1845 x 
-. ~ ­

0.1172 x l o - '  

0.7258 x 

0.7780 x 

0.7795 1 0 - ~  

0.3744 1 0 - ~  
-

0.1008 1 0 - ~  

0.  1000 1 0 - ~  

0.2685 x 0. 6836 I 
0.2538 I O - ~  0.5733 

. -~ -_ .- - .­

0.9650 x 0. 3911 I lf 

0.5559 1 0 - ~  0.3000 I f  

.­1 
 0 

0 

0 
~ 

0.0381 

l f  

I f  

f l  

I f  

0. 6210 x 
1 

0.1890 x 
~ 

0.9929 

0.2725 x 

0. 8876 x 
~ . __ 

0.1729 x 

2.2022 I h/2 

1.1361 f l  

0.7808 I If  

0.6033 I 
0.4258 f I  

-

0.3370 1 1  f l  

- A 
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TABLE A2. RESULTS OF E2  (Concluded) 

Starters Time Loss 

. 0 3  0.3518 x 10" 2. 5664 I h/2 I 0.0381 I 

. 06  0.6126 x 1. 3164 
.~ 

' 8' 

P 4  .i o  0.7187 x 0.8175 I t  I t  

h Error  Time (min) Produced At I (min) I 

~ 
~ 

( r  = .04) 	 .12  0.1971 10-5  

.18 0.3483 x 
-

.24  0. 1166 x 
~ . .-	 . ._ 

. 0 3  0.1472 x 

.06  0. 5140 x 1.3867 1 I t  

1 1P5 .09  0.2725 x 1.0042 I t  

~~ 

( r  = .04) . 12  0.7352 x 0. 8127 I t  I t  

- ~~ ~ .. I 

. 18  0.2444 x 0.5683 . 1 1  I t  

-

. 24  0.4357 10-3 0.4872 t t  
I t  

-	 ._ 
. .- . 

.04  0.9493 x i o - *  2. 5948 h/ 5 0.2029 

. 0 6  0.3740 x 1. 6367 I I t  

P 6  . i o  0. 6723 x I O v 6  1.0761 I I t  I 
I 
I 

( r  = .04) . 12  0.2375 x 
~ _ _ _  

.18 0. 1 8 9 9 ~ 1 0 - ~  0.6472 I 1  

~. 

0.5845 x 0. 5834 11 t t  

- _ _  
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TABLE A3. RESULTS OF E 3  


'Process Lh I 
. 03  j

I 

.06 I 
PI 

. 1 8  I 
. 2 4  1 
. 0 3  I 

P 2  .09  

( r  = . 0 8 )  . 12  

. I 8  1 

E r r o r  

o.  1382 10-18 

0. 8964 x IO-" 

0.1051 x 

Q. 6077 x 

0.7334 x 

0.4366 x 

0 . 1 6 6 2 ~  

0. 3222 x 
.­

0.1303 x 

0.2818 x 

Time (min) 
.. 

I .6106 

0.8083 

0. 5414 

0.4078 
-

0.2744 

0.2075 
- ____ 

0.8322 

0.4800 
-

0.3247 
. 

0.2472 

0.1698 

0.1306 

~ . _-

Star ters  Time LOSE 
Computed- Ai (min) 

~ 

1 1  

1 1  

I 1  0 

I 1  0 

0. 0160 

I 1  

11 

1 1  

_ -

I 1  I 1  

I 1  I 1  

_ _  - .  ­-_ _  ­

. 0 3  0.  5743 10-l~ 1. 0488 

0.5403 

P 3  .09  0. 1784 x 0.3709 

( r  = .  04) . 12  0.1420 x 0.2861 

.18  0.  2750 10- l~  0.2014 
~- ­

. 24  1 0.2350 x 0.1589 
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TABLE A3. RESULTS OF E3 (Concluded) 

Process  h 

. 03  

.06 


P 4  .09 

( r  = .04) 	 .12  


. 18  


. 24  

~~ ­

. 0 3  

.06  

P5 . 09  

( r  = .  04) 	 .12  


.18  

~ 

. 24  


. 0 3  


. 06  


P 6  . 0 9  

(r = .  04) 	 . 12  


- 1 8  


. 24  


Star ters  Time Loss 
Error  Time (min) Computed At (min)I
0.3890 x 


0.7173 x io-18 


0. 1194 x 


0.1430 x 


0.1296 x io-'' 


0.4631 x 


0. 1606 x io-" 


0. 5402 x io-'' 


0. 1478 x 


0.1791 x 


0. 5315 x 1O-I4 


0. 6150 x 


0. 2320 x 


0. 1153 x 


0. 1578 x ioqi3  


0. 9120 x lo-" 


0. 5630 x 


0.3578 x 


1.2317 h/2 0. 0160 

0.6309 I 1  11 

0.4303 I 
0.3305 I 
0.2302 I 1 1  

0.1803 

1. 2011 0.0856 


0.6514 1 I 1  1 1  


0.4037 1 1  I t  


0.3028 I 1  I t  


0.2520 1 11 


1. 4541 h/ 5 0.0856 

0.4644 1 1  11 


0.3419 I I 1  
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TABLE A4. RESULTS OF E4 

~ 

Star ters  Time Losi 
Time (min) Computed AI (min)-

. -.__. - ­~ 

. 0 3  0. 5170 x 2.1484 
. __.
~ 

. 06  0. 2778 1.0769 
.~~ 

Pi . o g  I 0.3268 x 0.7203 
- __ = . .~ 

. 12  
~ ~ 

. 18  

. 24  
- .  

. 0 3  
~ ~~ 

.06  

P2  .09  
-. ­

( r  = .  08) . 12  
~~ 

. 1 8  

. 2 4  
- .. ~ 

I .. 

. 0 3  

, 0 6  1
~~~ 

P 3  .09  

( r  = .04) 	 . 12  

. 18  

.24  

0.1899 x io-'' 0.5419 

0.2309 x lo-'' 0.3639 
~ 

0.1381 1 0 - ~  0. 2747 
. .~ . - . -- .­

~~. - _ _ _ ~  

0. 3892 x 0.9873 
~~ 

0. 2265 x lo-'' 0. 5025 
~~~ - ­

0. 1135 x lo-'' 0.4653 
.. . ~~ ... .- . .  .~ 

0. 2672 x lo-'' 

0.1134 x 
. .  

0. 2320 x lo4' 
. - ­

0.1015 x 

0 . 1 3 0 2 ~io-'' 
.. . 

0. 6201 x lo-" 

0. 7905 x lo-'' 

0.2019 x 
-

0. 3918 x 
~ 

0.3067 

0.2100 

0.1394 
~ _ _  .~ ~ ~ _ _ 

1.1733 
.~ ~~~ 

0.6072 
-~ 

0.4186 
~. 

~~ 

0.3244 
. 

0.2303 
~~ ~.~ 

0.1831 
~~ 
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TABLE A4. RESULTS OF E4 (Concluded) 

Process h 
e . - .  - ~ 

. 0 3  

. 06  

P4  .09  

( r  = .  04) . I 2  
-

. 1 8  

. 2 4  

E r r o r  
.­

0.9590 I O - ~ ~  

0.1494 x 

0. 9297 x lo-'' 

0.3043 x 

0.2025 x 

Star ters  Time Loss 
Time (min) Computed At (min) 

I. 3561 h/2 0.0214 

0.7914 l l  1 1  

0.5400 I I  I 1  

0.2889 I 1  

I I I 
0.2042 I 1  I 1  

_.~ _ _  I 
1.5397 h/5 0.1143 

-c 

0. 8364 1 1  I 1  

__  

0.6020 I 1  I 1  

-

. 0 3  

. 06  


. 0 9  


P5 . I 2  


( r  = .  04) . 1 8  


-

0. 8970 10 - l~  
. ~ . .  

0. 6492 x 

0. 9604 x l o - "  

0.3883 x 

0.1866 x 
- - . 

..24 0.4390 x 
- -.. 

. 0 3  0. 1460 x 

. 06  0. 2042 x 
-

P 6  .09  0. 2125 x IO-" 

( r  = .04) . 12  0.7706 x 
-

.I8 0.1833 x 

. 24  0.5610 
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