NASA TECHNICAL
MEMORANDUM

NASA TM X-53288

June 28, 1965

N65-30184
% (Accsssy$sm m-m/m

(PAGES) (GODE)

NASA T™M X-53288

PACILITY

{(NASA CR OR TMX OR AD NUMBER) (CATEGORY)

DETERMINATION OF AERODYNAMIC FORCE
AND HEAT TRANSFER PROPERTIES FOR A CONCAVE
HEMISPHERICAL SURFACE IN FREE MOLECULAR FLOW

by CLARENCE RAY WIMBERLY
Aero-Astrodynamics Laboratory

GPO PRICE §

CFSTI PRICE(S) $

NASA

| Hard copy (HC) O/()t ﬂ ()
G€07’ge C. Mﬂ”fbdll Microfiche (MF) ‘ S’ A

Space Flight Center, "™
Huntsville, Alabama




TECHNICAL MEMORANDUM X-53288

DETERMINATION OF AERODYNAMIC FORCE AND HEAT TRANSFER PROPERTIES FOR A
CONCAVE HEMISPHERICAL SURFACE IN FREE MOLECULE FLOW

By

Clarence Ray Wimberly
ABSTRACT

The methods and equations are presented for the aerodynamic force
and heat transfer properties of a concave hemispherical surface at an
arbitrary angle of attack in free molecule flow. The effect of multi-
ple reflections is taken into account by assuming a cosine distribution
after each collision. It is assumed that the emission of molecules from
the surface is purely diffuse, and that the reflecting molecules are
perfectly accommodated to the surface conditions., The resulting equations
are not in closed form, but have been solved numerically for some typical
values of the molecular speed ratio and surface-to-ambient-temperature
ratio, It is found that under the above conditions the heat transfer
characteristics are the same as those of a convex hemisphere. The drag
is increased slightly over its counterpart, while the total 1lift is
shown to be very small and would be zero except for interreflected
molecules.
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DEFINITION OF SYMBOLS

Symbol Definition

A surface area of hemisphere (:DZ/2)

A, reference area (mD3/4)

a thermal accommodation coefficient

CD aerodynamic drag coefficient

CL aerodynamic lift coefficient

Cp specific heat at constant pressure

éq heat transfer coefficient

CV specific heat at constant volume

Cy relative surface velocity in the x-direction

Cy relative surface velocity in the y-direction

Cz relative surface velocity in the z-direction

D aerodynamic drag and surface diameter

d distance between two differential surface elements
E{ energy due to incident molecular flux

Ey energy due to reflected molecular flux

Ey . energy due to molecules reflecting at the wall temperature
f Maxwell's velocity distribution function

Fa angle factor

k Boltzmann's constant

m molecular weight

Ni total molecular incident flux

Ny, total reflected molecular flux at the wall temperature

iv




DEFINITION OF SYMBOLS (Continued)

Definition

molecular density

total pressure on a differential surface element

pressure
incident

pressure

pressure

pressure

pressure

pressure
the wall

on a surface element due to the freestream
and reflected molecular flux

in region 1

in region II

due to incident freestream molecular flux

due to reflected freestream molecular flux

due to reflected freestream molecular flux at
temperature

local heat transfer to the surface per unit time and area

average heat transfer to the surface

gas constant

radius of hemisphere

ratio of

the free stream velocity and the most probable

molecular speed

molecular speed ratio at wall temperature

molecular temperature in freestream

wall temperature



DEFINITION OF SYMBOLS (Continued)

Symbol ‘Definition

U . surface freestream velocity

v molecular velocity

o surface angle of attack

B angle of integration

y ratio of specific heats (Cp/CV)

6 element angle of attack

v angle of integration

T constant (3.14159)

o mass density

o reflection coefficient due to shear stresses

o' reflection coefficient due to pressures

T shear stress due to incident mass flux

Ty shear stress due to reflected mass flux

71 direction angle for diffuse emission from element 1
D direction angle for diffuse emission from element 2

vi
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DETERMINATION OF AERODYNAMIC FORCE AND HEAT TRANSFER PROPERTIES FOR A
CONCAVE HEMISPHERICAL SURFACE IN FREE MOLECULE FLOW

SUMMARY
30184
An analysis of a concave hemispherical surface in free molecule flow
is presented where the surface is oriented at an arbitrary angle of attack.
General equations are formulated for the 1ift, drag, and heat transfer
coefficients. The effect of multiple reflections is taken into account
by assuming a completely diffuse reflection process where molecules are
distributed equally in all directions after each reflection. The mole-~
cules are assumed to obey Maxwell's velocity distribution law before and
after collisions, reflecting directionally in a cosine distribution, It
is further assumed that the reflecting molecules are perfectly accommoda-
ted to the surface conditions. The resulting equations are not in closed
form, but have been solved numerically for some typical values of the
molecular speed ratio and surface-to-ambient-temperature ratio, It is
found that under the above conditions the heat transfer characteristics
are the same as those of a convex hemisphere. The drag is increased
slightly over its counterpart, while the total 1ift is shown to be very
small and would be zero except for interreflected molecules. Maximum
drag and heat transfer occur at zero angle of attack, decreasing to zero
at ninety degrees angle of attack., The lift is a function only of inter-
reflected molecules and is zero at zero and ninety degrees angle of attack,
the maximum occurring near an angle of attack of forty-five degrees.



I. INTRODUCTION

With the advent of orbital satellites and space vehicles, analyses
of the aerodynamic force and heat transfer properties of these bodies and
vehicles, in the high altitude, low density flow regime have become
necessary. The complexity of the body shapes, and the peculiarities of
the mqiecular interactions with surfaces in the flow have introduced
interesting aspects to anglyses in this flow regime by imposing the
necessity of considering various contributions of the momentum and energy
imparted to the body by the impinging and re-emitting molecules, Actually,
much work has been done in determining the aerodynamic properties of flat
and convex bodies in free molecule flow with experimental verification,
but little has been done in determining these properties for concave bodies
that create a molecular multi-reflection process. This paper is con-
cerned with the determination of the aerodynamic properties of a concave
hemispherical surface at various angles of attack in this high altitude,

free molecule flow regime.

By definition, the free molecule flow regime is a gas region of
extreme rarefaction where collisions between molecules are much less
probable than are collisions between the molecules and a surface in the
flow., Because of this molecular freedom, the gas does not behave as a
continuous fluid, but rather performs in accordance with its complex
molecular structure defined by the kinetic theory of ideal gases.

Briefly, this theory is a statistical description of molecular motion,
including the impact effect with other bodies in the flow. From this

theory and Newton's laws of motion, values for the force and heat transfer
properties imparted to a concave hemispherical surface submerged in the

flow have been determined and are presented here., The equations were
derived by treating the flows of incident and re-emitted molecules
separately, where the incident flow consists of the freestream and reflected
molecules. It is the inclusion of this additional incident flux created

by the concavity of the surface that causes the interesting aspects of

this investigation,




II, PREVIOUS WORK

The fundamental concept of the free molecule gas flow analysis per-
formed here is based on textbooks by Jeans [1], Loeb [2], and Patterson
[3], the paperback by Schaaf and Chambre {4], and the paper by Oppenheim
[5]. The methods employed in the analysis of free molecule flow over
non~-convex surfaces are presented in the book by Jakob [6], and the

papers by Chahine [7], Sparrow [8], and Pratt [9].

The fundamentals of particle dynamics and the kinetic theory of
gases, including velocity distributions, pressures, heat conduction
and interaction effects are fully discussed with derivations in the
textbooks by Jeans [1] and Loeb [2]. Using these fundamentals, Patterson
[3] and Schaaf and Chambre [4] derived the means for representing the
force and heat transfer propertiés for a differential surface element
and for a few flat and convex bodies. Patterson [3] limited his
investigatioms to the drag and heat transfer properties of a cylinder
in free molecule helium and discussed some effects of Knudsen number on
heat transfer. Schaaf and Chambre [4] summarized the pertinent equa-
tions in deriving the aerodynamic force and heat transfer properties
for a flat plate, cylinder, and sphere., Also included were data for the
drag coefficient, lift-to-drag ratio, recovery factor and Stanton number
for the flat plate at angles 6% attack, and for the drag coefficient,
recovery factor and Stanton number for the cylinder, and sphere, each
plotted as a function of the molecular speed ratio. Oppenheim [5] dis-
cusses in detail the derivation and application of the convective heat
transfer equations to bodies in free molecule flow. He included specific
equations and data for the heat transfer properties to flat plates,

cylinders, -semicylinders, spheres, and hemispheres.

Jakob [6], in Chapter 31, discusses diffuse radiation between two
surfaces of arbitrary orientation. The results of his discussions and
derivations produce an equation representing the fraction of energy

emitted from one surface to another. Chahine [7], Sparrow [8], and



Pratt [9] used this in determining the force and heat transfer properties
of concave surfaces, Chahine [7] determined the force and heat transfer
properties for infinite concave cylinders and for concave spherical
segments; however, he limited his investigations to the special case
wherein the free-stream flow impinges directly on all parts of the con-
cave surfaces. This is an especially strong restriction for hemispherical
surfaces since, for this type of surface, the angle of attack must be
zero. Sparrow [8] in his paper determined the local and average heat
transfer rates, the adiabatic wall temperature, and the forces exerted

on a concave cylindrical surface in freé molecule flow at arbitrary

angles of attack, Pratt [9] performed the same analysis as Chahine [7],
obtaining slightly different results. He also restricted his investiga-
tion for hemispherical surface to zero angle of attack. The investiga=-
tions by Chahine [7], Sparrow [8], and Pratt [9] all assumed that the
surface was traveling at hypervelocities, thereby neglecting the molecular

motion, and assumed that all molecular reflections were diffuse,

The analysis presented here is for the force and heat transfer proper-
ties of concave hemispherical surface moving at hypervelocities in free
molecule flow including the effects of angle of attack from zero to ninety
degrees. Perfect thermal accommodation of molecules at the surface is

assumed where the molecules are diffusely reflected.

III, FUNDAMENTAL CONCEPTS

A. Free Molecule Flow

The free molecule flow regime may be defined mathematically
as the gas region where the Knudsen number K, = ML = 10 [3]. This
corresponds to a minimum altitude in the earth's atmosphere of about
75 miles for a characteristic length of one foot, based on the U. S,
Standard Atmosphere, 1962 [10]. This is an arbitrary definition and

expressed by some as not complete for defining this flow regime [&4].




The Knudsen number, however, has been accepted by most as the
best criterion to date for establishing the boundaries of free molecule
flow and is defined as the ratio of the mean free path of the molecules
(A) and some characteristic length (L). The mean free path is the
average distance a molecule travels before colliding with another

molecule,

'B. Maxwell's Velocity Distribution

Because of the character of free molecule flow the methods
normally used in describing fluid motion in a continuum cannot be
applied. Thus, in this region of extreme rarefaction, the molecular
motion is necessarily described statistically because of the variation
of molecular velocities in the flow. From the kinetic theory of
gases [1,2], the number of molecules in a region of free molecule
flow is a function not only of the volume of the region, but also of
the velocity of each molecule in the region. This differential number

of molecules is thus expressed as
dN = £(%,V,t) dx® dv3, o)

where the function £(%,V,t) has the same characteristics as molecular
density except in a six-dimensional phase space., By assuming that the
gas region of investigation is homogeneous and steady, the function
becomes independent of position and time, The derivation of the result-
ing function is presented in many books on gas kinetics such as those by

Jeans [1] and Loeb [2]. This function is

af/z2 _ EE— v2
f(¥) =n <2nLkT.> e T (2)

and is known as Maxwell's velocity distribution function [1,2,3,4].
As will be shown, this function is highly useful in determining the

force and heat transfer properties of surfaces in free molecule flow.



C. Reflection and Accommodation Coefficients

Specification of molecule-surface interactions is necessary to
determine the momentum and energy transfer to the surface. Fortunately,
this can be done by simply knowing certain average parameters which
characterize the interaction phenomena. These parameters are the well
known reflection and accommodation coefficients [3,4]. Two parameters
are used in defining the reflection process to take into account both

the tangential and normal force components. These reflection coefficients

are .
T, - T
i T
o= - (3
i
Pi - Pr
o =3T3 - (4)
i w

For a purely specular reflection process, o = o'

= 0, while for a com-
pletely diffuse reflection process, ¢ = ¢' = 1., The thermal accommoda-

tion coefficient is defined by

dE, - dE
i T

8 T 38, - dE )
1 W

and is used in defining energy exchanges with the surface. From this
definition, it is easily seen that for perfect thermal accommodation at
the surface, a = 1, while for the case of no energy exchange, a = O,

Experimentally determined values of o, ¢' and a for various typical

materials and air-surface combinations are available [3,4].




D. Pressure and Shear Stress Calculations

The determination of the pressure and shear stress on a dif-
ferential surface element (Figure 1) caused by the incident freestream
and reflected molecules, where the macroscopic velocity is in the xy-plane,
can now be carried out by considering the time rate of change of momen-
tum normal and parallel to the.surface element. By use of equations (1)
and (2), the pressure and shear stress ‘caused by the incident freestream

are obtained as follows:

o 0

P,=fffm02f(\7)dc dc_ dcC
i X X y 2

-00 =00 (o]

. P2 {\/_ﬁ— [% + 211 + erf(n)] + ne'nz} (6)

a/n 82

and

0 00 o

;T fffm Cxcy f(v) dCx dCy dCz

-00 =00 o)

- - f&j—__—ci-@ {e'“z Tl + erf(ﬂ-)]}, )
2N S

where

S sin @

U/N 2RT

3
I




N
erf(n) = 2N x u/\ e™* ax

C =U +v
X X X
C =0 ~v
y y y
C =v

z z

The limits of integration include all possible magnitudes of the
molecular velocities., The lower limit of dC; is zero since no negative
velocities in the x-direction will strike the front side of the surface
element. The function £(Vv) is given by equation (2). The angle 6 is
the element angle of attack, The net pressure and shear stress can be
determined by using the definitions of the reflection coefficients,

equations (3) and (4):
P P. +P (2 - ¢d") Pi + 0 Pw (8)
Te = T, - T, = 0Ty, €]
where P, is the pressure exerted on the wall due to molecules reflect-
ing at the wall temperature with no macroscopic velocity contribution,

i.e., S=0and T = T,. With the help of equations (1) and (6), the

equation for P, becomes [4]

1
Po= m\[ZnRTw N, (10)




where

0 [eo] [20]
N, = f f f C_ £(¥) dc_dC dc da
i X X Yy z

=00 =00 (o]

= ﬁ JRT/ 21t {e'”z +x il + erf(n)]} dA. (11)

By combining equations (6), (7), (8), (9), (10) and (11), the net pres-
sure and shear stress from the freestream incident flux of molecules on
the front side of the surface element dA (Figure 1), including the contri-

bution of reflecting molecules, become

12 (/2 - gt I 2 [ o
ST -

' T ’
e ][ o] o

— S%Uj___c_csvs_e_{e-nz AN erf(n)]} . (13)
k1

E. Heat Transfer Calculations

The fundamental concepts of heat transfer to a differential
surface element in free molecule flow is carried out in detail by

Patterson [3], Schaaf and Chambre [4], and Oppenheim [5], where the




contributions of energy imparted to the surface argﬂthe translational
kinetic energy and internal molecular energy. The ~total kinetic energy
caused by translational motion of molecules that strike the front side

of dA per unit time and per unit area is

dEi,t = fff -é—_mca‘ £¥) c, dc_ dcy dc,
= ORT \/RT/Zﬂ{(SZ + z>e'T12 +n (s2 + —g) nll + erf(n)]}. (14)

From the kinetic theory of gases [1,2] and the principle of equipartition
of energy, the internal energy per molecule is jkT/2, where j is the
internal degrees of freedom, The flux of internal energy per unit time

and per unit area is given by

dEi’i =315 N, (15)
where
. _ 5 -3y
] v - 1

and N; is defined by equation (11). From the definition of the
accommodation coefficient, equation (5), the heat transfer to the

surface element becomes

qg = dEi - dEr = a(dEi - dEw), (16)

10




where

dEi =dE, _+ dE. . a7n

and dEW is the energy transfer from the surface caused by molecules
reflecting at the wall temperature with no macroscopic velocity contri-
bution, i.e., S = 0 and T = Ty. Inspection of equations (11) and (14),

while considering the contribution of internal energy, reveals the

equation
E = 2T - 1 mRT N '
d w  2(y - 1) w oW (18)

Inserting equations (14), (15), and (18) into equation (16) gives the
heat transfer to the surface element (Figure 1) caused by freestream
incident and reflected molecules on the front side of the surface per

unit time and per unit area

T 2 ’ 2
= RT J(q2 y - __x+1l w)|_-n 1 .-n
g apRT ZKI{K% + 2 -D T [e +‘J:;Tﬂ1 + erf(n)]]- 5 € .

y -1
(19)

IV, EFFECTS OF CONCAVITY

To determine the effect of the concavity of the surface, it is
necessary to represent the fraction of reflecting molecules that re-impinge
on the suréace and the effect on the mass and energy transfer to the sur-
face. This may be done by assuming a diffuse reflection process which
is based on Lambert's cosine iaw of diffusioh and is defined simply as

a cosine distribution of radiation or mass flux to all directions of

11




space [6]. More precisely, from Figure 2, it can be seen that from the
surface element dA,, mass is diffusely emitted in the direction OM pro-
portional to the_cosine of the angle @ between OM and ON, the normal to
dA,. For concave surfaces, a fraction of molecules reflect or reemit,
either diffusely or partially diffusely, from portions of the surface and
impinge on other parts of the surface, thereby creating additional con-
tributions to the forces and heat transfer properties of the body. This-
molecular fraction of reimpinging molecules will be referred to through-
out this paper as the angle factor. The angle factors for a concave
hemispherical surface at an arbitrary angle of attack can be determined
by considering two differential surface elements as shown in Figure 3.
Since the diffuse interchange of thermal radiation also applies to the
diffuse interchange of mass [6,8], the general relationship for the
angle factor derived by Jakob [6] for mass directly incident (normal)

to the surface element can be used

F, = Jf cos @, cos @ dA,. (20)

nd?2
Ao

For concave hemispherical surfaces, it can be easily seen from Figures &
and 5 that

cos Jq = cos Fp = ™
and

dAs

2 sin B dp dva.
Thus, for one reflection,

7T

v
o
1 . Yo (21)
Fa = i G/\‘s1n g dp h/\ dvs = R
o

12




As may be shown from Figure &, Vo = T - 20. The angle factor for one
reflection can thus be expressed as

1
I ) (22)

a

alQ

where the surface angle of attack, ¢, is measured in radians. This quantity
represents the fraction of energy caused by incident molecules from one reflec-
tion that re-impinge on a differential surface element at any point on

the hemispherical surface. For a greater number of collisions the angle

factor becomes a fraction of the molecules that was previously reflected.

.The general expression for the angle factors for multi-reflections can thus

be written

(1 _« j-1
F, = <é %) 1/2) (23)

where j = 1,2,3, ... , representing the number of interreflections (one

less than the number of collisions).

These angle factors defined by equation (23) represent only the
component of energy caused by molecules striking normal to the surface
element., The tangential component is not given since, by definition of
diffuse emission, reflecting molecules are distributed equally and in

opposite directions, thereby cancelling any effect they may have.
V. ANALYSIS OF A CONCAVE HEMISPHERICAL SURFACE

Based on the fundamental concepts as presented in Section III and
the concavity effects of Section IV, the force and heat transfer can
be determined for a concave hemispherical surface at an arbitrary angle
of attack, A completely diffuse reflection process is assumed with per-
fect thermal accommodation; thus, ¢ = o' = 1, which is considered justi-

fied by experimental results [4].

13




A. PForce Coefficients -

The force coefficients can be determined by integrating the
pressure contributions of a surface element over the hemispherical sur-
face. This pressure includes that caused by the freestream molecular
flux as defined by equation (12), plus contributions of reflecting
molecules. For clarity, the pressure distribution over the surface can
be divided into two regimes (see Figure 4). The area of direct incidence

is defined by 0 = v = and is termed as region I, while the area

Vo
receiving only reflected molecules is defined by v, £ v = n and is
termed as region II. The dividing line is a semi-circle and can be

easily shown to be at the angle

Vo = © - 20, (24)
where the surface angle of attack, Q, appears only in the xy-plane as

shown in Figure 1. No generality is lost in this assumption since the
surface is axisymmetric. The pressure at any point in region I can be

written as

/’:}

P.=P_.+2(2 .2 j-1
1 °f 2 ﬂ> P 2 a/2--, (25)
j=1

where Py = Py, since ¢' = 1. The value of P, is defined by equation (10).
It can be shown that the infinite series in equation (25) converges, and

that the sum of the series converges to

2(1/2)3'l = 2.
5=1

14




Equation (25) can thus be written as

= Lo o JoRT
PI = Pf + 2 (2 T[) m ZnRTw N,, (26)

where N; and Pf are defined by equations (11) and (12), respectively,.
Similarly, the pressure at any point in region II can be determined to
be the same as equation (26) minus the freestream contribution., The

pressure on the surface in region II can thus be written
P_=204-% nJ2®mT, W (27)
IT 2 = w i°

The differential force on the surface in the direction of flow measured
by the angle of attack ¢¢ can now be determined. The derivation is
facilitated by reference to Figure 4. This force includes the contri-
butions of both pressure and shear stresses plus the shading effect due

to angle of attack.

dD =(PI sin ¢ dAI - cos dAI + P __sin o dAII) sin B (28)

Tg I1
where P; and 7 are defined by equations (26) and (13), respectively,
and where PiI is defined by equation (27). Also required are the dif-
ferential surface areas, which are shown to be

= = 2 1
dAI dAII r=dp sin B dv. (29)

The element angle of attack is defined as 6 = n - @ ~ v. The total drag,
or force, in the direction of flow can be determined by 'integrating equa-

tion (28) over the hemispherical surface.

15




v

)
- 1 . _
D= ff [Pf+ 2(‘2‘ - %) m'\IZﬁRTW Ni:l sin 9 r® gin2 B dvdp
o o
x Yo
- Jfk/hTf cos 6 rZ sin? g dvdg
o o
T T ;
+ ff P ; sin © r2sin? g dydp (30)
o v,

As previously defined the values of Py, N;, 7¢ and Pyy are shown to be
a function of the element angle of attack, 8. The appropriate substitu-

tion into equation (30) can thus be made for v, changing the limits of

integration., Furthermore, by inserting equations (11), (12), (13), and
(27) into the above equation, where o'

= g = 1, the drag equation becomes
- > -
2 Tnr
p = PRI f [g(6) + h(e)] sin 6 do + -——-—pRz f £(6) cos®6 de
2
(04 a

=
2
; I <l - g) JT /T f sing dg, (31)
2 2 W
-

where

N =

g(o) = [—;—_S sin o +
1

J TV/T} o~57sin%0 (32)

16




h(e) = [1 + erf(s sin o)) B + 52 sin®p + ﬁ;“—eJﬂw/T} (33)
-S2sinZp . .
£(0) = e +3 7 S sin 8 [1 + erf(S sin 8)]. (34)

Similarly, the 1ift, or force normal to the direction of flow can be
determined. Utilizing Figure 4, the differential lift can be determined

as

dL =(®_ cos 6 dA_ + 1

sin dA
1 17 ' 6l + P

11 S°8 3] dAII) sinp (35)

where PI’ Tg> and PII retain the same definitions. A similar analogue
can be applied for the 1ift as was applied for the drag, yielding the

following equation
v
)
L=ff Tfsinerzsinzadvdﬁ
o o

v

T 0
+ f f [P'f+2<-]2; - %) mx}Z:(RTw Ni:l cos 8 rZ sin2 g dvdg

o O

T

+ ff P €08 6 r2sin2 g dwdp. (36)

(o}
vO

17




By making the same substitutions as was previously done for the drag equa-

tion the resulting lift equation becomes

) -Q . wa
L OR';'.‘JII‘ f [g(6) + h(o)] cos o do - E{%rr_ f £(6) sin 6 cos © dB
o (04
pRan < >~/']_‘ /T f f(e) cos 6 dsa. (37)

The force coefficients Cp and Cp, for the hemisphere can thus be written

=0
1
C -2 - T F [g(8) + h(s)] sin g do
D 1 .o 282 |
'EpU A
r (04
= -OC
1
+ ———————f £(8) cos® g do +—2 '— O6\'\/T /T J sin 9 do
s 27w
(38)
=-Q
1
¢ =L = L [ [g(e) + n@)] cos 6 do
L 1 5 2% |
= U2 A
2 o
- n-Q
1 1
- :/?_S—_J[ f(6) sin o cos 8 de-s%(z- - %)\/TW/T f cos 6 do
a -
(39)

18




B. Heat Transfer Coefficients

The heat transfer properties considered here for the concave
hemispherical surface is based on the general theory of freestream con-
vective heat transfer in free molecule flow presented in the paper by
Oppenheim [6], plus the contributions due to reflected molecules. The
heat transfer to a differential surface element due to the incident flux
is defined by equation (19). The heat transfer due to reflected molecules
is determined by using the angle factors of Section IV where the energy
impinging on a differential element is equal to molecular energy emitted
from the rest of the surface times the appropriate angle factor, For
example, if dE, leaves element dA;, then the incident amount that is
transferred to dA, is F,dE,.. The initial heat transfer caused by the
incident freestream and reflected molecules is defined by equation (16)

and may be rewritten here as
9 = dEi - dEr = a[dEi - dEw].

The contribution of heat transfer to the surface by the molecules incident

after one collision may be expressed as

/1 Q) (L_.g -
qy = v -E/(dEr - 4E) <2 ﬂ> (dE_ - dE )a. (40)

Successive contributions of the heat transfer for multi-collisions

greater than one are

LN o3 el L ogpdy 2 (L2 31 ggdtt
1 —<z-ﬂ/ 1/2)7"" (e - dE7) a<2 n) (1/2)7"" (dE; dE_)

(41)
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where j = 2,3,4, ..., jo» and represents the number of interreflections.
The superscript numbers are used to define the energy carried away by
the molecules caused by the jth interreflection. ﬁesired is the total
heat transfer to a differential surface element caused by an infinite
number of interreflections, or a finite number that fully represent the
effects of concavity as a function of dE; and dE;,. By assuming a finite
number of interreflections, the resulting simultaneous equations can be
solved, producing the heat transfer equation for the incident and each
interreflected flux of molecules. A summation of these contributions

produce the total heat transfer to the surface element, and may be expressed

as
1o
= q, + . 42
4 qf Z qJ (42)

j=1

where 4 is defined by equation (19), and q; is obtained from equations
(16) and (43).

a1 = q¢(1 - a) G - %> (43)

The additional contributions of the heat transfer for integer values

of j 2 2 is similarly obtained and may be written

a; = ;1 - ) /I G - %)

where j = 2, 3, 4, ..., jo. The total heat transfer to a differential
surface element in region I is obtained by inserting equations (43) and

(44) into equation (42)
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]
(o]
r 1 N i j-1 |
_ =1

The heat transfer to a differential surface element in region II is

obtained similarly by excluding the freestream contribution.
J
1 05\ - _] J L
= (= -2V, - -
qH-<2 2 2 (1 -a)’ (1/2)77". (46)
j=1
The average heat transfer to the surface is thus obtained by integrating

equations (45) and (46) over the surface

o
"
g Lo

1
J 97 dAI +3 w/\qII dAII' (47)
I II

Values of the accommodation coefficient determined experimentally for air
on various surfaces are shown to be between 0.88 and 0.94 [4]. It is
therefore considered justified to assume that a = 1., For this assumption,

the average heat transfer equation reduces to

n

l'a, aa; (48)

yoll
I
e L

J
I
where A is the surface area, and q; is defined by equation (19). By

inserting these relationships into equation (48), the average heat

transfer equation becomes
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T - S

- ORT el v y+ 1 wi

= —= 2 2 - 2
Q ﬂ\/RT/nLS M Y o TJ £(9) de

04
=
- - } _2 .2
+%I-|~/T{T/2n f T (49)
(04

where y is the ratio of specific heats and a function of the type of
gas (for air,y = 7/5), and £(8) is defined by equation (34). For con-
venience, equation (49) may be made dimensionless by dividing by
b(ZRT)3/2. The first equation for the heat transfer coefficient may

then be written

T_] =0
1 {2 y v+ 1 W
C =%z |2+ . £(0) d
q 4872 P y =1 2(y - 1) T | J (8) 48
(6
=C
1 -$2sin®g
+ 557z d/\ e de. (50)
(04

VI, CONCLUSIONS

The analysis performed here can be used to determine the aerodynamic
forces and average heat transfer to a concave hemispherical surface in
free molecule flow. The resulting equations, although not in closed
form, can be integrated numerically using standard computer techniques.
As shown in the analysis, the drag and lift coefficients are good for
an infinite number of collisions where the average heat transfer equa-

tion is independent of the number of interreflections.
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The resulting equations are general in that they are a function
of surface velocity, ambient and wall temperatures, type of gas, and
angle of attack. The equations are limited to high molecular speed
ratios where molecules impinge only on the concave surface.

The drag, l1ift, and heat transfer coefficients have been obtained
by solving the resulting equations numerically for some typical values
of the molecular speed ratio and surface-to-ambient-~temperature ratio
and plotted as a function of angle of gttack (figures 6 through 14),
As shown, the average heat transfer coefficient is independent of the
concavity. Maximum values of the heat transfer and drag occur at zero
angle of attack, decreasing with increasing angle of attack to values
of zero at ninety degrees angle of attack., By comparison, the drag for
the concave hemisphere is shown to be slightly higher (about one per
cent) than the drag for a convex hemisphere. The total 1lift is shown

to be very small and would be zero except for interreflected molecules,.
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Figure 1 - Cartesian Coordinates of a Differential
: Surface Element




Figure 2 - Illustration of Lambert's Cosine Law
of Diffusion

Figure 3 - Diffuse Emission Between Two Surface Elements
of Arbitrary Orientation
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Figure L - Angular and Regional Definitions of Hemisphere
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