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ORBITAL PARAMETERS 
FOR THF: OGO-E 

GEO-CORONAL HYDROGEN MPER131ENT 

ABSTRACT 

This document presents and applies methods for obtaining 

certain necessary orbita3 and spacecraft parameters for meaning- 

ful data analysis of the geo-coronal hydrogen measurement 

experiment (Experiment No. 22) on the fifth in Orbiting Geophysical 

Observatory Series, namely the OGO-E. 

Techniques are presented for determining as a function of 

time: 1) orbit inclination with respect to the ecliptic plane, 

2) the angle between the orbit's angular momentum vector and the 

sun's position vector, 3) 

viewed from the satellite, 4) 

the half angular dimension of the earth 

the solar array angle and, 5 )  the 

angle between the projection of the sun on the x-y plane of the 

experiment's coordinate system and the x-axis of that system. 

The calculations were made using a numerical integration 

general purpose interplanetary trajectory program l ~ m ) .  Conse- 

quently, the changes in the orbit due to perturbations are reflected 

in the calculations 

The results of 

of the quantities mentioned above. 

computer runs are presented in this docient. 
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Semi-major axis. a 

Radius of the  earth. ae 

CE me angle between the OPEP x r a x i s  and the  
projection of the sun vector on the OPEP %-yE 
plane. (See Figure 2.) 

Eccentricity.  e 

i Inclination. 

Unit vectors along the x, y, z axes of the equa- 
t o r i a l  i n e r t i a l  coordinate system. 

U n i t  vectors along the  x', y' ,  z '  axes of the 
i n e r t i a l  ec l ip t i c  Coordinate system. 

- - -  
it ,  j ' ,  k '  

Unit vectors along the Xb, yby Zb axes of the 
s a t e l l i t e  fixed coordinate system. 

U n i t  vectors along the XE, ;YE, ZE axes of the 
OPEP coordinate s y s t e m .  

Unit vectors along the xp, yp, zp axes of the 
solar array coordinate system. 

M Mean anomaly. 

Unit angular momentum vector. 

Position vector of  the s a t e l l i t e .  

S'  The angle between normal t o  the  o r b i t  and the 
posit ion vector of the sun re l a t ive  t o  the ear th .  

Sun vector projection on the OPEP %-YE 
plane. 

Unit vector from ear th  t o  sun i n  the x, y, z 
coordinate system. 

Axes of the i n e r t i a l  equator ia l  coordinate system. x, YY z 

x ' ,  y', z '  Axes o f  the i n e r t i a l  e c l i p t i c  coordinate system. 

vii 



Axes of the s a t e l l i t e  f ixed coordinate system. 

Axes of the OPEP coordinate system. 

Axes of the solar  a r r ay  system. 

Greek Symbols 

6 

- 
Half angular dimension of the ear th  viewed from 
the s a t e l l i t e .  

The mean obl iqui ty  = 2304437 f o r  1966 (Ref. 2 ) . 
The o r b i t  incl inat ion with respect t o  the e c l i p t i c  
plane. 

The so la r  array angle (Fig. 2 ) .  

The OPEP angle, the angle between the xE and x b 
axes. 

E 

s 

?e 

*E 

tu Argument of perigee. 

R Right ascension of the ascending node. 

Matrices 

A 

B 

C 

X 

‘b 

xE 

XS 

A transformation matrix defined by equation 8. 

A transformation matrix defined by equation 9. 

= B A, see equation 10 .  

A vector with components i n  the i n e r t i a l  equator ia l  
coordinate system. 

A vector with components i n  the s a t e l l i t e  fixed 
coordinate system. 

A vector with components i n  the OPEP coordinate 
s ys tern. 

Position vector of the sun i n  the OPEP system. 

Posit ion vector of the sun i n  the i n e r t i a l  
equator ia l  coordinate system. 

... 
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ORBITAL P- 
FOR TBE OGO-E 

GEO-CORONAL HYDROGEN EXPERD4EEC 

INTRODUCTION 

The Orbiting Geophysical Observatory ( E O )  s a t e l l i t e s  

form a , f & l y  of s a t e l l i t e s  each designed t o  carry up t o  

f i f t y  experiments. The EO-E  i s  one i n  t h i s  se r ies .  The 

discussion here concerns an experiment ( N o .  22) on the CGO-E 

which will make op t i ca l  measurements of the thickness of the 

zeo-coronal hydrogen. 

escaping from the ear th.  

t o  determine the gradient of the hydrogen population around 

the  ear th  and also t o  investigate the  interact ion caused by 

ex t r a - t e r r e s t r i a l  e f fec ts .  

It i s  theorized t h a t  hydrogen i s  

The purpose of the experiment i s  

This document gives methods f o r  determining the following 

q m t i t i e s  useful i n  post f l i g h t  data analysis: 

1. The angle 5 between the e c l i p t i c  plane and the 

o r b i t  plane (Fig. 1). 

The angle S' between the normal t o  the o r b i t  plane 

and a vector from the ear th  t o  the  sun (Fig. 1). 

2.  

1 



Z 
Z' 

XI Orbit d a n e  

\ 
I 

/ X 
(points to vernal  

equ i nox) 

Figure 1. 
Angles 5 and s' 

3 .  

4. 

iptic plane 

The half  angular dimension 6 of the ear th  as viewed 

from the s a t e l l i t e  as a function of time. 

The s o l a r  a r ray  angle cp between the normal t o  the  

s u n - l i t  s ide of so l a r  a r r ay  and the yb-axis of the  

s a t e l l i t e  f ixed coordinate system (Fig.  2) .  

P 
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5. The angle CE between the projection of the sun 

vector on the "E- yE plane of the o rb i t  plane 

experiment package (OPEP) c o o r ~ n a t e  system and 

the  %-axis of tha t  coordinate sys tem.  

coordinate system, x+ yE, zE i s  shown on Figure 2. 

2'he OPEP 

E Z 'b 

Normal to 
solar paddle 

\6 

/ 
\ sur 'b 

t vector 
\ 
'E 

Figure 2. 
Angles yp and CE 
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I. ASSUMPTIONS 

The OGO-E will be placed in to  a highly eccentric o r b i t  

with an apogee height approximately 148,000.0 km. 

conditions f o r  E O - E  are  assumed t o  be the  same as the  nominal 

conditions for E O - A  which w a s  launched September 4, 1964 (Ref. 1). 

The in j ec t ion  

Table I. 

E O - E  Inject ion Conditions 

Geocentric l a t i t ude  - - 200744573 S 

Longitude 

Height 

Speed - - 10.716286 km per sec 

Azimuth - - 660445986 from north 

F l igh t  path angle - - 1?45 2111 

The osculating c l a s s i ca l  o r b i t a l  elements associated w i t h  

these inject ion conditions are  shown i n  Table 11. 

4 



I .  

Table I1 

Orbital Elements 

Semi-major axis, a 

Eccentricity,  e = 

Inclination, i = 

= 12.514687 ear th  

.91666199 

30?910496 

Argument of  perigee, tu = 

Right ascension of the ascending node, 

Mean anomaly, M = 8?7160632 

31306575% 

radi i  

h Epoch = A u g u s t  15, 1966 a t  5 30m U.T. 

5 



11. MATHEMATICAL MODEL 

A .  Orbit Plane Geometry 

The angles 5 and S '  are r e l a t ed  t o  the o r b i t  i n  space 

and the sun. These angles a re  considered as o r b i t  related 

because the  pos i t ion  of the spacecraft i n  t he  o r b i t  does not  

en te r  i n t o  the  calculat ions.  

1. The Inc l ina t ion  with respect  t o  the  Ec l ip t i c  Plane 5 .  

The first  problem i s  t o  determine the angle between the  

normal t o  the  e c l i p t i c  plane and the normal t o  t h e  o r b i t  plane, 

i . e .  the inc l ina t ion  of the o r b i t  w i t h  respect  t o  the  e c l i p t i c  

plane. The angle can simply be wr i t ten  as: 

where E = Unit angular momeatlxn vector which i s  
normal t o  the o r b i t .  

- 
k '  = Unit vector normal t o  the  e c l i p t i c  plane. 

- - 
k '  = -j s i n  E 4- cos E 

e = 23044371, mean e c l i p t i c  angle f o r  1966 ( R e f .  2 ) .  
- 
j, = u n i t  vectors ?long ~ 1 1 2  y md z axes of the 

equator ia l  i n e r t i a l  coordinate system. 

h 



2. Angular Momentum - Sun Angle, S ' . 
m e  angle S '  i s  defined by: 

m e r e  USE = The u n i t  posit ion vector of the sun measured 
from earth.  The coordinates of the sun a re  
taken from an ephemeris. 

The use of E i n  equations (1) and ( 2 )  takes in to  account 

the  motion of the o r b i t  due t o  perturbations when used i n  a 

numerical integrat ion scheme where f o r  each in tegra t ion  s t ep  

Consequently, the  motion 5 r e f l e c t s  both the  i s  computed. 

secular and periodic perturbations. 

i s  l i t t l e  change i n  E; hence, it can be s t a t ed  t h a t  the angles 5 

For a s ingle  o r b i t  there  

and S'  a re  dependent on the  motion of the  plane of the o rb i t .  

The angle S '  i s  also dependent on the posi t ion of the sun. 

B. Spacecraft Angles 

1. H a l f  Angular Dimension of t he  E a r t h ,  6. 

The angle, 6 i s  e a s i l y  determined from the following 

expression: 

where a = 6378.165 km radius of the ear th  (Ref. 3 ) .  e 

7 



2. The Solar  Array Angle . 
P 

' CpP 
The so la r  a r ray  angle, cp , i s  based so le ly  on the posi t ion 

of the so la r  a r ray  with respect t o  the main s t ruc ture  on the 

s a t e l l i t e .  The angle 'p i s  measured counter-clockwise from 

the yb-axis t o  the  y -axis, as observed from the posi t ive 

%-axis (Fig. 2) .  The planned range f o r  the  var ia t ion  of 

cp for E O - E  i s  - 5 

be found from the formula 

P 

P 

2 (Refs. 4, 5). merefore ,  cpp may . P 2 'pp 2' 
n 

n - 
Cp = COS-' (sp kb) + 5 

P (4) 

where 3 = Unit vector normal t o  solar  a r ray  surface 
P ( s u n l i t  s ide) .  

- - , r i s  the  s a t e l l i t e  posi t ion vector. r - 
kb = - -  IF I 

3. OPEP %-Axis - Sun Projection Angle, CE. 

The angle CE i s  somewhat more complicated i n  that  two 

coordinate transformations a re  required involving three 

coordinate systems. The three coordinate systems i n  question 

are : 

a). X = , i n e r t i a l  equator ia l  system, yI 
8 



where x, y, z form the right-handed coordinate system i n  

which x points t o  the vernal point, z points t o  the north 

pole and y completes the  set. 

b) Xb = ~~ the  s a t e l l i t e  f ixed coordinate system, 

where xb, yby zb form a right-handed coordinate system 

with the  or igin a t  the  center of grav i ty  of the s a t e l l i t e  

' 

i n  which z 

s a t e l l i t e ,  xb l i e s  pa ra l l e l  t o  the solar a r ray  axis and 

yb i s  orthogonal t o  5 and z b 

o r b i t  plane experiment package (OPEP) end of the s a t e l l i t e  

(Fig.  2). 

points t o  the center of the ear th  from the  b 

and points towards the 

% = a , the  OPEP coordinate system, 

where 5, yEy zE form a right-handed coordinate system i n  

which zE i s  parallel t o  zb and the 

p a r a l l e l  t o  the  % - yb plane and has the angle YE between 

the % and 

- yE plane i s  

axes as shown i n  the following f igure  . 

9 



z ' Z  b E  

Figure 3. 
Angle PE 

The three coordinate systems are related as .follows: 

'b 

*E 

Then % 

Ax 

Bxb 

cx 

where A, B, 

C = BA 

C, are transformation matrices and 

10 



I n  the three coordinate systems described above, l e t :  

- 
i, 3, E = unit vectors along x, y, z .  

= unit vectors along %Y Yb.) 'bo 

= unit vectors along %, yEy zE. 

Now, the matrix A i s  defined by 

A =  

The matrix B is: 

B =  

- 
cos YE 

-sin Y E 

0 
- 

sin cos YE ;I 0 '  

0 4. 
11 



Therefore, 

c12 

c =  

c3l c33 



Since the  posi t ion of the sun must be defined i n  the OF’EP 

coordinate system, equation (7)  i s  used. 

XES = c x s  

and xsJ ysy z s  a r e  the coordinates of t he  sun. 

coordinates of the sun i n  the OPEP system are: 

Hence the  

I n  terms of vector notation the  sun vector i n  the OPEP 

system is: 

+ j  Y 
E ES 

+ +ES 

1 3  



The projection of the sun onto the OPEP 5 - yE plane is 
simply: 

The angle CE between the 5 axis and the projection of the sun 
on the .OPEP 5 - yE plane defined by: 

C. The Computer Program 

The equations in Section I1 were used with an existing 

general purpose interplanetary trajectory Encke method program 

(ITEM) for  use on the IBM 7090 and IBM 7094 computers (Ref. 6). 

The perturbations accounted for in this program include the 

gravitational attraction of the earth, moon, sun, Jupiter, Venus, and 

Mars considered as point masses. 

of the ad, 3rd and 4th zonal harmonics and 2nd tesseral harmonic 

of the earth's gravitational field. 

rapidly, air drag was not considered. 

for OGO-A is about fourty-one kilometers per orbit. 

Also included are the effects 

Since perigee height rises 

The perigee height rise 

14 



. 
III. RESULTS AND DISFSSIOI? 

, rpp and C as Computer runs t o  determine 5, S*, 6 
E 

functions of time were made using the  formulas of Section 11 

and the following in jec t ion  times: 

August 7, 1966 lh 45” universal  time 

August 7, 1966 P 45m universal  time 

August 22, 1966 lh 15” universal  time 

August 22, 1966 P 15” universal  time 

A. Orbit Plane Geometry 

1. Incl inat ion with respect t o  the Ec l ip t i c  Plane, 5 .  

Figures 4 and 5 show the t rend  of 5 f o r  the above in jec t ion  

times. This angle exhibi ts  the approximate fourteen day 

lunar  o sc i l l a t ion  and the  bi-annual o sc i l l a t ion  due t o  the 

so lar  perturbation. The mean increasing t rend i s  due 

primarily to the  combined long tern e f f ec t s  of the  sun and 

moon. 

15 



FIGURE 4 - 5 Versus Time after Injection 

Time 
, U. T. 

U T. 

1 ._ ,-T-!--~ -i +-~-i-- + I 

48 100 200 300 
I ,  

- 1  
I, 

TIME AFI'ER INJECTION (DAYS)  LAUNCH DATE (8-22-666) 

FIGURE 5 - f Versus Time after Injection 
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2. Angular Momentum - Sun Angle, S' 

Since S '  is  mainly a function of the  sun's posi t ion,  

the tbne h i s to ry  of S' shows a yearly periodici ty .  

term periodic (about fourteen days) lunar perturbation also 

a f fec t s  S' but these variations a re  i n  the  order of ten ths  

of a degree (about two orders of magnitude l e s s  than the  

average value of S' )  and, consequently, are not perceptible 

on Figures 6 and 7. 

The short 

. 

17 
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Time 

0 

Injection 
0115 U. T. 

0315 U. T. 

TIME AFTER INJECTION (DAYS) LAUNCH DATE (8-22-66) 

FIGURE 7 - S' Versus Time afler Injection 

Time 



B. Spacecraft Angles 

1. Half Angular Dimension of the Earth, 6. 

The angle 6 is nearly periodic since it is a function 

solely of the distance of the spacecraft from the earth. 

The time history for the first 150 hours after injection is 

essentially the same for all the injection dates and times 

shown on page 15. See Figure 8. 

After almost one year of flight the time history of 

6 is again shown for 150 hours (Figure 9 ) .  These results 

are based on an injection into orbit time of August 7, 1966, 

at p 45m universal time. "he results shown on Figure 9 

are typical of results for different injection dates and 

times. 

19 



90 

60 

30 

0 

TIME AFTER ISJECTIOW i HOURS 1 LAUNCH DATE (8-7-66) 

FIGURE 8 - Versus i i m e  after Injection 

Time 
U. T. 

TIM AFTER I N J E C l l O N  ( H W R S  ) LAUNCH DATE (8-7-66) 

F I W R E ~  - a V ~ ? ~ C ! I C  7 : q - p  tirter Injection 



2. The Solar Array Angle . ' 'pP 
Figures 10 and 11 show the behavior of the solar  array 

angle cp f o r  the first 150 hours i n  orb i t  fo r  the injection 

in to  orb i t  times shown on page 15. 

h i s tor ies  are due t o  the different spacecraft-sun geometry. 

Figures 12 and 13 show the behavior of the solar array 

P 
The different time 

angle $ af'ter almost a year i n  o r b i t .  P 

2 1  



t- . y--+-t- -7-t- 
+- . A- 

i 

0 50 100 1% 
TIME AFTER INJECTION ( HOURS 1 LAUNCH DATE (8-7-666) 

FIGURE IO - Versus Time after Injection 

Time 
U. T. 

U. T. 

FIGURE II - Versus Time after injection 
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Time 
U T, 

U. T. 

8 

TIME AFTER INJECTION ( HOURS 1 
FIGURE 13 - P;. Versus Time from Injection 

MUNCH DATE (8-22461 
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L 

3 .  OPEP %-Axis - Sun Projection Angle, CE. 

Figures 14 and 15 show the behavior of CE f o r  the 

f i r s t  150 hours i n  o r b i t  f o r  the in jec t ion  i n t o  o r b i t  times 

shown on page 15. A s  i n  the case of the solar ar ray  angle 

the difference i n  the time h i s t o r i e s  of CE f o r  d i f fe ren t  

injection times i s  due t o  the d i f fe ren t  spacecraft-sun 

geometry . 
Figures 16 and 1.7 show the behavior of CE a f t e r  almost 

a year i n  o r b i t .  
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FIGURE 14 - CE Versus Time after Injection 

50 100 150 
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FIGURE 15 - CE Versus Time after Injection 
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Time 
U T. 
U. T. 

FIGURE 16 - CE Versus Time after Injection 

Time 
U. T. 
U. T. 

FIGURE 17 - CE Versus Time after Injection 
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