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AERODYNAMIC LOADS ON TAILS AT HIGH 

ANGLES OF ATTACK AND SIDESLIP 

By J. Richard Spahr and Edward C. Polhamus 

SUMMARY 

Results are  presented fo r  the loads and moments acting on the 
individual t a i l  surfaces of a body-tail combination over a wide range of 
angles of attack and s idesl ip .  The effects  of forebody length and panel- 
panel interference on the characteristics are  included. It i s  shown tha t  
large nonlinear variations i n  these loads and moments, which occur a t  some 
combinations of angle of attack k d  sidesl ip ,  cannot be predicted by low- 
angle theory. A re la t ive ly  simple, but general, theoret ical  method f o r  
calculating these load and moment character is t ics  i s  described, and the 
r e su l t s  from t h i s  method are  found to be i n  good agreement with experiment 
provided the i n i t i a l  positions of the forebody vortices a re  known. 

It i s  shown tha t  a simple application of slender-body theory can be 
used t o  predict  the side loads due to s ides l ip  t h a t  are  contributed by a 
ve r t i ca l  t a i l  on a wide variety of wing-body-tail combinations a t  low 
angles of attack. For several configurations, changes a re  indicated 
which reduced the ve r t i ca l - t a i l  loads per uni t  yawing moment of each 
complete configuration a t  large angles of attack. 

Some resul t s  are presented on the e f f ec t  of high angle of a t tack 
on the induced-flow f i e l d  and t a i l  loads due t o  a wing a t  supersonic 
speed. 

INTRODUCTION 

Airplanes and missiles are  frequently required t o  operate over a 
wide range of angles of a t tack and sideslip.  The aerodynamic loading 
on most a i r c r a f t  configurations a t  small angles of a t tack and s ides l ip  
can be adequately predicted by linearized theories. However, a t  combined 
angles where e i the r  the angle of attack o r  s ides l ip  i s  large,  serious 
nonl ineari t ies  i n  the load characteristics occur fo r  which no general 
theore t ica l  method has heretofore been developed. The r e su l t s  of . , 



reference l h a v e  shown tha t ,  a t  subsonic Mach numbers, such nonlinearit ies 
i n  the t a i l  loads a re  caused by the e f f ec t s  of the body and wing vortices 
and tha t  these e f fec ts  can be estimated i f  the strength and positions of 
the vortices a re  known. 

The purpose of t h i s  paper' i s  threefold: (1) t o  summarize the 
resu l t s  a t  supersonic Mach numbers of recent fundamental and systematic 
measurements of the loads and moments on the exposed panels of body- 
panel combinations through a wide range of angles of attack and s idesl ip;  
(2) t o  present a general theoret ical  method f o r  calculating these load 
characteristics a t  any Mach number, which requires only a knowledge of 
the i n i t i a l  positions of the forebody vortices;  and (3) t o  show the 
influence of several configuration changes i n  reducing the ver t ica l -  
t a i l  loads required fo r  a given yawing moment of the configuration. 

SYMBOLS 

maximum body radius 

wing span 

local  chord 

mean aerodynamic chord 

section normal-force coefficient 

bending-moment coefficient,  
bending moment about root of exposed panel 

2qss, 

hinge-moment coefficient,  
hinge moment about centroid of exposed panel 

2 qSF 

yawing-moment coefficient of configuration 

normal force normal-force coefficient on exposed ve r t i ca l  t a i l ,  
qS 

normal-force coefficient on t a i l  i n  presence of wing 

normal-force coefficient on t a i l  alone 



. 
side force on ve r t i ca l  panel 

C~ side -force coefficient,  
2 qs 

OCy change i n  side-force coefficient of configuration due t o  wing o r  
ve r t i ca l  t a i l  

nit t o t a l  d i f fe rent ia l  horizontal- ta i l  incidence 

free-stream Mach number 

free-stream dynanic pressure 

spanwise distance from body center t o  panel t i p  

span of one exposed panel 

area of one exposed panel 

free-stream velocity 

.ver t ical  coordinate with origin a t  tail-body juncture 

angle of attack, radians unless otherwise specified 

angle of s ides l ip  

semiapex angle of plan form 

angle of average downwash acting over span of t a i l  

Subscripts 

U upper panel 

L lower panel 

V due t o  body vortices 

W wing alone 
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DISCUSSION 

Basic Panel-Load Characteristics 

The loads and moments acting on the individual l i f t i n g  surfaces of a 
cruciform combination are  considered f i r s t .  These surfaces can be con- 
sidered wing panels of a body-wing-tail combination o r  the t a i l  surfaces 
of a wingless configuration. Systematic wind-tunnel t e s t s  of the con- 
figuration shown i n  figure 1 have been made a t  the Ames Aeronautical 
Laboratory t o  measure the forces and moments act ing on the four individual 
panels over a wide range of combined angles of a t tack and s idesl ip .  Repre- 
sentative r e su l t s  of these t e s t s  are  presented i n  figure 2 i n  which the 
loads and moments act ing on the upper and lower ve r t i ca l  panels a re  given 
f o r  combined angles of attack and sideslip.  The coefficients of side 
force Cy on each panel and hinge moment about the panel centroid Ch 

are  shown a s  functions of s ides l ip  angle P f o r  angles of attack of 0' 
and 20°. It i s  seen t h a t  the e f fec t  of angle of attack on the lower panel 
i s  t o  increase progressively the force while the hinge moment remains 
unchanged. I n  contrast ,  the load and hinge moment on the upper panel are  
both decreased by angle of attack. The important character is t ic  t o  note 
here i s  that  t h i s  decrease i s  not proportional t o  angle of s ides l ip  but 
reaches a maximum a t  low values of s ides l ip  and resu l t s  i n  a large rear- 
ward s h i f t  i n  the panel center of pressure and a highly nonlinear varia- 
t ion  of the loads and moments on t h i s  panel with angle of s idesl ip .  It i s  
t h i s  loss  i n  load on the upper ve r t i ca l  panel when serving as a t a i l  f i n  
which i s  one of the causes of the serious decay i n  direct ional  s t a b i l i t y  
of most airplanes a t  large angles of attack. It i s  apparent tha t  t h i s  
undesirable character is t ic  can be a l lev ia ted  by the use of a lower ve r t i -  
c a l  (ventral)  f i n ,  because such a surface does not lose effectiveness with 
angle of attack but actual ly  gains effectiveness. Results fo r  the panel 
root bending moment are  presented i n  figure 3. The bending-moment resu l t s  
i n  conjunction with the side-force resu l t s  show tha t  the l a t e r a l  center 
of pressure of the lower panel remains fixed with changes i n  angle of 
attack, whereas tha t  of the upper panel moves outboard with an increase 
i n  angle of attack. It i s  apparent from symmetry tha t  the resu l t s  of f i g -  
ures 2 and 3 apply d i rec t ly  t o  horizontal panels i f  the angles of a t tack 
a i d  s idesl ip  are  interchanged. The left-hand curves apply t o  the l e f t  
horizontal panel and the rigkt-hand curves apply t o  the r ight  panel. 

Consider now the basic cause of these e f f ec t s  of cross coupling 
between angle of attack and s idesl ip .  The loading due t o  s ides l ip  on a 
ve r t i ca l  panel i n  the presence of a body varies with angle of attack 
because of two d i f fe rent  e f fec ts :  (1) the change i n  effect ive sweepback 
of the panel and, (2) the change i n  the influence of the forebody vortices 
on the panel loading. 

Consider, f i r s t ,  the sweepback effect .  It can be shown by use of 
slender-body theory t h a t  the lift effectiveness of a wing panel i n  the 
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. presence of a body decreases with increasing sweepback as i n  the case of 
a wing alone. This effect  i s  i l l u s t r a t ed  i n  figure 4 which shows the 
side view of the ver t ica l  panels i n  combination with the body a t  an arbi-  
t r a ry  angle of attack and sideslip.  The e f fec t  of angle of attack i s  t o  
increase the leading-edge sweepback of the  upper panel and t o  decrease 
the sweepback of the lower panel. The resul t ing changes i n  the loading 
due t o  s idesl ip over each wing panel i s  indicated i n  the right-hand sketch 
of figure 4. Here, it i s  shown tha t  the symmetrical spanwise load distri- 
bution a t  zero angle of attack i s  changed t o  an asymmetrical distribution 
a t  positive angle of attack. The loading on the lower panel i s  increased 
and tha t  on the upper panel i s  decreased. 

Consider next the second factor  influencing the panel loads a t  
combined angles of attack and sideslip,  t ha t  i s ,  the influence of the 
forebody vortices. A t  moderate and large angles of attack o r  s idesl ip,  
the flow over a body i s  characterized by a pa i r  of symmetrically disposed 
vortices on the leeward side caused by crossflow separation. The presence 
of a vortex i n  the v ic in i ty  of a wing o r  t a i l  surface changes the loading 
on the surface by vir tue of the induced flow f i e l d  created by the vortex. 
Two c r i t i c a l  conditions are  indicated i n  figure 5 f o r  which a vortex 
passes close t o  one panel and thus has the greatest  e f fec t  on the loading: 
f i r s t ,  the combination of high angle of attack and low sidesl ip i n  which 
the  upper panel i s  primarily affected by the vortex and, second, high side- 
s l i p  and low angle of attack i n  which the l e f t  panel i s  most affected. It 
w i l l  be recalled from figure 2 tha t  these were the two conditions for  which 
the la rges t  nonlinear changes i n  panel loading occurred. The ef fec t  of a 
vortex on the panel loads i s  i l l u s t r a t ed  by the sketches i n  figure 5 which 
show the changes i n  the spanwise load distribution, from s t r i p  theory, due 
t o  a vortex passing near the t i p  of each panel. It i s  observed that ,  above 
the vortex on the upper panel, a loading t o  the l e f t  occurs and below the 
vortex a loading t o  the r ight  occurs. This loading corresponds t o  the 
dis tr ibut ion of sidewash induced by the vortex along the span of the pan- 
e l s .  The magnitude of the loading increases with the strength of the vor- 
tex  and decreases with the distance of the vortex from the panel. With the 
vortex located near the t i p  of the panel, the net force due t o  the vortex 
i s  t o  the r ight  and reduces the load and bending moment existing on the 
panel without the vortex present. If the vortex i s  moved toward the body, 
i t s  e f fec t  on the net panel load would diminish, because the two regions 
of opposite loading would become more nearly compensating. 

Expressions based on simple theoretical concepts have been derived 
f o r  the prediction of the forces and moments acting on a panel a t  arbi-  
t r a r y  angles of attack and sidesl ip i n  which the effects  of both sweep- 
back and body vortices have been taken in to  account. These expressions 
are  i l l u s t r a t e d  i n  figure 6 which gives the equations f o r  the side force 
act ing on the two ver t ica l  panels a t  a given s idesl ip angle. The first 
term i n  each of these expressions represents the side force a t  zero angle 
of attack; the second term represents the ef fec t  of sweepback due t o  
angle of attack; and the l a s t  term represents the contribution of the 



forebody separation vortices.  The fac tor  C i s  the side force of the  
4 

yw 
panel alone a t  zero angle of a t tack and i s  evaluated from experiment, 
where available, o r  from a sui table  wing theory. The factors  KW and 

K$ 
a r e  both computed by slender-body theory and, fo r  a c i rcu la r  body, 

depend only on the r a t i o  of the  body radius a t o  the  panel semispan s 
a s  shown by the curves i n  f igure  6. It i s  observed t h a t  KW increases 
from 1 to  2 as the configuration changes from an all-wing configuration 
t o  a body with no wings. The fac tor  K g ,  on the other  hand, increases 

t o  a maximum f o r  combinations with r e l a t i ve ly  small bodies and then 
decreases t o  zero a s  the  wings vanish. It i s  a lso noted tha t ,  because 
of panel-panel interference,  K v  i s  l a rger  fo r  the  planar configuration 
than f o r  the  cruciform arrangement, but t h a t  t h i s  e f f ec t  becomes smaller 
a s  a/s increases. Although the fac tors  KW and K g  have been computed 

from slender-body theory, these equations a r e  not necessari ly r e s t r i c t e d  
t o  combinations having slender panels because KW and K g  a r e  simply load 

r a t i o s  which modify the  load on a v e r t i c a l - t a i l  panel alone t o  take i n t o  
account the presence of the  body and of the angle of attack.  The theo- 
r e t i c a l  and experimental comparisons of Nielsen and Kaat tar i  ( re f .  2) 
have established the va l id i ty  of the f ac to r  KW f o r  essen t ia l ly  any plan 
form o r  aspect r a t i o .  

The importance of the panel leading-edge sweepback on the side force 
i s  seen from the equations i n  figure 6 where tan  e ,  which i s  proportional 
t o  the aspect r a t i o  f o r  a t r iangular  plan form, appears i n  the denominator. 
Thus, the lower the aspect r a t i o  the l a rge r  the  e f f ec t  of angle of a t tack 
on the ver t ica l  panel loads due t o  s idesl ip .  

The evaluation of the l a s t  terms i n  these equations requires the  
computation of the e f f ec t  of each of the forebody vortices and t h e i r  
images on the wing-panel loading. The s t rength and paths of these vor- 
t i c e s  have been calculated by means of a stepwise procedure based on 
incompressible vortex theory. Such calculations,  however, require a 
knowledge of the normal-force d i s t r ibu t ion  along the forebody and the 
i n i t i a l  vortex position. The work of Jorgensen and Perkins ( re f .  3) has 
demonstrated the va l id i ty  of t h i s  method f o r  bodies of c i r cu l a r  cross 
section,  and subsequent work has indicated i t s  app l i cab i l i t y  t o  bodies 
of a rb i t ra ry  cross section. The calculat ion of the  e f f e c t  of a vortex 
of known strength and posit ion on the loading of a wing panel i n  the 
presence of a body i s  made most simply by means of s t r i p  theory. I n  the 
application of the s t r i p  theory, it i s  assumed t h a t  the strength and path 
of each vortex remain unchanged by the addit ion of the wing panel t o  the  
body. The downwash f o r  an i d e a l  vortex i s  then calculated, and the addi- 
t i o n a l  spanwise load d is t r ibu t ion  due t o  the  vortex flow f i e l d  i s  computed. 
The l i f t i n g  effectiveness of each longi tudinal  s t r i p  i s  taken a s  the two- 
dimensional value f o r  a wing having the same leading-edge sweepback. An 
a l t e rna t e  method, based on slender-body theory, i s  current ly  being inves- 
t i ga t ed  a t  the  Ames Aeronautical Laboratory f o r  the  calculat ion of the  

cdClll 
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. effects  of a vortex on a wing panel in the presence of a body. In t h i s  

method the influence of the wing-panel flow f i e l d  on the vortex paths i s  
taken in to  account and, thus, one of the assumptions of the strip-theory 
method i s  avoided. Preliminary results of t h i s  study indicate t h a t  the 
e f fec ts  of such changes i n  the vortex path on the wing load may be 
important for  plan forms of low aspect ra t io .  

Calculations have been made by means of these theoret ical  methods t o  
predict  the experimental panel-load character is t ics  discussed ea r l i e r .  
Figure 7 shows a comparison between experiment and theory a t  an angle of 
attack of 20' for  the variation of side force and hinge moment kith 
s ides l ip  angle f o r  the two ve r t i ca l  panels. 

In  addition t o  the experimental values shown by the symbols, three 
theore t ica l  curves are  shown i n  each case t o  i l l u s t r a t e  the importance of 
the two aerodynamic ef fec ts  jus t  discussed: f i r s t ,  a low-angle theory, 
given by the f i r s t  term i n  the equations of figure 6; second, the theory 
including the sweepback effect,  given by the f i r s t  two terms; and, third,  
the theory including both the sweepback and vortex ef fec ts  (based on the 
experimental i n i t i a l  vortex positions), as given by the complete equations. 
It i s  seen from these comparisons that the load character is t ics  of e i the r  
panel can be predicted adequately by the complete theory. It i s  noted t h a t  
f o r  the lower panel the vortex effect i s  negligible because the body 
vortices are  a re la t ive ly  large distance from t h i s  panel. (see f ig .  5. ) 

The ef fec ts  of forebody length on the vertical-panel loads a re  
indicated i n  figure 8. I n  t h i s  figure i s  presented a comparison of the 
load character is t ics  of the or iginal  combination with a combination having 
one-half the or ig ina l  forebody length. The importance of forebody length 
i s  evident from t h i s  comparison which shows t h a t  t h i s  change i n  the fore- 
body v i r tua l ly  eliminates the nonlinearit ies due t o  the body vortices.  
This r e s u l t  i s  caused by the reduction i n  the vortex strength and by the 
inboard movement of the vortices, both of which tend t o  reduce the e f f ec t  
of the vortices as  pointed out ear l ie r .  These experimental resu l t s  are  
i n  good agreement with those predicted by the theore t ica l  method. 

The effects  of the presence of adjacent surfaces on the loads act ing 
on a wing o r  t a i l  surface a re  i l l u s t r a t ed  i n  figure 9. In  t h i s  figure i s  
shown the variation of the side force of each ve r t i ca l  panel with angle 
of s ides l ip  a t  a high angle of attack i n  the presence of each of the other 
panels of a cruciform arrangement. These curves show t h a t  the addition of 
the opposite ve r t i ca l  o r  the l e f t  horizontal panel has no ef fec t  on the 
loads of e i the r  ver t ica l  panel, but the addition of the r ight  horizontal  
panel increases the load on the lower panel and decreases the load on the 
upper panel. These panel-panel interference ef fec ts  a re  associated pa r t ly  
with the cross coupling of the sidewash veloci t ies  i n  potent ial  flow and 
p a r t l y  with interference ef fec ts  of the forebody vortex flow. 
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The loads on the  t a i l  surfaces of complete configurations a t  zero t 

o r  small angles of a t tack a r e  considered next. Under these conditions, 
t he  side load contributed by a wing o r  t a i l  surface t o  an a rb i t r a ry  con- 
f iguration a t  any s ides l i p  angle o r  Mach number can be computed by means 
of a simple theore t ica l  method. I n  t h i s  method the  side-force contribu- 
t i on  of a v e r t i c a l - t a i l  surface i s  given by the product of the s ide  force 
ac t i ng  on the  surface alone and an interference f ac to r  which i s  a function 
only of the cross-sectional shape of the combination a t  the  t a i l  location.  
Slender-body theory i n  conjunction with apparent-mass re la t ionships  a r e  
used t o  evaluate t h i s  in terference fac tor  f o r  a given configuration. This 
theore t ica l  method has been used t o  p red ic t  the side-force charac te r i s t i cs  
of  a number of current a i r c r a f t  configurations shown i n  f igure  10, f o r  
which such experimental information was available.  Most of these configu- 
ra t ions  represent recent f i gh t e r  airplanes and include a wide var ie ty  of 
wing-body-tail arrangements. In addit ion,  a research model from the 
National Advisory Committee f o r  Aeronautics i s  included. The cross- 
sect ional  arrangements used i n  the theore t ica l  calculations t o  approximate 
the  actual  configurations a r e  shown i n  f igure  11. The correla t ion between 
experiment and theory i s  given i n  terms of the  change i n  side force due t o  
the addition of the surface designated by the  s o l i d  l i n e  i n  each of the  
sketches. The r e su l t s  f o r  subsonic speeds a r e  indicated by the  flagged 
symbols and those f o r  supersonic speeds by the  p la in  symbols. Although 
the  change i n  s ide  force ACy shown i n  t h i s  f igure  includes the  load 
induced on the body by the  surface, the load on the surface i t s e l f  can 
a l so  be calculated by the t heo re t i ca l  method. The good agreement shown 
here between experiment and theory f o r  such a wide va r i e ty  of configura- 
t i ons  a t  both subsonic and supersonic speeds shows the  general usefulness 
of the theoret ical  method i n  the  prediction of side loads and ve r t i ca l -  
t a i l  loads due t o  s ide s l i p  a t  small angles of a t t ack  where i n  some cases 
these loads a re  maximum. 

The effects  of angle of a t t ack  on the  t a i l  loads of wing-body-tail 
combinations a re  now considered. Figure 12 presents some r e su l t s  obtained 
a t  the Langley Aeronautical Laboratory which show the  e f f e c t  of angle of 
a t t ack  on the  spanwise load d i s t r ibu t ion  due t o  s ide s l i p  on the  v e r t i c a l  
t a i l  of an a i rplane configuration having a low, midposition, o r  high wing 
a t  a Mach number of 0.8. It i s  observed t h a t  i n  a l l  cases an increase i n  
angle of attack causes' an increase i n  the  loading along the  outer  portion 
of the span and a decrease near the  root.  From the previous discussions 
it can be recognized t h a t  t h i s  e f f e c t  i s  associated with the  forebody 
crossflow separation vortices.  It can a l so  be noted by comparing the  low- 
and high-wing r e su l t s  t ha t  the e f f e c t  of wing height i s  considerably 
greater  a t  an angle of a t t ack  of 15O than a t  an angle of a t t ack  of 0'; 
thus, an effect  of wing posit ion on the forebody vor t ices  i s  indicated. 
Figure 13 shows s imilar  r e su l t s  f o r  a Mach number of 1.4 but ,  i n  t h i s  
case, the  effects  of angle of a t t ack  and wing height a r e  somewhat l e s s .  
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Effect of Directional S t a b i l i t y  

This paper so f a r  has deal t  with methods of estimating wing o r  t a i l  
loads and comparisons of the v e r t i c a l - t a i l  loads encountered by various 
configurations for  a given s ides l ip  angle where it has been shown t h a t  
for  conventional configurations the ve r t i ca l - t a i l  load generally decreases 
with angle of attack. This reduction i n  t a i l  load i s ,  however, usually 
accompanied by a loss  i n  direct ional  s t a b i l i t y  which r e su l t s  i n  la rger  
s ides l ip  angles being encountered before the restor ing moment necessary 
t o  counteract a given disturbance i s  developed. I f ,  as  i n  the usual case, 
the wing-fuselage combination i s  directionally unstable, then the increased 
s ides l ip  angle would require more t a i l  load t o  counteract the i n s t a b i l i t y  
of the wing-fuselage combination and the t o t a l  t a i l  load would increase 
with angle of attack despite the f ac t  t h a t  the t a i l  load per uni t  s ides l ip  
decreased with angle of attack. However, i f  the wing-fuselage combination 
has neutral  direct ional  s t a b i l i t y  throughout the angle-of-attack range, 
the v e r t i c a l - t a i l  load would ( i f  any variation of carryover t o  the body 
with angle of a t tack i s  neglected) be independent of the over-al l  direc- 
t i ona l  s t ab i l i t y .  Unfortunately, the i n s t a b i l i t y  of the wing-fuselage 
combination often increases with angle of attack (see re f .  4) and r e su l t s  
i n  an increase i n  the v e r t i c a l - t a i l  loads encountered. 

In view of the importance of the wing-fuselage direct ional  s t a b i l i t y  
character is t ics ,  it i s  the purpose of t h i s  portion of the paper t o  i l l u s -  
t r a t e  the e f fec t ,  on the ve r t i ca l - t a i l  load per un i t  restor ing moment, of 
several wing-fuselage-configuration changes which appear a t t r ac t ive  from 
s t a b i l i t y  considerations. Figures 14 t o  16 i l l u s t r a t e  the e f fec t  of s t a -  
b i l i t y  by presenting, as  a function of angle of attack, the ve r t i ca l - t a i l -  
load coefficient f o r  a uni t  yawing-moment coeff ic ient  of the complete con- 
figuration. Inasmuch as the only purpose of these figures i s  t o  indicate  
the e f f ec t  of angle of attack and compare changes t o  a given configuration, 
and since the wing areas and spans and moment reference points a re  involved 
when making comparison between different configurations, the scales have 
been omitted. One such change i s  the use of narrow horizontal  s t r i p s ,  o r  
strakes, on the fuselage forebody t o  a l l ev ia t e  the los s  i n  direct ional  s t a -  
b i l i t y  with angle of attack. (see ref. 5 . )  The ef fec t  t h a t  these s t rakes 
have on the measured load of the exposed ve r t i ca l  t a i l  per uni t  yawing 
moment of the complete configuration a re  shown i n  figure 14 f o r  a Mach 
number of 0.6. The strakes had spans equal t o  10 percent of the maximum 
fuselage diameter and extended over the front  27 percent of the fuselage. 
The wing, which had an aspect-ratio-4 de l ta  plan form clipped t o  an aspect 
r a t i o  of 3, differed from t h a t  i n  reference 5 and was selected because, 
f o r  t h i s  wing, the strakes also provide a beneficial  e f fec t  on the longi- 
tudinal  s t a b i l i t y  character is t ics .  The strake-off condition i s  represented 
by the c i rcu lar  symbols and it can be observed t h a t  the t a i l  load per uni t  
yawing moment increases rapidly. With the strakes on (denoted by square 
symbols), however, the ve r t i ca l - t a i l  load decreases with angle of a t tack 
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and i s  considerably l e s s  than tha t  for  the basic configuration. This 
ra ther  large improvement i s  associated with a reduction i n  the wing- 
fuselage i n s t a b i l i t y  a t  the higher angles of attack. 

The ef fec t  of a change i n  fuselage-afterbody shape on the vert ical-  
t a i l  loads, as indicated by the t a i l  contribution t o  side force, i s  pre- 
sented in  figure 15 f o r  a Mach number of 2.0. Two configurations were 
investigated, one having a c i rcu lar  afterbody and the other having an 
e l l i p t i c a l  afterbody. Both fuselages had the same volume and the same 
longitudinal dis t r ibut ion of cross-sectional area. The e l l i p t i c a l  a f t e r -  
body i s  used a s  an attempt t o  reduce the f'uselage i n s t a b i l i t y  over the 
en t i r e  angle-of-attack range while maintaining the necessary fuselage vol- 
ume. The desired s t a b i l i t y  r e su l t s  were obtained and were accompanied by 
large reductions i n  the v e r t i c a l - t a i l  load fo r  a given yawing moment. This 
i s  i l l u s t r a t e d  by the two variations with angle of attack. The so l id  curve 
represents the t a i l  load f o r  the configuration with the c i rcu lar  afterbody, 
and the dashed curve represents the t a i l  load f o r  the el l ipt ical-af terbody 
configuration. The r e su l t s  indicate  a large reduction i n  the tail load 
over the en t i r e  angle-of-attack range. This reduction i n  ve r t i ca l - t a i l  
load resul ts  from the decrease i n  fuselage i n s t a b i l i t y  and a t ransfer  of 
load from the t a i l  t o  the fuselage afterbody which may, i n  many cases, be 
a desirable trade. 

The ef fec t  of wing height on the v e r t i c a l - t a i l  loads a t  a Mach number 
of 2.9 i s  shown i n  figure 16. In  t h i s  figure a re  shown the ta i l - load  
r e su l t s  (as indicated by the t a i l  contribution t o  side force) f o r  a con- 
figuration having a t r iangular  wing of aspect r a t i o  4 i n  a low and high 
posit ion as indicated i n  the upper left-hand sketch. From a comparison 
of these curves, it i s  observed tha t  ra i s ing  the wing from the low t o  
high position ef fec ts  a s ignif icant  reduction i n  the t a i l  loads, especially 
a t  large angles of attack. This reduction i s  caused by the influence of 
the wing pressure f i e l d  acting on the body as indicated i n  the sketches on 
the r ight .  As pointed out e a r l i e r ,  the normal force on the r ight  panel i s  
greater than tha t  on the l e f t  panel, and thus a l a t e r a l  pressure difference 
across the body i s  created by the wing. It i s  apparent t h a t  the difference 
i n  the positive pressures from the high wing causes an increase i n  the body 
side force and, hence, a s tab i l iz ing  moment, but t h a t  the low wing produces 
a decrease i n  side force. The yawing moment induced by the low wing i s  
small because of the short  moment arm. Thus, the favorable e f fec t  of a 
high wing on the t a i l  loads i s  the r e su l t  of the improvement i n  the t a i l -  
off  directional s t ab i l i t y .  In the estimation of t a i l  bending moments, 
however, the adverse e f fec t  of a high wing on the span loading, as 
previously pointed out, must be considered. 
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8 Effect of Lateral  Control 

One lateral-control  device which has been found t o  induce rather  
large loads on the ve r t i ca l  t a i l  i s  the d i f f e ren t i a l ly  deflected horizon- 
t a l  t a i l .  This device i s  i l l u s t r a t e d  i n  figure 17 where the measured 
normal force induced on the exposed portion of the ve r t i ca l  t a i l  by a d i f  - 
f e ren t i a l ly  deflected horizontal ta i l  i s  presented (denoted by the square 
symbols) as  a function of Mach number. The v e r t i c a l - t a i l  loads presented 
f o r  the d i f fe rent ia l ly  deflected horizontal t a i l  were obtained a t  zero 
s ides l ip  with a t o t a l  d i f f e ren t i a l  deflection of 30' ( r ight  down l e f t  
up 15'). These deflections produce a posi t ive r o l l  and a wing-tip he l ix  
of approximately 0.07 throughout the  Mach number range investigated. The 
v e r t i c a l - t a i l  load, which, of course, occurs only instantaneously a s  the 
r o l l  control i s  applied, increases rather rapidly with Mach number and 
approximately doubles between a Mach number of 0.6 and 0.9. Although 
experimental resu l t s  are  not available f o r  supersonic speeds, theore t ica l  
considerations of the e f f ec t  of Mach number on the effectiveness of the 
horizontal  and ve r t i ca l  t a i l s  and the amount of v e r t i c a l - t a i l  area within 
the Mach cone from the horizontal t a i l  indicate  t h a t  a rather  rapid reduc- 
t ion  i n  the v e r t i c a l - t a i l  load might be expected a t  supersonic speeds. It 
would appear, therefore, t ha t  the maximum loads induced on the ve r t i ca l  
t a i l  probably occur a t  high subsonic speeds. In order t o  give a b e t t e r  
indication of the magnitude of the normal force induced on the ve r t i ca l  
t a i l ,  the normal force encountered a t  an angle of s ides l ip  of 6' with no 
d i f f e ren t i a l  deflection of the horizontal t a i l  i s  presented by the circu- 
l a r  symbols as a f'unction of Mach number f o r  comparison. This comparison 
indicates  t h a t  a t  high subsonic speeds v e r t i c a l - t a i l  normal forces corre- 
sponding t o  an angle of s idesl ip  of approximately 7' a re  induced by a t o t a l  
d i f f e ren t i a l  deflection of 30' of the horizontal  t a i l .  

Effects of Wing on Horizontal-Tail Loads 

The influence of a wing on the horizontal-tail-load charac ter i s t ics  
a t  two angles of attack i s  indicated i n  f igures  18 and 19. In these f i g -  
ures a re  shown some recent wind-tunnel r e su l t s  fo r  the induced flow f i e l d  
behind a rectangular wing a t  zero s idesl ip  and the influence of t h i s  flow 
f i e l d  on the load acting on a rectangular hor izonta l - ta i l  surface. The 
l o c a l  downwash and sidewash angles, dynamic pressure, and Mach number were 
surveyed i n  a ve r t i ca l  plane a t  the t a i l  location. In these figures the 
variations i n  downwash and i n  the t a i l  load a re  shown as  f'unctions of the 
t a i l  height i n  wing chords. The t a i l  normal force CN i s  computed from 
the average downwash, dynamic pressure, and Mach number exis t ing a t  the 
t a i l  plane. The resu l t s  f o r  an angle of a t tack of 60 ( f ig .  18) show tha t ,  
when the t a i l  i s  located between the two trailing-edge waves, the average 

'' i s  nearly 1, and the loss  i n  t a i l  load downwash i s  small, t ha t  i s ,  1 - , 
i s  small, t h a t  i s ,  the l i f t  r a t i o - i s  close t o  1. The e f fec t  of the viscous 
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wake from the blunt t r a i l i n g  edge of the wing i s  evidenced by the 
variations i n  t h i s  region d i rec t ly  behind the t r a i l i n g  edge. If the 
t a i l  surface passes through e i the r  of the trailing-edge waves, a sudden 
downwash occurs which actual ly  reverses the load on the t a i l ,  a s i tuat ion 
obviously t o  be avoided. As the t a i l  i s  raised fa r ther  above the wing 
plane, the downwash diminishes t o  zero and the t a i l  load returns t o  i t s  
free-stream value a t  the point f o r  which the t a i l  i s  located a t  the shock 
wave from the wing leading edge. Similarly, the curves f o r  negative val-  
ues of t a i l  height would be expected t o  return t o  free-stream conditions 
when the t a i l  passes below the lower shock wave from the wing leading edge. 
The close agreement of the bwnwash and t a i l - load  curves i s  an indication 
of the small deviations i n  the average dynamic pressure and Mach number i n  
the wake from t h e i r  free-stream values a t  t h i s  angle of attack. The 
r e su l t s  for an angle of attack of 20° ( f ig .  19) a l so  show a sudden down- 
wash and loss  i n  t a i l  load as the t a i l  moves t h r o u a  the upper wave from 
the wing t r a i l i n g  edge. However, it i s  noted tha t ,  i n  contrast  t o  the 
r e su l t s  for an angle of attack of 6O, the ta i l - load  curves do not follow 
the downwash curves i n  the r e s t  of the wake, and despite the increase i n  
downwash below the wing, the t a i l  load i s  preserved. This e f f ec t  r e su l t s  
from changes i n  dynamic pressure and Mach number i n  the wing wake a t  t h i s  
angle of attack and demonstrates the necessity of taking in to  account these 
changes in  the prediction of loads on both horizontal- and v e r t i c a l - t a i l  
surfaces behind a wing a t  large angles of attack. 

CONCLUDING REMARKS 

The resul ts  of wind-tunnel t e s t s  have shown t h a t  variations i n  the 
loads and moments on a l i f t i n g  surface i n  the presence of a body can 
exhibi t  large nonlinearit ies a t  combined angles of a t tack and s ides l ip  
which cannot be predicted by low-angle theory. A r e l a t ive ly  simple, but 
general, theoret ical  method fo r  calculating these loads under such condi- 
t ions  has been described i n  which both the e f fec ts  of leading-edge sweep- 

. back and of the forebody vortex flow are taken in to  account. This calcu- 
l a t i v e  method, however, requires a knowledge of the i n i t i a l  posit ions of 
the forebody vortices. It was found t h a t  the r e su l t s  of t h i s  theore t ica l  
method were i n  good agreement with experiment. Results have been presented 
which show the ef fec ts  of forebody length and panel-panel interference on 
the load characteristics.  It was demonstrated t h a t  a simple application 
of slender-body theory could be used successWly  t o  predict  the side loads 
contributed by a ve r t i ca l  t a i l  on a wide variety of wing-body-tail combi- 
nations a t  small angles of a t tack and a t  both subsonic and supersonic Mach 
numbers. 

For three conf'igurations, changes were described which reduced the 
v e r t i c a l - t a i l  loads required for  a given yawing moment of each complete 
configuration at large angles of attack. These were (1) addition of 



d horizontal  strakes along the forebody, (2) change i n  the afterbody cross- 
sectional shape from c i rcu lar  t o  e l l i p t i c a l  i n  which the major axis i s  
ver t ica l ,  and (3) movement of the wing from a low t o  a high position. 
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