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COMPARISON OF METHODS IN CALCULATING FREQUENCIES OF
CORNER-SUPPORTED RECTANGULAR PLATES .

By Robert E. Reed, Jr.
Ames Research Center

SUMMARY

The lower natural frequencies of a rectangular plate that is pin supported
at the corners are found analytically by two approximate methods. The first
is the Ritz method and the second is a series solution to the differential
equation of motion. These freguencies are also found experimentally for com-
parison. All of the results are presented along with some previous work done
by other authors using a finite difference method. Some of the advantages and
disadvantages of the two methods pertaining to the numerical computations are
discussed.

INTRODUCTION

The linear equation of motion, based on the Kirchoff plate theory, for
the free transverse vibration of thin rectangular plates is well known but
exact solutions have been found for just a few types of boundary conditions.
For more difficult cases, approximate methods are available for calculating
the natural frequencies and mode shapes and have been extensively applied by
various authors to problems in which the plate is supported along entire
boundaries (see, e.g., ref. 1, ch. 7). In the following, two approximate
methods, which can be applied to many other problems, are used for determining
the natural frequencies and mode shapes of a rectangular plate with isolated
pin supports at the corners. This problem is of interest since it is common
design practice to support panels at isolated points (e.g., solar panels,
hatches, covers, etc.) and also because the solutions point out some of the
difficulties that can be encountered in plate vibration problems when
approximate methods are used.

The first method used is the well-known Ritz method. Natural frequencies
and mode shapes of the lower modes were calculated to what appeared to be
about l-percent accuracy by using more and more terms of the assumed series
until the result indicated (at least to the author) the convergence to the
desired accuracy. However, some of the numerical examples calculated herein
were previously treated by Cox and Boxer (ref. 2) who used the approximate
method of solving the finite difference equations of motion on a digital com-
puter. Upon comparison with their work (they felt their answers were accurate
to within about 1 percent), discrepancies in natural frequency were found to
be as large as 10 percent. Instead of exploring the convergence of the Ritz
method, a series solution to the differential equation of motion was obtained
and the calculated frequencies showed that, in most cases, the discrepancies



were due to the slow convergence of the Ritz method. A short experimental
program was then undertaken to see the correlation between experiment and
theory. All of the results are presented herein for comparison along with a
discussion of the problems associated with the methods and their adaptation to

the computer.

NOTATION
Api integration constants, i =1, 2, 3, b
a length of plate
Bni integration constants, i =1, 2, 3, 4
b width of plate
D bending rigidity of plate, —obo
12(1 - v2)
E Young's modulus
g acceleration of gravity
h plate thickness
i,J,k,1,m,n summation indices
t :
Tmax amplitude of kinetic energy
t time
Viax amplitude of strain energy
W(x,y,t) transverse displacement
w(x,y) amplitude of W(x,y,t)
X,y Cartesian coordinates
“n o
8 =
7 weight density
A dimensionless frequency parameter, f%i\/?gg



v Poisson's ratio

w circular frequency

METHODS OF ANALYZING PLATES ON ISOLATED SUPPORTS

The form of an approximate solution for a plate on isolated supports can
sometimes be obtained from the solution for the more common problem of a plate
supported along entire edges. For a rectangular plate, this latter solution
can usually be chosen as

v=I% i Fm (%) G ()

where the displacement W(x,y,t) = w(x,y)sin wt and the function Fy(x)Gny(y)
and its derivatives can satisfy certain conditions along the lines

x = constant and y = constant but cannot satisfy restraint conditions at
isolated points. For a plate on isolated supports, a superposition of solu-
tions of this type can be used so that each part satisfies conditions along
certain, but different, lines and the intersection of these lines are at the
isolated supports. For example, the sketch below shows a plate on three
supports. ILet w be of the form

W = Z E[amnFéll)(x)Ggl)(y) + bmnFr(nz)(X)Gr(lZ)(y)}

where Fél)(x)Ggl)(y) satisfy zero dis-
placement conditions along the lines

X = X5, ¥ =Y¥1. The functions
F&a)(x)ng)(y) satisfy zero displacement
along the lines ¥y =Yy,, ¥y = ¥,, and

x = x1. The functions amnF&l)(x)Gél)(y)

+-bmnFé2)(x)G£2)(y) then have zero dis-
X, x Pplacements at just the points A, B,
and C.

Xo

Example of plate on three supports

y Corner-Supported Rectangular Plates

The plate being considered in the
present report is shown in the adjacent
sketch. The solution can be taken as

b
W(X;Y) = Wl(XJ.V) + WZ(X:y)
a « Where
w1(0,y) =wi(a,y) =0
Corner-supported rectangular plate
wa(x,0) = wa(x,b) =0



The complete boundary conditions are:

Displacements:
W(O:O) = w(0,b) = W(a)o) = W(a:b) =0
Moments:
>3 3w P 33
- (0,5) +v —3 (0,y) =0 = (2,5) +v T (a,y) =0
ox oy ox
2 2 2 2
97w (x,0) + v a—‘zi (x,0) =0 Q—Z (x,b) + v Q_Z (x,b) =0
ayz ox dy Ox
Effective shear forces:
3 3 3 3
9H (0,y) + (2-v) —2¥_ (0,y) =0 OV (a,y) + (2-v) =2 - (a,y) =0
dx> ox Byg x> X
3 3 3 3
9¥ (x,0) + (2-v) =2 (x,0) = 0 O (x,p) + (2-v) 9V (x,0) = 0
3= dy Sy ox~ Jy

The reactions at the corners are given by 2Myy evaluated at the corners (this
is the corner force that arises when the shear @y or is combined with the
rate of change of the twisting moment Mky to give the effective shear Vyx

or Vy)(ref. 3).

Ritz method solution.- The Ritz method is well known (ref. 4) and is
based on the fact that for a freely vibrating system, for which the motion is
harmonic, the sum of potential and kinetic energy is a constant and the maxi-
mum values (with respect to time) of these forms of energy are equal to each
other. If the time dependent displacement is denoted by W(x,y,t), it can be
written in the form

W(x,y,t) = w(x,y)sin wt

If w(x,y) is of the form

w(x,y) = Z Z‘:a'mnFr(nl)(X)Glgl)(Y) +bmnF§12)(x>Gr(f)(y>} (1)
m n



the ratios of the unknown a's and b's and the natural frequencies can be
determined from the set of linear algebraic equations obtained from

)

(Vpax - Tmax) = ©
(2)
O (Vmax - Tax) = O 1,3 = 1,2,. . .
Bbij

where, in this case,

b pa 2 2 \* 2 \2 2
=D 52W> B_W> 97w 7w - < ow j]
Vmax = E[ l [ z) +\52) + 2v o 0 + 2(1-v) S oy dx dy (3)

2 b a
Tpax = EQEEJ[‘Jf wo dx dy (&)

28 Jo Yo

Each term of the series in equation (1) must satisfy the boundary conditions
on the displacements and rotations but does not have to satisfy those on
stress (ref. 4). Of course, one would expect that fewer terms of equation (1)
would be needed to represent a mode if some or all of the stress boundary
conditions were satisfied. Also, it is known that the frequency calculated
for a particular mode from an approximate form of w will be above the exact
answer (ref. 4).

For the problem being considered, the displacement is chosen to be

!
B . nny . nrx mix .:. D
W = Z(aon sin ==& + by sin =3 > +Z Z(amn cos BRX sin %y_
n=1

m=31 n=21

m . TC
+ bpy cos —%Z sin EE%) (5)

where the single summation contains the m = 0 terms of the double summation.
One should note that for each value of m and n, eguation (5) satisfies the
displacement boundary conditions but does not satisfy either the moment or
transverse shear boundary condition. Equations (2) will be of the form

v oT

max _ max _ 0 6
Baoj Baoj ( )




ov. T

max max
- =0
Sei; | Oais ()

avmax _ aTmax =0 (8)
aVmax _ aTmax =0 = 1,2,3,. «. (9)
Bblj Bbia j = 1)2)3)' L 4

Substitution of equation (5) and its derivatives into equations (3) ana
(4) and integrating over the surface of the plate will give Vpgy and Tpax in

terms of the ajj's and bys's. Then, substitution of Vpgy and Tpgy into

equations (6) through (9) will give the following algebraic equations from
which the frequency parameter A2, where A2 = (a4/74) (yhw3/Dg) and L, = a/b,
can be determined:

aojz(j4LO4-7\2) M z _on [( l) _l](VnZJZL 2 ')\2)

bj b
) Ry M UM« w209 -0 (10)
m,n=1
m#J

b, 2(3 % A2) +ﬂ_(_l'_1] Z Zon [(-1)2-1](vn2521,2-32)

= Z ey [P0 (6 ¢ w3 2N =0 (11)

S1)9- )
a;s[(i2 + JPLy2)2-22] + A 1] o[ 1)) ](n252 + wBiPL 2R

Jd JT2,j n2_12 (o)
n=1

n#i

Lj )d
T }: b o L1 ()Pl e, m3%* + (2-v)nPi%L 2+ w®5PL 2% = 0 (12)

" m,n=1 (n2-12)(32m2)

m#j ,nFi

bij[(iZLoz +33)202] 4 LL( l) 1] Z n2 12 [(-n)R(-1)t 11(n21%, % + vneszog_)\g)

n[(-1)"(-1)9-110(-1)"(-1)*-1] . )
Z o (n2-12)(32-m3) (m2j2 + n21%0,* + (2-v)n®1°L,® + w®%L,°2%] =0 (13)
=




In equations (10) through (13), each value of i and j gives a single
equation and m and n are dummy indices. The summation notation is

) =) ) G

m,n=1 m=i n=1
m#,nAl m#) nél

Inspection of these equations shows that they uncouple into four groups of
equations. FEach of these groups represents modes containing a certain type of
symmetry or antisymmetry as follows:

[HN
I

(1) ajj; 1 = even, j = odd

b

modes symmetric about the

1 =§ =:9.
lines x 5 and y 5

1l

mns W even, n = odd

8617 3035 @595+ + » Do1s Pogs bzl" .

(2) 8553 1 =0dd, j = odd o
modes symmetric about y = 5
by m = even, n = even .
and antisymmetric about x = >
8115 @55 Bgyse » » Poss Pogs Poyse o e
(3) 2345 1 =even, j = even
J . a
modes symmetric gbout x = 5
bmns; m = odd, n = odd b
and antisymmetric about ¥y = >
8055 Bogr Bogre o o b1y blS’ bgise «
7
(L) ajy; 1 = o0dd, J = even )
modes antisymmetric about the
byps m = odd, n = even \ ) a B
lines x = =—and y = =
2
8155 @145 Bgore o - blZ, [ EPY) b32,. . .J

Combinations (2) and (3) are equal for a square plate and are related to each
other by the ratio L, for rectangular plates. These four combinations of
equations are given in appendix A. The equations of each combination can be
treated separately and will have the matrix form

~ |
A C |
> |
0 S 4 21 g {0}
N 0|\ b
~ |
C B\_ :
~N
L 0 N \Ppq J L J




where the matrix is symmetric and all of the elements of the C array are
nonzero. Each nonzero element of the matrix is of the form kij-%elij.

Although these equations are not in the standard eigenvalue form of

EA] - 7\2[\1\]:]{]3} =0

the roots of the determinant of the coefficient matrix and the mode shapes can
be found with existing subroutines.

Trigonometric series solution.- An appropriate solution to the differen-
tial equation of motion can be found in the form of an infinite series. The

differential equation is

Ot Lo O LN g4 g (1k)
ax* @ o oyt
where
§4 = 7_h_wi (15)
Dg

Using the same method discussed earlier, one finds an appropriate form of
w which satisfies the displacement boundary conditions as being

(o] x
w = z; fn(y)sin 9g§ + E: gn(x)sin ng (16)
n=1 n=1
Upon separation of variables, the unknown functions must satisfy the following
equations:
4
4, (y) a2¢, (y)
— - 20p% — B (a4 - E5)r(y) =0 (17)
dy dy
d*g, (%) 2 3%, (x) s a4
— R - 2B — o+ (B, - Pgy(x) =0 (18)

dx4 n d.X

where oy, = nn/a, B, = nn/b; and fn(y)sin(nnx/a) is assumed to be linearly
independent of gn(x)sin(nﬂy/b). Some confusion can result if they are not
independent, that is, fu(y) = A sin(any/v) and gnh(x) = B sin(nnx/a).
Appendix B discusses this problem.

Since the coefficients of eguations (17) and (18) are constant, the solutions
are easily found to be

£,(y) = Ap, cosh 6ny + Anp sinh 6,y + Aps cos Ehy + Apg sin éﬁy (19)

gn(x) = By, cosh @x + By, sinh @ x + By cos 5£x + Bpy sin qx (20)



where

en___'CE _I_anz 5n= Cz_c(nZ
oy =%+ B® gy =Jt% - 87

It should be pointed out that 55,5£ can be real or imaginary, depending on
the relative value of A and a, or Bn. If Bp or ¢, is imaginary, then the

(21)

trigonometric function in equations (19) or (20) becomes the corresponding
hyperbolic function.

Referring to the boundary conditions given by equation (3), equation (16)
is seen to ldentically satisfy the zero displacement conditions at the corners.
The conditions for zero bending moment give the following:

d%g,(0)
%— - vp, g,(0) = 0 )
?_%géil - By gnla) = 0

dx

> (22)

ﬂiﬂ - v, " (0) = 0

dy
a®r_(b)
#_ - v, £, () = 0 )

The condition of the effective shear being zero gives the following equations:

N azr (y) . 2 s . ag.(0)]
}: Uy [(2-V) dnzy - a, fn(y)} + E: [§~§§égl - (2-v)B, _Egé—lj sin By = 0 A
n=1 4 n=1
<] > - o] a a (a)_
Y a? [l T2 qm ] v ) [T - e B sty -0
n=1 n=1
- . > (23)
2, B 3 o -
}; Pn [(E—V) 2 iﬁiX) - angn(X)_ + }: [d Z;g ) (2-v)a ® ﬂfgggll sin cyx =0
n=1 n=1
N a%g, (%) 1 v ra® ar, (v)7
N N I EDNE Zgﬁf) - (et T aan e w0
n=1 n=1




For the bending moment, equations (22) show that the constants can be deter-
mined so that each term of the series in equation (16) identically satisfies
the condition of zero moment on the edge. Equations (23) show that the effec-
tive shear boundary condition is satisfied only by a sum of terms. Equa-
tions (23) can be simplified by multiplying by the appropriate orthogonal
trigonometric function and by integrating over the plate interval. For
example, the first one of equations (23) becomes

E: “n k[:b [(E'V) EfgiéZZ - Ot'nzfn(y)} sin By dy
n=1

b [3%,(0) dg, (0)
BEES - ent S -

' (2b)

The integrals in equation (24) can be evaluated and the resulting four sets of
equations are in terms of the eight sets of unknown constants, Anq,. . ., Ang,
Bpi,. « +, Bpny. For the integrated equations it is assumed that 5h # By

The condition that 8, # By is connected with the assumption that
fp(y)sin anx is independent of gp(x)sin Byy and is discussed in appendix B.

Four of the eight sets of constants can easily be eliminated from
equation (24) by use of equations (22). This results in having a set of 4N
simultaneous homogeneous algebraic equations to solve (after truncating the
infinite series at n = N +terms). These equations are given here because
they can easlly be programmed for a digital computer, and additional modes and
frequencies, to those given herein, can be calculated. (See the Numerical
Computations section for a discussion of some of the numerical problems and
ways to, at least partially, avoid them.) In these equations, the following

notation is used:

A2 -t et e’ )
7% n4Dg
6 = Mon?, e hea? g (25)
Ly Lo
ot = w A - nL7 , g% = A+ n2L02J
2[(2-v)N® + (1-v)2e2p3N]
P = — 26
l(E:Jp) [—7\2 + (g2+p2)2][7\ + (l-—V)QZ] ( )
2 _ . 212
po(e) =22 [N - (1-v)E2] (27)

(A + (21-v)e3]

10



Po(t) =NA-£2 [N + (L-v)EZ] (28)

E,p are used here as dummy variables. The equations are

where

N

Z n( —l)nPl(n,mLo){—Ans[l- 1™ cos 0%] + (-l)mAmL sin En*}
n=1

cosh qgp* - 1

cos @,* -
+ —= = {Bms [PZ(mLo) + Pg(mly)sin q)m*:]
2mlo sinh @u*

cosh ¢ * sin @ _* -
+ By, [Pg(mLo) — o “— - Pg(mly)cos @m*}}-= 0 (29)

N
Z n_Pl(n,mLo){—Ans[l - (1)™ cos En*] +- (—l)mAn4 sin gn*}
n=1

cos Pp* - cosh op*

+ {Bmst(mLo)

2mL02 sinh cpm*
Pz(mly)sin @ *
- cos Bp* cosh 6% - 1 —
P_(m) + Pa(m)sin 6 _*
2mL,® {Ams [ = sinh o_* m
cosh 6 * sin B * =
+ Apg, [Pg(m) Sinh o - Pa(m)cos 6
N
+ Z n(-1)"P, (nL ,m) {-an[l - (D™ cos pp*] + (-1)"By, sin 5n*} =0 (31)
n=1i

11



N
+ Z nP. (nL ,m) {-an[l - (1™ cos op*] + (-1)™Bp, sin Eﬁn*} =0 (32)

n=1

where A # n2 +n°To% or A # n®L,® + 2 (see appendix B). Each value of m
gives a separate equation so the resulting coefficient matrix will be of order
LN, The frequency parameter A 1is obtained from the condition that the
determinant of the coefficient matrix is zero. One significant difference
between these equations and those of the Ritz method is that there is no form

of
[a] - A°[B] = O

to these equations since A 1is contained in 6p¥, 5&*, ete. This difference
is discussed in the next section.

NUMERICAL, COMPUTATIONS METHOD

A discussion of the computation is given not because any new numerical
scheme is used (the programs that have been written are made up of existing
subroutines) but because each method of solution has certain numerical advan-
tages and disadvantages. For the problem being considered, the Ritz method
offers comparatively easy computations with possible low accuracy and, con-
versely, the series solution offers high accuracy with possible serious numer-
ical difficulties. ©So, depending on one's needs, either method msy be the
best to use for a given problem.

Ritz Solution

The form of the Ritz method equation is fairly convenient for computation
on a digital computer. TFor the modes calculated, the matrices were small
enough so that no major problems were encountered. The roots were found by
the computer varying the freduency over some specified range and detecting
when the determinant changed sign. An iteration scheme was then used to con-
verge on the root. The computing was done in single precision. Eventually,
if larger matrices are used, a point would be reached where the accuracy had
diminished to an unacceptable level but double precision could be used and
one might, at least partially, normalize the equations. For instance, the
constants 803, Pyss 8135 Pij could be replaced by aéj/jZLon béj/jz,

aij/ﬁz + 3219, biiKiZLOZ + 32), and the denominators retained in the
coefficient matrix.



Series Solution

The equations (29) through (32), as given, can present some serious
computational difficulties. One problem is that N cannot be factored out in
the form [A]-A2[B] = 0, so the standard eigenvalue routines cannot be used.
The only feasible way of obtaining the frequencies seems to be to plot the
determinant as a function of A and to note the zero values of the determi-
nant. However, as the determinant approaches zero, accuracy is lost and there
will be a range of frequency within which the computed determinant has zero-
place accuracy and therefore is meaningless. If this range is larger than the
range needed to interpolate the frequency to some desired accuracy, the fre-
quency cannot be determined. In the present case, this problem became more
prevalent as the plate's length-to-width ratio or matrix size increased. In
order to include all of the frequencies listed herein, it was necessary to
rearrange equations (29) through (32). Comparing equations (29) and (30) and
equations (31) and (32), one sees that the terms inside the summation are
identical except for the term (-1)". By adding or subtracting equations (29)
and (30) for each value of m (the same applies to egs. (31) and (32)), either
the 0dd Apg, Ap,'s (n = 1,3,5,. ».) or the even Apa, Apn,'s will vanish.

This introduces many more zeros into the matrix and eases the loss-of-accuracy
problem. These equations were then normalized by substituting the following
for the given constants:

1 1 1
Ans Aha Bha Bna
. . ? ? '
cosh T ginh & cosh mx sinh mx
0

One should be careful to normalize with positive nonzero quantities since the
quantity, if ever zero, will introduce a point of discontinuity, and possibly
a change in sign, into the determinant. When the determinant is plotted,
these points may appear to be natural frequencies. The reason for choosing
the particular normalizing factors shown is that for large values of m2, say,
m2 > 30, and small values of A, say, N < 10, the large terms in the mabrix
are of the form

cosh n~NAm® = 0(cosh mn)

cosh ¢ * =
cos 55* = cosi nNm2-A = cosh n~Nm2-A = O(cosh mx)

so that normalizing these terms by the factor cosh mm makes them about
unity. But if higher frequencies are desired such that A is not small com-
pared to m, this factor may not be adequate and it should be weighted more
heavily toward the effect of A. So, depending on the range of the parameters
(m, Los N, etc.) being considered, considerable trial-and-error rearrangement
of the equations may be necessary.

Finally, double precision was used in the computations and in generating
the elements of the matrix. The revised equations are given in appendix C.

13



EXPERIMENTAT, METHODS

A short experimental program was undertaken to see the correlation with
the theoretical results. Preliminary testing of a plate that was visibly
warped indicated that the frequency was guite sensitive to plate warpage.
Therefore, some care was taken to insure that the plates for which the results
are presented were flat (a "flat" plate is one in which the maximum deviation
is a small percentage of the thickness). The method of support is shown in
figures 1 and 2. The supports were adjusted until there was no loss of con-
tact between the support and the plate corner during vibration. This means
that some compression was introduced into the plate, but its effect was con-
sidered negligible since the force was close to a point load which produced a
very small average compressive stress throughout the plate. Changes in the
support adjustment gave no measurable difference in natural frequency.

Several methods of excitation were used. The primary one for measuring the
frequencies was a 30-watt sound speaker that excited the plate through an
attached string (see fig. 1). The speaker was driven by a variable frequency
oscillator and the motion of the plate was measured by a capacitance-type dis-
placement instrument. Since the string transmitted no net compression, the
exciting force was not a complete sine curve but this was considered to have a
negligible effect on the measured natural frequency.

Figures 3 and 4 are examples of the often used method of detecting the
mode shapes. Sand (carborundum chips were used for the pictures because of
their dark color) is sprinkled on the plate during vibration and the particles
migrate to the node lines.

RESULTS AND COMPARISON

In the following remarks, the modes are referred to by number (see
table I). This can be misleading since the relative magnitude of the frequen-
cieg associated with two mode shapes can change as Ly changes (see modes 6
and 7, table I). But for reference purposes, the modes are numbered in the
order in which the frequency occurs over the major portion of the range of

Ly, considered.

Table I is the summary of the calculated frequencies along with the
corresponding ones of reference 2. The results obtained from the Ritz method
were calculated from the mode shapes given in table ITT, where the largest
matrix considered was 12 X 12. The series solution used matrices of order 16,
20, and 24 and all three different sized matrices gave the listed value of
frequency for most of the modes and a maximum variation of two digits in the
last significant figure for the other modes. The series solution should be
considerably more accurate for a given matrix size than the Ritz method
becausge each term of the series satisfies the differential equation of motion,
the displacement and moment boundary conditions. The comparison between this
gsolution and reference 2 is seen to be very good. The frequencies in refer-
ence 2 were obtained by extrapolating the frequencies found by considering the
plate divided into a square gridwork in which the width of the nonsquare

1



plates was divided into 4 and 6 grid spacings and the square plate's width was
divided into 5 and 6 spacings. Richardson's h2 extrapolation formula
(ref. 2) was used to obtain the value for an infinite number of mesh points.

There are several interesting points that can be seen from table TI.
Mode 1 approaches the fundamental frequency of a simply supported beam as ILg
increases. The beam frequency is A = 0.954 (the beam frequency is adjusted
since AN, as defined here, contains Poisson's ratio), and AN = 0.951 for the
plate when Ly = 2.5. Modes 2 and 3 for Lg = 1.0 have the same frequency but
different mode shapes (although, considering symmetry, they are the same) .
This occurrence is not uncommon in plate problems and at that frequency the
mode shape can be either one or some superposition of the two mode shapes.
Mode 4 is the same as a flexural mode of an unsupported plate. Ritz treated
the case for a square plate and the corresponding frequency parameter is
AN = 2.00 (Ritz's calculations, reported in ref. 5, were for Vv = 0.225, so the
value was scaled up to v = 0.3 by use of ref. 2). It is interesting to note
how this mode shape changes for a nonsquare plate (see table I and fig. 3).
In figure 3, it appears as if the node line does not intersect the support
point but theoretical results show that is passes very close to the edge of
the plate in the region of the corner. Later tests showed this discrepancy
was caused by some slight support motion due to the vibration of the test fix-
ture which apparently had a natural fredquency near the exciting frequency.

It is also of interest to see the number of other problems solved.
Looking at the mode shapes in table I, all of the straight node lines are
lines of antisymmetry along which the bending moment is zero. These, then,
correspond to simply supported boundaries and can be considered to be plate
edges. So, for example, modes 2, 5, and 6 give the first, second, and third
mode of a plate simply supported along one edge and point supported at the
other two corners (for the range of I, given and substituting, of course,
the proper length and width of the plate). Mode L, for Lo = 1.0, gives the
fundamental mode of a 459 right triangular plate simply supported along two
edges, or the second mode of a 45° right triangular plate supported along the
hypotenuse and at the opposite cormer.

After the results were compared, the Ritz method was extended for modes
1, 4, and 7 for Ly = 1.0 to see how slow the convergence was. This result is
shown in figure 5. Mode 4 is seen to converge very fast. For just two terms,
which are

. . TX
W = apgy |\ sin I - gin ZE
B a

the answer is within 1 percent. However, mode 7 has an error of about 4 per-
cent after 32 terms. For modes 1 and 7, the results for matrices of order 2,
8, 10, and 12 suggest that the series has converged (see dashed lines in

fig. 5) when, actually, convergence has not been reached even with a matrix
of order 32. This shows that even though one knows an approximate frequency
is an upperbound, it is hard to tell the accuracy of an answer without
comparison with a known solution.
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Table IT shows the comparison between experiment and theory (the series
solution and ref. 2) and the correlation is very good. No attempt will be
made to explain the small differences because the experiment was of a careful,
but not precise, nature.

CONCLUSIONS

One important conclusion common to many plate problems is that one has to
be very careful in tracing the modes as the plate changes its dimensions (i.e.,
from a square to a rectangle). The relative order of frequency can change as
can the mode shapes. The fact that mode shapes can change 1s especilally
important when one is concerned about the location of nodal and antinodal
regions.

The Ritz method yilelds equations which are easily adapted to the computer
but the convergence is hard to predict. The fact that the frequency is about
the same for different numbers of terms hopefully means that the assumed dis-
placement has converged to the correct answer, but 1t may mean that the
assumed displacement is converging very slowly and many more terms are needed.
Of course, one would expect a higher accuracy for a given number of terms if a
displacement function that satisfied at least some of the stress boundary
conditions could have been chosen.

The series solution presents some serious computational difficulties for
certain ranges of the parameters but for this particular problem one has more
confidence in its accuracy for a given matrix size since all of the boundary
conditions are satisfied except the effective shear condition by each term in
the series.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., June 28, 1965
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APPENDIX A

UNCOUPLED EQUATIONS OF THE RITZ METHOD

Tt was pointed out in the text that the sets of equations for determining
the frequencies by the Ritz method uncouple into four groups of equations.
The equations of each group represent modes with certain symmetry character-
istics, so if a certain class of modes is desired, considerable simplification

is obtained if the appropriate group of equations is used.

Using the notation:

R,(1,3,m) = n®L2(4120,% + vi&)
R (i,3,m) = n2(i® + vj®Ly®)
Ra(j,m,m) = j2Lo3(m3L,® + vn?)
R,(j,m,m) = j2(n® + vn®Ls%)

R5(i:j)m;n)

Re(i:j:m:n)

the equations are:

Combination (1)

a0;2(3“To*-N3) +

boy2(3%-N2) + %gg

2

. 2.2; 4 2.2 2.2, 2
n2i2 + m®j®L,* + (2-v)m“i"Ly" + vn~J Ly

+ m3

il

n2i%r,* 2 ¢ (2-v)n2i2Le2 + vn®3%Lo7

16 }: bon(vnzszoz‘kz)
23 n
n=l,3,---
163 E: by [R(,m,n) -A%] o (a1)
+ == = 1
72 n(3%-m?)
m=2,4,.
n=1,3,.
E: aon(vnzszoz"xz)
n
n=l,3)-o-
l6j amn[Rz(j:m:n)‘% ]
+ (2.2 = (42)
"2 n(j®-m?)
m=2,4,..
n=1,3,
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13[(12+J I, 2)2 A2] + 18 16 Z bonn[RZ(i:J';n)‘Xg]

N=1,3,.0. n®-i2
163 b R(1,3 _x2
+ _2_J Z mnn[zs(:n] ;Izn:n) ] 1 =0 (A3)
" M=2,%,... (n=-1%)(3®-m=)
n=1,3,...
a_ n[Ri(i,j,m)-A2
by s[(1 "L, %+3%)2-N7] + =5- 16 zz o [Ra(d,3,m)-N7]
J 72 n2-i2
n=1,3,
163 n[R(lJmn)k]
+ ;gi By 26 2: :2: - -0 (k)
m=2,4,.. (n ){(§%-m=)
n=1,3,
Combination (2)
163 [Ra(3,m,n)-2"]
pos2(3%A2) + 32 z S 4('; ,2) S0 ()
T op=1,3,.. n\g=-m
N=1,3,...
16 bopnlRa(i,d,m)-N2
8&J[62+52L02)2_k2] + = }: o1 2; :i) ) 71
Td p=o,7,... n=-i
j‘[2 (n2_i2)(32_m2)

mM=2,4,.00
=2,4,40

2)2_7\2

. s 2
163 z amnn[RG(lyJ;m;n)"?\ 1 -0 (A7)

leK12L +3 ] + == — (nz-iz)(jz-mz)

M=1,3ye0e
N=1,3,.00

Combination (3)

. b [ ., _7\2
aoj2(j4L _7\2) b =24 l6J Z mn R:'"(.i m;n) ] =0 (A_B)
=15 e e n( j%-n<)
n=1,3,
6' b Rs(i,J -AZ
150 (18+37L, 2)EN] 4+ == = = ;Z mnn[ZSS:’JfZ’ni I (9)
e (%A (5)
n=1,3,...
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bij[(i2L02+j2)2‘A2] + %gg

N=2,45e00

Combination ( Lkl

2130 (12457270 +

o3 3L (1%06%43%)2-N] +

163
ﬂ2

. s 2
aonP_[Bl(l:J ;m)-N"]
nz_ia

imnn[gs(i)j)m:n)'kz]

z =0  (A10)
M=23%yee. (n2-12)(§%-n?)
N=2y4yee0
Z PR, 3,mm) N1
2_:2\(+2_n2 B
M=1,35000 (n2-1%)(§%-n%)
N=2,%4,¢0
Z sy [Re(1,3,m,n) -A"] o  (a12)
2 .2\(:2 2 =
m=1,3,. (n%-15)(5%n")
n=2,4,.
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APPENDIX B
DISCUSSION OF ASSUMPTION IN THE DERIVATION OF EQUATION (1k4)

In the derivation of the solution to equation (14), it was assumed that
fn(y)sin an,x was independent of gp(x)sin B,y and later, in integrating the
equations for the shear boundary condition, it was assumed that §£ # m which
is the same as assuming M # n2 + m2L,2. When the frequencies are found by
plotting the determinant versus A, the points A = n2 + n®L 2 cannot be

calculated from the equations in their given form since some terms become
indeterminant. But, assuming the determinant is a continuous function of A,
it appears as if it is identically zero for all the matrix sizes considered
for N =n2 + m®L,2. One recognizes that these frequencies are identical to

those of a plate that is simply supported on all edges. If
fply)sin ayx = gp(x)sin By = ay, sin Byy sin apx
the displacement is
W = 8y, sin Bpy sin apx
and is a solution to the equation of motion if
A =n2 + nfL 2

But, in order to satisfy the shear boundary conditions, the following type of
equations must hold:

it
O

amminlan® - (E-V)Bmz]sin By

amnﬁm[ﬁmg - (2-V)ah2]sin @ x =0

These equations are for zero shear at x =0 and y = 0. It is seen that

8 = 0. Therefore, the plate camnot have the same frequency and mode shape
as a simply supported plate, that 1s, it cannot have zero displacement and
zero shear along the same edge without having zero displacement everywhere.
The remaining question is whether the plate can have the same frequency but a
different mode shape. An example of this is that a beam with built-in ends
has the same frequencies but different mode shapes as a beam with free ends.
This question does not appear to have an obvious answer, in general, but the
equations were modified to allow A to have a value of, say, e o+ EQLoz, and
it was apparent that considerable uncoupling occurs. (For instance,

sin Eﬁ. = gsin 6&% =0; 1 - (-1)™ cos Bg* = 0.) It is easily seen in the small

matrices how the constants Ang, Ansas, Bngs, Bpg all have to be zero. A 4k X L
and an 8 X 8 matrix were investigated and the equations uncoupled in such a
way that all constants had to be zero so there was no motion at that

20



frequency. These frequencies are not present either in the Ritz solution or
in the experimental work so it is concluded that even though they represent
roots of the determinant, they do not represent a mode that has motion.
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APPENDIX C
MODTFIED EQUATIONS FOR THE SERIES SOLUTIONS

The modified equations which avoid numerical problems encountered for
some of the modes are given by

AL _ (1) * - 1, sin 6,,%
E +2nP1(r, Ib) {:Ams[l ( l) cos &y ] ( ) An4 n .}
h — inh —
cosh 2 si I

n=2,4’ * s 0
n=1,3,...

+

. {?ﬁ [Pg(mLo)(cosh on* * 1)(cos Gp* F 1) _ Pa(uly)sin aﬁ*J
2mL02 S sinh ¢@u* cosh mn cosh mm

LB [Pg(mLo)sin Pm*(cosh og* * 1)  Ps(mly)(cos Jy* & l)J} -0 (c1,2)
me sinh @ * sinh mnx sinh mr ’

T {%ﬁs [Pz(m)(COSh Om* £ 1)(cos By* T 1) . Ps(m)sin 5&*}

- mn Fva)
2mlo sinh 6,%* cosh To cosh o
e [Pg(m)sin Bu*(cosh Op* £ 1)  Pg(m)(cos g% + 1) }}
4 - % aiom IO - - ) T —
sinh 6p* sinh To sinh To

1y _ _q\m — _ Y . —_
) Z o, (a, m) {Bng[l (-1)™ cos Fp*]  (-1)"By, sin an*} o (en)

cosh nm sinh nwx
N=2,%4,40.
n=1,3,...
where for

]

equations (CL,3) n=2,4,6,. .. m=1,2,3,4,. ..

* use +, ¥ use

= 1,2,3,4,. . .

=4
|

equations (C2,4) n=1,3,5,. .

* use -, F use +
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TABLE I.- SUMMARY OF CALCULATED FIGURES

_ ., ac [r .,
A=w 5 bg

v = 0.3

Mode LC; Refé i thz 7solution 7 -S-ez:i;s' éol;tbi.o;l.i
1.0 0.721 0.756 0.721
1 + 1.5 .904 .933 .90k
: 2.0 .938 .958 9k1
2.5 --- 961 951
T 1.0 1.594 1.702 1.598
2. — 1.5 --- 2.308 2.181
2.0 -— 2.941 2.786
1.0 1.594 1.702 1.598
3 |- 1.5 -—- 2.811 2.616
2.0 -- 3.52 3.326
X 1.0 1.938 1.986 1.986 )
L, 1.5 - 3.53 3.414
D¢l | 2.0 5.69 5.27
1o 1.0 3.896 4 .20 3.895
5 1% 1.5 --- 5.67 5.3%
2.0 --- 6.80 6.46
1.0 - - 5.23 5.10
6. M- 1.5 - 5.85 5.85
2.0 - 7.40 7.22
* 1.0 u.hllA Vh.8§¥ ”ﬁiéo ]
T (::) 1.5 _— 7.64 7.10
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TABLE II.- COMPARISON OF EXPERIMENT AND THEORY

. Plate 1 12 X 12 X 0.129 inch 1‘ Plate 2 10 X 20 X 0.173 inch
Mode ' 2024 aluminum | 202k aluminum
E = 10.6X108, psi (book value) | E = 10.6X10%, psi (book value)
! i :
Ref. 2 f; Experiment l Series solution | Ref. 2 f; Experiment f Series solution
) ‘, |
1. + 61l cps 62 cps 61.t cps 1 38.8 cps 38.3 cps 38.8 cps
(2. J_r 136 | 13k 5; 136 --- 113 | 115
3.0 |+[- o136 134 | 136 - 136 | 137
A ! f :
L. — 166 , 169 ; 170 [ -—- g 21k , 218
D + ¢ , ;
e B 3 30 333 ST 267
16. Wl .- ' L3k | 136 Lo--- 29k ‘ 298
. O 375 363 385
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TABLE IIT.- RITZ METHCD MODE SHAPES

+
Mode 1 Mode 2 | —
a/b ing;:EZZ Normalized mode-shape Frequency Normalized mode-shape
P ’ coefficients parapeter, coefficients
a., = 1.000 |b,, = 1.000 8o =-0.1248 | b;; = 1.000
(0] ol 02 11
8o5 = -+0663|Dbog = -.0663 80s = --0075 | bys = -.067L |
1.0 0.756 85, = J1737{boy = .1737| 1.702 8op = 1695 | by, = -.057h
asz = .0329|bog = .0329 84 = -.0055 | bgg = .0348
ag1 = -.0267 by, = -.0267 84 = =-.0146 | g, = -.0083
8oy = 0869 | bg; = 1.000 8os = -.1753 | b1 = 1.000
| apg = =-.0150 [ bog = -.0320 804 = .0002 | b;5 = -.0499 |
1.5 -933 as; = .0950|Db,; = .0281| 2.308 app = 41530 | bgy; = -.0748
asg = 0056 | bgg = 0161 8ss = -.0059 | bgg = 0205
8y, = 0012 | bgy = -.0062
a4, = -.0102|b,,; = -.0068 aps = 0009 | b5 = =-.0065 |
8o1 = =-.0054| Dby = 1.000 8os = -.1915 | b3y = 1.000
Bos = -.0052 Doz = -.OL79 | 802 = 0067 | byg = -.0460 w[
‘ | azz = 1537 | bgy = -.0893 |
2.0 ' .958 as1 = 570 |bey = 00461 2.941 8sa = -.0088 | baz = .0159
| aps = .0013 b23 = -0080 Q4o = .0080 bSl = --0028
aq41 = -.0035 b4l = —.0025 Ao T .0007 b15 = -.0093
ap1 = -.0197 | bo; = 1.000 8ps = =-.198% | b1z = 1.000
803 -.0020 | bog = -.0108 8os = 0100 | big = -.0451
: ' app = .1550 | ba1 = -.0967 |
2.5 | .961 as1 = 0372 | bpy = -.0014 3.60 age = -.0103 | baz = .0135 |
‘ ass = .0002 | bos = 0042 840 = .0120 | bsy = -.0009 |
as41 = =-.0007|Dbar = -.0011 aog = .0005 | bis = -.0113 |
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TABLE IIT.- RITZ METHOD MODE SHAPES - Continued

+ o
Mode 3 Mode U4
;‘ /b 1Frequezcy . Normalized mode -shape Frequegcy Normalized mode-shape ?
& barameter, coefficients para§e er, coefficients
C a1 = 1.000 - Dbgp = -0.1248 8gy = 1.000 by, = -1.000
| a1z = -.0671 Do, = -.0075 Cagg = -.024k pog = 024k
1.0 1.702 az; = -.05T4 Dbos =  .1695 1.986 Capy = -.0802 bpy = .0802
ass = 0348 Dbos = -.0055 asg = .0112 Dbz = -.0112
a5y = --0083 bap = -.01L6 as1 = .0049 Dyy = -.oou9ﬂ
| a11 = 1.000 'Dbps = 1539 a5, = 1.000 Dby, = -.81081
aisz = -.0817 | bgy = =-.0380 aos = -.0536 Dbgyg =  .0002
S 1.5 2.811 azy = .0205| bss =  .1850 3.53 Casy = 0756 bo1 = L1693
5 ass = .0U28 | bsa = .0115 | aps = .0255 bos = L0171
*' asy = -.0209 | bap = -.0230 a4 = -.0107 | bay = -.0191
az1 = 7924 | bys = 1.000 8p; = 1.000 | Dby, = -.Th2
a1z = -.0877 | boy = -.0808 aps = -.0726 | byg =  .0903
2.0 3.52 azy = 1496 bz = 1713 5.69 | apys = 2048 | boy = .2277
ass = .0426 | bosa = .033L asa = .0322 | boz =  .0341
agq = -.0304 | bgp = -.0272 841 = .0011 | bay = - .0277
a11 = .1928 | by, = 1.000 agy = 8438 | by, = -.8072
a1z = ~.0337 | bos = --0479 8oz = --3091 | bgg =  .1068
2.5 3.77 agy = .1130| bos = .0536 10.30 asy = -.8536 | bpy = 1.000
asz = .0150| bosa = .0191 asz = .2419 | bog = ~.1570
g, = =.0109 | bgp = -.0112 ag1 = .0530 | bgy = -.1440
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TABLE III.- RITZ METHOD MODE SHAPES - Continued

s - [+
Mode 5 (|- Mode 6
/b Frequefclcy Normalized mode-shape FrequeJrclcy Normalized mode~shape
a parameter, coefficients parameter, coefficients
a1z = 1.000 [bis = 1.000 a1y = 1.000 | by, = -0.9796
814 = -.1458 | D14 = -.1458 a1z = -.0629| by, =  .094k
1.0 4.20 asz = .2107 |bas = .2107 5.23 as1 = -.2789| bos =  .0337
aza = .06L5 |Dbas = .0645 assg = -.0007! bog = ~-.0492
asp = -.0433 | bo, = -.0U433 '
a1g = -.0053 | big = ~.0053 as, = .0318| bas = -.0000
a1s = -.0666 | bis = 1.000 a11 = 1.000 | by, = -.8072
| 814 = -.0342 | b1a = -.0797 a13 = —-ot% bog = .OWTT
a32 = .1809 b32 = -.0153 azy = -.1 87 b22 = L1222
1-5 5.67 aga = .0L19 |bas = .0326 5.85 asa = .0225| bog = -.0232
ags = =.0049 | bg, = -.0190 a5y = -008k| bgp = -.0078
aig = .0014 [b1g = -.0101
| a12 = -.1869 | b1s = 1.000 a11 = 1.000 | by, = -.6479
a14 = -.012i bia = -.0611 a1z = -.0597| bgs =  .032k4
| asz = .17 bas = -.0548
2.0 6.80 ags = 0011 | bag = .0238 | 7.%0 agy = -.0626| bop = .1557
asp = 0068 | bg, = -.011k ags = .0316| bpa = -.0051
| aig = .0015 | big = -.0134 ag, = -.0013| bap = =-.0151 |
| 212 = -.2238 | b1p = 1.000 | a1l = 1.000 | bo, = -.5687
| 814 = -.0021 | b1g = -.0630 | a1z = =.0705| bgse = .0720
asz = .1772 | baz = -.0717 |
22 195 ais = -.0038 | bas = .0195 | 988 | a3y = -.0104 | bop = L1772
ags = 0134 | bo, = -.007h asz = .036L| bog =  .0027
aig = .0013{big = -.0160 . | agy = .0059| bas = =-.0195
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TABLE III.- RITZ METHOD MODE SHAPES - Concluded

I’+‘\
Mode 7 ‘L
“ I Frequency Normalized mode-shape
a/b | parameter, | coefficients
| a0y = 0.1555 | by, = 0.1555
| ags = -.1950 | bog = -.1950
1.0 k.89 as1 = 1.000 | boy = 1.000
| asg = .1088 | bes = .1088 |
841 = —-0988 bay = --0988 |
aoy = -.4491 | by, = .6L98
apg = -.1209 | boz = ~.0355
1.5 7.64 as1 = 1.000 | boy = .5491
ass = .0468 | Doz = .1078
a4 = -.0658 | g1 = -.0590
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Figure 1.- Method of

support and excitation.
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Figure 2.- Detail of plate corner.
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Figure 3.- Experimentally determined shape of mode k4.
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Figure 4.-

Experimentally determined shape of mode 6.
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