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COMPARISON OF METHODS IN CALCULATING FREQUENCIES OF 

CORNER-SUPFORTED RECTANGULAR PLATES 

By Robert E .  Reed, Jr . 
Ames Research Center 

The lower na tura l  frequencies of a rectangular p la te  t h a t  i s  pin supported 
at  the corners are  found ana ly t ica l ly  by two approximate methods. The f i r s t  
i s  the R i t z  method and the  second is a ser ies  solution t o  the  d i f f e r e n t i a l  
equation of motion. These frequencies a re  a l so  found experimentally f o r  com- 
parison. All of the r e s u l t s  are  presented along with some previous work done 
by other authors using a f i n i t e  difference method. 
disadvantages of the two methods pertaining t o  the numerical computations a re  
discussed. 

Some of the  advantages and 

ITI'RODUCTION 

The l inear  equation of motion, based on the Kirchoff p la te  theory, f o r  
the f r ee  transverse vibrat ion of t h i n  rectangular p la tes  i s  wel l  known but 
exact solutions have been found f o r  just  a few types of boundary conditions. 
For more d i f f i c u l t  cases, approximate methods are  available f o r  calculating 
the natural  frequencies and mode shapes and have been extensively applied by 
various authors t o  problems i n  which the p la te  is  supported along en t i r e  
boundaries (see,  e .g., r e f .  1, ch. 7 ) .  I n  the  following, two approximate 
methods, which can be applied t o  many other problems, a re  used f o r  determining 
the na tura l  frequencies and mode shapes of a rectangular p la te  with isolated 
pin supports a t  the corners. This problem i s  of i n t e re s t  since it i s  common 
design practice t o  support panels at  isolated points ( e  .g . , solar  panels, 
hatches, covers, e t c . )  and a l so  because the solutions point out some of the 
d i f f i c u l t i e s  t h a t  can be encountered i n  p la te  vibrat ion problems when 
approximate methods a re  used. 

The f i r s t  method used i s  the  well-known R i t z  method. Natural frequencies 
and mode shapes of the lower modes were calculated t o  what appeared t o  be 
about 1-percent accuracy by using more and more terms of the assumed se r i e s  
u n t i l  the  resu l t  indicated (at l eas t  t o  the author) the convergence t o  the 
desired accuracy. However, some of the numerical examples calculated herein 
were previously t rea ted  by Cox and Boxer ( r e f .  2) who used the approximate 
method of solving the f i n i t e  difference equations of motion on a d i g i t a l  com- 
puter .  Upon comparison with t h e i r  work (they f e l t  t h e i r  answers were accurate 
t o  within about 1 percent),  discrepancies i n  natural frequency were found t o  
be as large as 10 percent. Instead of exploring the  convergence of the Ritz 
method, a ser ies  solution t o  the  d i f f e r e n t i a l  equation of motion w a s  obtained 
and the  calculated frequencies showed tha t ,  i n  most cases, the  discrepancies 



were due t o  t h e  slow convergence of t he  Ritz  method. A short  experimental 
program w a s  then undertaken t o  see the  cor re la t ion  between experiment and 
theory.  
discussion of t h e  problems associated with the  methods and t h e i r  adaptation t o  
the  computer. 

All of t h e  resul ts  a re  presented herein f o r  comparison along with a 

NOTATION 

A n i  

a 

hi 

b 

D 

in tegra t ion  constants, i = 1, 2, 3 ,  4 

length of p l a t e  

in tegra t ion  constants, i = 1, 2, 3 ,  4 

width of p l a t e  

Eh3 bending r i g i d i t y  of p la te ,  
12(1 - v2) 

Young's modulus 

accelerat ion of gravity 

p l a t e  thickness 

summation indices 

a 
b 
amplitude of k ine t ic  energy 

- 

time 

amplitude of s t r a i n  energy 

t ransverse displacement 

amplitude of W( x ,y , t )  

Cartesian coordinates 

n7c 
a 
E 
b 

we ight  density 

- 

dimensionless frequency parameter, 
7c 

2 



v Poisson’s r a t i o  

w c i rcu lar  frequency 

METHODS OF ANALYZING PLATES ON ISOLATED SUPPORTS 

The form of an approximate solution f o r  a p la te  on isolated supports can 
sometimes be obtained from the  solution f o r  t he  more common problem of a p la te  
supported along e n t i r e  edges. For a rectangular p la te ,  t h i s  l a t t e r  solution 
can usually be chosen as 

where the  displacement W(x,y,t) = w(x,y)sin w t  and the  function Fm(x)Gn(y) 
and i t s  der ivat ives  can s a t i s f y  cer ta in  conditions along the  l i nes  
x = constant and y = constant but cannot s a t i s f y  r e s t r a i n t  conditions a t  
isolated points .  For a p l a t e  on isolated supports, a superposition of solu- 
t i o n s  of t h i s  type can be used so t h a t  each pa r t  s a t i s f i e s  conditions along 
cer ta in ,  but d i f f e ren t ,  l i n e s  and the  in te rsec t ion  of these l i nes  are  a t  the  
isolated supports. For example, the  sketch below shows a p la te  on three 
supports. Let w be of t h e  form 

w = 1 ~ [ a m F ~ l ) ( x ) G 6 l ) ( y )  + b m F ~ ) ( x ) G ~ ) ( y ) ]  
m n  

Y 
where Fml)(x)Gnl)(y) ( ( s a t i s f y  zero d i s -  
placement conditions along the  l i n e s  
x = ~ 0 ,  y = yl. 
F ~ ) ( X ) G A ~ ) ( Y )  s a t i s f y  zero displacement 
along the  l i n e s  

x = x1. The functions %Fkl) (~)Gi’ ) (y)  

+ b m F e ) ( x ) G P ) ( y )  then have zero d is -  

and C .  

The functions 

y = yo, y = y2, and 

- 
x placements a t  j u s t  the  points A, B, 

XO X I  

Example of p la te  on three  supports 

Y 
I 

Corner -Supported Rectangular Plate  s 

The p la te  being considered i n  the  
present report  i s  shown i n  the  adjacent 

b 
sketch. The solut ion can be taken as 

W ( X ? Y >  = W l ( X , Y )  + W2(X,Y)  

Wl(0,Y) = W l b , Y )  = 0 
Corner -supported rectangular p la te  

w ~ ( x , O )  = WZ(X,b) = 0 

3 
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!The complete boundary conditions are: 

Displacements : 

W ( o , o )  = w(O,b) = w(a,O)  = w ( a , b )  = 0 

Moments : 

2 

b y )  + v 2 (0,y) = 0 
ax2 ay 

d2W 7 (x,b) + V - (x,b) = 0 . . 2  

Effective shear forces:  

a3 - (0,Y) + ( 2 - 4 -  3% (0,y) = 0 - (a ,y)  + ( 2 - v ) L  (a,y) = o 
ax" ax ay2 ax3 ax ay2 

- P W  (x,b) + ( 2 - V )  - (x,b) = 0 a3w a3 - (x,o) 3- ( 2 - v )  w (x,o) = 0 
ay3 ax2 ay 3Y3 ax2 ay 

The reactions a t  the corners are  given by 2Mw 
i s  the  corner force t h a t  a r i s e s  when the  shear 
r a t e  of change of t h e  twist ing moment Mw t o  give t h e  e f fec t ive  shear Vx 
o r  Vy)(ref.  3 ) .  

evaluated at the  corners ( t h i s  
Qx o r  &y i s  combined with the  

Ritz method so lu t ion .  - The Ritz method i s  wel l  known ( r e f .  4) and i s  
based on the  f a c t  t h a t  f o r  a f r e e l y  vibrat ing system, f o r  which the  motion i s  

~~ 

harmonic, the  sum of po ten t i a l  and- k ine t ic  energy i s -  a constant and t h e  maxi- 
mum values (with respect t o  time) of these forms of energy are equal t o  each 
other .  W(x,y,t), it can be 
wri t ten i n  the  form 

If the  time dependent displacement i s  denoted by 

W(x,y,t) = w(x,y)sin w t  

If w(x,y) i s  of t he  form 

4 



the r a t i o s  of t he  unlmown a 's  and b ' s  and the  na tura l  frequencies can be 
determined from the  set of l i nea r  algebraic equations obtained from 

where, i n  t h i s  case, 

2 

(3) a2, a2w 
2 ax2 ay2 

b a  
v,,, = q J [ ( .S  + ($) + 2v - - + 2 0 - 4  

Each term of t he  s e r i e s  i n  equation (1) must s a t i s f y  the  boundary conditions 
on the  displacements and ro ta t ions  but does not have t o  s a t i s f y  those on 
stress (ref .  4 ) .  
would be needed t o  represent a mode if some or a l l  of the  s t r e s s  boundary 
conditions were sa t i s f i ed .  Also, it i s  known t h a t  the  frequency calculated 
f o r  a par t icu lar  mode from an approximate form of w w i l l  be above the  exact 
answer ( r e f .  4 ) .  

O f  course, one would expect t h a t  fewer terms of equation (1) 

For t he  problem being considered, t he  displacement i s  chosen t o  be 

( 5 )  m v  + b, cos - s i n  b a 

where the  s ingle  summation contains t h e  m = 0 terms of t he  double summation. 
One should note t h a t  f o r  each value of 
displacement boundary conditions but does not satisfy e i t h e r  the  moment o r  
transverse shear boundary condition. 

m and n, equation ( 5 )  s a t i s f i e s  t he  

Equations (2 )  w i l l  be of t he  form 

5 



J-J 

Subst i tut ion of equation ( 5 )  and i t s  der ivat ives  in to  equations (3)  and 
(4)  and integrat ing over t he  surface of t h e  p la te  w i l l  give 
terms of t he  a i j '  s and b i j '  s.  Then, subs t i tu t ion  of Vmax and Tmax in to  

equations (6)  through (9 )  w i l l  give the  following algebraic equations from 
which the  frequency parameter 
can be determined: 

Vmax and Tmax i n  

A2, where A2 = (a4/fi4)(yh2/Dg) and Lo = a/b, 

6 



I n  equations (10) through (l3), each value of 
equation and m and n are dummy indices.  The summation notation i s  

i and j gives a single 

m,n=i m = i  n= i  
m#j,n+i m f j  n f i  

Inspection of these equations shows t h a t  they uncouple in to  four groups of 
equations. Each of these groups represents modes containing a ce r t a in  type of 
symmetry or antisymmetry as follows: 

(1) 
modes symmetric zbout t he  

l i n e s  a 
2 2 

x = - and y = b, 

modes symmetric about 

a and antisymmetric about x = - 
2 

y = b - 
2 

1 
1 
1 I 

ai j ;  i = even, j = odd 

b,; m = even, n = odd 

sol> a21>* bOl> b 0 3 J  b21>.  ' 

a modes symmetric about x = - 2 
b and antisymmetric about y = - 
2 

(2) aij; i = odd, j = odd 

b,; m = even, n = even 

a 3 1 7 0  bo2> b24" 

modes antisymmetric about t he  

l i n e s  a b 
2 

x = - and y = 

( 3 )  aij; i = even, j = even 

b,; m = odd, n = odd 

a 0 2 Y  &04> &24>*  ' bll> b13, b31" ' 

(4 )  aij; i = odd, j = even 

b,; m = odd, n = even 

a12> a 1 4 Y  & 3 2 J '  b12, b14, b32,' . .  
Combinations (2 )  and (3)  a re  equal f o r  a square p la te  and are  re la ted  t o  each 
other by the  r a t i o  Lo f o r  rectangular p l a t e s .  These four combinations of 
equations a re  given i n  appendix A. The equations of each combination can be 
t r ea t ed  separately and w i l l  have the  matrix form 

I =;I 
7 



I IIIIII I l l  I I 

where the matrix i s  symmetric and a l l  of the elements of the C array are  
nonzero. 
Although these equations are  not i n  the standard eigenvalue form of 

Each nonzero element of the matrix i s  of the form k i j  -A2Zij. 

the  roots of the determinant of the coeff ic ient  matrix and the mode shapes can 
be found with exis t ing subroutines. 

Trigonometric series.  solut.ion. - An appropriate solution t o  the d i f fe ren-  
t i a l  equation of motion can be found in the form of an i n f i n i t e  se r ies .  The 
d i f f e r e n t i a l  equation i s  

where 

Using the same method discussed e a r l i e r ,  one f inds  an appropriate form of 
w which s a t i s f i e s  the  displacement boundary conditions as being 

co 03 

n=i  n=i  

Upon separation of var iables ,  the unknown functions must s a t i s fy  the following 
equations : 

where a& = nfi/a, Pn = nfl/b; and 
independent of gn (x ) s in (nq /b ) .  
independent, t h a t  is, f n ( y )  = A s i n ( n q / b )  and gn(X) = B sin(nfix/a). 
Appendix B discusses t h i s  problem. 

fn(y)s in(nm/a)  i s  assumed to be l inear ly  
Some confusion can r e s u l t  if they a re  not 

Since the coeff ic ients  of equations (17) and (18) are  constant, the solutions 
are  eas i ly  found to be 

- - 
fn(y)  = Ani cash 0ny + An, sinh eny + An3 COS 0~ + An4 s in  Bny (19) 

- - 
gn(x) = Bn, cosh vnx + %2 sinh 'pnx + Bn3 COS cpnx + %4 s in  (pnx (20) 

8 



where 

- -  
It should be pointed out t h a t  c m  be r e a l  or imaginary, depending on 
the  r e l a t ive  value of A and or Pn. If 8, or 'pn i s  imaginary, then the  
trigonometric function i n  equations (19) or (20) becomes the  corresponding 
hyperbolic function. 

Bn,cpn 

Referring t o  t h e  boundary conditions given by equation ( 3 ) ,  equation (16) 
i s  seen t o  ident ica l ly  s a t i s f y  t h e  zero displacement conditions a t  t he  corners. 
The conditions f o r  zero bending moment give the  following: 

The condition of t he  e f fec t ive  shear being zero gives the  following equations: 

9 



l l l l l  I1 Il l  I I I I I I- .I . , ..-,.,,,.... ,.,,. .. . . . 

For t h e  bending moment, equations (22) show t h a t  t h e  constants can 'be deter-  
mined so t h a t  each term of t he  s e r i e s  i n  equation (16) ident ica l ly  s a t i s f i e s  
t he  condition of zero moment on the  edge. 
t i v e  shear boundary condition i s  s a t i s f i e d  only by a sum of terms. Equa- 
t i o n s  (23) can be simplified by multiplying by the  appropriate orthogonal 
trigonometric function and by integrat ing over t he  p la te  in te rva l .  
example, t he  f i r s t  one of equations (23) becomes 

Equations (23) show t h a t  t he  effec- 

For 

The in tegra ls  i n  equation (24) can be evaluated and the  resu l t ing  four s e t s  of 
equations are  i n  terms of t he  eight  s e t s  of unknown constants, AnlL. . ., An,, 

The condition t h a t  
f n ( y ) s i n  %x i s  independent of gm(x)sin &y and i s  discussed i n  appendix B. 

For t he  integrated equations it i s  assumed t h a t  en f b. Bni,. - 7  Bn4. - 
8, # & i s  connected with the  assumption t h a t  

Four of the  eight  s e t s  of constants can e a s i l y  be eliminated from 
equation (24) by use of equations (22) .  This results i n  having a s e t  of 4N 
simultaneous homogeneous algebraic equations to solve ( a f t e r  t runcat ing the  
i n f i n i t e  s e r i e s  a t  n = N terms). These equations a re  given here because 
they can e a s i l y  be programmed f o r  a d i g i t a l  computer, and addi t ional  modes and 
frequencies, t o  those given herein,  can 'be calculated.  (See the  Numerical 
Computations sect ion f o r  a discussion of some of t he  numerical problems and 
ways to, at l e a s t  p a r t i a l l y ,  avoid them.) 
notation i s  used: 

Ln these equations, the  following 

1 
2[(2-v)h3 + 

P$,P) = 
[-A2 + (E2+p2)2][A + ( 1 4 5 2 1  

10 



P3(I;) =m [A  + (l-v)E,21 

-,ere as dummy variables. The equa -oris are 

n=i 

+ p3( mLo) sin qm* - 1  C O S  ?&* cash ( ~ m *  - 1 
sinh 'pm* 

n=i 

cos gm* cosh Bm*- 1 + Ps(m)sin s *] sinh Om* m 

cosh em* sin gm* 
- P3(m)cos 

+ Am4 sinh em* 

n=i 

11 



N 

+ 1 r i e , ( d o , m )  {-ks[l - (-1)" cos &*I + ( -l)x4 s i n  Tn*} = 0 (32) 
n=i  

where 
gives a separate equation so the resu l t ing  coeff ic ient  matrix w i l l  be of order 
4N. The frequency parameter h i s  obtained from the  condition t h a t  the 
determinant of the  coeff ic ient  matrix i s  zero. One s ignif icant  difference 
between these equations and those of the  R i t z  method i s  t h a t  there  i s  no form 
of 

A f n2 +- m2b2 or A f n a b 2  + m2 (see appendix B) . Each value of m 

[A] - h2[B] = 0 

t o  these equations since A i s  contained i n  em*, &*, e t c .  This difference 
i s  discussed i n  the  next section. 

NUMERICAL COMPUTATIONS METHOD 

A discussion of t he  computation i s  given not because any new numerical 
scheme i s  used ( the  programs t h a t  have been wri t ten are  made up of exis t ing 
subroutines) but because each method of solution has cer ta in  numerical advan- 
tages and disadvantages. For the  problem being considered, the Ritz method 
of fers  comparatively easy computations with possible low accuracy and, con- 
versely, the  se r i e s  solution of fe rs  high accuracy with possible serious numer- 
i c a l  d i f f i c u l t i e s .  So, depending on one's needs, e i the r  method may be the 
best  t o  use f o r  a given problem. 

R i t z  Solution 

The form of the  R i t z  method equation i s  f a i r l y  convenient f o r  computation 
on a d i g i t a l  computer. For the  modes calculated, the matrices were small 
enough so t h a t  no major problems were encountered. The roots  were found by 
the  computer varying the frequency over some specified range and detecting 
when the determinant changed sign. An i t e r a t i o n  scheme w a s  then used t o  con- 
verge on the root .  Tne computing was done in single precision. Eventually, 
i f  larger  matrices are  used, a point would be reached where the accuracy had 
diminished t o  an unacceptable l eve l  but double precision could be used and 
one might, a t  l ea s t  pa r t i a l ly ,  normalize the equations. For instance, the 
constants ao j ,  boj, ai j ,  bij  could be replaced by a '  ./j2L02, bhj/j2, 

aij/(i2 + j2L02), b;j/(i2L02 + j2>, and the denominators retained i n  the 
coeff ic ient  matrix. 

O J  



Series Solution 

The equations (29) through (32) ,  as given, can present some serious 
computational d i f f i c u l t i e s .  One problem is t h a t  A cannot be factored out i n  
the form [A]-A2[B] = 0, so the  standard eigenvalue routines cannot be used. 
The only feasible  way of obtaining the frequencies seems to be to plo t  the  
determinant as a function of A and to note the zero values of the determi- 
nant. However, as  the determinant approaches zero, accuracy i s  lost and there  
w i l l  be a range of frequency within which the computed determinant has zero- 
place accuracy and therefore i s  meaningless. If t h i s  range i s  larger  than the 
range needed to interpolate  the  frequency to some desired accuracy, the  f r e -  
quency cannot be determined. In the  present case, t h i s  problem became more 
prevalent a s  the p l a t e ' s  length-to-width r a t i o  or matrix s ize  increased. Ln 
order to include a l l  of the frequencies l i s t e d  herein, it w a s  necessary to 
rearrange equations (29) through (32) .  
equations (31) and (32) ,  one sees t h a t  the terms inside the summation are  
iden t i ca l  except f o r  the term ( -l)n. 
and (30) fo r  each value of m ( the  same applies to eqs. (31) and (32 ) ) ,  e i t he r  
the odd w i l l  vanish. 
This introduces many more zeros in to  the matrix and eases the loss-of-accuracy 

Comparing equations (29) and ( 3 0 )  and 

By adding or subtracting equations (29) 

ADS, An4*s  (n  = 1,3,5,. .) or the  even An3, Anq's 

problem. These equations were then normalized by 
f o r  the given constants: 

4 3  4 4  BAS 
2" cosh mfl sinh - m '  cosh - 

L O  L, 

subst i tut ing the following 

%4 , sinh mfl 

One should be carefu l  to normalize with posi t ive nonzero quant i t ies  since the 
quantity, i f  ever zero, w i l l  introduce a point of discontinuity,  and possibly 
a change i n  sign, in to  the determinant. When the determinant is  plot ted,  
these points may appear to be na tura l  frequencies. 
the par t icu lar  normalizing fac tors  shown i s  t h a t  f o r  large values of m2, say, 
m 2  > 30,  and s m a l l  values of 
are  of the form 

The reason f o r  choosing 

A, say, A < 10, the large terms i n  the matrix 

cosh qm* = cosh 7cJAim2 = O(cosh mx) 

- 
cos en* = cos i  7( = cosh fl a = O(cosh m7c) 

so t h a t  normalizing these terms by the  fac tor  
unity.  But  if higher frequencies a re  desired such t h a t  A i s  not s m a l l  com- 
pared to m, t h i s  fac tor  may not be adequate and it should be weighted more 
heavily toward the  e f f ec t  of 
(m, Lo, A, e t c  .) being considered, considerable t r ia l -and-error  rearrangement 
of the equations may be necessary. 

cosh mfl makes them about 

A. So, depending on the  range of the parameters 

Finally,  double precision was used i n  the computations and i n  generating 
the elements of the matrix. The revised equations are given i n  appendix C .  



EXPERIMENTAL METHODS 

A short  experimental program w a s  undertaken t o  see the  correlat ion with 
the  t h e o r e t i c a l  results. Preliminary t e s t i n g  of a p l a t e  t h a t  w a s  v i s ib ly  
warped indicated t h a t  t h e  frequency w a s  qui te  sens i t ive  t o  p la t e  warpage. 
Therefore, some care w a s  taken t o  insure t h a t  t he  p l a t e s  f o r  which the  r e s u l t s  
are presented were f la t  (a "flat" p l a t e  i s  one i n  which the  m a x i "  deviation 
i s  a s m a l l  percentage of t he  thickness) .  
f igures  1 and 2. The supports were adjusted u n t i l  there  w a s  no loss of con- 
t a c t  between t h e  support and the  p l a t e  corner during vibrat ion.  
t h a t  some compression w a s  introduced in to  t h e  p la te ,  but i t s  e f f ec t  w a s  con- 
sidered negl igible  since t h e  force w a s  close t o  a point load which produced a 
very s m a l l  average compressive stress throughout the  p l a t e .  
support adjustment gave no measurable difference i n  na tu ra l  frequency. 
Several methods of exc i ta t ion  were used. 
frequencies w a s  a 30-watt sound speaker t h a t  excited the  p la te  through an 
attached s t r ing  (see f i g .  1). 
o s c i l l a t o r  and t h e  motion of t he  p l a t e  w a s  measured by a capacitance-type d i s -  
placement instrument. Since the  s t r ing  transmitted no ne t  compression, the  
exci t ing force w a s  not a complete sine curve but t h i s  w a s  considered t o  have a 
negl igible  e f f ec t  on the  measured na tu ra l  frequency . 

The method of support i s  shown i n  

This means 

Changes i n  the  

The primary one f o r  measuring the  

The speaker w a s  driven by a var iable  frequency 

Figures 3 and 4 are  examples of t he  of ten used method of detecting the 
Sand (carborundum chips were used f o r  t he  p ic tures  because of mode shapes. 

t h e i r  dark color)  i s  sprinkled on the  p l a t e  during vibrat ion and the  pa r t i c l e s  
migrate t o  t he  node l i n e s .  

RESULTS AND COMPARISON 

In the  following remarks, t he  modes a re  referred t o  by number ( see 
t ab le  I ) .  
c i e s  associated with two mode shapes can change as Lo 
and 7, t ab l e  I).  
order i n  which the  frequency occurs over t he  major port ion of t he  range of 
Lo considered. 

This can be misleading since the  r e l a t i v e  magnitude of the  frequen- 
changes (see modes 6 

But f o r  reference purposes, the modes are  numbered i n  the  

Table 1 i s  the  summary of t he  calculated frequencies along with the  
corresponding ones of reference 2. 
were calculated from the  mode shapes given i n  t ab le  111, where the  la rges t  
matrix considered w a s  E x 12. The se r i e s  solut ion used matrices of order 16, 
20, and 24 and a l l  th ree  d i f f e ren t  sized matrices gave the  l i s t e d  value of 
frequency for most of the  modes and a maximum var ia t ion  of t w o  d i g i t s  i n  the  
l a s t  s ign i f icant  f igure  f o r  the  other modes. 
considerably more accurate f o r  a given matrix s i ze  than the  R i t z  method 
because each term of t he  se r i e s  s a t i s f i e s  the  d i f f e r e n t i a l  equation of motion, 
t he  displacement and moment boundary conditions. 
solution and reference 2 i s  seen t o  be very good. The frequencies i n  re fer -  
ence 2 were obtained by extrapolating the  frequencies found by considering the  
p l a t e  divided in to  a square gridwork i n  which t h e  width of t he  nonsquare 
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The r e s u l t s  obtained from the  Ritz  method 

The series solution should be 

The comparison between t h i s  



p la t e s  w a s  divided in to  4 and 6 gr id  spacings and the  square p l a t e ' s  width w a s  
divided in to  5 and 6 spacings. Richardson's h2 extrapolation formula 
( r e f .  2) w a s  used t o  obtain the  value f o r  an i n f i n i t e  number of mesh points .  

There are  several  in te res t ing  points  t h a t  can be seen from t ab le  I. 
Mode 1 approaches the  fundamental frequency of a simply supported beam as 
increases.  
since 
p la te  when Lo = 2.5. Modes 2 and 3 f o r  = 1.0 have the  same frequency but 
d i f f e ren t  mode shapes (although, considering symmetry, they are  the  same). 
This occurrence i s  not uncomon i n  p l a t e  problems and at t h a t  frequency the  
mode shape can be e i t h e r  one or some superposition of t he  two mode shapes. 
Mode 4 i s  the  same as a f l exura l  mode of an unsupported p l a t e .  
t he  case f o r  a square p l a t e  and the  corresponding frequency parameter i s  
A = 2.00 ( R i t z ' s  calculations,  reported in ref.  5 ,  were f o r  
value w a s  scaled up t o  v = 0.3 by use of re f .  2 ) .  
how t h i s  mode shape changes f o r  a nonsquare p l a t e  (see t ab le  I and f i g .  3 ) .  
I n  f igure  3, it appears as if  t he  node l i n e  does not in te rsec t  t he  support 
point but t heo re t i ca l  r e s u l t s  show t h a t  i s  passes very close t o  the  edge of 
t he  p la te  i n  the  region of t he  corner.  Later t e s t s  showed t h i s  discrepancy 
w a s  caused by some s l i g h t  support motion due t o  the  vibrat ion of t he  t e s t  f i x -  
t u re  which apparently had a na tura l  frequency near the  exci t ing frequency. 

L, 
The beam frequency i s  A = 0.954 ( the  beam frequency i s  adjusted 

A = 0.951 f o r  t he  A, as defined here, contains Poisson's r a t i o ) ,  and 

Ritz  t r ea t ed  

'v = 0.225, so t he  
It i s  in te res t ing  t o  note 

It i s  a l so  of i n t e re s t  t o  see the  number of other problems solved. 
Looking at t he  mode shapes i n  t ab le  I, a l l  of t he  s t r a igh t  node l i n e s  are  
l i n e s  of antisymmetry along which t h e  bending moment i s  zero. These, then, 
correspond t o  simply supported boundaries and can be considered t o  be p la te  
edges. 
mode of a p l a t e  simply supported along one edge and point supported a t  the  
other two corners ( f o r  t he  range of Lo given and subst i tut ing,  of course, 
t he  proper length and width of t he  p l a t e ) .  
fundamental mode of a 4 5 O  r igh t  t r iangular  p l a t e  simply supported along t w o  
edges, or the  second mode of a 4 5 O  r i gh t  t r iangular  p la te  supported along the  
hypotenuse and at the  opposite corner.  

So, f o r  example, modes 2, 5 ,  and 6 give the  f i rs t ,  second, and t h i r d  

Mode 4, f o r  Lo = 1.0, gives the  

After the  r e s u l t s  were compared, the  Ritz  method w a s  extended f o r  modes 
1, 4, and 7 f o r  L, = 1.0 t o  see how slow the  convergence w a s .  This r e s u l t  i s  
shown i n  f igure  5 .  For j u s t  two terms, 
which are  

Mode 4 i s  seen t o  converge very fas t .  

w = aol (sin 7 c ~  b - s in  s) a 

the  answer i s  within 1 percent.  
cent a f t e r  32 terms. 
8, 10, and 12 suggest t h a t  t he  s e r i e s  has converged (see dashed l i n e s  i n  
f i g .  5 )  when, ac tua l ly ,  convergence has not been reached even with a matrix 
of order 32. This shows t h a t  even though one knows an approximate frequency 
i s  an upperbound, it i s  hard t o  t e l l  t he  accuracy of an a n s w e r  without 
comparison with a hown solut ion.  

However, mode 7 has an e r ro r  of about 4 per- 
For modes 1 and 7, t h e  r e s u l t s  f o r  matrices of order 2, 



Table I1 shows the  comparison between experiment and theory ( the series 
solut ion and ref.  2) and t h e  correlat ion i s  very good. 
made t o  explain the  s m a l l  d i f ferences because t h e  experiment w a s  of a careful ,  
but not precise ,  nature .  

No attempt w i l l  be 

CONCLUSIONS 

One important conclusion common t o  many p l a t e  problems i s  t h a t  one has t o  
be very ca re fu l  i n  t r ac ing  t h e  modes as the  p l a t e  changes i t s  dimensions (i.e., 
from a square t o  a rec tangle) .  
can t h e  mode shapes. !The f a c t  t h a t  mode shapes can change i s  especial ly  
important when one i s  concerned about t he  locat ion of nodal and antinodal 
regions.  

The r e l a t i v e  order of frequency can change as 

The Ritz  method y i e lds  equations which a re  e a s i l y  adapted t o  the  computer 
but t he  convergence i s  hard t o  predic t .  The f a c t  t h a t  t h e  frequency i s  about 
t he  same f o r  d i f fe ren t  numbers of terms hopefully means t h a t  t h e  assumed dis-  
placement has converged t o  t he  correct  answer, but it m a y  mean t h a t  t he  
assumed displacement i s  converging very slowly and m a n y  more terms are needed. 
O f  course, one would expect a higher accuracy f o r  a given number of terms if a 
displacement function t h a t  s a t i s f i e d  a t  l e a s t  some of t h e  s t r e s s  boundary 
conditions could have been chosen. 

The s e r i e s  solut ion presents some serious computational d i f f i c u l t i e s  f o r  
ce r t a in  ranges of t he  parameters but f o r  t h i s  pa r t i cu la r  problem one has more 
confidence i n  i t s  accuracy f o r  a given matrix s i ze  since a l l  of t he  boundary 
conditions a re  s a t i s f i e d  except t he  e f fec t ive  shear condition by each term i n  
the  se r i e s .  

Ames Research Center 
National Aeronautics and Space Aaministration 

Moffett F ie ld ,  Cal i f . ,  June 28, 1963 
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APPENDIX A 

UNC0UpL;ED EQUATIONS OF THE RITZ METHOD 

It w a s  pointed out i n  t h e  text t h a t  t he  s e t s  of equations f o r  determining 
the  frequencies by the  Ritz  method uncouple into four groups of equations. 
The equations of each group represent modes with ce r t a in  symmetry character-  
i s t i c s ,  so if a ce r t a in  c l a s s  of modes i s  desired,  considerable s implif icat ion 
i s  obtained if the  appropriate group of equations i s  used. Using t h e  notation: 

R l ( i , j , m )  = n2L02(i2L02 + V j 2 )  

R 2 ( i , j , n )  = n2(i2 + vj2L02) 

R3(j,m,n) = j2&2(m2L02 + vn2) 

R4( j ,m,n)  = j2(m2 + vn2L02) 

2 2  2 R5(i,j,m,n) = n2i2 + m2j2L04 + (2-v)m2i2L02 + vn j Lo 

R 6 ( i , j , m , n )  = n2i2L04 + m 2 j 2  + (2-v)m2i2LO2 + vn2j2L02 

the  equations are:  

Combinat ion ( 1) 

bo, ( vn2 j 2L02 -A2 ) 
n 

a 0 j 2 ( j ~ 0 4 - ~ 2 )  + - 
- n=1,3,. . . 

m=2,4 , .  . . 
n=i,3,. . . 



aij [ (i2+j2~02)2-A2] + - 
712 j c n=1,3,. . . 

16 j 
712 

+ -  

2 2  b. .[(i Lo +j2)2-h2] + - 
n=1,3,. . . 1 J  

16 j 
712 

+ -  

Combination (2) 

2 .2 n -1 

m=2,4,. . . ( n2- i2) ( j 2-m2) 
n=i,3,. . . 
a on n[R1( i, j ,m) -A2] 

( n2-i2) ( j -m2) m=2,4,. . . - .  n=i,3,. . . 

16j 1 bmn[R5(i,j,m,n)-A21 
712 (n2-i2) ( j2-m2) 

+ -  
m=2,4,. . . 
n=2,4,. . . 

n=i,3,. . . 
Combination ( 3 ) 

n=1,3,. . . 
bmn[R5(i,j ,m,n)-A21 

[ ( i 2 + j 2 ~ ~ ~ ) ~ - ~ ~ 1  + 712 
"i j c ( n2-i2) ( j 2-m2) 

m=1,3,. . . 

= o  

= o  

= o  

= o  

= o  

- 0  

= o  
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+ -  16j 1 %n[Rg(i,j,m,n)-A2] .~. . = o  
( n2-i2) ( j 2-m2) 712 

m=2,4,. . . 
n=2,4,. . . 

Combination . .  . (4) 

%n[Rg( i, j ,m,n) -A2] 
b . . [ (i'~,~+j~)~-h~] + - 

1 J  712 
= o  

m=i ,3, . . . 



APPENDIX B 

DISCUSSION OF ASSUMPTION I N  THE DERIVATION OF EWA!I?ION (14) 

In the der ivat ion of the  solution t o  equation (14), it w a s  assumed t h a t  
fn (y ) s in  %x w a s  independent of gn(X)Sin Pny and l a t e r ,  in integrat ing the  
equations f o r  the shear boundary condition, it w a s  assumed t h a t  
i s  the same as assuming 
p lo t t ing  the determinant versus h ,  the  points  A = n2 + m2L02 cannot be 
calculated from the  equations i n  t h e i r  given form since some terms become 
indeterminant. But, assuming the determinant i s  a continuous function of 
it appears a s  i f  it i s  ident ica l ly  zero f o r  a l l  the  matrix s izes  considered 
fo r  
those of a p la te  t h a t  i s  simply supported on a l l  edges. I f  

gn # m which 
h # n2 + m 2 b 2 .  When the  frequencies are  found by 

h,  

A = n2 + m 2 b 2 .  One recognizes t h a t  these frequencies are  iden t i ca l  t o  

the displacement i s  

w = % s in  Pmy s i n  +x 

and is  a solution t o  the  equation of motion i f  

But, i n  order t o  s a t i s f y  the shear boundary conditions, the following type of 
equations must hold: 

2 - ( 2 - v ) ~ ~  Is in  pmy = o 

2 2 
%pm[pm - (2-v)an ] s in  a x = o n 

These equations are  f o r  zero shear at x = 0 and y = 0 .  It i s  seen t h a t  
% = 0.  
as a simply supported p la te ,  t h a t  is, it cannot have zero displacement and 
zero shear along the  same edge without having zero displacement everywhere. 
The remaining question i s  whether the p la te  can have the same frequency but a 
d i f fe ren t  mode shape. An example of t h i s  i s  t h a t  a beam with bu i l t - i n  ends 
has the same frequencies but d i f fe ren t  mode shapes as a beam with f r e e  ends. 
This question does not appear t o  have an obvious answer, in general, but the  
equations were modified t o  allow 
it w a s  apparent t h a t  considerable uncoupling occurs. (For instance, 
s in  z-* = s i n  ?fL* = 0; 1 - (-l)m cos gz* = 0.) It i s  eas i ly  seen i n  the s m a l l  n m 
matrices how the constants An37 An47 %3, %4 a l l  have t o  be zero. 
and an 8 X 8 matrix were investigated and the equations uncoupled in such a 
way t h a t  a l l  constants had t o  be zero so there  w a s  no motion at  t h a t  

Therefore, the p l a t e  cannot have the same frequency and mode shape 

A t o  have a value of ,  say, ii2 + E2L02, and 

A 4 X 4 

20 



frequency. These frequencies a re  not present e i the r  i n  the  Ritz solution or 
i n  the experimental work so it i s  concluded t h a t  even though they represent 
roots or the  determinant, they do not represent a mode that has motion. 
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APPENDIX c 

MODIFIED EQUATIONS FOR THE SERIES SOLUTIONS 

The modified equations which avoid numerical problems encountered for 
some of the  modes are given by 

1 mLo)(cosh 'pm* 5 l)(cos ?&* 'i 1) P3(mLo)sin &* 
cash m z  

+ 
sinh %* cosh m z  

= 0 (c1,2) I> 2 mL0)sin &*(cosh %* rtr 1) 
sinh cpm* s inh mx 

Ps(mL~)(cos &* k 1) 
sinh mn 

+ BA4 [' ( 

- ( -11~ cos qn*l ( - l ) % ~ ~  s i n  + ~~ . 

cosh nx sinh nz +2n~, (  nL0 ,m) 

n=2,4,. . . 
n=1,3,. . . 
where for 

equations (C1,3) n = 2,4,6,. . . m = 1,2,3,4,. . . 
- 

f. use +, + use - 

equations (C2,4) n = 1,3,5,. . . m = 1,2,3,4,. . . 
- 

2 use -, + use + 
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TABU I.- SUMMARY OF CALCuLA?TED FIGURES 

F- 
1. T;s t LO . .  

1 .o 
1 *5 
2 .o 
2 -5 

Ref. 2 

I I .  1 I 

a:- 
- - -  2 .o 

R i t  z solut ion 

0.756 
0933 
-958 
.961 

1.702 
2.308 

1.702 
2.811 
3 -52 

.. 

2.941 
-- 

1.986 
3 953 
5 *69 

5.67 

. _ _  

4.20 

6.80 

5 -23 
5 -85 
7.40 

4.89 
7.64 

.~. . - ~. 

- - 

Series  solution 
- 

0.721 
,904 
.941 
9951 

1 598 
2.181 
2.786 

1 598 
2.616 
3.326 

1.986 
3.414 
5 *27 

3 0895 
5 034 
6.46 
5 .io 
5 *85 
7.22 

7 .io 

_-_ - 

=- 

_ _  - 

I 

4.50 

_ _ _ _  

J 



TABLE 11.- COMPARISON OF MPERIMENT AND THEOIiy 

6. Fa 

I P late 1 l2 X 12 X 0.129 inch I Plate  2 10 X Y O  X 0.173 inch 
Mode 2024 aluminum 2024 aluminum 

E = 10.6X106, p s i  (book value) ' I 
1 1- 

I 

38.8 cps I 

E = 1o.6x1o6, p s i  (book value) 

Ref. 2 Experiment ' Series solution Experiment I Series solution 

61.4 cps 62 C ~ S  61.4 cps 38.8 C ~ S  38.3 CPS 

I 
I 
I 

--- --- 43 4 436 

I 330 333 I --- 
I I 'I 

5 .  Fl ,I 333 

17. [GI I 375 1 383 1 385 1 --- 



TABU3 111.- RITZ METHOD MODE SHAPES 

a/b 

1 .o 

1.5 

Normalized mode-shape F r e que ne y Normalized mode -shape Frequency 
parameter, parameter, 

A coeff ic ients  A coeff ic ients  

&o 1 = 1.000 bo, - - 1.000 aO2 = -0.1248 b,, = 1.000 
ao3 = -.0663 bo, = -.0663 a04 - - -.0075 b13 = -.0671 

0 0756 = .1737 b,, = .1737 1.702 aZ2 = .1695 b31 = -.0574 
823 = -0329 b23 = -0329 824 = -e0055 b33 = -0348 
a41 = -.0267 b4, = -.0267 &42 = -e0146 b51 = -moo83 

= .0869 bo, = 1.000 a02 = -e1753 b l l  = 1.000 
“01 a03 - - -SO150 bo3 = -a0320 804 = -0002 b13 = -.Ob99 

0933 a2, = .Og50 b,, = .0281 2.308 aZ2 = .1530 b31 - - -e0748 
a23 = .0056 b,, = .0161 aZ4 = -.00.59 b3, = .O2O5 

a42 = .0012 b,, = -.0062 
I ’  &41 = -.0102 b4, = -.0068 I aO6 = .OOO9 b,, = -.0065 , 
I 

2 .o 0958 
I 

I 

2 -5 .961 

I 

803 = -.OO52 bo3 = -.0179 aO4 = .0067 b,, = -.0460 1 
a22 = .1537 b31 = -.0893 f 

a23 = .0013 b23 = .0080 
aO6 = .0007 b l s  = -.OOg3 841 = -.0035 b41 = -.OO25 

“01 = -.0054 bo, = 1.000 a02 - - -e1915 b l l  = 1.000 

a21 = .570 bZ1 = .0046 2.941 a24 = -.0088 b33 = .015g 
a42 - - e0080 b5l  = -e0028 

aol = -.0197 bol = 1.000 “0 2 = -el984 b l l  = 1.000 
803 = -e0020 bo3 = -e0108 a04 - - -0100 b13 = - .Ob51 

a22 = .1550 b31 = -.0967 
821 = -0372 b2l  = -.0014 3.60 , a24 = -.OlO3 I b33 = .0135 

a41 - - -.OOO7 b41 = -.0011 aO6 = .OOO5 bl5 = -.O113 I 
a23 = -0002 b23 = .0042 842 = .Ol20 b51 = -.OOO9 



TABLE 111.- RITZ METHOD MODE SHAPES - Continued 

Mode 4 

parameter, 
A 

Normalized mode -shape 
coefficients 

7 Frequency 
Mode 3 

I- 

'1 Frequency ' 
I Normalized mode-shape 

coefficients a/b 1 parameter, 
A 



TABLE 111. - RITZ METHOD MODE SHAPES - Continued 

Frequency 
parameter, 

A 

1.5 

- 

2 .o 

Frequency 

A 

Normalized mode-shape 
coefficients parameter, 

8 x 2  = -.2238 
814 = -.0021 
a32 = -1772 

4.20 

5 -67 

6.80 

a12 = -.0666 
a14 = -.0342 
a32 = .1809 
a34 = .Ollg 

a16 = .0014 
- - .0049 a52 - 

a12 = - .1869 
814 = -.0122 
a32 = .1764 

&52 - - .0068 
a16 - - .0015 

a34 = .0011 7.40 

9.88 

Normalized mode-shape 
coefficients 

b02 = -0 4796 
- - .0944 

b22 = -0337 
b24 = - ,0492 

b42 = - .oooo 

= -.6479 b02 
bo4 = ,0324 

b22 = -1.557 

b42 - - -.0151 
b24 = -.OO?l 



TABLE 111.- RITZ METHOD MODE SHA€’ES - Concluded 

: Normalized mode-shape 
coefficients 

Frequency 

A 
‘1 a/b 1 parameter, 1 
1.0 

1.5 

4.89 

7.64 

aol = - .4491 
a03 = - .EO9 
a2, = 1.000 

a41 - - - .0658 
823 = -0468 
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A-33923 Figure 1.- Method of support and exc i t a t ion .  



Figure 2 . -  Deta i l  of plate corner. 
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A-33921 Figure 3.  - Experimentally determined shape of mode 4. 



A-33922 Figure 4 . -  Experimentally determined shape of mode 6 .  
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Figure 5.- Examples of R i t z  method convergence. 
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