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AN ANALYTTCAL AND EXPERIMENTAL INVESTIGATION
OF THE MOTION OF A ROTATING SPACE STATION

By William M. Piland
Langley Research Center

SUMMARY

The dynamics of a manned rotating space-station configuration have been
investigated both analytically and experimentally. The solutions for the angu-
lar body motions due to external and internal disturbances were obtained by an
exact computer method and by an approximate method. The approximate method was
developed through the linearization of the equations of motion by using small-
angle theory. In addition, an existing scale model of an inflatable space-
station configuration was used to obtain experimental results for applied dis-
turbances on the station. The disturbances considered for this analytical and
experimental analysis included externally applied torques and static and tran-
sient products of inertia.

INTRODUCTION

In the past, the effects of external and internal disturbances on a
rotating body in space have been determined by numerical integration of the
equations of motion with the aid of a digital computer. However, the computer
solutions can be obtained only for specific configurations and disturbances,
and they yield little general information. Thus a general closed-form solution
which would allow a better insight into the effects of the various disturbance
and configuration parameters would be of considerable value. Furthermore, a
closed~form method would yield an approximate solution to the equations of
motion without the aid of computers, even though the closed-form equations
could also be programed to permit a solution in very short computer time.

he present report presents the development, results, and use of a closed-
form solution based on small-angle theory. This solution can be used to pre-
dict the uncontrolled motion of a spinning vehicle under various disturbances.
The results obtained from this solution are compared with results obtained from
a scaled dynamic model which represents a typical space-station configuration.
In addition, these results are checked with the exact solution of the equations
of motion, as solved by numerical integration with the IBM 7094 electronic data
processing system.
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SYMBOLS

acceleration of moving mass, ft/sec2

a

I moment or product of inertia, slug-ft2

m mass of moving body, slugs

iy radius of moving mass from body center of gravity, ft

M external torque, ft-1b

t time, sec

tg actual time, sec

teo anytime after tg, sec

£ relative time, sec

v velocity of moving mass, ft/sec

X,Y,2 orthogonal body-axls system

X,¥,2 position coordinates of moving mass in body-axis system with origin
at center of gravity, ft

v angular velocity of moving mass, radians/sec

¢,9,W Euler angles, deg or radians

w angular velocity, radians/sec

W, spin rate, radians/sec

Subscripts:

b body

f final value

fs fixed space

i integer

max maximum

o initial value

value at the time at which disturbance is removed




X,¥,2 component for X-, Y-, or Z-axis
Xy,Xxz,yz component for XY-, XZ-, or YZ-plane
1,2,3,4 component for mass 1, 2, 3, or 4

A dot over a symbol denotes the derivative with respect to time.
ANALYSTS

Presentation of Approximate Solution, Restrictions,

and Procedure for Use

The procedure for obtaining an analytical solution for the uncontrolled
body motion of a rotating spacecraft is developed in the sppendix. The effects
of transient and static product-of-inertia disturbances as well as externally
applied torques on the body can be analyzed by this procedure. However, in
order to obtain acceptable accuracy with this solution, certain limitations are
imposed on the use of the linearized equations of motion. As can be seen in
the appendix, small-angle theory is used in the development of the solution.
Thus, the modified Euler angles™ produced by a disturbance must be less than
159. Therefore, in order to apply the approximate solution to a particular
problem, it must be ascertained that only small angles exist in the problem.
The maximum angular displacements resulting from a constant product-of-inertia
disturbance can be approximated by the following equations from reference 1:

2L
-l __ 9z
Puax = ten I; - Iy

(1)

— tan-l _2Ixz
emax = tan T, - Ix

In & manner similar to that of reference 1, the maximum angular displacement
resulting from a constant applied torque can be approximated by

\
U
Phax = ‘tan (Iz _ Iy)wz2 > )
2
0,0, = tan-l Ay
max (Iz - Ix)wzg

J

*The modified Euler angles used for this analysis are the same as those
used by Kurzhals in reference 1. As shown in figure 1, the body position is
defined by three consecutive angles of rotation, VY, 6, and .




Equations (1) and (2) are applicable for body configurations with inertia
ratios Ix/Iz in the interval from 0.5 to 1.0 and zero initial transverse body
angular velocities and attitude angles.

The solution presented herein is an example solution and it assumes special
cases of disturbances. However, most of the basic disturbances that would be
experienced by manned rotating space stations may be analyzed by this solution.
For example, assumptions made in the development of the approximate solution
include a constant velocity of the moving masses, a constant applied disturbing
torque, and nearly constant spin rates. These assumptions are realistic, but
are limiting in certain instances. A more general solution which considers all
possible disturbances can be determined by a method similar to that presented
in the appendix.

If a body in space is initially spinning about the axis of maximum inertia
(the Z-axis) and is disturbed from the steady-spin condition by an externally
spplied moment or an internal mass movement, the motion of the body can be
determined as shown in the following sections.

Body motion during the application of disturbance.- For the development of
the approximate solution, a relative time t* 1is defined as t* =tz - t, for
the interval O = tg S tg (wvhere tg 1s the time at which the disturbance is
removed). If the disturbance is applied to the body at zero time, the value of
to 1s zero and t* 1is therefore equal to the actual time tg, for the interval

during which the disturbance acts. For this period, the body angular velocities
about the body X- and Y-axes are

A B ¥  Bqt* A
= - —L_|cos M* + (4 - L |sin M”71, 7L (3)
“x (wx"’ Ix7\2> x0T T8 A LN I
Ap % o s Bo \sin pt* L Bot™ | A
= - cos At” + - + + (4)
v < ’° Iy7\2> ( ’° Iy7\2) A IR Iy
where
I, -~ I,
7\}( = —-L-—— (DZ (53)
IX
I, - Iy
?‘y = Wy, (Sb)
Iy
P o= My (5¢)

A = —[%ﬁ@y + iyﬂDzQDz +,%y) + Ixz,o)ymz%] (5d)




Ap = Ndix + Iyxz00g (‘Dz + 7‘x) - Iyz ,07‘91‘022

and, for initial spin about

®x,0

®y,0

The constants A, A, B,

the disturbance applied and
the body angular velocities
for the period during which

Similarly, for the interval O S t* $ t;, the modified Buler reference

angles can be found from th

_ *
¢ = ¢o cos wy,t +c0

.= .}f.y_ + (]':yz)o + IXZ; dDz)(Dz

By = ~Txnhyoz®

: 2
B = -Lyzhy

the inertial reference axis,

=0 )

=0

_ M . (Ixz,o - Iyz, o0z)%
Iy I,

Iy IY , J

~

(5e)

(51)

(5¢)

(6)

Ap, Bo, ‘hx,o , and dxy,o are dependent only on

the initial characteristics of the body.
can be solved for directly as a function of time

the disturbance acts.

e following equations:

9 sin wyt* + 5
2 wg< - N

+ Dl7‘ (sin

F
+ -—15-((1)2’0* -5
W

Z

A &, 2

. ¥* B
AE - 20 Al )+ 1 (l ~ cos wzt*)
/

Wz,

in (l)zt*>

C1 — (cos A* - cos wzt*)

Therefore,

(7)



e C
* . *
8 = 85 cos wgt™ + a>_: sin wyt™ + —72——2_—-3\-5(cos M* - cos wzt*)

Qg

. * *
. DoA (Sln AF _ sin ozt >+ B> (1 - cos a)zt*)
wz? - W A @z wg?

+ -I-F%(a)zt* - sin wzt*) (8)

Qg

Vo= wyt* (9)

where the constants are defined as

B A
= a - ._l'_ - _& w
C1 = wx,0 + Wy o T2 I8
_ ‘D&. ;0 Bow,, Ay

D = N - M>x,0 TN ']':;")'\'
E, = B1_ , Az

AP TN
Fl = ngz

2
Iy7\
B A (10)
w

C2 =a)y,o ..a)zwx’o .._&+._J:._Z_

Wby o Byw A
D2=-<——4—+7my,o- 1Z__.2_>

A A Iyh
B Ao
Eo = _25 - _1_%
Iy7\ IgN
By,
F2 = ———2
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and, for initial spin about the inertial reference axis,

¢o =0 N
8, = O
. > (1)

[
(o

By = Ox,0 + ®z80 =

6o = Oy o = wz¢o = OJ

Body motion after cessation of disturbance.- In the development of the
solution for the body motion after the disturbance ceases, the same definition
of the relative time t* was used. Since, by definition, t* = t; - t,, then

at the time the disturbance ceases 15 = tg = %5, and t* in the following
solution is again initially zero.

The body angular velocities for any time after time +tg are

* G
= t* bd sin )\t _l_ 1 - t* 12
Wy = Wy g COS A" + dy g —_ + 7\2( cos N ) (12)
* G
- cos M* + sin M* | F2(1 | cos A* (13)
oy = oy, by, I+ 5 )
where
2 N
Gy = -L 27T
1= Ix,f x2z,T
) (1)
xﬁbze
G2 = -Iy,f Iyz,f

and where Ny, %y, and N2 have to be recalculated using the final values of
the body moments of inertia Ix,f, Iy,f, and Iy g. These inertias can easily
?e computed if the final position of the moving mass is known. The values of
wx,s and Oy g may be found from the following equations by using known
values of Wy,s and wy g computed at time tg:

2 )
= _(Iz)f a Iy)f)wy)swz + Iyz)fwz
Wx,s = I
x,T
) (15)
_ (Iz,f - Ix,ﬁ)“x,é”z + Iyxz, 0
Dy,s = I
Y- J




The modified Euler angles after time tg are

H
$ = @5 cos wyt* + =& sin w,t* + ——-—l———(cos A* - cos (th*)
wz 0‘)22 - 7\2
. * *
+ J1A sin M* _ sin @t . K]é(l - cos wzt*) (16)
wg2 - N2 A Wy, Wy,
6 Hp * ¥*
8 =09 coswt*+-§sina>t*+————(cos At* - coswt)
s z oy z o 32 7
. * * K
N JoN sin A% _ sin wyt + 22 (l - cos (th-x-) (17)
w2 - N2 A ®z, Wy,
¥ = wy (t* + ts) (18)

where ¢s and 6g are already known and

¢s = Wy, g5 + Wz0g

(19)
bs = Oy, g = w, P
The constants in equations (16), (17), and (18) for @, 6, and V¥ are
. G
Hy = g, s + Wzy,s - )\gz (20a)
J1 = S - ey, g + 2 (200)
Ky = o2 (20c)
A2
. Gy,
Hp =y g - Wzy g + _%2?_ (204)




G wz&x s
J2=—)-\2——7\(ny,s-_7\__’— (206)
Ko = _<SL%> (20¢)
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Experimental Model Description

An experimental model subjected to typical simulated disturbances was
analyzed by both the approximate solution and an exact computer solution. The
rotating model is a l/5—scale model of an inflatable, torus-shaped, space-
station concept. The full-scale station, shown in figure 2, would be 30 feet

in diameter and would rotate about the axis of maximum inertia at 6% rpm to

produce a 0.2g environment for the two crew members. The products of inertia
about the transverse axes of the space station with a mass of 40O slugs would

be 11 200 slug-ft2 about the X-axis and 12 400 slug-ftZ about the Y-axis. The
product of inertia about the spin axis would be 16 300 slug-ft2.

The 10-foot-diameter model is constructed of a three-ply neoprene with an
aluminum hub and has products of inertia about the X-, Y-, and Z-axes of 46, 51,

and 67 slug—ftg, respectively. The model rotates about the Z-axis at a rate of
20 rpm. A L-inch air bearing supports the model and allows *30° of movement
about the transverse axes and complete freedom about the spin axis. Disturbance
torques are applied to the model by the firing of one of four nitrogen jets
located on the outer periphery of the model, and crew motions or cargo shifts
are simulated by masses which move in tubes as shown in figure 3. The position
of these tubes can be changed to yield radial or chordwise mass motions at con-
stant speeds. For chordwise motion, as shown in figure 3, either of the two
opposite pairs of masses (ml and mp or mz and mu) are moved at the same

time in such a manner that the crew motion or cargo shift is simulated while
the center~of-gravity position of the model remains fixed.

The model is rotated to the desired spin rate by a spin-up motor and shaft
supported by a boom assembly. The assembly is lifted away from the model after
the rotational speed has been obtained. The juncture of the spin-up shaft and
the model is a cone-frustum arrangement which allows the boom to separate from
the model with little or no tipoff error.

Instrumentation on the model includes an onboard recorder which traces the
time history of the body position with respect to inertial space. Onboard
electrical and nitrogen supplies are also included, and a programing mechanism
is used to initiate various combinations of disturbance inputs. The position
of the model is determined by a solar-cell arrangement located on top of the
hub structure. These solar cells sense the angular deviation of the model with
respect to a fixed simulated sun on the laboratory celling. Angles obtained by
this arrangement are essentially the small angular displacements of the model
about the X- and Y-axes. These angular displacements are approximately the
modified Euler angles, $ and 6, previously discussed.



RESULTS AND DISCUSSION

The approximate, exact, and experimental results are compared in figures L
to 8. These comparisons were made for several disturbances acting on the
example space station. Disturbances considered included externally applied
torques and static and transient products of inertia.

Externally Applied Torque

Figure 4 shows the motion of the model station due to an externally applied
torque. The disturbance on the model was produced by firing a jet of l-pound
thrust at a moment arm of 5 feet from the model center of gravity for 5 seconds.
The motion of the model after the torque is removed could simulate the response
of the full-scale station to the docking impact of a T00O0-pound Gemini vehicle.
Figure 4(a) shows the time histories of the body angular velocities w, and Wy
about the transverse body axes and the modified Euler reference angles ¢ and
8. It should be noted that in figure 4(a) is shown a comparison between the
exact computer solution and the approximate solution, whereas in figure 4(b) is
shown a comparison between the approximate solution and the experimental results
obtained from the model. The body angular velocities were not obtained from the
experimental results since no rate-measuring devices were included in the model
instrumentation. As can be seen in figure 4, the motions of the model station
determined by the approximate solution, the exact solution, and the experiments
are in very good agreement for the applied-torque disturbance, which resulted in
a maximum angular displacement of 4.75°.

Static Product of Inertia

In figure 5 are shown the results of a simulated static or "step" product-
of ~inertia disturbance. Two crewmen are assumed to be located at extreme posi-
tions in the space station to produce the dynamic unbalance. It should be noted
that no impulse to simulate the two men instantaneously moving from the center
of gravity to the extreme positions was imparted to the vehicle. Such a move-
ment would have been difficult to simulate on the experimental model. However,
the case presented represents a typical example of the motion of the station due
to a crevw dynamic unbalance. On the experimental model two O0.l1ll-slug masses
were located at the following coordinates: x = 3.92 feet, y = 0, and
z = 1.42 feet for mass 1 and x = -3.92 feet, y =0, and z = -1.42 feet for
mass 2. Again, good agreement was obtained from both solutions and the experi-
mental results; the maximum angular displacement for the unbalance was approxi-
mately 2.5°.

Transient Chordwise Products of Inertia
Figures 6 and 7 illustrate the motion of the station due to transient

chordwise product-of-inertia disturbances both in the direction of rotation and
in the direction opposite to the rotation of the station. Movement of the
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@masses in the direction of rotation resulted in a slightly larger maximum angu-
lar displacement than obtained for movement of the masses in the direction
opposite to the rotation (approximately 1.7° as compared with 1.4°). It was
assumed that on the full-scale station one 6-slug crewmember moved in a chord-
wise direction at a rate of 0.6 foot per second for 10 seconds. Shown in fig-
ures 6 and 7 are the time histories of the body angular velocities and Euler
angles of the 1/3-scale model for the chordwise movement of two 0.1lll-slug

masses at 0.6 foot per second for 5% seconds. The initial coordinates for the

location of mass 1 were Xxo = 3.92 feet, y, = 0, and 2z = 1.42 feet; those
for mass 2, x, = -3.92 feet, yo, =0, and z, = -1.42 feet. Each mass moved
in its respective Z-plane with absolute component velocities of 0.1L41 foot per

second in the x-direction and of 0.583 foot per second in the y-direction.
(See fig. 3.)

The station motions as calculated by the exact and approximate solutions
were in very good agreement for both types of chordwise mass movements. Although
there is a small phase shift between the approximate solution and the experi-
mental results in the Euler angle plots, the frequencies and amplitudes compare
very favorably. A possible explanation of these phase shifts is that the inflat-
able model is not a rigid body. A comparison of the flexible-body motions with a
rigid-body solution would be expected to result in similar discrepancies.

Transient Radial Product of Inertia

In figure 8 are compared the results obtained for the motion of the model
station due to a transient radial product-of-inertia disturbance. It was
assumed that on the full-scale station one 6-slug crewman moved radially out-
ward from the station Z-axis, parallel to and at a constant distance from the
X~axis. On the model, the two 0.111-slug masses moved parallel to the X-axis
at a rate of 0.6 foot per second from initial positions xg = 1.62 feet,

Yo = 0, and zg = 1.42 feet for my and x, = -1.62 feet, y, =0, and

Zo -1.42 feet for mo. Both masses moved for 3.1 seconds. Again, as in

the previous cases of mass-motion disturbances, the frequencies and amplitudes
of the station motion are in good agreement for both analytical solutions and
the experimental data obtained. However, the maximum angular deviation experi-
enced by the station due to the radial mass movement (approximately 1.1°) is
slightly smaller than that due to the chordwise mass movement.

1}

[

CONCLUDING REMARKS

An approximate solution to the equations of motion for a spinning body in
space has been developed by using small-angle theory to analyze the effects of
various disturbances on the body. Results for the approximate solution are com-
pared with experimental data obtained from a space-station model subjected to
simulated disturbances and with the results obtained from an exact computer
solution. These comparisons have shown that extremely good correlation is
obtainable between the approximate solution and the exact solution. 1In



addition, the results of both analytical solutions have been verified by the .
results of tests performed on the dynamic model.

The closed-form solution developed in this study may thus be used to
investigate the effects of both station body characteristics and disturbance
parameters on the resulting body motion. These investigations will yleld rea-
sonable results for small body angles and rates.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., May 21, 1965.




. APPENDIX

DEVELOPMENT OF THE LINEFARIZED EQUATIONS OF MOTION

In order to develop the approximate solution, a detailed analysis was per-
formed on the exact equations of motion. An example disturbance was used to
investigate the order of magnitude of the various terms in the equations. The
particular disturbance considered was the scaled mass of one crewmasn moving in

a chordwise direction on the model station as shown in figure 3.

The 6-slug

crewman was assumed to produce a typical transient product-of-inertia distur-
bance by moving at a constant velocity in the chordwise direction for a total
of 2 seconds. The scaled mass on the model was divided into two smaller masses,
m; and mp, so that the analysis would be simplified by keeping the center-of-

gravity location stationary. Two other masses, mz and m),, were present only

for initial balancing purposes. This type of disturbance analysis also allowed
easy substantiating of analytical data with results obtained from tests on the
existing experimental space-station model, the characteristics of which were

used for this analysis.

The rotational equations of motlon for a spinning body in space, as

derived in references 1 and 2, are

My = Iy - Ixyby - Ixzdz + Ixwx - Ixywy - Ixzwz

I

- w(Tyvy - Tymvz - Tayox) + oy(Tava - Taox - Tyuy)

My = Iyby - Iyzdy - Ixyby + iywy - iyﬂwz - ixygx

"wx(Izwz = Iy - yﬁmy) +‘”z(1#9x - Lyy - Ixﬂmz)

My = T, - I m - Iyz&y + Tw, = Ly - Tyop

- oy (Tae - Tigoy - Txaoz) + ox(Tyoy - Tyzoz - Tiyox)

(Ala)

(A1v)

(Alc)

By definition, the space-station configuration under consideration rotates about
the axis of maximum inertia (Z-axis) at a spin rate w,. The position of a

moving mass on the body may be defined at any time by (see ref. 1)

13




APPENDIX

j 3

,Otg + Vx,ot + Xo + T cos vt

»
|
l\:él—‘

v = %ay,ote + Vy ot + ¥o + T sin vt $ (A2)

1
= §az,ot2 + Vz’ot + Zg

N
|

J

It is not unrealistic to assume that the velocity of the motion of the
crew is constant, since a crewman walking will accelerate and decelerate almost
instantaneously. In order to correlate the approximate solution developed
herein with the results from the experimental model in which linear motion of
the crew is very closely approximated, the position of the moving mass is
defined simply as

"
ft

Xo + Vg ot

(A3a)

y Yo + Vy’ot

and, inasmuch as the motion of the crew is always at the same z-coordinate,

o (A30)

N
i}
N

If the positions of any number of masses m; at any time do not affect the

center-of-gravity position of the overall body, the products of inertia for a
body are defined as

Iyz = Zm1Xi21 (Aka)
Iys = ZmiYiZi (AkDp)
Iy = Zmixiyl (Ake)

In addition, for any number of masses m;, the body moments of inertia about
the X-, Y-, and Z-axes are defined as

1k
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o\ )

Iy = Ix,p + Z mi(yie + 24 )
= Iy,b + Z mi(xie + Ziz)
Iz,p + E;: mi(xi2 + Yi2)
J

Equations (A5) also apply only if there is no change in the center-of-gravity
position, as in the case of the experimental model used in the present
investigation.

(A5)

T~

)
I

Iz

In order to investigate the order of magnitude of the terms of equa-
tions (Al), the values of the body moments of inertia and products of inertia
were calculated by substituting the characteristics of the model and of the
transient product-of-inertia disturbance into equations (A3), (AL), and (A5).
The values of these moments of inertia and the derivatives of these inertias
were then substituted into equations (Al) so that the relative magnitudes of
the terms of each equation could be analyzed. This analysis was performed at
the time the masses began to move and again at the time the masses stopped and
the body disturbance ceased. The effect of the time-varying disturbance on the
inertia terms were analyzed by using this procedure. Equations (Ala) and (Alb)
were reduced by assuming that any external torque would be applied only about
the X- or Y-axis and that the values of wy and wy are much smaller than the

value of the spin rate wy;. Eliminating all second-order terms then yielded

My = Luby + (IZ - Iy)wzuxy - (IXZ - T-yz“)z)“’z
(6)
My = IyU.)y- - (IZ - Ix)(l)zﬂ)x - (Iyz + Ixz(l)z)().)z
and from equation (Alc) the spin speed was found to be approximately constant.

In addition, the change in the values of the body moments of inertia due to the
mass movement was negligible.

Differentiating equations (A6) and assuming Iy Iy, I;, and w,; con-
stant ylelds

My = I + (Iz - Iy)wz(by - (Ixz - iyza)z)(nz'
. (A7)
My = Iy - (IZ - Ix)wzd>x - (Iyz + Ixzwz)wz

15



APPENDIX

and combining equations (A6) and (A

p—

By + Nowg = =My - MMy +

By + MNwy Ilyfviy+7xxMx+

where

)\2

7) yields

=)
ixzwz - Iyzmy (‘Dz + ?"y) - Ixz7\y‘”z2

fyzwz + Iy (wz. + 7‘x) - Iyz7"x“-‘22

Ny

(48)

(A9)

Substituting equations (A3), which represents the positions of the moving

masses on the model, into equations

XZ

Iyg =

and the derivatives of these equati

IXZ

16

(Aka) and (Abb) yields

= mzo(xO + Vx,ot)

mzg (Yo + Vy, ot)

ons are

= mzoVy, ow

mZOVy-’ fo) g

=0

(A10)

(A11)



. APPENDIX

The products of inertia can be written as

Ixz = Ixz,0 + Ixzt
(A12)
I

vz = Iyz,0 + Iygt

Also, the disturbing torques for the experimental model of the present investi-
gation are not time-varying; therefore My = My = O, and, with equations (A12),
equations (A8) become

_ ) . N
Wy + 7\2“))( = %l‘-?\yMy - Iyz(uz(wz + 7\y) - IXZ,o-)\y‘Dze - Ixz7"y“’zet]
> (a13)

]

("Sy + 7\2“)3( %&'E"){Mx + ixz(l)z((l)z + 7\x) - Iyz,o),xmze - Iyz7\x‘D22£\

J

If a relative time t* 1is chosen to be t* = tg - t5 for the interval
0 < ta s tg (where tg 1is the time at which the mass stops moving or the
torque is removed), then, when to =0, t* = tg. If this definition of t*

is used, the body angular velocities wy and Wy during this interval are

found from the solution of the second-order differential equations (A13)
(assuming a constant spin rate) and are

A . B . * B t* A W
Wy (Dx,o - 12>C0s ¥+ be,o _ 12>51n7\7\t + 1 + 1

]

TN TN I IgNe
> (A1k)
A . B . *  Bot¥ A
wy = oy o - 2_\cos ¥ + Wy o = 2 \sin N 4, 2, 2
’ G S V=) B I TN
y v y v
where
r‘ . . éj\
A = -L?\.yMy + Iyzwz(wz + ?\y) + Ixz,o7‘y‘bz_'
Bl = —ixz}\yﬂ)zg
5 (A15)

Ap = NMy + ixzwz (‘Dz + )\X) - Iyz ,07\)1“)22

B2 = —Iyz7\x(l)22

17
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If the body is initially spinning about the Z-sxis only, then ‘
Wy o =Wy o =0, and from equations (A6)

. A
My (Ixz,o - Iyz,d”zy”z
®x,0 = T + T
x X
. 5 (A16)
_ My (Iyz,o + Ixz,omz)wz
Sys0 =] I
Yy Y p

In reference 1, it is shown that the body motion may be related to a set
of modified Fuler angles. The equations involving these angles and the body

rates are

¢ = Wy + Wy tan 0 sin @ + w, tan 0 cos ¢\

0

1l

<.
1i

Now, if 6 and @ are assumed to
and ¢ can be approximated by the
of 6 and ¢ can be approximated
mation and assuming that 6¢ <1,
reduce to

<

W, COs @ sec & + w, sin @ sec ©

Wy cos $ - w, sin @ ? (A1T)

Y J

be small, then the sine and tangent of 6
angles themselves and the cosine and secant
by unity. By using this small-angle approxi-
wy <<awz, and wy << wy, equations (ALT)

= Wy + Wy (A18)
= Wy - wz¢ (Al9)
= w, (A20)

The time histories of these modified Euler angles must now be obtained. These
angles, illustrated in figure 1, define the position of the body with respect
to a set of fixed-space axes at any time and are necessary to determine the

body motion completely. Differentiating equation (A18), solving for 8, and
substituting into equation (Al9) yields

B w0,?8 = iy + ooy (A21)

and in a similar manner the following may be obtained from equations (Al9) and

(A18):
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6+ w20 = by - aywy (A22)

The equation for ¥ can be found by direct 1ntegrat10n of equation (A20).
After substitution for wy, oy, My, and o.\.y, equations (A21) and (A22) are

solvable differential equations. If the same definition of t* as before,
during the interval O St¥ < tg 1is used, these solutions yield

= t* + _50 i +* 4 - C1 At* t*
¢ ¢0 CcOos (DZ sin (.l)z + _)\ (C.OS cos (DZ )

. ¥  sin o, t* E
o DN fsin A¥ 2%\, 2 (1 _ cos wzt*)
2 _ 7\2 A Wg, wz2

F
—%(mzt* - sin wzt*) (A23)

By,

9 * c
_ * O s 2 * *
8 = 05 cos wzt” + (B; sin wyt  + (_———nzz Y- (cos At cos wgt )

D . * i * E
oA sin A% _ sin ozt + _2_(1 - cos a)zt*)

Fo * : *
+ c-bz_5(wzt - sin w,t¥) (A2k)

¥ = wyt” (A25)

where

1
Cq = + W0 - — - =2
1= %x0 T Bdly,0 T T2 I,

_ Wahy 0 Bowg . Ay
Dl = Y - M)x’o Iy—7\5- + I—x'x
B A2wg,
By = 12 2
IA I N
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Bawg '
1= I, A8
N
B A»
= d - .2 4,17z
wgiby, 0 Biw, Ap
Do = - 2 Moy o - =2 -
< 3 Yo T T T I
E, - —2_ _ A%
I N
Byw,
F2 = - )

A nevw set of equations are now needed for the station motion after time

when the disturbance is removed. At time tg
By + Nwy = 61
Gy + Woy = G2
where
2
Gy =- 2 1 + Ixztg) =
1 XZ,0 X2 '8
Ix,f ( ’ )
Aoy, :
Gy = - I + Iyotg) =
2 ¥z,0 yz'ts
Iy,f ( )
If the time t* 1s again defined as t* = ty -
the time the disturbance is removed, tg = tg

tions (A26) for wy and w, in the interval tg S tg

are.

20
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equations (Al3) becomes

(A26)

2
NPz
- Ixz,f
Ix,f ’

xﬁbze
Iy,v T

Iyz,f

to, where now tg = tg, then at

and the solutions to equa-

S te

< or 0St¥<St
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\
»* . 3 t* G’l *
Wy =Wy g cOs A +wx’sSI—n)\—7‘-——+-{2-(l-cos7\t)$
(A27)
- * Lo sin n* | G2
Wy = ®y g COS N~ + by g -n)\—+ ')_\E(l - cos 7\t*)
p

In the equations for wy and Wy, the values of Wy, s and WOy s have previ-
ously been determined, and from equations (A6),

M
it = (Iz)f - Iyif)my’ Pz + Lyz, 107
Bx8 = 7 x,f
2
> (A28)
. _ (Iz,f = Ix,f)wx,s‘nz + Ixz,f‘”z2
U.\y’s - I f
Y, y

Substitution of equations (A27) and the derivatives of equations (A27)
into equations (A21l) and (A22) ylelds two additional second-order differential
equations which, when solved, are the equations for the modified Euler angles

and 6 after time +tg. These solutions are

Hi A
$ =@ cos w,t* + ?5 sin w,t* + —L—-——(cos ¥ - cos wzt*)
* * K
+ J1A (sin A* _ sin wgth) B (l - cos wzt*) (A29)
‘ng - N2 A Dy, wzg

0 H
8 = 04 cos wyt* + = sin wyt* + ———2——(cos M* - cos wzt*)
(‘DZ wz2 - 7\2

. *
+ doh sin At* _ sin gt + Ko (1 - cos wzt*) (A%0)
w2 - N\ A Wy, wg2
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where
. Gy,
Hy =g, 5 + Oy g - —Z
_Gl (Dzd)y,s
Jl = —.)\— - M)X,S + ——-_)\——
G,
=2
N
. G
Ho = by, - o, + L2
_Gp wszx,s
TR Mys t TR
Gl(l)
Ko =- Z
%?

Again at time t* =0, tg5 =t and the values of 6y and @ have already

been determined. The values of ¢S and és can be found from equations (A18)
and (A19) where, now,

¢s = Wy, + W0
(A31)
8s = ®y,s ~ wyBs

If the same definition of relative time after time ¢ty 1s used, the third
modified Euler angle V¥, from integration of equation (A20), becomes

¥ o= wg (85 4 tg) (A32)
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Figure 2.- Sketch of inflatable space station.
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(@) Photograph of experimental model. L-65-124

Chordwise motion of my

hordwise motion of m,,

Z m,
m, 1 L
X ————
m3 m2

(b) Schematic drawing of model and moving masses.

Figure 3.- Characteristics of experimental space-station model.
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Figure 4.- Motion of example station due to an externally applied torque.
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Figure 6.- Motion of example station due to a chordwise mass movement opposite to station rotation.
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Figure 7.- Motion of example station due to a chordwise mass movement in the direction of station rotation.
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Figure 8.- Motion of example station due to a radial mass movement.
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