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ABSTRACT 
97953 

T h i s  paper summarizes some of t he  more per t inent  r e s u l t s  of NASA 

invest igat ions re la ted  t o  the  aerodynamics of j e t  VTOL engine i n s t a l l a -  

t i ons .  It shows t h a t  there  i s  a base loss  i n  hovering due t o  suction 

forces  creased on the  underside of the  fuselage by the  entrainment of 

ambient a i r  i n  the  sl ipstream, and t h a t  the magnitude of t h i s  e f f ec t  i s  

re la ted  t o  the turbulence i n  the  j e t  stream and i t s  consequent r a t e  of 

mixing with ambient a i r .  It a l so  shows that  there  a r e  large l i f t  l o s ses  

and p i tch ing  moments due t o  jet-free-stream in te r fe rence  and that these 

cha rac t e r i s t i c s  can be s igni f icant ly  a l te red  by proximity t o  the  ground. 

And, f i n a l l y ,  it shows t h a t  simple bellmouth i n l e t s  give good pressure 

recovery and low d i s to r t ion  f o r  ve r t i ca l ly  mounted l i f t  engines i f  the  

i n l e t  l i p  radius  i s  su f f i c i en t ly  large,  but t h a t  such i n l e t s  a r e  not 

su i tab le  f o r  windmill s t a r t i n g  of the  engines. 
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NASA RESEARCH ON THE AERODYNAMICS OF 

JET VTOL ENGINE INSTALLATIONS 

x By Richard E. Kuhn" and Marion 0. McKinney, Jr. 

1. INTRODUCTION 

The ra ted  t h r u s t  of a j e t  engine, whether f o r  a conventional a i r c r a f t  

o r  f o r  a VTOL a i r c r a f t ,  i s  based on i t s  tes t -s tand performance with a b e l l -  

mouth i n l e t  and the design nozzle f o r  t h e  engine. 

of t he  engine i n  the  airplane i s  degraded from t h i s  tes t -s tand r a t ing  by 

various i n s t a l l a t i o n  losses .  I n  the  case of je t  VTOL a i r c r a f t  where the  

engines must support t he  a i r c r a f t  i n  hovering, t h e  gross weight of the  

a i r c r a f t  i s  d i r e c t l y  reduced by these losses.  There a re  several  sources 

of l i f t  or thrust l o s s ,  each of which a r e  only a few percent of the  rated 

t h r u s t .  However, an accurate knowledge of each i s  required t o  make rea- 

l i s t i c  estimates of t he  expected a i r c r a f t  performance. 

l i t t l e  as 3 percent i n  the  t o t a l  l i f t i n g  capacity i n  hovering would mean 

a reduction of 3 percent i n  gross weight and, i n  tu rn ,  a reduction of over 

10 percent i n  the  f u e l  t h a t  could be carried,  and, therefore ,  a la rge  

reduction i n  range from the  design value. 

The ac tua l  performance 

An e r r o r  of as 

This paper i s  not intended t o  cover all aspects  of VTOL engine 

i n s t a l l a t i o n .  

ga t ions  i n  the  following areas  are included: 

Only some of the more in te res t ing  r e s u l t s  of NASA inves t i -  

(1) Exhaust nozzle losses  

(2) Base lo s ses  i n  hovering out of ground e f f e c t  

( 3 )  Jet-free-stream induced lift l o s s  and moment i n  t r ans i t i on  i n  

and out of ground e f f e c t  

* Aerospace Engineer, Langley Research Center, Langley Stat ion,  

Hampton, Va. 
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(4) Jet-free-stream interference e f f e c t s  on react ion control  

effect iveness  

( 5 )  Losses i n  i n l e t  t o t a l  pressure 

The aerodynamic l i f t  l o s s  (suck down) i n  ground e f f e c t  i n  hovering 

i s  another important loss and has been the  subject of numerous inves t i -  

gations i n  the  past ,  but it w i l l  be touched on only inc identa l ly  here.  

The mater ia l  presented herein i s  obtained from wind-tunnel and 

s ta t ic - force- tes t  models. 

a i r c r a f t  i s  being presented i n  another paper ( r e f .  1) a t  t h i s  same meeting. 

The NASA f l i g h t  experience with the  Be l l  X-14A 

2. NOZZLE AND BASE LOSSES I N  HOVERING 

2.1. Jet-Induced Base Loss 

Basic problem.- When l i f t i n g  engines a re  in s t a l l ed  i n  an a i r c r a f t  t o  

exhaust v e r t i c a l l y  through the  bottom of the  fuselage o r  wing, a base loss 

which depends on several  f ac to r s  i s  encountered. This loss ,  a s  indicated 

by the  sketch a t  the top  of f igure  1, arises from t h e  entrainment act ion 

of the  j e t  which induces suction pressures  on the  surface surrounding the  

j e t  ex i t .  The l i f t  l o s s  created by these suction pressures f o r  various 

arrangements of multiple je ts  was the  subject of the  inves t iga t ion  

reported i n  reference 2. I n  this inves t iga t ion  some problems i n  properly 

simulating the  je t  flow were encountered. 

Effect of model plenum chamber configuration.-  It w a s  rea l ized  a t  

t h e  beginning of the  invest igat ion t h a t  t he  rectangular plenum chamber, 

which was designed t o  f i t  ins ide  the  fuselage f o r  t he  mult iple  j e t  inves- 

t iga t ion ,  was much smaller than would be desired.  The first pa r t  of t h e  

invest igat ion therefore  was t o  obtain a comparison of t h e  loads induced 

on a circular  p l a t e  by a s ingle  nozzle from the rectangular plenum 

chamber f o r  comparison with an i d e n t i c a l  plate-nozzle configuration on 

t h e  more idea l  c i r cu la r  plenum chamber. 

2 
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induced on the  c i r cu la r  p l a t e  mounted on the o r ig ina l  rectangular plenum 

were four  t o  f i v e  times as large as those induced on t h e  same s i ze  p l a t e  

on the  c i r cu la r  plenum chamber with a clean nozzle. Surveys of t he  e x i t  

flow from the  rectangular plenum indicated a d i s to r t ed  ve loc i ty  d i s t r i -  

bution with a loss  a t  t he  center, whereas the flow from the  c i r cu la r  

plenum chamber had a f l a t  d is t r ibu t ion .  Also it w a s  obvious that the 

flow from the rectangular plenum chamber was extremely rough and it w a s  

suspected that this extreme turbulence of the flow was causing the  higher 

induced loads.  Two steps were taken i n  a n  attempt t o  check t h i s  hypothesis. 

The rectangular plenum chamber was modified by i n s t a l l a t i o n  of some f a i r i n g s  

and a red is t r ibu t ion  of the o r i f i c e s  feeding the  a i r  i n to  the chamber t o  

improve t h e  qua l i t y  of t he  flow. Secondly, a strut was i n s t a l l e d  about 

1 diameter upstream of the  nozzle on the  c i rcu lar  plenum chamber t o  pro- 

duce a roughened flow. 

ve loc i ty  d i s t r ibu t ion  than was present on the  o r ig ina l  rectangular plenum 

chamber. 

changes increased t h e  l i f t  l o s s  f o r  the  cyl indrical  plenum chamber and 

g rea t ly  reduced the  losses  f o r  t he  rectangular plenum chamber. 

changes i n  the  l i f t  losses  did not correlate  with the  e x i t  ve loc i ty  

d i s t r ibu t ion .  

This a l so  produced a much grea te r  d i s to r t ion  of t he  

A s  shown by t h e  l i f t - l o s s  curves a t  the  top of f igure  2, these 

These 

The l i f t  l o s ses  w e r e  found t o  correlate  with the  rate of decay of 

t h e  j e t  with dis tance downstream from the  e x i t  as shown by the  curves a t  

t h e  bottom of f igu re  2. 

t h e  dynamic pressure d i s t r ibu t ion  a t  a distance x downstream of the  

nozzle divided by the dynamic pressure at  t h e  nozzle as a function of 

dis tance from the  nozzle i n  nozzle diameters. 

o r i g i n a l  rectangular  plenum chamber exhibited t h e  most rapid decay of 

dynamic pressure and produced the  highest l i f t  losses .  

c i r c u l a r  plenum chamber with smooth flow had the  lowest decay rate and 

These curves present t h e  r a t i o  of t he  peak of 

A s  w i l l  be noted, t h e  

The o r ig ina l  

3 



t h e  l o w e s t  l i f t  losses .  The modified rectangular plenum chamber and the  

c i rcu lar  chamber with the  roughened flow had similar lift losses  and 

similar decay curves. 

The correlat ion between the  r a t e  of decay of the  j e t  and the  base 

losses  induced by the  j e t  i s  t o  be expected; both the  base loss and the 

j e t  decay are  caused by the  act ion of the  j e t  i n  entraining a i r  and both 

should be proportional t o  t h e  r a t e  of entrainment. This cor re la t ion  has 

a l s o  been found t o  hold f o r  the mult iple- je t  configurations as shown i n  

f igure  3 .  

chamber. 

i n  terms of equivalent j e t  diameters where 

of a single j e t  which would contain a l l  of the area of the multiple je ts .  

An empirical correlat ion of the base l o s s  with the r a t e  of decay of t he  

j e t  was developed i n  reference 2 which produced the following expression: 

These data  were obtained w i t h  t he  modified rectangular plenum 

Here the  decay curves a re  presented as a function of dis tance 

represents t he  diameter De 

i s  the maximum r a t e  of decay of the dynamic pressure i n  

\" t) max 

the  j e t  and 
I 

decay ra te  occurs, 

Additional data on 

i s  the  dis tance downstream a t  which t h i s  maxi.mum 

t h a t  is ,  t h e  in f l ec t ion  point of the  decay curve. 

t h e  e f f e c t  of wing height on nozzle project ion below 

t h e  fuselage a re  given i n  reference 2. 

Small-scale-large-scale comparison. - The preceding base-loss data  

were obtained using small cold j e t s  with an equivalent diameter of 

2.25 inches. I n  view of the  importance of t h e  qua l i t y  of t h e  flow i n  the  

4 



j e t  es tabl ished i n  t h i s  study a second invest igat ion ( r e f .  4) was under- 

taken using a fu l l - sca l e  585 engine. 

a l t e rna te  t a i l  pipes; one f o r  a s ingle- je t  invest igat ion and one w i t h  

spec ia l  exhaust ducting t o  produce a four- je t  configuration. The inves t i -  

gat ions were run with three  d i f fe ren t  s izes  of rectangular p l a t e s  t o  pro- 

duce three d i f f e ren t  r a t i o s  of p l a t e  area t o  j e t  area.  The comparison of 

these real engine data,  shown by the  darkened symbols i n  f igure  3 ,  with 

t h e  model r e s u l t s  ind ica tes  good agreement. 

The engine was equipped with two 

The cor re la t ion  between the  base loss  and the  r a t e  of decay of the 

j e t  as presented above ind ica tes  a need for  information on the  decay r a t e  

f o r  ac tua l  j e t  engines. Decay curves f o r  only two fu l l - sca l e  j e t  engines 

could be found (refs. 4 and 5 )  and these are  compared with the  decay 

curves f o r  the model j e t s  used i n  the previous invest igat ion as shown i n  

f igu re  4. These l imited fu l l - sca l e  data  indicate  t h a t  these engines a t  

l e a s t  are only s l i g h t l y  b e t t e r  than the  modified plenum chamber config- 

ura t ion  of t he  small-scale invest igat ion and not as good as t h e  c i r cu la r  

plenum chamber where special  a t t en t ion  was directed toward achieving a 

good qua l i ty  j e t .  It i s  doubtful, however, that a l l  je t  engines w i l l  

have decay curves similar t o  the  two shown here.  This i s  pa r t i cu la r ly  

true of l i f t  engines which may use annular nozzles t o  decrease t h e i r  

length o r  other spec ia l  nozzles t o  promote a rapid decay o r  t o  f a c i l i -  

t a t e  vector ing of the  flow. 

t h e  decay curves f o r  the  various engines and nozzles t h a t  may be used i n  

a je t  71ToL a i r c r a f t .  

It appears highly desirable  t o  determine 

The importance of t he  j e t  decay rate  on other interference problems 

such as t h e  suck down within ground ef fec t  i n  hovering and t h e  je t - f ree-  

stream interference e f f ec t s  induced i n  t r ans i t i on  f l i g h t  have not been 

determined. It appears log ica l ,  however, t h a t  there  should be some 

5 



e f f e c t s  and it would appear desirable  i n  the  fu ture  t o  determine the  

decay r a t e  of the j e t s  used i n  any model invest igat ions.  

2.2. Exhaust Velocity Suppression 

One of t he  problems t h a t  may face je t  VTOL a i r c r a f t  i s  t h a t  of the  

poten t ia l  erosion of the  ground by t h e  j e t  b l a s t .  

po ten t ia l  of various nozzle configurations f o r  re l ieving t h i s  problem by 

promoting rapid decay of j e t  ve loc i ty  with dis tance downstream of the  

nozzle i s  reported i n  references 6 and 7. 

nozzles investigated a re  shown i n  f igu re  5 .  All th ree  of t he  nozzles 

a re  convergent but the  s l o t  nozzles have one important fea ture  which does 

not show c l ea r ly  i n  the  i l l u s t r a t i o n .  

between the  small s ides  a t  the  end of each s l o t .  Decay curves were meas- 

ured for  a l l  of the nozzles a t  two j e t  temperatures - TO0 F and 1200° F. 

A s  can be seen i n  f igure 5 ,  a rapid decay can be obtained by using a 

multiple element nozzle arrangement and the  temperature of t h e  je t  a i r  

does not have an appreciable e f f e c t  on t h e  decay r a t e  except fo r  t he  

c i rcu lar  nozzle. 

An invest igat ion of t he  

Decay curves f o r  th ree  of t he  

They have a 5' divergent angle 

2.3. Nozzle Losses 

Nozzle th rus t  l o s ses  and temperature decay r a t e s  as well  a s  dynamic 

pressure decay r a t e s  were measured f o r  a c i r cu la r  nozzle, a 12-segment 

nozzle, a s ingle-s lot  nozzle, and nine mult iple-s lot  nozzle configurations 

w i t h  var ia t ions in  s l o t  aspect r a t i o ,  s l o t  spacing, and divergence angles 

of t h e  small walls of each s l o t .  

i dea l  th rus t  and measured t h r u s t )  on these nozzles i s  p lo t ted  i n  f igure  6 

as a function of the dynamic pressure reduction 4 and the  j e t  tempera- 

ture  reduction A!T a t  a dis tance of 3 diameters from the nozzle. The 

th rue t  loss presented i s  the  difference between the  idea l  t h r u s t  and the  

measured th rus t  and includes both i n t e r n a l  and ex terna l  losses .  The 

6 

The t h r u s t  l o s s  (difference between 



boundaries shown 

bes t  performance 

a re  not fundamental but represent the  envelope of t he  

obtained from the  12 nozzles. 

I n  view of the  importance of the decay curves t o  the base loss ,  as 

discussed previously, some of the  nozzles were tes ted  both alone and with 

a la rge  p l a t e  surrounding the nozzle t o  represent t he  lower surface of a 

wing o r  fuselage.  

l age  appreciably increased the  t h r u s t  losses. 

f o r  the  with-fuselage case includes the  base-loss forces  on the  fuselage.)  

The increment between the  nozzle-alone and with-fuselage curve shown i n  

f igure  6, however, i s  appreciably less than would be estimated from the  

decay curves and the  base-loss equations shown above. This discrepancy 

indica tes  t h e  importance and problem of proper appl icat ion of nozzle and 

base-loss data  as discussed below. 

A s  shown i n  f igu re  6, the i n s t a l l a t i o n  of t h i s  fuse- 

(The th rus t  l o s s  shown 

2.4. Superposition of Base Loss and Nozzle Loss 

It was noted i n  reference 7 t h a t  high suction pressures were gen- 

e ra ted  on the  surfaces between the  s l o t s  of t h e  mult iple-s lot  nozzle as 

would be expected. These and similar pressures induced on the  sloping 

ex te r io r  s ides  of the  nozzles a r e  induced by the  entrainment act ion of 

t he  j e t  and represent a "base loss"  t h a t  is  contained i n  the  nozzle- 

alone da ta .  That is ,  a s  indicated i n  figure 7, the  nozzle-alone data a re  

a combination of i n t e rna l  and ex terna l  losses.  I n  order t o  properly 

apply t h e  base-loss data  of reference 2 and t h e  nozzle-loss data  such as 

t h a t  obtained from reference 7, it i s  necessary t o  determine how much of 

t h i s  nczzle  loss i s  external  loss ;  or, s ta ted another way, t o  determine 

how much of the  base l o s s  i s  already included i n  the nozzle-loss data.  

The inves t iga t ion  of reference 7 was not s e t  up t o  determine t h i s  break- 

down and t h e  breakdown cannot be made with accuracy; however, it appears 

that even t h e  circular-nozzle-loss data  contain some externa l  loss and 

7 



that  anywhere from 1/3 t o  1/2 of the  nozzle losses  could be ex terna l  

1.osses. 

If the  s l o t s  a re  far enough apar t  (as with a s ingle  s l o t  per engine 

on a multiengine configuration) ground proximity can give favorable pres- 

sures  between the  s l o t s  a s  indicated below. The spacing of multiple 

s l o t s  on a s ingle  engine nozzle, as investigated i n  reference 7, i s  too 

close t o  experience t h i s  favorable e f f e c t ,  however. 

3. INTERFERXNCE EFFECTS I N  TWSITION 

The l o s s  i n  l i f t  and the  nose-up pi tching moment created by suction 

pressures induced beside and behind the  j e t s  by interference w i t h  t he  

free-stream flow i n  t r ans i t i on  f l i g h t  have been the  subject of numerous 

invest igat ions by NASA and many other organizations (see r e f s .  9 and 10, 

f o r  instance) .  Most of these invest igat ions have been made out of ground 

e f f e c t  and w i t h  only the e x i t  flow simulated. 

been made t o  inves t iga te  the e f f ec t s  of ground proximity and t o  inves t i -  

gate  the poss ib i l i t y  of mutual interference e f f e c t s  between the i n l e t  and 

e x i t  flows. 

Two recent s tud ies  have 

3.1. Ground Effec ts  on J e t  Interference 

The e f f e c t s  of ground proximity on the  l o s s  i n  l i f t  and nose-up 

pitching moment induced on a wing-body combination f o r  s i x  d i f f e ren t  

arrangements of v e r t i c a l  j e t s  were invest igated i n  reference 10. 

three of these configurations a re  presented i n  f igure  8 t o  show the  com- 

parison of the induced e f f e c t s  out of ground e f f e c t  with those obtained 

a t  a height of 1 ef fec t ive  diameter. The da ta  shown here represent 

only the jet-induced forces  due t o  free-stream ve loc i ty  and due t o  ground 

proximity. The d i r e c t  t h r u s t  of t he  j e t ,  t h e  base loss, and the  aero- 

dynamic forces  corresponding t o  the  power-off condition have been 

8 
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subtracted from the  data t o  leave only the  interference l i f t s  and moments 

due t o  ve loc i ty  and ground. 

e f f ec t ive  ve loc i ty  r a t i o ,  as suggested i n  reference 11, which i s  t h e  

The data a re  presented as a function of t he  

square root of the  r a t i o  of f r e e  stream t o  j e t  momentum per u n i t  area,  

and which takes  in to  account the  difference i n  densi ty  r e su l t i ng  from 

differences i n  j e t  temperature. 

The da ta  of f igure  8 indicate  some s ignif icant  e f f e c t s  of t h e  ground 

on the  interference e f f ec t s .  For the  s ingle- je t  case a very la rge  suck 

down w a s  experienced i n  hovering (e f fec t ive  ve loc i ty  r a t i o  of 0) i n  

ground e f f ec t ,  but t he  addi t ional  l i f t  l o s s  due t o  ve loc i ty  was only 

s l i g h t l y  affected by the ground. The induced pitching moment due t o  

veloci ty ,  however, was g rea t ly  reduced indicat ing t h a t  t he  suction pres- 

sures  behind the  j e t  were probably reduced by ground e f f e c t  and those 

beside the  j e t  were increased. The four- je t  case, a s  would be expected, 

shows considerably l e s s  suck down due t o  ground e f f e c t  a t  zero e f f ec t ive  

ve loc i ty  r a t i o  and shows a marked reduction i n  both the  l i f t  and pi tching 

moment induced by forward veloci ty  thus  indicating a general  reduction i n  

the  induced suction pressures.  The two-slot configurations which had a 

favorable ground e f f e c t  a t  zero speed experienced a s l i g h t  increase i n  

in te r fe rence  e f f ec t s  due t o  forward velocity.  I n  general ,  the  data  of 

reference 10 and f igu re  8 indica te  t h a t  the e f f e c t s  of ground proximity 

on the  jet-free-stream e f fec t s  are highly configuration dependent and 

t h a t  no general  conclusions can be drawn a t  t h i s  t i m e .  

3.2. Mutual Inlet-Exi t  Interference Ef fec t s  

The question of t h e  app l i cab i l i t y  of the pr inc ip le  of superposit ion 

t o  the  problems of e x i t  in te r fe rence  e f f ec t s  and i n l e t  interference 

e f f e c t s  i n  combination has frequently been raised; t h a t  is, can the  e x i t  

e f f e c t s  be measured on one r i g  and the  i n l e t  e f f e c t s  on another and the  
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r e su l t s  simply added t o  determine the  cha rac t e r i s t i c s  of the t o t a l  con- 

f igurat ion.  

problem f o r  a l if t-engine-type i n s t a l l a t i o n .  

u re  9 i l l u s t r a t e  the  data obtained f o r  the  simulation of a s ingle  engine 

i n  a body. 

corresponded t o  a l i f t  fan engine with a bypass r a t i o  of about 2. 

model was set up so t h a t  the  a i r  drawn in to  the  i n l e t  could be pumped off 

independent of t he  e x i t .  The a i r  f o r  t he  e x i t  was brought i n t o  the  model 

separately through high-pressure tubing, thus the i n l e t  and the  e x i t  could 

be run separately o r  simultaneously. 

An invest igat ion was recent ly  undertaken t o  invest igate  t h i s  

The r e s u l t s  shown i n  f i g -  

The e x i t  t h rus t  t o  i n l e t  weight-flow condition simulated 

The 

The data  shown i n  f igure  9 indicate  t h a t  within the  accuracy of t he  

da ta  there  a r e  l i t t l e  o r  no mutual in te r fe rence  e f f ec t s .  

moment due t o  the i n l e t  corresponds t o  the i n l e t  drag a t  a dis tance of a 

l i t t l e  over 1 i n l e t  diameter above the  upper surface of the body. 

of t h i s  i n l e t  moment and the e x i t  interference moment i s  almost i den t i ca l  

t o  the  measured data  with both the  i n l e t  and t h e  e x i t  operating simultane- 

ously. 

equal t o  the  calculated i n l e t  momentum drag. 

due t o  pos i t ive  pressures  induced on the  curved surface ahead of t he  e x i t .  

The sum of the  drag increment measured on the  i n l e t  and e x i t  separately i s  

s l igh t ly  l e s s  than the  drag measured with t h e  i n l e t  and e x i t  operating 

simultaneously. 

accuracy of t h e  drag data;  so, i n  general ,  f igure  9 indica tes  negl igible  

mutual interference between t h e  i n l e t  and e x i t  flows. 

The pi tching 

The sum 

The drag increment due t o  the  i n l e t  operating alone i s  exact ly  

The e x i t  drag appears t o  be 

The difference,  however, i s  the  same as  the  order of the  

There a r e  a wide va r i e ty  of configurations on which the  p o s s i b i l i t y  of 

mutual interference e f f e c t s  between t h e  i n l e t  and e x i t  flows might be 

encountered. 

a f a i r l y  small i n l e t  mass flow i n s t a l l e d  i n  a r a t h e r  la rge  body. Similar 

invest igat ions involving other  configurations with much l a r g e r  i n l e t  mass 

10 
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flow and with the  i n l e t  and e x i t  i n  much closer proximity than w a s  pos- 

s i b l e  i n  t h e  present simple model w i l l  be  required before it can be s ta ted  

conclusively t h a t  there  are no in l e t - ex i t  mutual interference e f f e c t s  t o  

be concerned with., 

3.3  Interference Effec ts  on Reaction Controls i n  Transi t ion 

The losses  i n  l i f t  induced by t h e  jet-free-stream interference e f f e c t s  

discussed i n  the  previous section have been found t o  be a function of the  

r a t i o  of the  model planform area t o  j e t  area. This f a c t  has suggested 

t h a t  t he  effect iveness  of reaction-control j e t s  such as the  ro l l -cont ro l  

j e t s  near the  wing t i p  may suffer s ign i f icant  losses  i n  effect iveness  i n  

t r a n s i t i o n  i n  view of the  very high ratios of wing area t o  j e t  area 

involved i n  such in s t a l l a t ions .  A wind-tunnel invest igat ion of t h i s  

problem was undertaken i n  which the  rol l -control  j e t s  were operated a t  a 

pressure r a t i o  of 6. Results a r e  shown i n  f igures  10 and 11 i n  terms of 

t h e  r a t i o  of r o l l  control  a t  a given ve loc i ty  t o  the  r o l l  control  pro- 

duced by t h e  react ion j e t  i n  hovering as a f'unction of fu l l - sca le  a i r -  

c r a f t  ve loc i ty .  The data are shown f o r  the case where two j e t s  i n  tandem 

were used t o  provide the necessary reaction control moment. The expected 

reduction i n  control  effect iveness  with forward speed w a s  found f o r  the 

case of 0' s ides l ip  angle. 

a t  a pos i t ive  s ides l ip  def lect ion and grea t ly  reduced, and i n  f a c t  con- 

ver ted t o  a s l i gh t  increase i n  effectiveness,  a t  a negative s ides l ip  angle. 

These e f f e c t s  of s i d e s l i p  angle are much la rger  than ant ic ipated and a re  

not present ly  understood. The favorable e f f e c t s  of t he  negative s ides l ip  

case give hope t h a t  when the  reasons f o r  these la rger  e f f e c t s  a r e  under- 

stood configurations may be designed which w i l l  minimize o r  eliminate the  

loss  i n  effectiveness.  The significance of the  lo s s  i n  effect iveness  f o r  

t h e  worst encountered s i d e s l i p  angle of 30°, i s  shown i n  the  p lo t  a t  the  

The lo s s  i n  effect iveness  was g rea t ly  increased 
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r igh t  of f igure  10 which shows t h a t  13' deflect ion of each a i le ron  i s  

required t o  compensate f o r  t h i s  l o s s  i n  effect iveness .  Thus, a la rge  

pa r t  of the  normal a i le ron  controls  i s  used fo r  t h i s  purpose and the  

t o t a l  r o l l  control  f o r  a typ ica l  a i rp lane  i n  t r ans i t i on  from hovering t o  

normal f l i g h t  may not be much grea te r  than t h a t  i n  hovering whereas the 

rol l -control  requirements due t o  dihedral  e f f ec t  and ro l l i ng  moments 

induced by the main j e t s  i n  s ides l ip  i n  t h i s  range may be much grea te r  

than the hovering-control requirements. 

Two attempts were made t o  reduce the  adverse interference e f f e c t s  

These were (1) t o  move the  on the  r o l l  control  i n  t h i s  invest igat ion.  

ro l l -cont ro l  j e t s  from the leading edge t o  the  t r a i l i n g  edge of the wing 

and (2)  t o  move them t o  the wing t i p  (which was accomplished by removing 

the  par t s  of the  wing panel outboard of the  j e t s ) .  

f igure  11, these two modifications eliminated most of the  adverse i n t e r -  

ference e f f e c t s  f o r  the  condition of zero s ides l ip .  The increments pro- 

duced by these modifications were about t he  same f o r  the  30' s ides l ip  

case but large losses  i n  effect iveness  s t i l l  remain. 

A s  can be seen i n  

4. I n  CHARACTERISTICS 

4.1. I n l e t  Pressure Recovery 

An invest igat ion of t he  inlet-pressure-recovery cha rac t e r i s t i c s  Of 

pod-mounted l i f t  engines has been undertaken by t h e  NASA Ames Research 

Center using fu l l - sca l e  engines. 

i n  a pod supported from a stub wing as shown by the  photograph of f i g -  

ure  12. N o  d i f f i c u l t i e s  a t t r i bu tab le  t o  the  i n l e t s  were encountered i n  

using the engines during the  invest igat ion.  

a s  shown i n  f igure 12, and i n l e t s  with scoop-type doors, a s  shown i n  f i g -  

ure  13, were used. 

The model used f ive  583 engines mounted 

Both simple bellmouth i n l e t s ,  
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Some of t he  r e s u l t s  of the  investigation a re  shown i n  f igure  14. 
* This f igu re  shows i n l e t  d i s to r t ion  o r  pressure lo s s  f o r  t he  pod with 

bellmouth i n l e t s  f o r  a speed of 150 knots, which i s  intended t o  repre- 

sent approximately the  maximum speed a t  which the  l i f t  engines would have 

, and the  mT, av The t o t a l  pressure recovery i s  given by - 
Q,. 

t o  be operated. 
L 

d i s to r t ion ,  by the parameter PTymax - PT,min which ind ica tes  t he  m a x i -  

TO 
P 

mum total-pressure difference across the face of the engine a s  a f r ac t ion  

of t he  free-stream t o t a l  pressure.  Three points  should be noted from 

these  data .  F i r s t ,  a t  full engine t h r u s t  the  i n l e t  pressure losses  are 

small and the  d i s to r t ion  i s  low. 

t i o n  a re  grea tes t  f o r  i n l e t s  2 and 3 which a re  near t he  high suction 

region a t  t he  leading edge of t he  wing. 

t h e  i n l e t  t o  the  leading edge of t h e  wing i s  grea tes t  a t  high angles of 

a t t a c k  where the  leading-edge suction forces a re  the  grea tes t .  

f i n a l l y ,  t h e  d i s to r t ion  and t o t a l  pressure lo s s  a re  most severe f o r  the 

i d l e  t h r u s t  case, but  no d i f f i c u l t i e s  were experienced with the  585 engines 

under these  i n l e t  conditions. The amount and type of d i s to r t ion  t h a t  can 

be to l e ra t ed  vary considerably from one engine t o  another, and whether o r  

not these  values would be acceptable with other  engines i s  not known. 

Additional cor re la t ion  and ana lys i s  of available i n l e t  da ta  are needed 

t o  arrive a t  a d i s to r t ion  c r i t e r i o n  that can be used as a guide i n  the  

design of both i n l e t s  and engines. 

10-percent d i s to r t ion  experienced here m i g h t  be used as a t en ta t ive  guide. 

Second, t h a t  t he  lo s ses  and d i s to r -  

The e f f e c t  of this proximity of 

And, 

I n  the mean t i m e  t he  value of 8- t o  

Scoop i n l e t s  such as those shown i n  f igure  13 were found t o  be no 

b e t t e r  than the simple bellmouth i n l e t s  with regard t o  flow d i s to r t ion .  

I n  f a c t  they  had t o  be very careful ly  ta i lored  t o  avoid having grea te r  

d i s t o r t i o n  than the  simple bellmouth in l e t s .  



For simple bellmouth i n l e t s  t he  radius  of t he  upstream l i p  of the  

i n l e t  i s  a c r i t i c a l  design fac tor .  

t he  f l o w  w i l l  break away from t h e  l i p  and give large d i s to r t ions  and 

pressure losses .  

losses  are given i n  f igu re  13. A t  the  l e f t  i n  t he  f igure  i s  shown data 

on i n l e t  t o t a l  pressure l o s s  ( r e l a t ed  t o  free-stream dynamic pressure) 

as a function of the i n l e t  ve loc i ty  r a t i o  (free-stream veloci ty/  

veloci ty  a t  the  face of t he  engine). These data  a re  from a number of 

d i f fe ren t  sources, references 12 and 13 and unpublished data,  and a r e  

a l s o  f o r  both small-scale models and fu l l - sca l e  engine in s t a l l a t ions .  The 

da ta  show t h a t  as the ve loc i ty  r a t i o  increases  the losses  rise sharply, 

evidently as a r e s u l t  of i n l e t  l i p  separation. 

If the  i n l e t  l i p  radius  i s  too  small, 

Some data  showing the  e f f e c t  of l i p  radius  on pressure 

The p lo t  a t  the  r igh t  i n  f igure  15 i s  a crossplot of t h e  data  a t  t h e  

l e f t  showing the i n l e t  l i p  radius  required t o  keep the  i n l e t  total-pressure 

losses  down t o  an a r b i t r a r y  20 percent of the  i n l e t  dynamic pressure.  This 

p lo t  shows a rough cor re la t ion  of ve loc i ty  r a t i o  with i n l e t  radius,  and 

a l so  shows somewhat b e t t e r  performance a t  model scale .  T h i s  l a t t e r  point 

i s  surprising because previous experience with ducted propel ler  conf igu- 

ra t ions  ( r e f .  14) had indicated premature l i p  separation a t  small scale  

on the  bas i s  of force- tes t  data.  There a re  several  f ac to r s  t h a t  could 

account f o r  the  apparently b e t t e r  performance of the  model i n l e t s  ind i -  

cated by f igu re  15. In  t h e  case of t he  configuration of reference 13, 

where a direct-model-full-scale comparison was attempted, t he  survey 

plane location of t h e  fu l l - s ca l e  configuration could not be duplicated on 

t h e  model because of the  g rea t e r  thickness  of t h e  model fan (ref. 15). 

Thus the survey was c loser  t o  the  i n l e t  on t h e  model than on the fill- 

scale  a r t i c l e ;  and, as pointed out i n  reference 12, t h i s  would reduce the  

i n l e t  losses thus determined. Also, t he  e f f e c t  of t h e  fan  load d i s t r ibu -  

t i o n  i s  unknown, but  may be s igni f icant .  The fu l l - sca l e  fan had a 
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reasonably uniform r a d i a l  d i s t r ibu t ion  of load as compared t o  the  model 

which was highly loaded toward the  blade t i p s .  

of t he  t i p  sections of the  model fan,  as compared t o  the root sect ions 

which experienced some reversed flow, would tend t o  reduce the tendency 

f o r  t he  flow t o  separate from the  walls of the duct. Also a l l  the  i n l e t s  

were v e r t i c a l  except those on the  Ames 5-engine pod where the  i n l e t s  were 

canted 10' ahead of v e r t i c a l .  

differences,  the data  of figure 15 emphasize the  importance of providing 

adequate i n l e t  l i p  radius  t o  delay flow separation within the  range of 

ve loc i ty  r a t i o s  expected f o r  t he  airplane.  

The g rea t e r  effect iveness  

I r respect ive of these model-full-scale 

4.2. Effect  of I n l e t  on Engine Windmilling 

Another cha rac t e r i s t i c  t h a t  was investigated i n  the  Ames tests with 

t h e  l i f t -engine  pod was engine windmilling with various i n l e t s  and a t  

various angles of a t tack .  Some of t he  data from the  invest igat ion a r e  

shown i n  f igure  16. 

percent ra ted  engine rpm) as a function of angle of a t t ack  f o r  the simple 

bellmouth i n l e t s  (with a def lec tor  ahead of the  e x i t  of engine No. 1) and 

f o r  scoop i n l e t s .  

qu i te  unsat isfactory from the  standpoint of engine windmilling with a view 

toward windmill s t a r t i ng .  

engine 3 windmilled i n  the  wrong direct ion.  On the  other  hand, the  engines 

windmilled f a i r l y  wel l  with the scoop i n l e t s .  It should be noted t h a t ,  

f o r  e i t h e r  type of i n l e t ,  t he  windmilling r a t e  f o r  engine 3 dropped of f  

markedly as angle of a t t ack  was increased. These cha rac t e r i s t i c s  prob- 

ab ly  resu l ted  from t h e  low-pressure f i e l d  on t h e  top  of t he  wing near 

t h i s  i n l e t .  

This f igu re  shows plots  of windmilling r p m  ( i n  

The data  show t h a t  the simple bellmouth i n l e t s  were 

Engine 4 would hardly windmill a t  a l l ,  and 

It was a l so  observed during the  t e s t s  t h a t  s t a r t i n g  the  engines with 

e l e c t r i c  starters a t  150 knots and 

type of i n l e t .  

a, = 8' was no problem with e i t h e r  
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5. CONCLUDING REMARKS 

This paper has summarized some of t he  more per t inent  r e s u l t s  of 

some recent NASA invest igat ions re la ted  t o  the  aerodynamics of j e t  VTOL 

engine in s t a l l a t ions .  I n  many cases these are continuing programs and 

f i n a l  conclusions cannot be s ta ted  a t  t h i s  point .  The most per t inent  

conclusions from t h e  present summary appear t o  be the  following: 

Jet-induced base lo s s  i n  hovering.- The jet-induced base l o s s  

encountered i n  hovering out-of-ground e f f e c t  i s  a function of the r a t i o  

of t o t a l  configuration planform area t o  j e t  area and of the  r a t e  of 

decay of t he  j e t s .  An accurate predict ion of the base losses  f o r  a 

given configuration requires  that the decay curves f o r  fu l l - s ca l e  engines, 

with the nozzles t o  be used i n  the a i r c r a f t  i n s t a l l ed ,  be known. Also, 

care must be exercised i n  applying base-loss increments and nozzle- 

t h r u s t  increments, t o  see t h a t  the external  p a r t  of t he  nozzle loss  i s  

not accounted f o r  twice i n  predict ing the  t o t a l  system performance. 

Interference e f f e c t s  i n  t r ans i t i on .  - The jet-free-stream i n t e r -  

ference e f f e c t s  can cause la rge  losses  i n  l i f t  and large pi tching moments 

i n  the  t r ans i t i on  conditions.  These e f f e c t s  can be a l t e r ed  s igni f icant ly  

by proximity t o  the  ground; but ,  t he  manner i n  which these increments a re  

a l t e r ed  i s  highly configuration dependent. Similar ly  s ign i f icant  l o s ses  

i n  r o l l  control from react ion je ts  near the  wing t i p s  can be encountered 

a t  high t r ans i t i on  speeds, pa r t i cu la r ly  under high s i d e s l i p  conditions.  

The decrease i n  effect iveness  can be reduced by placing the  control  je ts  

as close t o  the t r a i l i n g  edge and as close t o  the  wing t i p  as possible .  

The mutual i n l e t - ex i t  in te r fe rence  e f f e c t s  i n  t r a n s i t i o n  f o r  l i f t - eng ine  

configurations appear t o  be negl ig ib le  - on t h e  b a s i s  of very l i m i t e d  

tests.  

In l e t  cha rac t e r i s t i c s .  - Simple bellmouth i n l e t s  of adequate l i p  

radius (about one-half the i n l e t  t h roa t  diameter) give reasonably 
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high-pressure recoveries and low flow d is tor t ion  throughout t he  t r ans i -  

t i o n  range f o r  l i f t  engines. 

t a i l o r e d  t o  give a s  low d i s to r t ion  as t h e  bellmouth i n l e t s .  

Scoop-type i n l e t s  have t o  be carefu l ly  

Bellmouth 

i n l e t s ,  even with a def lec tor  ahead of the engine e x i t s ,  do not provide 

adequate engine windmilling charac te r i s t ics  f o r  windmill s t a r t i n g  - 
par t i cu la r ly  a t  high angles of a t tack.  Scoop i n l e t s ,  however, can provide 

sa t i s f ac to ry  windmilling charac te r i s t ics .  
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Figure 1.- Effect of plenum chaxber configuration on base loss .  
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Figure 2.- Correlation o f  base lo s 

CIRCULAR PLENUM 
0 SMOOTH FLOW 
0 ROUGHENED FLOW 

jO\ 0 L-2  

RECTANGULAR PLENUM 
0 ORIGINAL CONDITION 
A MODIFIED 

s w i t h  j e t  decay. 



Orez= --- 

.p. I I I I I 

HE: ~ , OSMALL COLD 
JET 

ENGINE 
- AL ; ,021 O J 8 5  

T 
-.04 

~ 4 ,OSMJAELTsCOLD 
0 2 4  

J85 
ENGINE 

I I I I J 
0 2 4 6 6 1 0  

x / D ~  

Figure 3.- Effect of jet arrangement on base loss and jet decay. 
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Figure 4.- Comparison of model jet and full-scale-engine jet decay. 
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Figure 5.- Effect of nozzle configuration and temperature on jet decay. 
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Figure 6.- Thrust loss and j e t  decay of suppressor nozzles. 
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Figure 7.- Thrust  losses  on in s t a l l ed  nozzles. 
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Figure 8.- Ground ef fec t  on je t  interference i n  t r ans i t i on .  
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Figure 9.- Mutual interference of i n l e t  and ex i t  flows. 
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Figure 10.- Effect of  velocity on r o l l  control f r o m t i p  j e t s .  
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Figure 11.- Effect of je t  location on r o l l  control.  

Figure 12.- Ames five-engine pod with bellmouth i n l e t s .  



Figure 13.- Ames five-engine pod with scoop in l e t s .  
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Figure 14.- In l e t  dis tor t ion and pressure recovery. 



.57 0.5 5J85 POD SCALE 

.23 1.0 REF: I I 

.23 .24MODEL OF CONFIGURATION OF REF: I I 
1 

A '20 .47 .5 .5 }REF: IO(M0DELS) 

I.2- 

.8- 

4- 
qi 

I I 
0 4 - .8  1.2 1.6 2.0 2.4 0 .2 A .6 

Figure 15.- Effect of inlet radius on pressure recovery. 
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Figure 16. - Engine windmilling characteristics. 
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