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It is well known that adsorbed cesium significantly reduces the electron
work function of the emitter and collector in a cesium thermionic diode.
Figure 1, which is based on the data reported by Houstonl of General Electric,
shows how this reduction in electron work function, <A<? o’ varies with the
ratio of metal surface temperature to cesium reservoir temperature, Ts/Tcs.

In an effort to derive an analytic expression to represent data of the
type shown in Fig. 1, it is found that the metal surface plays a far more im-
portant role in the adsorption process than that attributed to it in the 1lit-
erature. It will be shown that because the presence of the metal surface, it
is necessary to consider the effective electric field acting on each adsorbed
particle, the effective polarizability of each adsorbed particle, and a new
expression for the variation in atom desorption energy with gas coverage.
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Consider the model of an adsorbed particle shown in Fig. 2. Let (Eeff)i

be the effective dipole field acting on the ith adsorbed particle. Because

o
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changed by i (Eeff)i to yield a new effective dipole moment (Efo)i

of this field, the effective dipole moment ( )i of this particle is

given by the relation
- - =
(Pepp)s = (Mgpe)s + 24, (Bpr); (1)
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The effective dipole field (Eeff)i consists of the field E,, produced

. —
by the image of the dipole oLi (Eeff)i induced in the ith adsorbed particle
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by (Eeff)i’ and the field{— E, produced by all the other effective dipoles
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(adsorbed particles), that is,

<0
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(Boge)y = Byy + & By (2)
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Assuming that the dipole field acting on each adsorbed particle is uniform

s
and equalﬁ to the value at the surface yields
A
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Ejp= £ __1-3% (3)
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Substituting equations (3) and (4) into equation (2) leads to the im-

portant new result

(’E ), = - L Z (Persly (5)
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Using the above expression for (Eeff)i in equation (1) yields the following

equation for (B;ff)i

(0...) = (@) - L i Z(?eff)ife (6)
Pere/y = \Werr/s < P i> k=173
[ — 3) kfi ik
(Zo)i

If the configuration of the effective dipoles associated with the adsorbed

particles is assumed to be a Topping square array, equation (6) may be written

as




P = (7)
T 14 9.033 A, (1,0)7/2

where all dipoles are considered as identical and the effective polarizability

¢L is defined as
eff Q‘db
A'eff=l_lo<, (€)
zo3

It should be noted that the new and unique feature in equation (7) is the use

of the effective polarizability G{’eff in the denominator. For the cesium-

tungsten system, analysis of Taylor and Langmuir's data2 yields the value of

o3
18.7 A for the effective polarizability ’L’eff of adsorbed cesium.

The atom desorption energy (P is the work W needed totake an
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adsorbed particle from the surface t
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e form of an ato
it may be written

Ta=Y w (9)
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The first term within the bracket in equation (lO) is the polarization energy,

the second term is the adsorbed particles-effective dipole field interaction

—
energy, and Eeff is the effective dipole field given by equation (5). In
- —
terms of \ meff\ R peff‘ A’ef equation (lO) becomes
eff - 2
= e — +
A (fa % L l jt eff Perr (11)
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Since
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and
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Pepe®™® = L \Peff\ (13)

equation (11) may be written in the form

AY = - L A e - ! ACPe ’
T — (1 + Z_oglfi \ \.meff\ 2 e ( 9 ) (1h)

The above expression is the desired equation for the atom desorption energy.

Equation (lh) is compared to the data of Taylor and Langmuir2 on the vari-
ation in cesium atom desorption energy from a tungsten surface. The values

—_—
for \méff\ and ”Leff are determined from their work function data, and Z,
is chosen so that the calculated values of ﬁﬁq>a fit the data at medium and

at high coverages. The various values used are

Yﬁgff\ = 9.70 Debyes
A = 18.7°A3
oft (15)
7 = 3.22°%
N =L.8x lOlh/cm2

S

Figure 3 shows the comparison of the calculated and experimental values of
ﬂﬁtfa- Points for the solid line are computed from equation (lh), and points

Tor the dotted line are computed from the equation

2
- b n;e2N 2 Qé;ee) (26)

which is equation (14) with the term oLeff/ZOB set equal to zero. Equation

1 -
A(f)a -7 L L \meff
eff

(16) corresponds to the case in which an adsorbed particle’s own image field
is not taken into account in the determination of the total dirole field acting

on it.
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It is interesting to note that the polarizability dL( of adsorbed
cesium computed from equation (8) with the values of A off and z, given
in equation (15) is 6.00 23, which is quite close to the ionic polarizability
of cesium. Also, the value of ZO/QJ is close to the ionic radius of cesium.
In this paper it has been shown that the correct polarizability which
should be used in equation (7) is the efféctive polarizability defined by
equation (8). In addition, it is demonstrated that the variation in atom de-

sorption energy is closely related to the variation in electron work function

with coverage.
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electronic charge
dipole field
effective dipole field

effective dipole moment as coverage approaches zero

unit vector normal to and coming out of surface

number of adsorption sites per unit area

effective dipole moment at coverages greater than zero
cesium reservoir temperature
surface temperature
work required to take a particle from the surface to infinity
change in work required to take a particle from the surface to infinity
change in work required to take a particle from infinity to the surface
distance between the center of an adsorbed particle and the center
of its image
polarizability of an adsorbed particle
effective polarizability of an adsorbed particle
coverage, or the fraction of surface occupied by adsorbed particles
atom desorption energy
change in atom desorption energy
change in electron work function
SUBSCRIPTS

ith and kth adsorbed particles
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