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A NOTE ON WIRE I G N I T I O N  I N  COMBUSTION-HEATED DRIVERS 

FOR SHOCK-TUNNEL APPLICATION 

By David A. Stewart and Robert E. Dannenberg 
Ames Research Center 

SUMMARY 

The problem of operating a large combustion dr iver  i s  pr inc ipa l ly  that  of 
obtaining detonation-free combustion. Certain f a c t o r s  t h a t  influence the 
performance of a wire i g n i t i o n  system and the  consistency i n  the  i n i t i a t i o n  of 
t h e  combustion process a r e  described. These f a c t o r s  a r e  based on operating 
experience w i t h  a la rge  volume dr iver  a t  t h e  Ames Research Center of NASA. 
A semiempirical method which describes t h e  physical  reac t ion  of the  wires and 
provides a cor re la t ion  between the  e l e c t r i c a l  and thermodynamic energy neces- 
sary t o  melt the wires i s  presented. It i s  shown t h a t  wire melting, not 
exploding, i s  required f o r  detonation-free combustion i n  a large dr iver  
chamber. 

1.NTRODUCTION 

The shock-driven wind tunnel  has been used widely as a bas ic  research 
t o o l  i n  high-energy gasdynamics. It i s  generally understood t h a t  the perfor- 
mance of such a device can be subs tan t ia l ly  enhanced by increasing the  acous- 
t i c  veloci ty  of t h e  dr iver  gas, by increasing the  pressure of the  dr iver  gas, 
and by making the driver-to-driven-tube area r a t i o  la rge .  Likewise, it i s  
generally accepted tha t  the  avai lable  t e s t  time i s  d i r e c t l y  r e l a t e d  t o  the  
length of the  dr iver  i n  many cases and, therefore ,  r e l a t i v e l y  long dr iver  
sections a r e  of ten  desirable .  It i s  not so general ly  recognized tha t  dr iver  
volume can be used t o  increase the  avai lable  t e s t  time. Reference 1 presents  
t h e  t h e o r e t i c a l  b a s i s  f o r  t h i s  concept, as wel l  as an experimental appl icat ion 
of a large volume heated dr iver ,  and shows tha t  it i s  p r a c t i c a l ,  and reason- 
ably economical, t o  obtain a r e l a t i v e l y  high-temperature, high-pressure dr iver  
gas i n  a large volume chamber. The combustion gas mixture i s  hydrogen and 
oxygen i n  about 80-percent helium. 
performance i s  reported i n  references 2 and 3. 

A more recent study of the  shock-tunnel 

One of t h e  attendant problems i n  using a large volume combustion dr iver  
i s  that  of obtaining smooth burning so tha t  the p o s s i b i l i t y  of damage from a 
large detonation may be avoided. I n  general, the  onset of detonation i s  char- 
acter ized by a pronounced increase i n  the rate of pressure r i s e  i n  a com- 
bust ion cycle.  A review of e a r l y  experience i n  the  1-foot shock tunnel  
ind ica tes  tha t  one out of e ight  combustion cycles w a s  close t o  detonation. 
The few times detonation did occm, it caused considerable damage t o  i n t e r n a l  
p a r t s ,  subjected the  chamber t o  high stresses, and resu l ted  i n  the  l o s s  of 
t e s t  data .  An invest igat ion w a s  i n i t i a t e d ,  therefore ,  t o  determine t h e  c r i t i -  
c a l  parameters r e l a t i n g  t o  the  i g n i t i o n  and burning of a gaseous mixture. 



The present  paper presents  t he  resul ts  of t h i s  i nves t iga t ion  as w e l l  as a 
f i r s t - o r d e r  approximation f o r  predict ing values of t h e  e l e c t r i c a l  parameters 
f o r  proper ign i t i on .  
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TEST EQUIPMEKC 

The t e s t s  w e r e  conducted i n  two gaseous environments: a hydrogen-oxygen- 
helium combustion mixture and atmospheric a i r .  The tes ts  w i t h  t h e  combustible 
mixture w e r e  performed i n  the  combustion chamber of t h e  Ames 1-foot shock 
tunnel.  The t e s t s  w i t h  a i r  (heated-wire s tud ies  only) were performed i n  the  
combustion chamber, i n  a fu l l - length  multiple-wire t e s t  j i g  and i n  a smaller 
single-wire t es t  j i g .  
scopes during a l l  t e s t s .  I n  addi t ion,  during the  t e s t s  i n  t h e  combustion 
environment, pressure t r a c e s  w e r e  taken on an oscil loscope as w e l l  as on a 
high-speed oscil lograph. 
energy system associated with t h e  combustion chamber. 

Current and voltage t r a c e s  were recorded on osc i l lo -  

Consider f i rs t  the  configuration of t h e  w i r e  and the 

The combustion dr iver  of t h e  Ames 1-foot shock tunnel  i s  shown i n  f igu re  
1. I t s  i n t e r n a l  dimensions are 27 inches i n  diameter by 25 f e e t  i n  length.  
The dr iver  gas, helium, i s  heated by the  combustion of oxygen and hydrogen t o  
a temperature of 4200O F and t o  a pressure of about 5200 p s i a  from an i n i t i a l  
pressure of 750 p s i a .  The i n i t i a l  gas volwne cons is t s  of approximately 
'7-percent oxygen, 12-percent hydrogen, and 81-percent helium. 
i n i t i a t e d  by e l e c t r i c a l l y  heating and melting wires with a discharge of energy 
from a 10-kilojoule capaci tor  bank. The ignition-wire assembly cons is t s  of 
s i x  (0.0031-inch diameter) Manganin wires s t re tched along the  length of the 
chamber as indicated i n  f igu re  2. The wires are connected i n  p a r a l l e l  and a re  
strung concentric with t h e  axis of t h e  chamber. A t  one end of t he  chamber the  
p a r a l l e l  wire assembly i s  at tached t o  a 10-inch-diameter r ing  which, i n  tu rn ,  
i s  grounded through the  chamber w a l l .  
a r e  connected t o  mechanical f i nge r s  which a re  insulated from t h e  combustion- 
chamber w a l l s .  
insure  a d e f i n i t e  chamber ground connection during the  discharge of t he  capac- 
i t o r  bank. A schematic diagram of the  capacitor discharge network i s  shown 
i n  f igu re  3. 

Combustion i s  

A t  t he  high-potent ia l  end, t h e  wires 

Two ground leads,  one a t  each end of t he  24-foot chamber, 

The multiple-wire t e s t  j i g  i s  shown i n  f igu re  4. The wires were posi- 
t ioned i n  an arrangement geometrically similar t o  tha t  used i n  the  combustion 
chamber. T h i s  j i g  w a s  located adjacent t o  the  combustion chamber so tha t  the  
tunnel  energy storage system could be used. The wires were strung between the  
two copper p l a t e s  and secured by brass  screws. The wires were heated by elec- 
t r i c a l  discharges a t  i n i t i a l  voltages f rom 10 t o  23 kV, w i t h  a f ixed  capaci- 
tance of 52 pf. Wire residue w a s  inspected v isua l ly  after each t e s t .  High- 
speed motion p i c tu re s ,  a t  a framing r a t e  of 8000 per  second, were taken of t he  
heating process a t  one i n i t i a l  voltage.  

The c i r c u i t  arrangement of t h e  single-wire t es t  j i g  w a s  similar t o  that  
of t h e  multiple-wire j i g .  The wire holder w a s  mounted on an ad jus tab le  insu- 
l a t e d  ra i l ,  which permitted t h e  wire length t o  be var ied from 0.5 t o  2.5 f e e t .  
A 0- t o  10-kV regulated power supply w a s  used t o  charge the capaci tors  and an 
a r c  gap w a s  used t o  i s o l a t e  and regulate the voltage t o  t h e  w i r e .  Tests were 
conducted with storage capaci tors  of 4 and 6 pf over a range of i n i t i a l  vol t -  
age s e t t i n g s  from 1 t o  4.5 kV. 
constants were 0.06, 0.125, and 0.300 msec, which involved w i r e  lengths  from 

With the  4-pf storage capaci tor ,  t e s t  time 
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0.5 t o  2.5 f e e t .  
1.67 f e e t  were used f o r  time constants of 0.125 and 0.300 msec. 

With t h e  6-pf storage capacitor,wire lengths  of 0.7 and 

RESlJEL'S AND DISCUSSION 

A nwnber of f a c t o r s  can influence t h e  processes i n  the  combustion chamber 
of t he  1-foot shock tunnel  so as t o  cause detonation. These include uniform- 
i t y  of t h e  gas mixture, flame-path length,  and t h e  thermoelectric behavior of 
t he  i g n i t i o n  system. A study of t h e  ex i s t ing  l i t e r a t u r e  indicated t h a t  t he  
thermoelectric process w a s  perhaps the  most d i f f i c u l t  of these  t o  define,  ye t  
it could be t h e  primary cause of detonation. 
directed toward understanding t h i s  aspect of t h e  i g n i t i o n  phenomenon. 

The experiments were thus 

Wire Configuration Considerations 

The combustion process i s  e s s e n t i a l l y  independent of t he  thermoelectric 
behavior of an i g n i t i o n  source once a self-propagating flame f ron t  i s  estab- 
l i shed  (see , e.g. , r e f .  4 ) .  However , p r i o r  t o  t h i s  time the  physical  proper- 
t i e s  of t he  wire and t h e  method used t o  heat  t he  wire can influence the  type 
of flame f ron t  t h a t  w i l l  be formed. I n  turn ,  t h e  uniformity with which chem- 
i c a l  r eac t ion  energy contained i n  the  t h i n  gaseous layer  next t o  the  w i r e  i s  
re leased w i l l  a l s o  influence the  smoothness of t h e  combustion process.  Three 
conditions which m u s t  be met i n  order t o  e s t a b l i s h  proper combustion are:  
F i r s t ,  f o r  geometric reasons, the  wire must be heated uniformly along i t s  
length i n  order t o  e s t ab l i sh  a continuous cy l ind r i ca l  flame f ront ;  second, t he  
ign i t i on  wires m u s t  be spaced so that  t h e  flame pa th  length between adjacent 
w i r e s  and t h e  w a l l  does not exceed approximately 1 foot  (The e f f e c t  of flame- 
path length on detonation has been discussed i n  refs. 1 and 5 . ) ;  and t h i r d ,  
t he  melting temperature of t he  wire mater ia l  (2320' R f o r  Manganin) must be 
grea te r  than the  c r i t i c a l  i gn i t i on  temperature of t h e  gaseous mixture. The 
c r i t i c a l  i g n i t i o n  temperature i s  the  lowest temperature of the  combustible gas 
m i x t u r e  ( i n  i t s  environment) a t  which a self-propagating chemical reac t ion  
w i l l  occur; f o r  t h e  combustible m i x t u r e  it i s  estimated t o  be about 1640' R.  

The type of w i r e  mater ia l  does not p lay  a primary r o l e  i n  the  ign i t i on  
process, provided it i s  homogeneous and noncatalyt ic .  
vide su f f i c i en t  surface a rea  and be heated t o  a temperature i n  excess of t he  
c r i t i c a l  value (see r e f s .  4 and 6) .  
defined i n  t h i s  appl icat ion,  although i n t u i t i v e l y  it should be very short  com- 
pared t o  t h e  over-al l  flame propagation time. It has a l s o  been indicated t o  
be a funct ion of t he  energy of t h e  ign i t i on  source. I n  a qua l i t a t ive  sense, 
i f  the  wire i s  t o  e s t a b l i s h  a r e l a t i v e l y  uniform cy l ind r i ca l  flame f ron t ,  it 
must be heated above the  c r i t i c a l  temperature over t h e  e n t i r e  length quickly 
enough t h a t  p re ign i t ion  a t  l o c a l  "hot spots" w i l l  not d i s t o r t  the  f ron t  
s ign i f icant ly .  

The wire need only pro- 

The time f o r  w i r e  heating i s  not c l ea r ly  

An equation w a s  developed i n  reference 4 which r e l a t e s  t h e  thermal prop- 
e r t i e s  of t h e  gas and t h e  minimum wire diameter necessary f o r  achieving the  
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c r i t i c a l  temperature and t h e  r e su l t i ng  self-propagating combustion. The equa- 
t i o n  f o r  t h e  w i r e  diameter i s  

where To i s  t h e  i n i t i a l  temperature of t h e  gas mixture, Ts t h e  c r i t i c a l  
i g n i t i o n  temperature of t h e  gas mixture, A 
gen, E t h e  ac t iva t ion  energy of hydrogen per  mole, q the  hea t  of react ion,  
and W(Ts) t he  r a t e  of chemical react ion.  The calculated minimum wire diam- 
e t e r  w a s  0.0022 inch f o r  the conditions i n  t h e  1-foot shock tunnel  ( i .e . ,  t h e  
pressure i s  constant,  t h e  temperature i s  adiabat ic ,  and the reac t ing  gases a re  
i n  stoichiometric proportions during the  s u b c r i t i c a l  per iod) .  The diameter of 
t h e  w i r e  used i s  0.0031 inch. 

t he  thermal conductivity of hydro- 

Melting Wire Study 

The multiple-wire t e s t  j i g  w a s  used f o r  determining the melting charac- 
t e r i s t i c s  of t he  ign i t i on  wires f o r  i n i t i a l  capacitor voltages from 10 t o  
23 kV f o r  t he  present  system. The r e s u l t s  indicated three  types of wire 
melting. I n  t h e  range from 10 t o  15.5 kV, the  residue consisted of wire seg- 
ments about 1 t o  1-1/2 inches long as shown i n  f igu re  5(a) ind ica t ing  t h a t  i n  
t h i s  range, t h e  melting w a s  not uniform but occurred a t  random loca t ions  along 
the  wire. Calculations show t h a t  t h e  energy discharged w a s  not su f f i c i en t  t o  
heat  t h e  complete wire t o  i t s  melting temperature. I n  the voltage range from 
16 t o  17.5 kV the  w i r e  res idue consisted of small spher ica l  beads as shown i n  
f igu re  5 (b ) ,  ind ica t ing  that  the melting w a s  uniform over the  complete length 
of t h e  wire.  I n  the  highest  voltage range, 18 t o  23 kV, the  discharge of t h e  
energy through t h e  wire w a s  accompanied by a loud "bang" and the  w i r e  residue 
w a s  widely sca t te red ,  ind ica t ing  that an explosion had occurred. The onset of 
vaporization, perhaps a t  loca l ized  centers ,  i s  a phenomenon normally associa- 
t e d  w i t h  t h e  "exploding wire" process.  
t e s t  setup there  w a s  a range of voltages i n  which the melting of t h e  wire w a s  
compatible w i t h  good ign i t ion ,  namely, t h e  range from 16 t o  17.5 kV where uni- 
form melting occurred. 

It appeared that  f o r  the p a r t i c u l a r  

The tes t  a t  17 kV w a s  repeated so  t h a t  high-speed motion p i c tu re s  could 
be taken. Selected p i c t u r e s  from t h i s  t e s t  which show t h e  condition of t h e  
wire during various s tages  of t h e  melting process are presented i n  f igu re  6. 
(The camera w a s  posi t ioned such t h a t  t he  s i x  wires are a l ined  i n  groups of 
two.) The current  h i s t o r y  corresponding t o  t h e  p i c tu re s  i s  presented i n  f ig -  
ure 7, with time i d e n t i f i c a t i o n  t o  permit cor re la t ion  w i t h  f i gu re  6. Lwninos- 
i t y  w a s  first recorded on the f i l m  at  approximately 0.250 msec a f t e r  t h e  
current  w a s  applied t o  t h e  w i r e s .  It i s  surmised tha t  a t  0.375 msec loca l ized  
melting i s  occurring along t h e  wires,  which increases  t h e  res i s tance  and 
inductance of t h e  wire system. The r e su l t i ng  increase i n  the  energy s tored 
l o c a l l y  i n  t h e  wires' magnetic f i e l d  would make t h e  Bridgeman e f f e c t  (back 
emf) ( re f .  7) an important f a c t o r  i n  t h e  energy t r a n s f e r  t o  t h e  wire. 
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A t  0.625 msec ( f i g .  6 (d ) ) ,  which corresponds t o  t h e  time just  ahead of t he  
pronounced change i n  slope of t h e  current  t r a c e  of figure 7, t he  e l e c t r i c a l  
input t o  t h e  w i r e  i s  equal t o  t h e  calculated thermal energy necessary t o  r a i s e  
t h e  temperature of t h e  e n t i r e  w i r e  t o  t h e  start-of-melt  po in t .  This poin t  
refers t o  t h e  beginning of t h e  l i q x i d  phase. The end-of-melt po in t ,  then, i s  
defined as t h e  end of t he  l i q u i d  phase. 
ning t o  t h e  end of t h e  l i qu id  phase, t h e  wire inductance and res i s tance  
increases  rap id ly  and t h e  current  flow through t h e  w i r e  i s  reduced t o  zero,  
The last  frame i n  t h e  sequence ( f ig .  6) shows t h e  w i r e  i n  a l i qu id  so l id  state 
approximately 0.2 msec after t h e  current  has reached zero. It i s  apparent, 
when comparing f igu res  6(e)  and 6 ( f ) ,  t h a t  during the  time of no current  flow, 
t h e  wire material has cooled t o  a poin t  where only a f e w  hot spots  remain. It 
seems reasonable t o  assume, therefore ,  t h a t  during the  cooling per iod the  sur- 
face tension of t he  l i qu id  metal i s  su f f i c i en t  t o  cause the  formation of l i q -  
uid spheres which harden i n t o  the  residue shown i n  f igu re  'j(b). 

During the  t r a n s i t i o n  from the  begin- 

The t e s t s  were repeated i n  the  combustion chamber with the  standard 
oxygen-hydrogen-helium gas mixture a t  i n i t i a l  capacitor voltages from 16 t o  
20 kV t o  permit cor re la t ion  of t he  j i g  t e s t s  w i t h  t e s t s  under ac tua l  combus- 
t i o n  conditions. The current t r aces  during the  capacitor discharge were 
e s s e n t i a l l y  the  same as those f o r  t h e  j i g  t e s t s ,  indicat ing there  w a s  l i t t l e  
e f f e c t  of changing from an atmospheric t o  a combustion environment. The pres- 
sure data  indicated t h a t  as the  i n i t i a l  capaci tor  voltage w a s  increased beyond 
17.5 kV, t h e  magnitude of t h e  r a t e  of pressure r i s e  increased u n t i l ,  a t  20 kV, 
t he  onset of detonation w a s  evident. 
t h e  pressure va r i a t ion  with time i s  shown f o r  combustion cycles with three  
i n i t i a l  capacitor voltage se t t ings .  It i s  apparent t h a t  a t  17 kV t he  combus- 
t i o n  w a s  smooth. A t  
20 kV the  combustion i s  not smooth, as demonstrated by the  changes i n  the  
slope of t he  curve during t h e  ea r ly  s tages  of combustion, ind ica t ing  a condi- 
t i o n  approaching detonation. Included on t h e  f igure  i s  t h e  pressure var ia t ion  
from an e a r l i e r  combustion cycle f o r  23 kV where detonation did occur. T h i s  
var ia t ion  can be characterized by the  double in f l ec t ion  i n  the  pressure-time 
curve. The in f l ec t ion  occurred i n  the  middle por t ion  of t he  combustion pro- 
cess  and w a s  followed by an increase t o  e s s e n t i a l l y  an i n f i n i t e  pressure-r ise  
r a t e  

This i s  i l l u s t r a t e d  i n  f igure  8 where 

A t y p i c a l  combustion record i s  shown i n  f igure  8(a) .  

The agreement between the  combustion tests and j i g  tests i s  very good, 
since the  conditions t h a t  produced p a r t i c l e  vaporization of t he  wires i n  the  
j i g  t e s t s  a l so  produced combustion cycles which were close t o  detonation. The 
lower voltage se t t i ngs  were not t r i e d  i n  a combustion environment because t h e  
random nature of t h e  loca l ized  melting could lead t o  detonation. The data  
from these multiple-wire t e s t s  and a study of ex i s t ing  l i t e r a t u r e  provide a 
comparative b a s i s  f o r  a method f o r  pred ic t ing  the  i n i t i a l  current  required f o r  
smooth combustion i n  simi1a.r appl icat ions.  This method i s  developed i n  t h e  
following section. 

Method of Determining Energy Requirements 

I n  t h i s  section, a f i r s t -o rde r  approximation i s  given f o r  determining 
the  i n i t i a l  current  and capacitance required for properly i n i t i a t i n g  a 
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cy l ind r i ca l  flame f r o n t  from a w i r e  i gn i t i on  source. This method i s  derived 
from t h e  avai lable  l i t e r a t u r e ,  t h e  experimental r e s u l t s  presented e a r l i e r  f o r  
stoichiometric combustion processes,  and the  "action in t eg ra l "  as determined 
by Anderson and Neilson i n  reference 8. 

It w a s  apparent from the  r e s u l t s  of t h e  multiple-wire j i g  t e s t s  t ha t  one 

To avoid 
of t h e  major problems associated w i t h  t h i s  type of i gn i t i on  ( i .e . ,  melting 
wire) may be r e l a t ed  t o  t h e  onset of t he  exploding-wire phenomenon. 
t h i s  problem, as w e l l  as any undesirable e f f e c t s  tha t  might r e s u l t  from an  
osc i l l a to ry  type of discharge, only an RC-type of capacitance discharge w i l l  
be considered i n  t h i s  sect ion.  If the re la t ionship  1/L/c << R L / ~  holds, then 
e s s e n t i a l l y  an RC discharge w i l l  follow ( r e f .  9 ) .  The i n i t i a l  inductance 
(L)  of t he  wire system can be calculated using the  re la t ionships  f o r  s e l f  and 
mutual inductances as given, f o r  example, i n  reference 10. If it i s  assumed 
that 
that  the  equation r e l a t i n g  current  and time i s  of t h e  form 

RL i s  constant during the discharge of the capaci tor  system, it follows 

where RLC i s  the  cha rac t e r i s t i c  time constant of t he  system. T h i s  expres- 
sion f o r  current-time h i s to ry  i s  compared with experimental data  i n  f igure  9, 
f o r  values of RLC from 0.06 t o  5.98 msec. The r e s u l t s  are seen t o  be i n  
subs t an t i a l  agreement f o r  about 3/4 of t he  t o t a l  discharge time. 
the  measured current  drops quickly t o  zero i n  a manner which ind ica tes  t he  
discharge i s  no longer of t he  simple RC type. For th i s  ana lys i s ,  t he  
current  flow a t  t h e  in f l ec t ion  poin t  of t he  experimental curve w i l l  be 
re fer red  t o  as t h e  f i n a l  current ,  If, and the  time associated w i t h  If 
designated t h e  reac t ion  time, t R '  

Beyond t h i s ,  

i s  

An energy equation w a s  developed i n  reference 8 which permits r e l a t i n g  
the  current  and the  reac t ion  time of an ign i t i on  wire.  This equation has 
been ca l led  an "action in t eg ra l "  and i s  defined as: 

ampere coulomb 

S2 ( c i r cu la r  m i l s )  
2 

12(d t R  
KAc = - d t  ( 3 )  

Several values of t h e  ac t ion  i n t e g r a l  a r e  shown i n  f igu re  10. These 
values were obtained from current  t r a c e s  taken during the wire melting study. 
The ac t ion  i n t e g r a l  po in t  derived from the  current  t r a c e  of f igure  7 i s  
labeled "probable end-of-melt point." It i s  i n  t h i s  area of t h e  curve tha t  
wire ign i t i on  of t h e  combustible gases resu l ted  i n  a smooth consis tent  com- 
bust ion curve. It should be noted that  t h e  value of t h e  ac t ion  i n t e g r a l  i s  a 
constant for energy inputs  above tha t  required t o  melt t he  wire completely. 
This r e s u l t  has a l s o  been noted i n  reference 8. The ac t ion  i n t e g r a l  calcu- 
l a t i o n  w a s  repeated f o r  various time constant c i r c u i t  values, using the  
single-wire j i g ,  and i s  presented along w i t h  the above r e s u l t s  i n  f igure  11. 
The s o l i d  symbols i n  the f igu re  correspond t o  t h e  experimentally determined 
values of i n i t i a l  current  densi ty  necessary t o  reach t h e  probable end-of-melt 
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poin t  f o r  t he  d i f f e ren t  RC time constants  used. These poin ts  ind ica te  that  
t h e  i n i t i a l  current  densi ty  value i s  the minimum f o r  which the  ac t ion  i n t e g r a l  
a t t a i n s  i t s  constant value. 
i s  va l id  f o r  l a rge  va r i a t ions  i n  RC. It w i l l  be shown therefore  t h a t  a s e m i -  
empir ical  method, i n  which t h e  ac t ion  i n t e g r a l  (KAc) i s  determined eqerimen- 
t a l l y  from a bench tes t ,  can be used t o  ca l cu la t e  t h e  i n i t i a l  current  required 
t o  melt t h e  wire f o r  d i f f e ren t  RC time constant c i r c u i t s .  

I n  addi t ion,  t h e  f igu re  shows tha t  equation (3) 

The current-time h i s to ry  i s  defined by equation (2) and with I = If a t  
t = t R J  t he  time constant i s  d i r e c t l y  proport ional  t o  t h e  reac t ion  time, 
denoted as 

where 

The time constant of t h e  c i r c u i t  determines the rate a t  which t h e  current  w i l l  
decay i n  the  w i r e ,  thus  f ix ing  the values f o r  t h e  minimum i n i t i a l  current  and 
t h e  f i n a l  current  f o r  which the ac t ion  i n t e g r a l  w i l l  a t t a i n  i t s  constant 
l eve l .  The t e r m  k i s  used as an a r b i t r a r y  constant i n  evaluating the  cur- 
r e n t  corresponding t o  the probable end-of-melt po in ts .  The term k can be 
r e l a t e d  t o  t h e  ac t ion  i n t e g r a l  and the reac t ion  time through the current  func- 
t i o n ,  by subs t i t u t ing  k tR f o r  RLC i n  equation (2). With equation (2) sub- 
s t i t u t e d  f o r  I i n  equation (3) , we in t eg ra t e  between t h e  limits of 0 and 
tD t o  obtain the  reac t ion  time of the w i r e  as a funct ion of KAC and k: 

( 5 )  

Equation ( 5 )  i s  used t o  map 
as a funct ion of both i n i t i a l  current  and reac t ion  time f o r  a p a r t i c u l a r  
material. This i s  i l l u s t r a t e d  by t h e  long-dash l i n e s  i n  f igu re  12. The 
i n i t i a l  current  and t h e  reac t ion  time f o r  a w i r e  a t  t he  probable end-of-melt 
po in t  i s  determined i n  t h e  following manner. A constant RC curve i s  super- 
imposed on the constant k Curves of f igu re  12, by using equation (4) t o  com- 
pute values of t R .  Then, t he  value of Io f o r  any tR i s  used i n  equations 
(2) and (3) t o  compute The procedure i s  continued u n t i l  t he  lowest 
value of i n i t i a l  current  i s  found f o r  which the ac t ion  i n t e g r a l  i s  s t i l l  con- 
s t a n t .  This value, considered t o  be the  "probable end-of-melt po in t , "  i s  
compared i n  f igu re  12 with the  experimental r e s u l t s  obtained from t h e  single- 
and multiple-wire j i g  tes ts  and presented e a r l i e r  i n  f igu re  11. The d i f f e r -  
ences between t h e  two sets of data are a t t r i b u t e d  t o  e f f e c t s  of temperature 
on wire res i s tance  and inductance and these  e f f e c t s  become more pronounced 
a t  higher current  flows. The l i n e  joining t h e  open symbols of f igu re  12 
labeled probable end-of-melt l i n e  is unique i n  tha t  it represents  a l l  
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c i r c u i t s  and wire s i z e s ,  within the  l imi t a t ions  of t h e  ac t ion  i n t e g r a l  con- 
cept .  This l i n e  i s  given i n  a more convenient form i n  f igu re  13, which shows 
tha t  f o r  time constants g rea t e r  than 0.125 msec agreement i s  within 10 per-  
cen t .  Thus t h e  method i l l u s t r a t e d  i n  f igu re  12 provides a means f o r  pred ic t -  
ing the  i n i t i a l  current  for d i f f e ren t  RC time constant c i r c u i t s ,  as applied 
t o  a melting Manganin w i r e .  

It i s  apparent from f igure  1 2  t h a t  f o r  probable end-of-melt po in t s  a t  

This f a c t  can be used t o  define t h e  design parameters f o r  a f i rs t  
k 2 8, t h e  i n i t i a l  current  required i s  in sens i t i ve  t o  t h e  value of 
chosen. 
estimate of t h e  capacitance required f o r  a Manganin-wire ign i t i on  system. The 
system current  can be t r e a t e d  as a constant and divides  equally i n t o  each 
wire. Also t h e  assumption i s  made t h a t  t h e  e l e c t r i c a l  energy from t h e  capaci- 
t o r  bank i s  equal t o  the  calculated thermal energy necessary t o  reach t h e  end- 
of-melt po in t .  
energy w a s  found t o  be within 16 percent of t h e  measured e l e c t r i c a l  energy 
required t o  reach t h e  probable end-of-melt po in t  f o r  Manganin wire.)  
t h e  energy discharge from t h e  capaci tor  storage as (C/2)(VO2 - Vf') where 

RC 

(From t h e  multiple-wire j i g  t es t ,  the calculated thermal 

Defining 

and using a s e r i e s  expansion of 1/(1 + x)  f o r  
approximation f o r  t h e  capacitance: 

eeX gives  a f i r s t - o r d e r  

-2w, 

The capacitance calculated from equation (6) represents  a maximum value 
required f o r  t he  wire-melting process, since it i s  predicated on a step- 
funct ion type of current  pu lse .  
i g n i t i o n  system, t h e  calculated value of capacitance can be reduced and 
matched t o  t h e  required voltage as determined from f igu re  12 .  
t h e  l imi t ing  case, t h e  e f f e c t  on t h e  required i n i t i a l  current  density w i l l  be 
s m a l l .  

If "on-hand" capaci tors  a re  t o  be used f o r  an 

Since t h i s  i s  

Although the  present  method has been applied t o  Manganin wire only, some 
conclusions can be d r a m  i f  the ac t ion  i n t e g r a l  value of th i s  mater ia l  i s  
compared w i t h  t h a t  of other  mater ia l s .  
93x10'3 A=C/(cir. m i l s ) 2  (determined from ref .  8) and f o r  Manganin it i s  
3 . 7 5 ~ 1 0 ' ~ ,  as shom i n  f igure  10. 
d i f f e ren t  value of r e s i s t i v i t y  for t h e  two materials, copper being 10.37 and 
Manganin 290 ohms per  c i r .  mil-foot .  From equation ( 5 ) ,  it can be shown 
tha t  the i n i t i a l  current  required f o r  melting t h e  copper wire would be close 
t o  10 times that required f o r  Manganin i n  an i d e n t i c a l  capaci tor  network. 
Currents of t h i s  magnitude can produce appreciable ohmic heat ing e f f e c t s  i n  
t h e  leads  connecting t h e  capaci tor  t o  t h e  i g n i t i o n  wire system. Thus, high- 
r e s i s t i v i t y  materials tend t o  provide a b e t t e r  i g n i t i o n  system i n  t e r m s  of 

For example, t h e  value f o r  copper i s  

The difference r e s u l t s  from t h e  widely 
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power e f f ic iency  as w e l l  as minimizing the resistance-temperature e f f e c t s  on 
the RC time constant .  Therefore, the present  method i s  r e s t r i c t e d  t o  high- 
r e s i s t i v i t y  materials. 

The foregoing method has been applied t o  t h e  Ames f a c i l i t y  operation and 
the dr iver  has performed hundreds of consecutive, smooth combustion cycles of 
operation. 

CONCLUDING FBtMRKS 

Studies were made of a multiwire system f o r  i gn i t i ng  a hydrogen-oxygen- 
helium mixture i n  t h e  combustion dr iver  of the Ames 1-foot shock tunnel .  
Detonation-free combustion of a la rge  volume of gas a t  an i n i t i a l  pressure of 
50 atmospheres can r e s u l t  i f  t he  wires are impulsively heated by an appro- 
p r i a t e  amount of e l e c t r i c a l  energy. 
a t  which it i s  released are determined by t h e  w i r e  s i z e  and material proper- 
t i e s ,  as wel l  as by the requirement that  the w i r e  m u s t  melt uniformly. 

Both the amount of energy and the rate 

A semiempirical method based on the "action in t eg ra l "  concept of Anderson 
and Neilson has been developed f o r  ca lcu la t ing  the  energy required f o r  prop- 
e r l y  melting t h e  wire i n  a react ing gas environment. 
method compare favorably with the  experimental data over a subs t an t i a l  range 
of i n i t i a l  cur ren ts .  

The r e s u l t s  of t h i s  

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f . ,  August 10, 1965 

10 



! 

REFERENCES 

1. Cunningham, B.  E.; and Kraus, S.: A 1-Foot Hypervelocity Shock Tunnel 
i n  Which High-Enthalpy, Real-Gas A i r  Flows Can Be Generated With Flow 
Times of About 180 Milliseconds. NASA TN D-1428, 1962. 

2. Loubsky, W i l l i a m  J.; Hiers, Robert S.; and Stewart, David A.:  Perfor- 
mance of a Combustion Driven Shock Tunnel With Application t o  the  
Tailored-Interface Operating Conditions. Presented at  Third Conference 
on Performance of High Temperature Systems, Pasadena, C a l i f . ,  Dee. 7-9, 
1964. 

3. Dannenberg, Robert E.; and Stewart, David A. :  Techniques for Improving 
the Opening of t h e  Main Diaphragm i n  a Large Combustion Driver. NASA 
TN D-2735, 1965. 

4.  Khitrin,  Len Nikolaenich: The Physics of Combustion and Explosion. The 
I s r a e l  Program for .  Sc i .  Transl.,  Ltd., IPST-640, 1962, pp. 111-113, 
157. (Available from N a t l .  Sci .  Foundation and Dept. Com.) 

5. Wilkins, Max E.; and Carros, Robert J.: Combustion T e s t  of Oxygen- 
Hydrogen-Helium Mixtures a t  Loading Pressures up t o  8,000 Pounds Per 
Square Inch. NASA TN D-1892, 1963. 

6. Lewis, B.; and von Elbe, G.: Fundamental Pr inc ip les  of Flammability and 
Igni t ion .  AGARD, Selected Combustion Problems 11. London, Butter- 
worth, 1956, pp. 63-72. 

7. Moses, Kenneth G.; and Korneff, Theodore: The Application of P. W. 
Bridgman's "New EMF" t o  Exploding Wire Phenomena. 
t o r a t e ,  A i r  Force Cambridge Res. Iab. ,  A i r  Force Office of Aerospace 
Research, Bedford, Mass., Contract Number AFl9( 628)-215. 
Dept. of Physics, Philadelphia,  Pa., 1963. 

Geophys. Res. Direc- 

Temple Univ., 

8. Anderson, G. W.;  and Neilson, F. W . :  Use of t he  "Action In tegra l"  i n  
Exploding Wire Studies.  Exploding Wires. W i l l i a m  George Chace and 
Howard K. Moore, eds., Plenum Press ,  N. Y . ,  1959, pp. 97-103. 

9.  Timbie, W i l l i a m  H.; and Bush, Vannevar, a s s i s t ed  by Hoadley, George B.:  
P r inc ip les  of E l e c t r i c a l  Engineering. Fourth ed. ,  Transients i n  Elec- 
t r i c  Ci rcu i t s ,  John Wiley and Sons, Inc., N .  Y. ,  Chapman-Hall, Ltd., 
London, ch. 7, 1957, pp . 182-235. 

10. Terman, Frederick Ehmons: Radio Engineers' Handbook. McGraw-Hill Book 
Co., Inc., N. Y .  and London, Section 2, Circui t  Elements, 1943, 
pp. 47-51. 

11 



12 





- 
Manganin ignition wires 27" 1. D. \ 

\ 
\ 

Ground lead 

Figure 2.- Schematic drawing of t h e  combustion chamber w i t h  i gn i t i on  wires in s t a l l ed .  



\ 

Current- limiting Charging resistors lsol a t ion 

\ 
Vacuum switch 

\ 
resistor 

relay \ A 
4 100 k f l  700 k f l H 7 0 0  k f l k  

Metering 
resistors c 

- 

1-50 k f l  

4 k S. 4. s. 
- 

7 L 

L 

22- 1.0 M f l  Capacitors 
7-7.5 p f 

Multiple-wir ! 

ignition system 

chamber L, -d 

I 1 
0-20 kV 
power 
supply 

, Auxiliary 1 I - 
4 - 
\ 
Co-axial 

current shunt 
L 

Bleed - o f f  
resistors 

- - - - 
Building 
ground 

- - 
Capacitor 
ground 
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Figure 7.- Current-time h i s to ry  f o r  Vo = 17 kV. 
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(b)  Combustion-pressure h i s t o r i e s  f o r  i n i t i a l  voltages of 17, 20, and 23 kV. 

Figure 8.- Combustion-pressure recorders from Ames l - foot  shock-tunnel dr iver .  
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