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ABSTRACT .
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This report describes a method for calculating minimum
and constant injection energy, C,, values for conic inter-
planetary trajectories. The planets are assumed to move
on mutually inclined elliptical orbits about the sun.
TLambert's theorem is used to solve the time-constraint on
the two-point boundary value problem, and an lterative
procedure, with arrival date as the isolation parameter,
is used to determine the desired C;.

Typical results rare presented for Earth to Jupifter
trajectories in the 1970-71 launch period. The comparisons
made with previously used methods indicate the procedures
described in the report produce results of comparable
accuracy, with a savings in computation time.
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TECHNICAL MEMORANDUM X-53319

CONIC SOLUTIONS TO THE INTERPLANETARY TRANSFER PROBLEM
WITH CONSTANT OR MINIMUM- INJECTION ENERGY

SUMMARY

The procedures for calculating constant and minimum
injection energy, Cs, solutions to the time-constrained
twe-point boundary value problem of interplanetary flight
are presented. The boundary values, position and velocity
of the launch planet at launch tine and target planet at
arrival time, are determined using mean elliptical elements
to describe the path of the planets. The time-constraint
on the problem is solved using a modified form of Lambert's
theorem. The desired injection energy is then determined
using an iterative procedure with arrival position as an
isolation parameter. The methods used to assure the com-
putation of proper type and class trajectory are described.

Curves are included showing minimum and constant C,
for trajectories from Earth to Jupiter in the 1970-71 syn-
odic period with flight time, central angle, inclination
of transfer plane, right ascension of launch asymptote,
declination of launch asymptote, and arrival energy as
dependent variables with launch date as independent vari-
able. A discussion of the modification required to solve
other interplanetary problems of current interest is also
included. A detailed comparison of the computer program
utilizing these procedures with other methods in use indi-
cates the accuracy 1is the same, but this method uses
considerably less computer time.

SECTION I. INTRODUCTION

The basic problem presented in this report is the
time-constrained two-point boundary value problem of calcu-
lating the trajectory which under the influence of only the
sun's gravitational force connects the position ot the
launch planet at launch time to the position of the arrival
planet at arrival time. The methods used to solve this
problem differ only slightiy [{rom those used in earlier
work [2,3]; however, the way in which the solutions are



presented and the way the solutions are used to advantage
in solving additional problems are unigue.

The planetary orbits are represented by inclined
elliptical orbits, and a form of Lambert's theorem [9] is
used to solve the time-constraint. After the conic transfer
trajectory is determined, the injection energy is calculated
in terms of the impulsive velocity increment required to get
from the planetary orbit to the transfer orbit. The object
of the procedure to be discussed is to obtain a trajectory
requiring a given injection energy. The position of the
target planet at arrival is varied as an isolation parameter
to obtaln the desired injection energy. Normally, it is
desirable to solve the problem over a range of launch dates,
and 1t is possible to use the results of each launch date
as a basls to extrapolate the first guess to the solution
at the next launch date.

A brief discussion of the modifications which must be
made to the procedure in order to solve additional problems
of current interest is also included. It is felt that the
main advantages of the procedures presented are speed, high
versatility, and ability to solve the problem in terms of
injection energy. Comparisons with some other procedures
wlll be made to emphasize these points.

The description of the problem and the methods used
to solve it will, as much as possible, be made without the
use of mathematical equations. However, a complete 1list
of the equations used to solve this problem and an indication
of how they were obtained will be found in the Appendix.

SECTION II. PLANETARY COORDINATES

It is desirable to designate the launch date; and
therefore, it is necessary to have some method of determining
the planet's positions and velocities as a function of time.
The most accurate method used involves interpolation between
values in an ephemeris [3,4]. However, a method which is
sufficiently accurate for the conic transfer, and a great
deal faster, involves the use of mean conic elements for
the planetary orbits [2,4].

It is necessary to have five elements for each planet.
The ones chosen are time at perihelion (t,), semi-major axis (a),
eccentricity (e), inclination (i) of launch planet's orbital
plane to that of the target planet, and the true anomaly of
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the ascending node (w) of each planet with respect to the
other. PFrom these five basic elements, all additional
heliocentric constants which may be required can be determined.

SECTION III. INTERPLANETARY TRAJECTORY

Once the positions of the launch and target planets
have been established, the problem is to determine if there
exists an elliptical trajectory about the sun which will con-
nect the two points in the required time. There 1is a one
parameter family of ellipses which pass through the two points
with the sun at their focus. Considering only direct or
counterclockwise flight of less than 360°, at most one of
these ellipses will have the required flight time. Lambert's
theorem is used to select the required ellipse. The over-all
geometry of the planetary transfer is shown in Figure 1.

Lambert's theorem expresses the transfer time, t, as a
transcendental function of the radius to the launch and
target planets (rg and ry), the central angle of flight (&),
and the semi-major axis of the transfer ellipse (a). A
complete description of Lambert's theorem and its use is
given by Breakwell [2]; however, the following description
should be sufficient to provide a general understanding of
the theorem. To facilitate the solution of the problem,
two parameters are defined. The first parameter, K, has
a range of O to 1 and depends only on the planetary geometry
(i.e., K= rf, (rs,rk,%)). The second parameter, E, has a
range of -1 to 0 and depends on the seml-major axis of the
transfer ellipse as well as the planetary geometry (i.e.,

E = f,(rs,rk,%,a2)). The transfer time, t, is then expressed
as a function of the two parameters, K and E (i.e., t=F(X,E)).
The function f is normally expressed in terms of inverse
trigonometric functions, but for values of E near O, and t
small, trigonometric formulation is neither accurate nor the
most rapid. Thus for E greater than -.2 and t less than tb

a series formulation for f is used. The quantity tp is
explained in the following paragraph.

Plots of t versus E for various values of K are shown
in Figure 2. The minimum time for an elliptical transfer
is the time, tg, at E=0. Transit times smaller than tg
require a hyperbolic transfer. As shown in the figure, for
values of K greater than O, there are four values of t for
each value of E. 'he rollowing rules ate used to determine
which value is correct for each problem. Branch 1 is used



for central angles less than 1800 and Branch 2 for central
angles greater than 180°. The time, tp, can be calculated
by setting E=-1; then the lower portion of the curve is
used if t is less than tp and the upper portion if t is
greater than tp. Since each portion of the curve is mono-
tonic, a two-point interpolation scheme can be used by
providing that interpolated values of E are restricted to
the range -1 to 0. The first interpolation is made between
the points (-1, tp) and (E,, t, ) where E, is a first guess
at the solution and t, 1is the associated value of t.
Henceforth, the interpolation is made between the last two
points calculated until the calculated value of t is within
the desired tolerance of the actual t. Once this condition
is reached, the transfer ellipse 1s completely determined.

SECTION IV. INJECTION ENERGY

The injection energy, C,, is the energy of the launch
planet centered conic. It can be calculated as the square
of the hyperbolic excess velocity vector (vp). This veloc-
ity vector is defined, as shown 1in Figure 3, as the differ-
ence between the launch planet velocity vector (vp) and the
velocity on the transfer ellipse at launch time (vt). Two
implicit assumptions being made here are that the velocity
addition is impulsive and that it is made at the center of
the launch planet. The error introduced by these assumptions
is sufficiently small for the purpose of this problem.

Graphs of various trajectory parameters versus launch
date with C; as a parameter, such as those in Figures 12
through 17, have been very useful in mission planning pro-
Jects and in projects involving general surveys of inter-
planetary trajectories. Previously, these curves were
generated by running a large number of trajectories at
discrete intervals of flight time on each of many launch
dates. Then the constant C; can be established using a
curve fit interpolation scheme. This interpolation must be
performed on each trajectory parameter on each launch date.
It seems, however, that it is more efficient and desirable
to calculate these constant C; curves directly.

It is interesting and necessary to calculate the minimum
injection energy for a given launch date. The first reason
is that minimum injection energy could be useful in accom-
plishing a given mission with maximum payload, or in
prelimlinary planning stages, it could give an idea of the
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absolute minimum energy characteristics required of the
launch vehicle. The second reason is that in order to
calculate constant C; values over a range of launch dates,
it is necessary to know first, for each of the days, that
the minimum C; for that day is less than or equal to the
constant Cs value being investigated. A plot of C; versus
arrival planet 's position (6x), for a given launch date, is

shown in Figure 4. As shown, there are two relative minimums.

The trajectories for central angles less than 1800 are called
Type I and those with a central angle greater than 180° are
called Type II [3]. Thus, there is a Type I and a Type II
minimum.

The method used to calculate the minimum is to take a
first guess at the ok which will give the minimum C;. Then
the C; corresponding to 6x+A, where A 1s a small increment
on 0y, is calculated. ©Next, a parabola is passed through
these three points, and the minimum point on this parabola is
used as the next guess at o6x. A restriction is placed on 6y
so that it will provide an elliptical trajectory of the pro-
per type. The two lowest of the last three points plus the
new point are again fit with a parabola to obtain a better
guess at oy, and the procedure is repeated until the minimum
is obtained to a satisfactory accuracy. Once the solution
is obtained, it is saved for use in extrapolating the first
guess on ok at the next launch date. The minimums for
successive launch dates are calculated over the required
range of launch dates. These minimums determine the curves
shown in Figures 5 through 11.

As indicated above, the launch date range of constant
C; curves is determined from the minimum C; curves. For
example, it might be desirable to calculate a Type I
curve of 100 km?/sec® for an Earth -to-Jupiter transit in
the 1971 synodic period. Referring to Figure 5, Type 1
trajectories with a €;=100 km?®/sec® are available only
between January 11 and February 28. For launch dates out-
side this range, a higher C; is required. To illustrate how
a point on a given €5 curve 1s calculated, it will again be
necessary to refer to Figure U4 where it can be seen that
there are two points with a C; of 100 km?/sec® for each type
trajectory at the indicated launch date. These two soluftions
are identified as Class I and Class II, Class I always being
the trajectory with the shorter flight time. It is apparent
that the two classes are coincident for the minimum C;on any
launch date. The slope ol the Cycurve is used to determinc
which class is which., If the slope is negative, the solution

is Class I; if the slope is positive, the solution is Class II.



The method used to isolate a given C, value 1s to take a
first guess at 6k and to calculate the C, for this 6y and
for ok+A. Then a linear inferpolation scheme is used
between the last two points calculated until the desired

C; 1s established within the given tolerance. During this
iteration the points are restricted such that the proper
type and class trajectory will be computed. Again, the
solution from one case is used to establish the first guess
at the solution to the following case. Figures 12 through
17 show typical plots of launch date versus various dependent
variables for several C; values.

SECTION V. RESULTS AND CONCLUSIONS

Extensive comparisons between this computer program
and the JPL and Lockheed programs were made during the
development and checkout of this deck. The JPL program
used for comparison was their Heliocentric Conic Program [3]
which uses ephemerides to determine the positions and veloc-
ities of the planets. It was found that this deck requires
about one second to compute each interplanetary trajectory.
The Lockheed program used for comparison was their Medium-
Accuracy Interplanetary Transfer Program [2] which uses
mean conic elements of the planets to determine the planets'
positions and velocities. It was found that this program
requires about .1l second for each interplanetary trajectory.
Table 1 summarizes the deviation of nine parameters for 100
arbitrarily chosen trajectories from Earth to Venus, Mars,
and Jupiter. The only restriction placed on these trajec-
tories was that the central angle of flight not be between
1700 and 190°, This was done because the rate of change of
energy and transit plane inclination with respect to plane-
tary position is very high in the near 180° central angle
region. Thus, small discrepancies in planetary position,
which do appear due to the different methods of calculating
position, cause large discrepancies in energy and inclination.
This difficulty is not felt to be a major drawback, first,
because even though the values are not the same, the trends
are the same in all three decks. Secondly, the problems occur
at values of C; much higher than those which are practically
feasible.

Table 2 shows a comparison between these three conic
programs and the JPL Space Trajectories Program which is a
very accurate n-body integration program. The trajectory
parameters chosen for comparison give an indication of the
accuracy of the conic programs at both the injection and
ferminal ends of the trajectory. The approximate computation




fimes given in the chart indicate the tremendous savings in
ftime accomplished by using conic calculations. The time
per trial given for the integrating deck i1s for a single
trajectory calculated with a given set of initial conditions.
Using initial conditions from one of the conic decks, the
integrating deck will isolate the desired terminal condition
in about 20 trials. If less accurate initial conditions are
used, more trials will be required.

The graphs of Figures 5 through 17 are examples of the
type of material that can be produced directly from the out-
put of this program. Each of the graphs with constant Cs
curves ‘was drawn using U450 points with a total computation
time on the IBM 7094 of about 31 seconds. The minimum C,
curves used an additional 84 points and required an additional
16 seconds of computation time. It is estimated that it would
require at least 1000 trajectories to produce these same curves
by the old method of interpolating between points in a matrix
of values. Additional computations would also be required to
perform the interpolation for constant values of ¢,. It is
apparent then that not only is the program more efficient at
solving the basic interplanetary transfer problem, but,
additionally, it is more efficient at solving the over-all
problem of determining constant C; curves because of the
new approach to the problem.

SECTION VI. OTHER USES

With minimum modification, the principles used in this
procedure can be used to solve other interplanetary trajectory
problems of interest. For interplanetary orbiting or landing
missions, total velocity increment, that is, injection veloc-
ity plus braking velocity at the target planet, is of more
interest than C;. Thus, by calculating this total velocity
and using it in place of C;, the same procedure can be used
to generate minimum and constant total velocity data. 1In
much the same way, payload mass at the target planet can be
approximated by impulsive calculations if the characteristics
of the vehicle system are known.

Round -trip fly-by missions and '"grand tour" missions,
where no major propulsion is used after injection, can also
be handled quite easily. For example, suppose it is desirable
to fly a round-trip fly-by mission to Mars. The first step is
to calculate minimum energy requlrements for Rarth-to-Mars
and for Mars-to-Earth trajectories. Then the constant C; range
for launch at Earth can be chosen and a trajectory from Earth-
to-Mars with the desired C; can be established. Now the energy



of the Mars centered conic at arrival can be determined,

and this can be used to calculate a Mars-to-Earth leg with-
the same energy, provided this energy is not less. than, the
minimum energy for this particular Mars passage date. The
hyperbolic excess velocity vector of approach to Mars 1is
then rotated into the hyperbolic excess velocity vector of
departure by calculating the proper radius vector from the
center of Mars to the pericenter of the Mars centered conic.

This same procedure could be used for "grand tour" type
trajectories except that more than two legs would be involved,
and the conics would have to be matched at each of the planet
passages.

It is felt that the speed and flexibllity of this program

will make it very useful in approximating trajectories for
any interplanetary mission, or, in a broader sense, in cal-
culating free flight transfer trajectories between any two
orbits around any central body.
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Planetary Orbits

Nodal Line

FIG. 1. PLANETARY TRANSFER GEOMETRY

13



-

T
|

Branch 2 3
/ 180° Transfer
/ Branch 1
A _/ K 2

0—E

10 -8 -6 -4 -2 0

FIG. 2. PARAMETER CURVES FOR THE SOLUTION
OF LAMBERT'S THEOREM

14




ALIDOT3IA $S3IX3 J1T0843dAH 40 NOILYNINY313Q

HQI0 18uDld oMLY

- QIO i2uDld younoT

ung

"¢ "9l

15



126} ‘1€ "NVP NO HONNVT ¥04 S31H0LI3rVYl ¥3lidnt 0L HLYV3

NOILISOd S,L3NVId VAIYYY SNSY3IA A9H3IN3 NOILI3APNI °b "Old
0G¢ own (1]4% 0¢¢ ]34 00¢ 062 08¢ 0.2 092 ommf
(bsp) Vg o~
19jsuns] 08} , 08
1 A 06
‘
|
“
004
/ _ \
/ “ \
" Okt
|
. "
\ “ (1142
/ m ogh
W1 sso|) I sso9—"71 “ 1T ssop) I ssoj9—~
L ok
_
|
“
T 2dh) I 3dA) <om-

(z98s/,w) ¥9

16




-

YI4SNVYL ¥3lldNr OL HLYVI A9Y3INI WANININ
31va HONNVYT SNSY3IA A9HIN3 HIONNVIT G "9Id

ko dy 10N q34 uop 0. 93a
6 6} 6 62 6/ 6 0¢ 0¢c OF 82 8 8 62 6 6 0f 02 OF

a10Q younoq

-

va N

——T"1 I 2341

0¢

.H.xE\.\ | | //
T |

'

00}

0¢i

bl

09i

08#

00¢

(z998/7zun) )

17



YI4SNVYL ¥3LIdNF 0L HLIYVI AOHINI NNNININ
31va@ HONNVT SNSH3A 3INIL LHIING "9 "Old

-

Koy My 10N qa4 uop 0l %9@
6¢ m__ m_ m_N 6k 6 0¢ 02 OF 8 8 8 62 6 6 0 02 O
ajog younoq }
P 7 006
\
\
1 LA
- < 000't
1 d
\\ \\
\\ \\\ 005"}
1 edA[ e T : 1
aeh
A I ¥y
L1 0062

(skop) 10

18




YIISNVYL ¥3ILIdNF 0L HIYVI A9H3INI WNWININ o
J1VA HONNVYT SNSH3A 3ITIONV TVHINID ‘L 914
Aoy ady IDN qe4 uop 0. 93¢
626 6 626 6 02020 828 8 626 6 0802 OF

*400_yauto1 06 L994

N B

\\l’
TN
o seb [
v
0L}
A -
[ odly pd / 2L
o \
— 502
L , b1
o 9dA)

/ 012 oLl
\ o

<\ G2 «
I o&% I adikg

(59p) &




Y3IJSNVYL ¥3LIdNFr OL HLIYVI AOYINI NNNININ
31Va HONNV SNSY3A L1I18YO Y¥3IASNVYL 40 NOILVNITONI

"8 "0l

AN

N

ko

ady

10N

Q34

T T

uop

0L %2Q
62 61 6 62 61 6 OF 02 O 82 8 8 62 61 6 \0¢ 02 O

N

™~

S

aj0Q

youno1

]

I
LT NG

7

20




YIASNVYL H3ILIdNF 0L HIYVYI AOH3N3 NANWININ &
31Va HONNVT SNSH3IA 3JL0LANASY HONNV 40 NOISN3IISY L1HOWN ‘6 914
kow idy 10N qa4 uop 0l 93Q
Ammm_—@m_um.momcmc.mumzmawa_monouo-
240Q yYdunoT Y 00z
A | TN
\\ // 022
~
A ok
NG
/ e
e \ 1] 24
/ L
/ g 092
2% .
_ 062
I adfy \
00¢
\\
/ . —1 02¢
rd {
ma obg
-
(bap) vy




d34SNVYL H3ILidNF OL HLYVI A9Y3IN3 WNNININ

31Va HONNVT SNSY3IA 3ILOLINASY HONNVT 40 NOILVYNITIIA  “O) "9id

-

— Oml
1 adf)
-
/V/ ob-
//
/// Oml
/ \\l
— A 02-
I adkg
- —~_ Ok -
~——_~
f 0
62 6l 6 62 6L 6 0¢ 02 OL 8 8 8 62 6 6 0¢ 02 O}
Aon iy 0N qo4 uop 0l 9@

20a Hunen (6ap) v1a

22




Y34SNVYL Y¥3LidNr OL HLIYVI A9Y3INI WNWINIW
31VG HONNYT SNSY3IA A9YINI IVAINYY  “hb 914

kop )y 0N 494 uop 0l 99(
6¢ 6} ,_.. m_mm— 6 02 0 OF 82 8 8 62 6} 6 0¢ 02 O}

‘ 1 1 1
aipg Youno \
0e’
\
\
P N\ .
L.\ 62
L
“T I 9df} /
\\\l.// .
\\ 0¢
\
\
\
\
L s
\\\l
o adil
\
oy’
’ GV
Y

(z995/,wx ,04) V%)

23



Y34SNVY¥L ¥3lidnr Ol HLYVI
31Vv@ HONNVT SNSY3IA 3NIL  LHOINS 2b "9ld
1dy ION qa34 uop QL 2@
9 -__ 9 _- 12 22 L 2 L 2 G2 02 Gh OF G 1€ 92 k2 9 H 9 } L¢

-4

I “ I 3
30
1@ yaunoT] Voo¢
\ //.
1/ /
/ \\\ NN
v AN ATD L
z®
Y 7 e oor {1008
OO \\.H\‘\ ) !
\ hd \\.‘ aow /7 / \\
/ g \‘ X 4 ’
\\ 06~-1% \08\ g Ol 000}
Az Y A /
\ OOwlnﬁ\“\\..\ \\\\\\ \\ \\ .
Loond_opz L2 L Al 002}
\ \\\\ \\\ ‘\\..\\\\\.\\\ \\\
\n-\\ \\\ \\\ i \\ \.\ .‘\ h ﬂ&%.—v
omvl-\\ \\\\ \\‘\\\ \\ \\ \\.w i i B
(;995/,wy) 9 \“\ -2V 4747 Lo | 00%t
4 4 . Y ¢ e \\ \.\
\\ A |7 e s

A | Al A ‘ —Loost

\“\\ \\.‘\ \\\\\\ \\.\ u WWO-O o _

= - e P Sl e $SD|) ——

\ \\ -1 LT 1 1 13

P S ‘\\\\;n\\ < el —t . 008}

Y
(skop) 1@

24




Y3JSNVYHL ¥3lldNt 01 HLY¥V3
31Va  HONNYT SNSY3IA 319NV IVHINID ¢l "9l

Jdy 1D\ q94 uop QL 98Q
o W 9 } L2 22 L 2 L 2 G2 02 Sk O G k€ 92 ke 9 kb 9 b L2
-—t——— ~
9J0Q YounD7 4.*,
Yok
nY , ——
([ PERRNN I ssojg —| |
1 odky L7 \\ U/
d N
S < N R \\ 09t
i ] o:,\.-m@w./. {
3995/ Zwy) €, T 08}
\‘\n“\\
oscl_ | L 1 | 14| qo_ 11l
00k -=+=-f - - ==
O =T 0¢e
O =f--1=T"T""
| L1 . 0b2
v

(bap) ¢

25




Y3J4SNVYL ¥3lldnt OL HLY¥V3
31va HONNYT SNSY3IA LIGHO Y3IJISNVHL 4O NOILVNITONI bk 914

idy 10N Q94 uop O 98q

-

% W9 bz UL T ROZGOS R IZN WY bk
9ypg Younoq ——
Ok-
ml
0
—— / s
—— 1 [oor——— |1
Tt - /
= — — 11 adk) or
0ch — | ] >
. L
G}

(bap) tq

26




Y34SNVYL ¥3lidnt Ol Hiyv3

31VQ HONNVY SNSY3A 310LdWASY HONNVT 40 NOISNIISY LHOIM 6l 94

o b 9

idy

b L2 22 W % L 2 S202SHOb S IE 9229 W9 b L

10N qe4 wop Q) 98Q

- 1 _.r
9)0g Youno 4..,_w
00¢
0¢¢
Oote
\
\\ d "
- “N“ \\ nw \\ \\..\\\ \\\ . : O@N
\““\\ \\\\ \\\4\\ ~17
T [~ _+-0 1-1.147 L-1 —
- ] -T 47 -1 |-~ | SS9y ---
-t | 1= 1.1 I ssoig —| [ [08¢
L‘\\ \\.\. \\;\\
00k 511~ Ogh-
on-T Ofh |
1 2 M — _ L _ 00¢
v

(bap) vy

27



Y434SNVYL ¥3lidnr Ol H1Y¥YV3
31v@ HONNV1 SNSY3IA 310LdNASY HONAVT 40 NOILVNITO3Q ‘91 913
idy 10N qa4 uop O/ 99Q
w—:w_.ZNNtN.NNmNoNQovm-mwN&m—:wFZ
|

- 1 ----F- T
310Q - youno- | _1-1 -7 l./ 1 adk}
4= \\\\\\lullll!/ A N 0S-
P Y N \
\\\\ \\\\\ .II// ll //
L 7 ‘\\ N //_ // 4’
\. \‘\ ‘I X O.VI
‘\ \\‘. 11 / / ,—
\\ / N / ,, \
M / \ 1 i
: ; =<} Y = 0¢-
ol | os A1 I Voo
\ AN N IE
| ) : | 02-
/_ )
3 "l'll.rll l'.l'l.l\V’
- -+ I \\ Oh-
<oor | [T o 5| ) \
O T~ ~ |~ 1
./_/ - - ~_ — \\\\ / 0l
S~
[~
O T~ __ ~1_| \\ XH adk)
| ~ e / 02
(z995/,wy) no Y
(bap) V1@

28




Y34SNVYHL

y3lldnt 0L HLIYV3

31va HONNVT SNSY3IA A9H3INI TVAINYVY A1

']

0¢

T

og’

Ge’

on—..\n..
(3998/,wy) %9

(2998/zwy Q1)

J

ov’

idy ION qa4 uop QL 929Q
9t H 9 | 22 2 Lk 2 L 2 6202 G OF G € 92 12 9% W 9 |} L2
-t ~
0@ Youno) \
\\/ I $S0|) ---
I 9dk) \W I ssoj) —
w\\\\\\ <
L , Ll
- oz\A:m 06{_| 0g?OR
TV I i ot S = T A Mt N
\\\\“““\\\\\\\N.mmo \\\ \v J
\I\I\hn‘ b P P
rs o ] .~ / ,
T LA SIS oy SO SR B
. -~ Vs /
. \\‘\ \\ .\
— ‘I“\\\ l\\ \\
06=7""I" .i\\.\\ \.\.‘ \
. \\\\ “\.\ /
: . |I,|.|I\\ \\\. ‘.\
00k-+--1""1"~ : L=t - - 1.7
VT Lo4-"x adsy

Gy’

v

29



1V TdNo1d

TeTI93 B 93eQ@ yoduneg .
—MOHHDVOM —>— QEMWEMNN“H.W AL A uﬂw‘n 14 JUSWOIOU]T SWI]] { ®3eQq Yyoune] it
and3ng 3 1 3y8114 3959y
N -
BT193 € asen dn-39g
Hummunwz . M <-|®18uy Teijud)y |_ (1BATILY) | (youneT) 9
?3eINOTE) 3aaqueq SIEINITED I 3°ueld 1 3Isueld induy peay
SNNY ILHOIVILS ¥04d MOT4
231BQ Yyoune
MMM“MwMz 6 axaN 103 mmmcmm ut SN uum@m uomq X ¢{ @391dwoy
Inbay d snf asen s
Jndang uo1j prodaajuy 9 SsI Isnipy s3eT0de1IXg 9 ST
CED S \ S9X
ON - \
TeII?I1BR sox €9 asepy dn-3ag
andang < 9 < II dueld || 1 39ueiq 9
23eINOTE) Ja1aque anduy peey

€0 WOWINIW GNV INVISNOD ¥0d MOTd

30




APPENDIX

This appendix is designed to give a mathematical treat-
ment to the material presented in the main report. It is not
designed as a complete description of the computer program.

A user’®s guide to be published by the MSFC, Computation
Laboratory will satisfy this requirement. The simplified
flow diagram of Figure Al shows the order used to perform
fhe required calculations. The calculations performed in
each block are listed in the descriptions of the subroutines
which follow,

PLANET POSITION I

Using date and the mean conic elements of the planets,
this routine calculates the position of the desired planet
and the angular position at which the other planet will be
at the transition between Type I and Type II trajectories [6].

Mj = nj(Tj—tpj) 0 <M< 2n
Ej is calculated by iteration on the equation
Mj = Ej—ej sin Ej O <M< 2n
l+e,
65 = 2 arctan \tTrgi tan Ej/2 0 < 8y < 21
ry = Aj (l—ej cos Ej)
O,J.=9J-—wj,k O§a<2'rr
tan CYJ'
fx T Mg AT \Gem T, 0 < by < 2m
3

PLANET POSITION II

Using the true anomaly of the desired planet, the mean
conic elements of the planets, and the date and position of
The olher planet,this routine caleulates the radius and date
of the desired planet, the angular separation of the two
planets, and the flight time [6].
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oy = ek - wk,j - T 0 < @y < 27

? = arccos (cos o) COS oy F sin o) sin @, cos C,

J,k)

0 <& < 2nm

)
Il

K ppkz/ (1+ek cos ek)

r, sin 6 r, sin o
Tk = %— arcsin ( K k > - ek k K +.tp
2
k ak 1—ek ak 1-ek k
DT = Tk - TJ

LAMBERT CALCULATION

Using the positions of the two planets and flight time,
this routine calculates the required transfer ellipse [2,6].

The chord from the launch to arrival polint is

C =‘qrj2+ r, 2 - Erjrk cos ¢

[}
1

(ry + mc + C)/2

s
E=-— -1 < E <O
2a - -

where a' is a first guess at the semi-major axis of the
transfer ellipse.

C
K=1- —
S

Normalized time for a parabolic transfer is

Il

3
2 -
(1 - P K®)
+1 if & < 180° and P = -1 if 3 > 180°.

Ca

where P

il




Normalized required transfer time is

86400 x N2,
t = DT
<2

and time for a minimum heliocentric energy transfer is

™

ty == P(arcsin NX - NK(1-K) ).

If £t < tp, Q= +1; 1f £t > ty, Q = -1. Then the desired
E is found by iterating the solution on one of the following
transcendental functions

tr = (—E)'gcg-+ Q(—% + arcsin N-E - NE(1+E) )

- P(arcsin NE K - AE K(1+E K) ) )4.

If Q>0 and E > -.2, a series solution, obtained by
expanding each term in a series and adding term by term,
is used.

N
241, 121
E C;(1 - PKE'T)E

i=1

t !

The first ten coefficients are

C, = .66666667 Cp = -.2

C; = .10714286 C, = -.0694uliiy
Cs = .049715909 Ce = -.037860577
C, = .030078125 Cs = -.02L4643842
Cy = .020671644 Cio0= -.017663865.

The next guess at E is found by making a linear interpolation
between (-1,ty) and (E,t'). Then a new vaiue of t! iz cal-
culated and additional linear interpolations are made between
the last two calculated points until t' is within the desired
tolerance of t.
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Then the elements of the transfer ellipse are calculated
as follows

T]l _ 7 il n
—- = arctan (Q)\] (1+E)(s—rk)/(1+EK)(s—rJ.)> - 523
€1 —
— = arctan (P NK(s-r,)/(s-r )> m £
. J k - =< =
2 — 2
g Ll
\1!1 = 11 - ._.1_ + ._1
2 2 2
= - 2
&= - 2E
2 1
V, = u(;a - 5)
pp = |V1r sin Y/MTI'
_ _ bp?
e = 1 Y
6, = arctan (EEEI(,:,Ot t / (?pg - 1)> 0<6 <
J J
i, = <1ic<

sin 1. sin
1 Sin-l < J’k ak -
sin &

V, cos Y

A0 ]

be
I

y =7V, sin i, sin vy

z =V, cos 1, sin vy
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Cs ROUTINE

Using the velocity of the probe and the mean conic
elements of the planets,this routine calculates the velocity
of the planet, the velocity of the probe with respect to the
planet, and the planetocentric energy of the probe [6].

Pp.
g _ WPy
J r,
J
e, sin o,
. = {E- J J
J ppj
X' =%x = 7. .
J
l'——-. .
= - 8,
v y 3
A

Cy = X' + y'2-+ 22

INTERPOLATION FOR CONSTANT Cg
This is not a subroutine but 1s incorporated in the main
line of the program. The slope of C,; VS ek 1s checked to be

sure the interpolation is being made for the proper class
trajectory. Then a linear interpolation between the last
two points 1s made to determine the ek which will produce the

desired C;. If both values of C; used for the interpolation
are above the desired value,the calculated change in ek is
increased slightly to avoid creeping on the solution.

INTERPOLATION FOR MINIMUM C,

This routine uses three points on the C; vs 6, curve to
interpolatc for the I which will produce the minimum point
on the curve [7].

The three points used for interpolation are designated
by (6, , Cs. ), (6, , Cs.) and (e, , C3.), and are arranged
K, 1 k, 2 Kg 8
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such that Calf-caa 5_033. Then to reduce scaling problems

a transformation of coordinates 1s made such that the origin
is at the first point.

Xy = ekl- ek1: 0 Vi =G5 -Cy =0
X2 = ekz - ekl ya = Cag - CS],
X3 = eks - ek1 Va = Cs, - Csl

The equation of a parabola through these three points 1is

x(x-x5) x(x-xz )
y=—" ¥z + —— VY3
Xz(xz'Xs) Xa(Xs‘Xz)
2X~Xg4 2X =X,

ay - = 0-
dx ’XéTkz‘Xajryz i Xs (X3 %5) 7@ 0

Thus the minimum is at

2 2
x = %2°¥s ~ X"z

2(X2¥s - Xa¥Va)

and

Sk =X + ek;

EXTRAPOLATION ROUTINE USING LAGRANGE FORMULAS

Using the last M solutions to the problem, this routine
extrapolates the first guess on 61 and a for the solution

to the problem at the next launch date [7].

The values of Tj’ a, ek are saved in a table and
designated as Ti’ a ki.
For the second point T: is incremented and a 1s set
equal to a, and 6y is set equal to ek .
1

i)
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If two or more points are in the table Tj is incremented

and the following formulas are used to calculate first guesses
for a and &

k’
M
N = [J (TJ - T.)
i=1
M
D, = TT(TJ&-Tl) ity 4 =1, M
i=1
N
c = - 4 =1, M
2 D, (T, T
M
O = E ¢, %k,
=1
M
a = E:: Cp2y.
£4=1

VELOCITY CALCULATION ROUTINE

Using the elliptical elements of the transfer trajectory,
the mean conic elements of the planets and the position of
the arrival planet, this routine calculates (1? velocity of
the probe at arrival, (2) velocity of arrival planet at
arrival, (3) inclination of transfer conic to arrival planet
conic, (4) velocity of probe with respect to arrival planet
and (5) energy of the planetocentric conic [6].

o e PR
k ry

oL Vg_ek sin ek

Tk PPy

1 ~sind o osin aJ/éln %
62 = Vu  pp/7y

r, =y e(sin el)/pp
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V-y— = 62 coOS 12 - ék
C3 A. = -V-}(_2 + Vyz + sz

SUBROUTINE ROTATE

This routine rotates a vector in a coordinate system
where the x-axis 1s along r, the z-axls 1is perpendicular to
the planet's orbital plane, and the y-axis completes a right-
handed system into a coordinate system analogous to the
earth's "Inertial Cartesian Equatorial System." That is, a
coordinate system where the x-axis is in the direction of
the "vernal equinox" (sun ascending node of the planet's
equatorial plane), the z-axis is perpendicular to the planet's
equatorial plane, and the y-axis completes a right handed
system. After the rotation, the routine calculates the right
ascension and declination for an "Inertial Spherical Equatorial
System" [2].

x! COS(ei—Ti') —Sin(ei—’l‘i') 0 X
y'| =|sin(ej-r4')cos eij cos(6i-711')cos el; -sin ely | |y
z! sin(eq-74')sin eiy cos(e;-74')cos eiy cos ely) |z

RLA = arctan (y'/x')
(RAA)

DIA = arctan .(z' J;751f575)
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