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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

THEORETICAL PERFORMANCE OF MIXTURES OF LIQUID AMMONIA AND HYDRAZINE
AS FUEL WITH LIQUID FLUORINE AS OXIDANT FOR ROCKET ENGINES

By Sanford Gordon and Vearl N. Huff

SUMMARY

Theoretical values,K of rocket performance parameters for two mix-
tures of liquid ammonia and hydrazine as fuels with liquid fluorine as
oxidant were calculated on the assumption of equilibrium composition
during the expansion process for a wide range of fuel-oxidant and expan-
sion ratios. The parameters included were specific impulse, combustion-
chamber temperature, nozzle-exit temperature, equilibrium composition,
mean molecular weight, characteristic velocity, coefficient of thrust,
ratio of nozzle-exit area to throat area, specific heat at constant
presaure, coefficient of viscosity, and coefficient of thermal conduc-
tivity. ExXponents were calculated that permit determination of specific
impulse over a range of chamber pressures.

The maximum value of specific impulse at sea level for a chamber
pressure of 300 pounds per square inch absolute (20.41 atm) was
313.6 pound-seconds per pound for the fuel mixture containing 36.3 per-
cent ammonia by weight and 311.9 pound-seconds per pound for the fuel
mixture containing 87 percent ammonla by weight.

INTRODUCTION

Both ammonia and hydrazine have been of interest for a number of
years as possible rocket fuels because of their high theoretical specific
impulse with several oxidants. Extensive data exist in the literature
on their availability and cost, and on thelr physical, chemical and
handling properties.

Interest has also been shown in mixtures of ammonia and hydrazine,
inasmach as some of the properties of the mixtures are wore desirable
than those of the separate fuels (ref. 1). Amonia, for example,
depresses the relatively high freezing point of hydrazine, vheresag
hydrazine lowers slightly the vapor pressure of the ammonia.

Fluorine is of interest as a rocket oxidant because of its high
performance with many fuels. Data on its propertiec are also available

‘in the literature.
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Calculations were made at the NACA Lewis laboratory to determine
the theoretical performance of two mixtures of liquid ammonia and hydra-
zine as fuels with liquid fluorine as oxidant as part of a series of .
calculations on propellants containing the chemical elements hydrogen, .
fluorine, and nitrogen (refs. 2 to 4) and in support of an experimental 2
program. One ot the fuel mixtures, containing 36.3 percent ammonia by
weight, was suggested by the Bureau of Aeronautics, Department of the
Navy, and is based on the data from reference 1. This mixture was
selected as a compromise between a fuel having a desirable freezing
point and one having high performance. The other fuel mixture, contain-
ing 87 percent ammonia by weight, was chosen to correspond to the lowest
freezing point of any mixture of ammonia and hydrazine.
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Data were calculated on the basis of equilibrium composition during
expansion for a wide range of fuel-oxidant and expansion ratios. The
performance parameters included are specific impulse, combustion-chamber
temperature, nozzle-exit temperature, equilibrium composition, mean
molecular weight, characteristic velocity, coefficient of thrust, ratio
ot nozzle-exit area to throat area, specific heat at constant pressure,
coefficient of viscosity, and coefficient of thermal conductivity.

Exponents were calculated that permit determinatlion of specific impulse
over a range of chamber pressures for hydrogen with fluorine and ammonia .
with fluorine as well as mixtures of smmonia and hydrazine with fluorine.

2 8.

So that data based on the assumptions of equilibrium and frozen v 1
composition during the expansion process could be compared, several
additional calculations were made with the assumption of frozen
composition.

SYMBOLS

The following symbols are used in this report:

A number of equivalent formulas (function of pressure and molecular
weight; see ref. 5)

a local velocity of sound; ft/sec

Lot

Cp coefficient of thrust, Ig/c*

molar specific heat at constant pressure, cal/(mole)(°K)

c specific heat at tant pressure, cal/(g)(°K)

D pe ¢ heat at constant pressure, g .
17 N 1 O0vm °

¢ specific heat at constant volume, cal/ig){ K) {

c* characteristic velocity, ft/sec, gP.Si/w
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o d log p%)
1 O log T /g

acceleration due to gravity, 32.174 ft/sec?

®=

Hg sum of sensible enthalpy and chemical energy, cal/mole

=y

sum of sensible enthalpy and chemical energy per unit weight,
S ni(BR)y '
i
oM » Cal/g
I specific impulse, 1lb-sec/1b
k coefficient of thermal conductivity, cal/(sec)(cm)(oK)

M molecular weight

n number of moles; exponent
P pressure
P partial pressure
R universal gas constant (consistent units)
r equivalence ratio, ratio of number of fluorine atoms to hydrogen

atoms
S nozzle area, sq ft
T temperature, °k
w  rate of flow, 1b/sec
n o (124

g T/)p
{8 log n4

v T e ——
1 \01log T /p

- Jd log P
5 J 1og p),

i
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n coefficient of viscosity, g/(cm)(sec) = poise
p density, g/cc )

Subscripts:

c combustion chamber

e nozzle exit o
frozen composition assumed frozen &
1 product of combustion

max maximum

P constant pressure

s constant entropy

t nozzle throat

x any point 1in nozzle

CALCULATION OF PERFORMANCE DATA

Calculations of the performance data were made with a Bell computer
and an IBM Card-Programmed Electronic Calculator as described in refer-
ence 2. The assumptions, thermodynamic data, and transport properties
used for the calculations are the same as those of reference 2.

The products of combustion were assumed to be ideal gases and
included the following substances: hydrogen fluoride HF, hydrogen Hs,
nitrogen Ny, fluorine.Fp, atomic fluorine F, atomic hydrogen H, and
atomic nitrogen N. The dissociation energy of Fp was taken to be
35.6 kilocalories per mole (ref. 6). Physical and thermochemical prop-
erties of the propellants were taken from references 5 to 8 and are
given in table I. -

Composition of fuel mixtures. - Performance calculations were made
for two fuel mixtures with liquid fluorine as the oxidant. One fuel
was 36.3 percent ammonia and 63.7 percent hydrazine by weight, and the
other was 87 percent ammonia and 13 percent hydrezine by welght. The
heat of solution was neglected in estimating the heat of formation of
each mixture.
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Procedure for combustion conditions. - The following parameters
were computed for five equivalence ratios for a chamber pressure of
300 pounds per square inch absolute: combustion temperature, equilibrium
composition, enthalpy, mean rolecular weight, derivative of the logarithm
of pressure with respect to the logarithm of density at constant entropy
Ys» specific heat at constant pressure, coefficient of viscosity, coeffi-
cient of thermal conductivity, and entropy of the combustion products.

Procedure for exit cenditions. - Equilibrium composition, mean
molecular weight, pressure, derivative of the logarithm of pressure with
respect to tiae logarithm of density at constant entropy vyg4, enthalpy of
the products of combusticn, specific heat at constant pressure, coeffi-
cient of viscosity, and coefficient of thermal conductivity were computed
for cach equivalence ratio by assuming isentropic expansion for three
assigned exit temperatures selected to cover the exit pressure range
from the nozzle-throat pressure to about 0.45 atmosphere.

Interpolation. - Parameters for pressures at and near the nozzle
throat and for pressures ccrresponding to altitudes of 0, 10,000, 20,000,
and 30,000 feet were interpolated by means of cubic equations between
each pair of the assigned exit temperatures. The functions and their
first derivatives used in the interpolations are described in refer-
ence 2. '

The errors due to interpolation were checked for several cases.
The values presented for all performance parameters appear to be cor-
rectly interpolated or in error at most by two or three units in the
last place tabulated.

Formulas. - The formulas used in computing the various parameters
are given in reference 2 and are summarized as follows:

Specific impulse, lb-sec/1b:

hc - he

(1)

Throat area per unit flow rate, (sq ft)(sec)/lb, (pressure in atm):

1.3144Tt
S¢fw = Ba (2)

Characteristic velozity, ft/sec: |
c* = gP Si/w = 32.174P Sy /w (3)

.
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Coefficient of thrust: *e
Cp = Igfc* = 32.1741/c* (4)

Nozzle-exit area per unit flow rate, (sq ft)(sec)/lb, (pressure in atm):

0.040853T,

S /w= —_— (s)
€ PeMeI
Ratio of nozzle-exit area to throat aree:
Se/w
e
(6)

Se/st = St7w

Specific heat at constant pressure, cal/(g)(°K):

cp = ﬁ[cc;ni(cg)i +§n1(ﬂg)i Y, -Z:ni(ag)i YA] (7)

Derivative of the logarithm of pressure with respect to the logarithm
of density at constant entropy:
e »
(8)

Ts = B(Dp-1)
Coefficient of viscosity, poise:

S - (9)
Z (g /M)

Coefficient of thermal conductivity, cal/(sec)(cm)(°K):

ksu(cp+;5£§) (10)

When composition is assumed to be frozen, the partial derivatives

Yi{ and Yp in equation (7) are equal to zero, andcth% partial deriv-
atives Dy and D, in equation (8) are equal to _21535522, There-

YRS

Pato T=)

fore, equations (7) and (8) beccme

2901
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Cp,frozen = — @ (11)
and
e c
p,frozen P
. _ - (% (12)
s,frozen Cp,frozen ~ R/M <9v)frozen

The values of viscosity and thermal conductivity for mixtures of
combustion gases calculated by means of equations (9) and (10) are only
approximate. When more reliable transport properties for the various
products of combustion become available, a more rigorous procedure for
computing the properties of mixtures may also be justified.

THEORETICAL PERFORMANCE DATA

For a combustion pressure of 300 pounds per square inch absolute,
the calculated values of the performance parameters specific impulse,
temperature, mean molecular weight, characteristic velocity, coefficient
of thrust, and ratio of nozzle-exit area to throat area are given in
table II at exit pressures corresponding to altitudes of O, 10,000,
20,000, and 30,000 feet. The values of pressure corresponding to the
assigned altitudes were taken from reference 9. As an aid tc engine
design, the values of the parameters within the rocket nozzle for 80,

90, 100, 110, and 120 percent of the throat pressure are presented in

table III. Equilibrium composition, 7g, specific heat at constant
pressure, ccefficient of viscosity, coefficient of thermal conductivity,
and mean molecular weight in the combustion chamber at assigned exit
temperatures are given in table IV. The mole fraction of Fz was
always less than 0.00002 and therefore was not tabulated.

Parameters. - Curves of specific impulse for four altitudes are
shown in figure 1 plotted against weight percent fuel. The maximum
value of specific impulse for the sea-level curve is 313.6 pound-
seconds per pound at 28.4 percent fuel by weight for the fuel mixture
containing 36.3 percent ammonia by weight and 311.9 pound-seconds per

© pounteat 24.2 percext Cuel by.waight for -the fuzl mixdure conteining .

87 percent ammonis.

The maximum values of specific impulse and the weight percentages
at which they occur were obtained by numerical differentiation of the
saloulated values and are shown in flgure 2 as functions of altitude.
The maximum specific impulse increases 14 percent for a change in alti-
tude from sea level to 30,000 feet for both fuel mixtures.
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Curves of combustion-chamber temperature and nozzle-exlt tempera-~
ture for various altitudes are presented in figure 3 as functions of
weight percent fuel. The maximum combustion temperatures calculated are
4354° and 4306° K for the 36.3 and 87 percent ammonia fuel mixtures, -
respectively (table II). The maximums of the exit-temperature curves
occur near the stoichiometric ratio.

Characteristic velocity and coefficient of thrust are plotted in
figure 4, and the ratio of the area at the nozzle exit to the area at
+he throat is plotted in figure 5, against weight percent fuel.

Curves of mean molecular weight in the combustlion chamber and noz-
zle exit are plotted against weight percent fuel in figure 6.

Curves of specific heat at constant pressure, coefficient of vis-
cosity, and coefficient of thermal conductivity for six pressures are
plotted in figures 7, 8, and 9, respectively, as functions of weight

percent fuel.

Chamber-pressure effect. - According to data of reference 4, the
values of the parsmeters I, c*, and Se/st for hydrazine and fluorine

are very nearly linear with the logarithm of chamber pressure for a fixed.
equivalence ratio and expansion ratio. This linearity permltted the data
to be correlated according to the following equations:

n

P
t = 300 (539 )
P, \P ‘
e* = e300 (325) (10
P n
Se/St = (8e/8¢) 300 (3%5) (15)

where Izyg, c3ng, 8nd (Sg/Sy)zgp ave the values of these parameters
at 300 pounds per square inch absolute; I, c*, and S./Sy are the values
of these parameters at any chamber pressure P.; P, 1s in pounds per

and expansion ratios for each parameter- ‘The following equation for
obtaining the value of n for specific impulse was derived in refer-

ence 4:

T :

ef1l 1
n = 86.4554¢ — (—~ - ——) 16
12 .yc Me, (18)

2901
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In the case of hydrazine and fluoriﬁe, it was found that equa-
tion (13) could be used with the exponent of equation (16) over a
chamber ~-pressure range of 4 to 1 with a maximum error of a few tenths of
an impulse unit over a wide range of equivalence ratios. This chamber-
Pressure correlation was also checked for one equivalence ratio for
several other propellants and found to apply over a similar pressure
range 0 sbout the same accuracy. The values of n were therefore com-
puted by means of equation (16) for the other propellants in this series
of reports; namely, hydrogen with fluorine, ammonia with fluorine, and
mixtures of ammonia and hydrazine with fluorine. These values of n
were used together with the specific-impulse data for 300 pounds per
square inch absolute to comstruct figure 10, which, with the aid of
equation (13), permits determination of specific 1mpulse for a range of
chamber pressures. '

[ XX XK )
L XX
[ XX XX
(XX XX}
(XX E R ]

To 1llustrate the use of these curves, suppose it is desired te
obtain the value of specific impulse for a chamber pressure of
1000 pounds per square inch and an expanslon ratio of 136.1 for hydrogen
and fluorine at the stoichiometric mixture ratic. From.figure 10(d),
the value of Izg0 1is read as 413 (or more precisely, 412.8 by inter-
polating table III of ref. 2), and the value of n 1is read as 0.0114.
From equation (13),

0.0114
= 412.8 (E?Q)

—
i

300

412.8 (1.0138)

]

= 418.5
which compares with the value of 418.47 obtalned by direct computation.

Equations similar to equation (16) may be derived for the exponents
n for c* and S /St, however, these equations could not be evaluated

numerically, inasmuch as they involve partial derivatives that have not
been calculated. The value of the expcnents for c* and S /St may,

however, be computed from the values of these parameters at two chamber
pressures, as was done In reference 4. The exponents computed for
hydrazine and fluorine at the stoichiometric equivalence ratio (ref. 4)

-are about the same as those for hydrogen and fluorine at the same equiv-

alence ratio computed from data of reference 2. Inasmuch as the values
of these exponents are not critical, it is probably possible te apply
the values of n for hydrazine and fluorine to the other propellants
in this series of reports with small error. Greater accuracy can be
obtained by additional performance computations at ancther chamber
pressure.

—_—
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Corrections for nonadiabatic or nonisentropic processes. - Equations
are given in reference 4 that permit the calculation of specific impulse
for nonisentropic expansion or for change in heat cortent of the pro-
pellant gases from the originally calculated data.

Frozen composition. - In order to compare data based on the assump-
tlons of equilibrium and frozen composition during the expansion process,
several additional calculations were made with frozen composition
assumed. These values are presented in table V together with correspond-
ing equilibrium data for the stoichiometric equivalence ratio and for two
expansion ratios. The percentage differences in these parameters for
frozen and equilibrium composition are considerably higher for expansion
to an altitude of 30,000 feet than for expansion to sea level.

For a combustion pressure of 300 pounds per square inch absolute
and an exit pressure of 1 atmosphere, the values of maximum specific
impulse and the percentages of fuel by weight at which they occur are
given in the following table for frozen and equilibrium composition:

Weight Composition during expansion

percent Equilibrium Frozen

ammonia .

in fuel Ipax | Weight | Ipax [Weight
percent percent
fuel fuel

36.3 1313.6 28.4 | 292.2] 3.8
87 311.9 24.9 | 2%0.8] 27.5

Effect of percentage of ammonia in fuel. - A comparison of the data
in this report with that of references 3 and 4 shows & nearly linear
variation in I, c*, and Se/St with the percentage of ammonia in an
ammonia-hydrazine fuel mixture at constant equivalence and expansion
ratios. An example of this variation is given in figure 11, which is a
plot of I, c* and Se/St for the stoichlometric equivalence ratio as

a function of weight percentage of ammonia in the fuel.

Similar curves may be plotted for any equivalence ratio and expan-
sion ratio covered by the data in this report and in references 3 and 4
and may be used to obtain the performance of any mixture of ammonia and
hydrazine with fluorine. However, because these curves are very nearly
linear, only small errors in performance result from linear interpolation

of the tabulated data.

Figure 7 of reference 10 shows the same nearly linear variation in
I, c* and Se/St with the percentage of ammonia in the fuel when oxygen

bifluoride is the oxidant. The stoichicmetric curves of this figure
are also given in figure 11 of this report for comparison.

x‘ ‘ fl»,
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Inasmuch as the difference in performance between aimonia and
hydrazine is only about 4 specific impulse units with fluorine as oxi-
dant, but is about 13 units with oxygen, hydrazineée is more likely to be
used with oxygen than with fluorine. However, ammonia is considerably
cheaper and more available than hydrazine, and, except in special appli-
cations, ammonia appesars to be the more practical rocket fuel. Mixtures
of ammonia and hydrazine when used are likely to be selected for better
Physical properties and greater availability than hydrazine and slightly
better performance and possibly higher combustion efficiency than
ammonia.

Lewis Flight Propulsion Labdratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, April 17, 1953
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(Combustion-chamber pressure, 300 1b/sq in. abs]

(a) Fuel, 36.3 percent ammonla, 63.7 percent hydrazine by weight; oxidant, fluorine.

TABLE IV. - PROPERTIES AND COMPOSITION IN COMBUSTION CHAMBER AND FOLLOWING AN ISENTROPIC EXPANSION TO ASSIGNED EXIT TEMPERATURES
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TABLE IV. - PROPERTIES AND COMPOSITION IN COMBUSTION CHAMBER AND FOLLOWING AN ISENTROPIC EXPANSION TO ASSIGNED EXIT TEMPERATURES - Concluded

(b) Fuel, 87 percent ammonia, 13 percent hydrazine by weight; oxidant, fluorine.

CA

~NAC

[Combustion-chamber pressure, 300 lb/sq in. abs)
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TABLE V.

AMMONIA AND HYDRAZINE WITH LIQUID FLUCRINE

»
L ]
o 690 & © oo

~ COMPARISON OF CAICULATED PERFORMANCES

L]
ees oo

AND FROZEN COMPOSITION ASSUMED DURING EXPANSION

[Combustion-chamber pressure, 300 Ib/sq in. abs;
stoichiometric equivalence ratio]

. Ngcg RM E53F08

OF MIXTURES OF LIQUID

WITH EQUILIERIUM

Altitude
Parameters Sea level 30,000 £t
Equilibrium | Frozen |Equilibrium| Frozen
36.3 percent NHz, 63.7 percent NpH, by weight
Specific impulse,

I, lb-sec/1b 312.9 289.2 356.8 320.6
Characteristic velocity,

c* ft/sec 7057 6722 7057 6722
Coefficient of thrust, Cp 1.427 1.384 1.e27 1.534
Nozzle-exit area to throat

area, S./Sy 3.930 3.118 9.632 6.835
Nozzle-exit temperature,

Tes °K 3188 2044 2697 1475
Nozzle-exit molecular

weight, Mg '20.86 19.15 21.27 19.15

87 percent NHz, 13 percent NoHg by weight.
Specific impulse,

I, lb-sec/lo 311.3 288.2 354.7 319.5
Characteristic velocity,

c™ ft/sec 7026 6697 7026 6697
Coefficient of thrust, Cp 1.426 1.384 1.624 1.535
Nozzle-exit area to throat

area, S./Sy 3.912 3.125 9.505 6.855
Nozzle-exit temperature,

Te, %K 31217 2029 2613 1465
Nozzle-exit molecular

welght, Mg 20.74 19.11 21.10 19.11

i
NACA

1062

Gl




~
N

*pP93BOTPUT OPN3TATE 03 Burpuodsaxaod aanssaxd
37%e $sqnTosqe goup axenbs xad spunod oo¢ ‘eumssaad JPQUBYD-UOTISNAWOD fuotyteoduos
umyIqTTINbe Burumsse uorsusdxs o7doJjues] tJUBPIXO SB AUTJIONTI PINDTIT UITA T3NJ

se auyzeIpAy pus ®TUOWmE PINbIT Jo aamayxTm JO asTndut oTJroads Tesyisaoayy - T 2aIn3Td

*quBtom Aq sutzeIpAy jusdxad ,'g9 PuUB BTUOWMB yuadxad ¢r9¢ ‘Tond (®)

quftea Lq juadszad ‘justrrodoad uy T9ng !
8% v ov 9¢ 2 82 v2 OWWN
| |
%
082
7]
0T38JI g
. 5TJ33WOTYOTOIS A
[e]
~ —— = -
<. ] 0000T |~ — e
XXX X)) /
ese /—/ .// 02¢ m
[ ] [ ] / :
meeet TS 00002 T~_ ~— - 2
o ] b ove
M fapniTaTy \
S 09¢
=

10862 e T

RIS UPRIR FIP. SRR RETF R SIREE L e s rrr o et s il b A s e TP e otk WY PR vt Cas b o
N A w e
P

[ S



= e e e i A g o A —— B KN p e

22

Specific impulse, I, 1lb-sec/lb
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Figure 1. - Concluded. Theoretical specific impulse of mixture of liquid -
ammonia and hydrazine as fuel with liquid fluorine as oxidant. Isen-
tropic expansion assuming equilibrium compositicn; combustion-chamber
pressure, 300 pounds per square inch absolute; exit pressure corre-
sponding to altitude indicated.
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with liquid fluorine as oxidart. Isentroplc expan-
sion assuming equilibrium compcsition; combustion-
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Figure 3. - Theoretical ccmbustlon-chamber temperature and nozzle-exit temperature of

- mixture of iiquid ammonia and hydrazine as fuel with liquid fluorine as oxidant.
Isentropic expansion assuming equilibrium composition; combustion-chamber pressure,
300 pounds per square inch absolute; exit pressure corresponding to altitude indi-

cated.
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Figure 3. - Concluded. ‘Theoretical combustion-chamber temperature and

nozzle-exit temperature of mixture of liquid ammonia and hydrazine as
fuel with liquid fluorine as oxidant. Isentropic expansion assuming
equilibrium composition; combustion-chamber pressure, 300 pounds per
square inch absolute; exit pressure corresponding to altitude indicated.
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Figure 4. - Thecretical characteristic velocity ard coefficient of thrust of mixture
of 1liquid ammonia and hydrazine as fuel with liquid fluorine as oxidant. Isentropic
expansion assuming equilibrium composition; combustion-clamber pressure, 300 pounds
per square inch absolute; exit pressure corresponding to altitude indicated.
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Figure 4. - Concluded. Theoretical characteristic velocity and coeffi-
cient of thrust of mixture of liquid ammonia and hydrazine as fuel with
ligquid fluorine as oxidant. Iseniropic expansion assuming equilibrium
composition; combustion-chamber pressure, 300 pounds per square inch
absolule; exit pressure corresponding to altitude indicated.
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Figure 5. - Theoretical ratic of nozzle-exit ares to thrcat area for
mixture of liquid ammonia and hydrazine as fuel with liquid fluorine as
oxidant. Isentropic expansion assuming equilibrium composition;
corbustion-chamber pressure, 300 pounds per square inch absolute; exit
pressure corresponding to altitude indicated.
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Figure 5. - Concluded. Thecretical ratio of nozzle-exit area
to throat area for nixture of liquid ammonia and hydrazine
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sion assuming equilibrium composition; combusticn-chamber
pressure, 300 pounds per square inch absolute; exit
pressure corresponding to altitude indicated.
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Figure 6. - Concluded. Theoretical mean molecular weight in combustion
chamber and at nozzle exit for mixture of iiguid ammonia and hydrazine
as fuel with liquid fluorine as oxidant. Isentropic expansion assuming
equilibrium composition; combustion-chamber pressure, 300 pounds per
square inch absolute; exit pressure corresponding to altitude indi-

cated.
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Figure 7. - Theoretical specific heat at constant pressurc of combus-

tion products (including energy of dissociation) of mixture of
liquid ammonia and hydrazine as fuel with liquid fiuvorine as
oxidant. Isentropic expansion to pressures indicated assumirng
equilibrium composition; combustion-chamber pressure, 300 pounds
per square inch absolute.
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Figure 8. - Theoretical coefficient of viscosity of combustion products of mixture
of liquid amonia and hydrazine as fuel with liquid filuorine as oxlidant. Isen~
tropic expansion to pressures indicated assuming equilibrium composition;

S combustion-chamber pressure, 300 pounds per square inch agbsolute.
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Figure 8. - Concluded. Theoretical coefficient of viscosity of combustion

products of mixture of liquid ammonia and hydrazine as fuel with liquid
flnorine as oxidant. Isentropic expansion to pressures indicated assum-
ing equilibrium composition; combustion-chember pressure, 300 pounds per
square inch sbsolute.
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Figure 9. - Theoretical coefficient of thermal conductivity of com-
bustion products of mixture of liquid emmonia and hydrazine as
fuel with liquid fluorine as oxidant. Isentropic expansion to
pressures indicated assuming equilibrium compcsition; combustion-
chamber pressure, 300 pounds per square inch absolute. .
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Figure 9. - Concluded. Theoretical coefficient of thermal

conductivity of combustion products of mixture of liquid
ammonia and hydrazine as fuel with liquid fluorine as
oxidant., Isentropic expansion to pressures indicated
assumning equilibrium composition; combustion-chamber
pressure, 300 pounds per square inch absolute.
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Figure 10. - Theoretical specific impulse for chamber pressure of 300

pounds per square inch sbsolute and exponent n for equation

I = Izgp (Pe/300)". Isentropic expansion to expansion ratio indi-

cated assuming equilibrium composition.



40

Specific impulse, Iznqs lb-sec/1b

38

36

32

28

24

| A1\ \ \o.
ﬂf ‘\ \\\\\ \004 \
///I ! \ \ooog\\\\ka ‘\ | Expansion |

*.°NAl4 RM ES3F08

RN
\ \\ N

7 (it ] \
// 7\ \-008 >\\\

[

/

\ I
/ 010 ) \ S ™
/ \\ \ \ \ \\\*Q 50 N
¥y \“"‘*~:§ \ N h;\‘\
//" / A T\\ N \
\ \ \ \
I} 1 |\ \ \ I \

Stoichiometric
260 — ratio \\\\4~&9\
20 24 28 32 36 40 44

Fuel in propellant, percent by weight

(b) Fuel, 87 percent ammonia and 13 percent hydrazine
by weight; oxidant, liquid fluorine.

Figure 10. - Continued., Theoretical specific impulse for
chamber pressure of 300 pounds per square inch absolute
and exponent n for equation I = Izng (P./300)™. Isen-
tropic expansion to expansion ratio indicated assuming
equilibrium composition. '
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tropic expansion to expension ratio indicated assuming equilibrium compositilon.
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