Control Circuit Maintains Unity Power Factor of Reactive Load

The problem:
To maintain power supply efficiency where negative load reactance changes and varies. Previous techniques inserted an inductor into the circuit if the load was highly capacitive, or a capacitor if the load was highly inductive. Should the load reactance change, it would then be necessary to change the value of inductance or capacitance inserted into the load circuit. It is required that a reactance equal to the load negative reactance be maintained in the load circuit for minimum current to produce the desired output power for the load.

The solution:
A circuit including feedback control elements for automatically correcting the power factor of a reactive load. The circuit maintains unity power factor by providing corrective error signals to the control windings of a power supply transformer.

How it's done:
Current supplied by Q1 and Q2 which, in effect, is the current through R1 and R2, is sampled by T1 and T2, respectively, and fed as one input to the phase detector. The other input to the phase detector is the voltage across the parallel connected primary windings of T3 and T4. Since T3 and T4 are driven push-pull, the current is sampled on both sides. The phase detector generates an error signal proportional to the angular difference between the voltage and current sampled. The error signal is amplified by the dc amplifier, and a control current developed in windings W1 and W2. The control current adjusts the self-inductance to drive the phase angle between the sampled voltage and current to zero. Because the control winding only reduces the self-inductance of the transformers, C1, connected across the series-connected secondary windings W3 and W4 of T3 and T4, is chosen so that the leading current, due to C1 alone, will be

(continued overleaf)
greater than the maximum lagging current that would result from an inductive reactive load.

Notes:
1. This circuitry will give continuous automatic power factor correction to power supply systems having a reactive load.
2. Inquiries concerning this invention may be directed to:
 Technology Utilization Officer
 Manned Spacecraft Center
 Houston, Texas, 77058
 Reference: B66-10431

Patent status:
Inquiries about obtaining rights for the commercial use of this invention may be made to NASA, Code GP, Washington, D.C. 20546.
Source: Manuel Kramer and Louis H. Martinage of International Business Machines under contract to Manned Spacecraft Center (MSC-192)