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A SINGLE-COLLISION MODEL FOR ELECTRON-BEAM 

CURRENTS BETWEEN PLANE ELECTRODES* 

by Char les  M. Goldstein a n d  A r t h u r  W. Goldstein 

Lewis Research Center 

SUMMARY 

Space-charge and potential distributions a re  calculated for the region between two 
plane electrodes. The effect of elastic, hard- sphere collisions between the electrons of 
the injected beam and the neutral gas molecules is incorporated into the analysis with the 
assumption that the electrons will suffer at most one scattering collision. The injected 
beam, itself, is assumed monoenergetic. Calculations of current as a function of voltage 
a r e  compared with results from a multiple-collision model; very good agreement is found 
for an electrode-spacing to mean-free-path ratio of 0.1, and a maximum deviation of only 
1. 5 percent was observed for a ratio of 0.5. Current-voltage characteristics are also 
calculated for various values of emission current and electrode spacing. Collisions are 
found to have a pronounced influence on potential and density distributions, current, and 
region of time-independent operation. 

INTRODUCTION 

An important problem in the study of gaseous electronics and ionic phenomena is to 
find a means of analyzing the effect of collisions for those circumstances wherein they 
cannot be neglected but where a diffusion approximation is not yet applicable. This inter- 
mediate regime is of major importance in the low density plasma diode, the plasma 
sheath, the ion rockets, and the cross-sectional measurements. Presented herein is a 
simple, theoretical first approximation to the effect of collisions in this regime. 

The particular problem treated is that of electron flow between plane parallel elec- 
trodes (emitter and collector) in the presence of an external electric field (see fig. 1) 
and collisions with a neutral target gas. The emitted electron beam is assumed mono- 
energetic and directed normal to the electrode surfaces. In addition, the following sim- 
plifying assumptions a r e  made: the neutral gas particles are of infinite mass (perfect 

* 
The material contained herein was presented at the Seventh International Conference 

on Phenomena in Ionized Gases, Belgrade, Yugoslavia, August 22-27, 1965. 
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Lor entz ian gas) ; electron- neutral collisions 
are elastic, hard-sphere collisions; and, the 
electrons suffer at most one scattering colli- 
sion. The study is further restricted to the 
regime where a time-independent solution can 
be considered valid. 

This single- collision model should provide 
good qualitative characteristics for a dilute 
gas; it will also provide a much-needed check- 
point for all future exact or approximate solu- 
tions of the more accurate physical models. 
The pursuance of this problem was in no small 

-Collector 

Figure 1. - Configuration of one-dimensional field, flux, and way influenced by the need for just such a 
checkpoint for a Monte Carlo problem (ref. 1). 

Not only did this model provide the needed checks for the Monte Carlo solution, but these 
latter solutions demonstrate, in turn, the range of validity of the one-collision approxi- 
mation. A comparison of the results obtained from the two models will be discussed. 

A review of the electron vacuum diode phenomena, which are of interest in the pres- 
ent study, is given in the following section. A more extensive review of research on 
monoenergetic electron flow in a vacuum diode is to be found in reference 2. 

electrodes. 

REVIEW OF COLLISIONLESS RESULTS 

Figure 2 is a typical current-voltage characteristic obtained from a time-independent 
analysis (ref. 3) for the case of no collisions; figure 3 shows the corresponding potential 
distributions. As  the collector voltage is decreased from A in figure 2, the full emis- 
sion current reaches the collector until point B is reached. The curve labeled B in 
figure 3 represents the potential distribution corresponding to point B in figure 2. If 
the collector potential is now decreased infinitesimally, the potential minimum drops 
discontinuously to zero as indicated by curve B' in figure 3. This situation corresponds 
to point B' on the current-voltage characteristic (fig. 2). The point where the minimum 
potential and its slope a r e  both zero is called a "virtual cathode. " At this point, the 
ideal monoenergetic beam has zero velocity (infinite charge density). Other values of 
collector potential a r e  determined by the amounts of the incident electron current that 
a r e  reflected o r  transmitted at the virtual cathode. If the collector potential is now in- 
creased from, say, point C (fig. 2), a virtual cathode will continue to exist until point 
is reached where the potential undergoes a discontinuous change and a normal potential 
minimum is once again formed (curve D', fig. 2). 
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Figure 2. - Current-voltage characteristic; n o  collisions. 
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Figure 3. - Potential distributions; no  collisions. 

The hysteresis predicted by the collisionless current-voltage characteristics were 
not observed experimentally (ref. 4). More recently, the problem was simulated on a 
high-speed digital computor (ref. 5). The results indicate that a virtual cathode is never 
formed. Instead, for anode potentials below the critical potential (point B, fig. 2 and 
curve B, fig. 3), the potential minimum appears to oscillate nonuniformly with a period 
of roughly the order of the electron plasma frequency corresponding to the electron den- 
sity at the potential minimum. Thus, in effect, only time-dependent solutions appear to 
exist below the critical potential. 

ANALYSl S 

Solutions to the single-collision problem a r e  obtained by iteration in the following 
manner: an approximate potential distribution is first assumed for a given collector po- 
tential; the contribution of the electrons in the primary beam to the space charge is then 
easily calculated; the contribution of the scattered electrons is obtained from a solution 
of the Boltzmann transport equation; the total space charge is then employed, with 
Poisson's equation, to obtain a more accurate potential distribution. The entire process 
is iterated until sufficient accuracy is obtained. 

Poisson's equation for the inter electrode region in dimensionless variables becomes 
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where 

n(y) = - 

C = 8n e 
m 3  
-- 

(All symbols are defined in the appendix. ) The parameter C is proportional to the 
strength of the space-charge effects. A low value of C indicates weak space-charge ef- 
fects and vice versa. 

The dimensionless charge density n(y) may be expressed as 

where n (y) and ns(y) are the contributions to the charge density at y from the primary 
and scattered electrons, respectively. 

P 

Density of Electrons in Primary Beam 

The assumption of hard-sphere collisions and a constant mean-free-path h implies 
(see ref. 6) 

Jo -x/h N (x)v (x) = - e 
P P  e 

where N (x) is the density and v (x) is the velocity of electrons in the primary beam 
(i. e., those electrons that have not been scattered). In this equation 

P P 
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vp(x) = dVo 2 +- 2eV(x) 
m 

(5) 

and, therefore, from equations (2), (4), and (5), 

where 

L 
x 

K = -  

Equation (6) represents the density distribution of electrons in the primary beam. 

Density of Scattered Electrons 

Source intensity. - To solve Boltzmann's equation for the scattered electrons, the 
source intensity of scattered electrons is equated to the rate of loss of electrons from 
the primary beam. Equation (4) represents the flux of the primary beam electrons as a 
function of distance between the electrodes. 
the primary beam in distance dx is obtained by differentiating equation (4) with respect 
to x in the following way: 

The rate at which electrons a r e  lost from 

Hence the rate of loss of electrons from the primary beam per unit volume in phase 
space (d7 d7) is 

Since hard-sphere scattering is energy conserving and isotropic, the rate of gain of 
scattered electrons per unit volume of phase space can be written in the form 
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R(x7 v)6 (v2 - vx) (9) 

When the gains and losses are equated (by integrating the integrals of eqs. (8) and (9) over 
the entire velocity space), there results 

Expressions (9) and (10) define the source intensity of the scattered electrons in phase 
space. 

tered electrons with the derived collision term is 
Equations for scattered - electrons. - - The Boltzmann transport equation for the scat- 

where f(x, 7) is the velocity distribution function of the scattered electrons. Integrating 
equation (11) with respect to v and vz and nondimensionalizing result in Y 

where 
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The dimensionless density of scattered electrons n,(y) is given by 

where g(y, u) is a solution of equation (12) in the range bounded by umin and umax 
(which a r e  themselves functions of y). 

Solution of Boltzmann equation. - Equation (12) will be solved by the method of char- 
acteristics (ref. 7). After a collision has occurred, the normal velocity components v Y 
and vz of each scattered electron a r e  constant (no further collisions!); hence, the quan- 
tity 

(15) 
2 E 3 u - q(y) 

becomes a constant of motion of the scattered electrons. 
space to the (y, E)-space where 

Transforming from the (y, u)- 

results in equation (12) becoming 

Integration of equation (17) along constant E from a lower limit 6 to y gives 

The bookkeeping becomes easier if  the intermediate distribution functions gt(y, E) and 
gi(y, E) are employed 

where ym is the location of the potential minimum, the gz(y, E) and g&y, E) are the 
distribution functions for electrons with velocity u - > 0 and u - < 0, respectively. From 
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equations (18) and (19) 

where 

The boundary conditions at the electrodes, if  perfect absorption is assumed, a r e  

gi(0, E) = o (no scattering at emitter) 

(no scattering at collector) gi(1, E) = 0 

Continuity of the distribution functions at the potential minimum is also demanded as 
shown in the following equation: 

The integrals of equation (20) are to be evalu- 
ated along lines of constant E. 

The limits of integration may be readily ob- 
tained with the aid of figure 4, which represents 
the phase space of scattered particles with 

I E,u-axes. Contours of constant position (y = 
I constant) are parabolas given by (cf. eq. (15)) 
I 

I 

2 0 

(a) y <  ym; region 1. u = E + d y )  

There are two regions in phase space; the first 
(fig. 4(a)) describes the region in physical space 
0 5 y 5 ym where all the electrons are deceler- 
ated (in the vector sense), and the second (fig. 
4(b)) describes the region in physical space 
ym 5 y - < 1 where all electrons a re  acceler- 
ated. In these diagrams, the paths of individual (bl y 2 ym; region 2. 

Figure 4. - Phase space of scattered electrons. electrons are vertical lines (constant E) going 
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downward in region 1 (fig. 4(a)) and upward in region 2 (fig. 4(b)). The integrals of equa- 
tion (20) a r e  taken along the same paths. 

The point of origin of a particle is determined by the location y of scattering and the 
axial velocity u after scattering. These determine the constant of motion E, which is 
always less than 1.0. The boundary conditions (eqs. (22)) imply g = 0 on y = 0, u > 0 
(fig. 4(a)) and on y = 1, u < 0 (fig. 4(b)). 

by arrow 1 in fig. 4) shall be followed. This electron has a positive u-component of ve- 
locity as shown. Following a path of constant E toward the potential' minimum, u de- 
creases. After passing the potential minimum, the electron is accelerated toward the 
collector (arrow 2 in fig. 4(b)). Arrow 3 (fig. 4(b)) represents an electron with the same 
value of E but with a negative value of u resulting from a backscattering collision. 
The magnitude of u decreases until this electron traverses the potential minimum and is 
then accelerated into the emitter (arrow 4, fig. 4(a)). 

Figure 4(a) also indicates that all electrons having positive u and E < -qm in the 
region y < y, will be reflected by the potential field and returned to the emitter. Simi- 
larly, electrons with negative u and E < -qm in the region y > y, (fig. 4(b)) will be 
reflected back to the collector. The trajectory of such an electron is represented by ar- 
row 5 in figure 4(b). The value of y at which u = 0 is also indicated as y*. Physical- 
ly, this represents the turning point in the trajectory for a constant value of E due to 
the potential field. 

gions of figure 4: 

As an example, the trajectories of an electron starting near the emitter (represented 

With equations (20), (22), and (23), the following may be written for the indicated re-  
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Since the distribution functions must be continuous along constant E, the following may 
be equated from equations (27) and (30), respectively; 

Hence, equations (26) and (31) become 

Y 
glc(Y,E) = f K(t,E)dt + 2 Jy* K(t,E)dt 

0 Y 
(34) 

Substituting equation (33) in equation (25) and equation (32) in equation (28) results in 

The limits on the integral in equation (14) can now be obtained in each region of the 
(y, E)-space by inspection of figure 4. For y 5 ym, the respective contribution to the 

10 



densities becomes 

vcp (Y) -cpm 
du / l  K[t,u2 - cp(y)]dt 

Y 
(44) 

(4 5) 
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A straightforward change of the limits of integration may be affected for equations 
(38), (39), (4l), (42), (43), and (44), and for those integrals of equations (40) and (45), 
which do not contain y* as a limit. The integrals containing y* can be inverted, how- 
ever, by employing the following identity: 

The second integral of equation (40) may be written in the form 

where 

(Note that it has been assumed that q(t) is monotonic in the range of interest, hence 
p'(t) and t may be expressed as functions of p. )  Application of the identity (eq. (46)) to 
equation (47) gives 

CP (Y) - 'Pm Ym (Y) - (-Pm 
K [t, u2 - d Y ) ]  du (49) .I dt/t) 

h(@,P)da! = 2 

The same procedure gives, for the first integral of equation (45), 

After changing the order of integration in equations (38) to (45), the integration over 
u may be done in closed form. The indefinite integral is 

12 



Hence, integrating over u and collecting terms from equations (38) to (51) result in 

n,(y) = l y m d t  - S(t) In G - Z z + G  

I I 

where the upper signs in the denominators pertain to y - < ym and vice versa. 

Current  to Collector 

To obtain the net collector current J, it is simpler to first obtain the net current to 
the emitter JE 

= l<o u .  gl(O, E)du 
JO - 

or  

(53) 

from equations (25) and (26). 
referring to figure 4 (p. 8) for the proper limits result in 

Substituting equations (34) and (36) into equation (54) and 

1 
du. u l y *  2K(t, u2)dt + /' du - u K(t, u2)dt (55) 

K 

K 
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Inverting the order of integration (using eq. (46) for first term in eq. (55)) and integrating 
with respect to u give 

.a50 

1 

- K  lym s ( t ) G  dt + / S ( t ) m  dt (56) ) - J JE 1 - =  1 - - = -  (1 + e  
2 

JO JO Ym 

I I I I I I I I I  

RESULTS 

The equations for the electron density distribution were solved simultaneously with 
Poisson's equation for the potential distribution and current. Solutions were obtained for 
several values of the space-charge parameter (C = 0. 1, 1, and 10) and the collision pa- 
rameter (L/A = 0, 0. l, 0. 3, and 0. 5). For each pair of parameters, the collector poten- 
tial was varied from a large positive value down to the neighborhood of the critical poten- 
tial. 

Case 1 (C = 10) 

Figure 5 shows the overall current-voltage curves for high space- charge conditions 
and several values of L/A. For comparison, the results of the Monte Carlo calculation 
a r e  shown, where multiple collisions a r e  allowed but also limited to hard-sphere elastic 
collisions. The one-collision approximation yields collector currents that are accurate 
for L/A = 0 . 1  and is accurate over most of the range for L/A = 0.3, but it is somewhat 

1. 

c- c 
W 
L L 

3 u 
c 
W z 

Figure 5. - Current-voltage characteristics; C = 10. 
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Figure 6. - Potential distr ibutions near transit ion voltage; 
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C = 10: L h  = 0.5. 

too high (by as much as 1. 5 percent) 
for L/X = 0.5. These curves show 
that collisions cause a backscattering 
of electrons to the emitter even for 
large collector voltages (J/J, remains 
less than unity). 

Typical potential distributions 
(shown in fig. 6) are qualitatively the 
same as those that exist without colli- 
sions. The only apparent effect of col- 
lisions is to lower the potential mini- 
mum for a given collector potential. 

The effect of collisions on the 
critical collector potential and the cor- 
responding potential minimum is shown 
in figure 7. 
defined at the point where the slope of 
the curve of potential minimum plotted 
against collector potential becomes in- 
finite (ref. 4). It is observed that col- 
lisions reduce the range of stable oper- 
ation by increasing the critical value 
of the collector potential. In addition, 
the corresponding potential minimum 

The critical potential is 

decreases. 
The electron density distribution 

obtained by the one-collision method 
for C = 10 and L/A = 0. 5 is shown in 
figure 8. Curve C shows a distribu- 
tion corresponding to an electrical field 
of zero at the emitter ( ~ ' ( 0 )  = 0). In 
this case, the potential increases mono- 
tonically with y, the primary beam 
electrons accelerate, and their density 
decreases. Scattered electrons return- 
ing to the emitter increase the density 

Density curve A corresponds to the 
lower potential distribution of figure 7; 

----..--- Extrapolated 

20 2.5 3.0 3.5 4. 0 4. 5 5.0 there over the emitted value of 1.0. 
Collector potential, ~ ( 1 )  

Figure 7. - Crit ical potential and min imum potential wi th  mean-free- 
path; C - 10. 
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Figure 8. - Density distribution; C = 10; L h  = 0.5. 
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Figure 9. - Current-voltage characteristics; C = 1. 

the maximum density location occurs in the neighborhood of the minimum potential dis- 
tribution (viz. , the minimum u-component of electron velocity). 
shows the density distribution (n 
tial curve (q(1) = 2. 55). The density of scattered electrons (n,) is seen to be in the 
range 0.17 to 0.29. 

The curve labeled B 
of members of the primary beam for the same poten- P) 

Case 2 (C = 1) 

In this case the current-voltage curves (fig. 9) are qualitatively similar to those for 
case 1. Here, however, the critical potential is much lower (q(1) -0. 9). Note that as 
the collector potentials become very high, the saturation currents for this case approach 
the values for case 1 (fig. 5). As the collector potential increases, the effect of the 
space charge decreases; the only mechanism, then, that maintains the saturation current 

16 



1. Or 0 Position of potential min imum 

lnterelectrode distance, y 

Figure 10. - Potential distribution; C = 1; Lh = 0.5. 
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Figure 11. - Density distribution; C = 1; L h  = 0.5. 

below the emission current (J/Jo = 1) at very high collector potentials is the scattering. 
The potential distributions for C = 1 and L/A = 0. 5 a r e  shown in figure 10. As 

the collector potential q(1) is reduced in the sequence of curves D, C, B, and A, the po- 
tential minimum first approaches the collector, and then recedes, as indicated by the 
position of the circles in the figure. For this case the potential minimum never reaches 
the collector (i. e.,  the slope of the potential never becomes zero at the collector). The 
corresponding density distributions are shown in figure 11, where it is observed that for 
this value of C the scattering begins to dominate the space charge as is evidenced by 
the lack of correlation in positions of potential minimum and density maximum. The 
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Figure 12. - Current-voltage characteristics; C = 0. 1 
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Figure 13. - Potential distribution; C = 0.1; L h  = 0.5. 
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Figure 14. - Density distribution; C = 0.1; L/A = 0.5. 

density of the primary beam n is also 
shown for q(1) = -0. 9 and for cp(l)=0.7.  

P 

Case 3 (C = 0.1) 

Here, a qualitative change in the 
current-voltage curves (fig. 12) for col- 
lector potentials near q(1) = 0 and lower 
is observed. The collector potentials co- 
inciding with q'(1) = 0 and q' (0)  = 0 de- 
fine different regimes of operation as indi- 
cated by the corresponding potential dis- 
tributions, curves A and B, in figure 13. 
The region between these two curves is 
known as the space-charge region. As 
the collector potential is decreased from 
that of curve B to that of curve A, the po- 
tential minimum moves from the emitter 
to the collector. Below curve A the po- 
tential minimum is located at the collector, 
and above curve B the potential minimum 
is located at the emitter. The almost lin- 
ear potential distributions outside the 
space-charge region (curves C and D), 
and the small extent of the space-charge 
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region a r e  indicative of weak space-charge effects (viz. , small values of C. ) 
The density distribution n(y) of electrons, corresponding to the potential distributions 

of figure 13, is shown in figure 14. Here the scattering and acceleration are easily shown 
to have opposite effects on electron density. The distribution A corresponds to a greater 
number of electrons being reflected back to the emitter than does distribution B. Hence, 
in general, the electron density of A is higher. Near the emitter, however, the return- 
ing electrons of curve A a r e  accelerated to a higher mean velocity than those of curve B, 
due to the higher electric fields. 
for the higher back current, so that a net decrease in density results. 

The increased mean velocity more than compensates 

CONCLUSIONS 

The calculations show that adequately accurate prediction of the effect of collisions 
on diode current-voltage characteristics a r e  obtainable from the single-collision model 
if the spacing L is sufficiently small compared with the mean free path X; er rors  of 
only 1. 5 percent in current were obtained with L/X = 0. 5. 

Backscattering of electrons causes a reduction in the current reaching the collector. 
This reduction becomes most pronounced at low collector potentials where the interaction 
between scattering and the space-charge effects a r e  strongest. These effects a r e  shown 
to be accentuated with increase in the magnitude of the space-charge parameter C. 
addition, the scattering causes a slight reduction in the range of stable operation. 

In 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, July 14, 1965. 
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APPENDIX - SYMBOLS 

[Cgs units are used throughout. ] 

space- charge par am et e r  , 
eq. (2) 

eq. (15) 
constant of motion defined in 

electronic charge 

velocity distribution function 
(v. d. f .  ) of scattered elec- 
trons 

dimensionless v. d. f .  for 
scattered electrons, eq. (13) 

variable defined in eq. (48) 

net electron current to collector 

net electron current to emitter 

electron emission current 

kernel defined in eq. (21) 

interelectrode spacing 

electron mass 

electron density 

dimensionless electron density 
defined in eq. (2) 

source kernel, eq. (10) 

dimensionless source intensity 
defined in eq. (12) 

dimensionless x- component of 
velocity, eq. (13) 

potential with respect to the 
emitter 

velocity, vx, vy, vz 

X coordinate normal to electrode 
surfaces 

Y dimensionless coordinate nor- 
mal to electrode surfaces 
defined in eq. (2) 

value of y where u = 0 in Y* 
integration along constant E, 
shown in fig. 4 

a7 P 
6 (4 Dirac Delta- function 

K dimensionless mean-free-path 
defined in eq. (7) 

variable of integration, eq. (51) 

x mean-free-path (mfp) 

7 volume 

<p (Y) dimensionless potential defined 
in eq. (2) 

Subscripts : 

a, b7 c7 d 

m 

max 

min 

0 

P 

S 

1 

2 

regions of fig. 4 

value at potential minimum 

maximum 

mimimum 

initial conditions (at emitter) 

primary beam electrons 

scattered electrons 

YLYm 

Y>Ym 
Superscripts: 
+ flow toward collector 
- flow toward emitter 
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