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A NUMERICAL METHOD FOR CALCULATING NEAR-FIELD 

SONIC-BOOM PRESSURE SIGNATURES 

By Wilbur D. Middleton and H a r r y  W. Carlson 
Langley Research Center 

SUMMARY 

A numerical method, based on the modified linear-theory analysis of G. B. Whitham, 
is presented for calculating the complete pressure field of supersonic projectiles or 
equivalent bodies representing airplane configurations. The method does not involve 
graphical solutions and is easily adaptable to digital-computer techniques. A description 
of the method is given and its application is illustrated by use of examples. 

INTRODUCTION 

G. B. Whitham, in his paper on the flow pattern of a supersonic projectile (ref. 1), 
developed a method for calculating the complete pressure, field of the projectile based on 
a modified linear-theory analysis. The method proceeded from the assumption that 
linear theory satisfactorily approximates the magnitude of disturbances contributing to 
the projectile pressure field but fails to locate these disturbances properly and does not 
account for the convergence of weak disturbances into shocks of finite strength. Whitham 
devised a correction to the linearized theory which takes into account variations in local 
flow directions and velocities and provides a more exact network of flow characteristics 
to describe the entire flow field, including shocks. 

The method of reference 1 for describing the pressure distribution and shock loca- 
tion in the flow field of the projectile is applicable to any slender, axisymmetric body- 
wake combination. With the addition of a suitable term to account for the effect of lift, 
the method has been extended to include the analysis of complete aircraft  configurations 
through a consideration of the equivalent slender body (ref. 2). Such an equivalent body 
generates a very complex pressure field because of inputs from the many component 
par ts  of the aircraft. A graphical construction of the pressure signature in the flow 
field near the aircraft, following the method of reference 1, therefore becomes quite 
laborious. 
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This report presents a numerical method, as an alternate to the graphical method, 
of implementing the theory described in reference 1. The method and its application to 
high-speed digital-computer programing is described and examples of its use a r e  given. 



SYMBOLS 

F(Y) effective-area-distribution function (see eq. (1)) 

transposed-effective-area-distribution function F(yt) 

Ibt)  integral of F(yt), 
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J3; p3/2  

reflection factor 

free-stream Mach number 

integer 

reference pressure 

incremental pressure due to flow field of slender supersonic body 

position of field point relative to undisturbed characteristic from body 
nose, x - pr 

perpendicular distance from body to  measurement point 

body cross-sectional a rea  

distance measured along longitudinal axis from body nose, dummy variable 
of integration for y 

distance from body nose to point in flow field, same origin and units as y 

distance measured along longitudinal axis from body nose 

transposed position of F(y), y - kJF F(y) 

value of y giving largest  positive value of I(y) 

{ M i  

ratio of specific heats (1.4 for air) 

A prime is used to indicate a first derivative with respect to distance and a double 
prime is used to indicate a second derivative. 
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DISCUSSION 

In reference 1, a method is developed for calculating the pressure field, including 
the strength and location of the shock waves, produced by a slender, axisymmetric body- 
wake combination. 
which is related to the body cross-sectional a r ea  development by the following expression: 

Fundamental to the method is a basic mathematical function F(y), 

While equation (1) is strictly applicable only to "smooth" body shapes, it illustrates the 
general form of the F(y) function. A more complicated expression for F(y), applicable 
to nonsmooth bodies, is also presented in reference 1. A numerical method of integrating 
equation (1) to obtain F(y) for smooth bodies of nonanalytic shape is presented elsewhere 
(e.g., ref. 2), so the calculation of the F(y) function will not be discussed here. 

The purpose of the present report  is to present a method, easily adaptable to digital- 
computing techniques, for calculating the pressure signature corresponding to  a given 
F(y) function. To do so, a brief summary of the techniques derived in reference 1 is 
required, although the reader is referred to reference 1 for a complete description of the 
theory. 

The coordinate system used in the 
description of the body flow field is illus- 
trated in figure 1. The field point at 
which it is desired to evaluate the flow- 
field pressure is referenced to the undis- 
turbed characteristic from the body nose 
(Ax = x - or). 

Pressures  within the disturbance 
field of a body a r e  proportional to its 
F(y) function, and the location and mag- 
nitude of pressure jumps at shock waves 
within the body flow field are determined 
from an area- balanc ing" technique 
applied to F(y). Physically, the "area- 

- 

Figure 1.- Flow-field coordinate system. 

point 

balancing" situation is required by the condition that (to f i rs t  order), i f  two regions of 
supersonic flow a r e  separated by a shock, the direction of the shock bisects the Mach 
line directions of the two regions of the flow. Geometrically, the "area-balancing" con- 
sists of passing lines of slope - ' through the F(y) curve so that the lobes cut off 

k f i  
on either side of the curve by the-line a r e  equal in area. 
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Figure 2.- Development of pressure signature for parabolic body of 
fineness ratio = 10. M = 1.414: r = 8 body lengths. 

The development of a pressure 
signature from the F(y) curve is illus- 
trated in figure 2 for a parabolic body of 
revolution of a fineness ratio of 10. The 
1 line shown in the upper part  of the 

figure corresponds to a Mach number of 
1.414 and a radial distance to the signa- 
ture survey line of 8 body lengths. 

k F  

The F(y) curve for the parabolic 
body indicates the presence of two com- 
pressive shock waves (denoted by 
F' (y) > 0). The Ax positions of these 
two shock waves a r e  located by the y 
value of the intercept of the - lines 

defining the shaded (balanced) lobe a reas  
with the y-axis. The corresponding pres- 
sures  on either side of the shock waves 
a r e  proportional to the values of F(y) at 
the extremities of the area-balancing 
line; the jump in F(y) is proportional to 
the discontinuous pressure r ise  across  
the shock wave. Note that the bow shock 
is located at a negative value of y which 
indicates that, for the chosen flow-field 
survey position, the finite nose disturb- 
ance will have advanced that distance 
ahead of the undisturbed characteristic or 
Mach line from the nose. 

k\lF 

Actually, the shock-wave positions 
shown a r e  but special cases  of the general 

expression relating the position of the pressure disturbance emanating from a point on the 
body, at y, to its corresponding position in the flow field x: 

x = y + pr - k\JF F(y) 

The value of k @  F(y) is thus seen to be the displacement of the pressure value at x 
from the undisturbed characteristic projected from y (which has the Mach line equation 
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x = y + pr);  this displacement is the "correction" in disturbance positioning which forms 
the basis for the theory of reference 1. 

The complete F(y) function transposed to its relative position along the yt-axis 
by use of the equation yt = y - kVF F(y) is shown in the F(yt) plot of figure 2. This 
transposition results in a tilted F(y) function, or F(yt). In F(yt), the - 1 lines a r e  

k f i  
rotated to a vertical attitude, with the two area-balancing lines of the F(y) function now 
defining the limit, or cutoff, lines of the pressure signature which correspond to the two 
compressive shock waves of the solution. Again the shaded areas, which now define por- 
tions of the F(yt) function which are discarded in favor of the limit lines, are shown for 
illustrative purposes. The limit lines thus negate the possibility of a multiple-valued 
solution, 

With the introduction of a suitable constant to convert F(y) to  pressure units, the 
transposed F(y) function becomes the pressure signature for the parabolic body at  the 
selected Mach number and radius. That pressure function is 

where p is a reference pressure for the atmosphere through which the pressures  a r e  
propagating, and Kr is a reflection factor (1.0 until the signature comes into contact 
with a reflective surface). The pressure signature for the parabolic body is shown in 
the bottom part  of figure 2. 

The pressure-signature solution for a given F(y) function at a given 1, value 
k@ 

is, then, primarily a problem of locating balanced lobe areas. A graphical solution is 
one approach. F(y) 
function may be greatly facilitated through a consideration of the a rea  under the curve of 
the transposed F(y) function. With yt taken as the variable of integration, 

However, the technique of solving for the "balance-points" of the 
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where values of yt,n a r e  successive maximum and minimum values of yt for indi- 
vidual loops of the F(yt) curve. 

The I(yt) function for the parabolic body is shown directly under the F(yt) func- 
tion. Using I yt , the area-balancing process and the location of the shock waves and 
definition of the F(yt) cutoff values become remarkably simple. Values of yt corre- 
sponding to a balanced-area situation occur where the I(yt) curve recrosses  itself. It 
is necessary to consider only right-running legs of I(yt), that is, portions of the function 
in which yt is increasing positively, The significance of the crossovers in I(yt) is 
that equal-area lobes a r e  thus isolated, in the same fashion as a planimeter reading 
returns to i ts  initial value af ter  traversing a figure eight having equal-area lobes. That 
consideration of the right-running legs only is required may be observed from an inspec- 
tion of the F(yt) function. For a shock wave to begin or terminate at a left-running leg 
would result  in an inadmissible multiple-valued pressure signature, which results from 
the doubling back of the preceding o r  following lobe. 

0 

The bow shock wave is located by the special case of the I(yt) curve crossing the 
zero  axis, since I(yt) is necessarily zero ahead of the body zone of influence. This 
crossover must occur a t  a negative 
deflection caused by the body requires the bow shock to stand ahead of a Mach line, o r  
zero-disturbance wave, from the body nose. 

yt value for a finite bow shock, since the flow 

For the parabolic body, the left-running legs of the I(yt) function are dashed in 
for illustrative purposes. With the I(yt) crossovers used to define the shock-wave 
locations, the resulting pressure signature may be constructed as outlined previously. 

By using standard digital-computing techniques, the construction of the I(yt) func - 
tion and search for the crossover points of the right-running legs is easily accomplished. 
However, the parabolic-body example does not illustrate the shock-wave solution "choice" 
required by complex F(y) functions normally encountered in the pressure-signature 
solutions for typical supersonic aircraft. The "choice" comes from multiple shock-wave 
combinations as the solution is obtained for successively greater radial distances; the 
various component shock waves combine to produce eventually the characteristic 
"N-wave" of the asymptotic, or "far-field" type of pressure signature. The crossover 
"choice" technique is illustrated by a second example. 

In figure 3, a rather complex pressure-signature solution is shown for an arbi-  
trarily chosen F(y) function. In this example, five compressive shock waves are indi- 
cated (five regions of F' (y) > 0). However, two of these shock waves combine with 
succeeding waves to form a three-shock-wave system for the selected - 1 value. 

k E  
The I(yt) function in figure 3 shows only the right-running legs of the transposed 

function, the left-running legs having been deleted for clarity. The different crossover 
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points (designated a, b, c, d, and e)  on the 
I(yt) curve show the existence of five 
balanced lobe conditions. In the case of 
the bow-shock solution, point a locates a n  
a rea  balance for the first lobe of the 
F(y) function; point b locates an a rea  
balance for the first two lobes of F(y). 
Since point b is more negative in yt 
than point a, the shock wave corre- 
sponding to the first lobe is seen to have 
combined with a stronger shock wave 
corresponding to the second lobe. 
Therefore, the pertinent solution for the 
bow-shock wave is that of point b, and 
this combined solution is shown by the 
shaded a reas  at the left of the figure. A 
similar situation is seen to exist for the 
tail shock, that is, a weaker shock wave 
is overtaken by a stronger one, as indi- 
cated by the value of yt for point e 
which is less  than that of point d. The 
solution also includes the fairly weak 
shock wave located by point c. Thus it 
may be seen that the condition of shock- 
wave combination is indicated by the 
relative positioning of the yt value for 
crossover points. For any given right- 
running leg, the solution must seek out 
and compare the yt values corre-  
sponding to I(yt) crossovers with all 
successive right-running legs. The per- 
tinent solution is the one having the 
smallest value of yt, and, as shown in 
figures 2 and 3, the overall jump in 
F(yt) between the extremities of the 
balance line is proportional to the pres- 

F (y) 

0 

D 
'\ I " 

I 

Figure 3.- Development of pressure s ignature for  arbi t rary 
F(y) funct ion.  

sure  jump associated with the combined shock wave. 

With respect to the asymptotic, or  "far-field" pressure signature, this situation is 
seen to be reached when the F(y) lobe a rea  to be balanced for the bow-shock solution 
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is that corresponding to the maximum positive area of the F(y) function. The value of 
y associated with the maximum value of the integral of F(y) is termed yo. In the 
transposed-function solution, the far -field situation is approached when the most nega- 
tive bow-shock crossover point in I(yt) involves the right-running leg which includes 
yo in the original F(y) function (or, physically interpreted, the far-field situation is 
approached when all bow shocks have combined). The far-field condition is actually 
achieved when the value of F(y) corresponding to the bow-shock solution is defined by 
the maximum positive area under the F(y) curve: 

k@ 
stated as follows: 

or, introducing equation (2) and the definition of k, 
r 

l . 0 7 ! 5 p 1 ~ 4 K r / ~ y 0  0 F(y) dy 

(5) 

yb = Ytbow shock + kfi  F(Y)bow shock 
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(5) Selecting the right-running leg containing yb in the original F(y) function 
as a base leg, solve for all I(yt) crossovers between the base leg and all succeeding 
legs (legs for which y > y . The pertinent solution thus obtained is that having the 
smallest crossover value of yt. The shock wave is thus located at this smallest yt, 
and the pressure ahead of the shock is proportional to the value of F(y) for the base 
leg and the pressure behind the shock is proportional to the value of F(y) for the 
selected succeeding leg. 

b) 

(6) Repeat step (5), working with the right-running leg at which the solution of 
step (5)  terminates. If crossovers a r e  found, the shock wave is located as it was  in 
step (5). This process must be continued until the last right-running leg is selected as 
a base leg. 

(7) The shock-wave signature is defined by discarding the cutoff lobes of the F(yt) 
to pres-  function, inserting the corresponding limit-line solutions, and converting F(yt) 

sure  units by using equation (2). Intermediate points in F(yt) between shock-wave 
solutions are added to complete the pressure signature. Here it is useful to recall  the 
correspondence between y and yt in discarding or retaining F(y) points; points a r e  
discarded if  they lie in a range of y "jumped" by a yt solution. 

CONCLUDING REMARKS 

A numerical method, based on the modified linear-theory analysis of G. B. Whitham, 
has been presented for calculating the complete pressure field of a supersonic projectile 
or an equivalent body representing an airplane configuration. The solution based on a 
transposed effective-area-distribution function avoids graphical steps and is thus easily 
adaptable to digital-computer techniques. Application of the method has been illustrated 
by use of examples. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., July 29, 1965. 
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