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DEFINITION OF SYMBOLS

Symbol Definition Units
A Multiple of mass considered, (-)
Area in?
C Specific heat cal
mole’K
E Energy cal
g
F Any function (-)
G Gibb's function cal
H Enthalpy cal
I Impulse sec
K Equilibrium constant ( -)
L Atomic weight (-)
M Molecular weight —£
mole
Ma Mach number (-)
N Multiple of mole numbers (A-n =N mole
P Pressure atm
Q Heat energy cal
R Specific gas constant S?I_.l{
g
R Universal gas constant, 1.98726 cal
T mole’K
cal
S Entropy -(?

vii



DEFINITION OF SYMBOLS (Cont'd)

Symbol Definition Units
T Temperature °K
8) Internal energy cal
\% Volume ft3
w Work energy cal
X Element (-)
Y Element (-)
Z Element (-)
a Number of gram atoms of element Z —£&

] mole
b Number of gram atoms of element Y g
mole
g
c Number of gram atoms of element X =oTe .
Concentration mole
ft?
cps . cal
Specific heat per unit mass T
g'K
d Differential (- .)
e Euler number, 2.7182818 (-
g Gibb's function per unit mass Ez—l
g Gravitational constant, 32.1740 ft
o 2
sec
h Enthalpy per unit mass cal i
g

viil




Symbol

DEFINITION OF SYMBOLS (Cont'd)
Definition
Mass, slope of a curve
Mole number

Heat energy per unit mass

Entropy per unit mass

Internal energy per unit mass

Specific volume

Flow velocity

Variable

Variable

Geodetic height
Variable

Angle

Specific heat ratio
Difference
Difference

Partial differential
Expansion ratio

Number of oxidizer atoms

ix

Units

mole



Symbol

ch
Des

equ

'DIFINITION OF SYMBOLS (Cont'd)
Definition
Mixture ratio
Valence
Number of fuel atoms
Density

Stochiometric mixture ratio

SUBSCRIPTS
Number of gram atoms of element Z

Number of gram atoms of element Y

Number of gram atoms of element X

Chamber

Desired
Equilibrium

Fuel

Formation

Gas

Pertaining to the ith
Kinetic

Liquid

element or compound




Symbol

max

Sp
st

stat

tot

vap

DEFINITION OF SYMBOLS (Cont'd)

Definition Units
Maximum (-)
Oxidizer (-)
Potential, at constant pressure (-)
Reference ()
At constant entropy, sound (-
Specific (-)
Stagnation (-)
Static (-)
At temperature T (-)
Throat (-)
Total (-)
At constant volume (-)
Vapor, vaporizing process (-)
Element (-)
Element (-)
Element (-)
Correct solution (-)
Any location in the flow (-)

x1



Symbol

DEFINITION OF SYMBOLS (Cont'd)
SUPERSCRIPTS
Definition
At reference level of one atmosphere
Molar quantity

Derivatives

x1ii




TECHNICAL MEMORANDUM X-53334

CALCULATION OF ROCKET PERFORMANCE PARAMETERS
BASED ON THE EQUILIBRIUM COMPOSITION OF
THE COMBUSTION PRODUCTS

By Klaus W. Gross

George C. Marshall Space Flight Center

SUMMARY

The theory and development of equations are presented for calcu-
lating the composition of combustion products for frozen and shifting
equilibrium, and a combination of both, based on a chosen temperature
limit, The equilibrium compositions of combustion products are used to
calculate rocket performance parameters based on a one~dimensional flow
model.

Furthermore, a technique is described for determining the maximum
specific impulse for a constant chamber pressure. A procedure is also
included for establishing the optimum chamber pressure and propellant
mixture ratio for use when the thrust level of a specific rocket engine
is uprated.

INTRODUCTION

Theoretical equations are developed for the solution of equilibrium
compositions of combustion products obtained in liquid propellant
rocket motors by minimizing the Gibbs function. Subsequently, the more
important rocket performance parameters can be calculated, such as:
characteristic velocity, specific impulse, thrust coefficient, tempera-
ture, expansion ratio, thrust, flow rate, stochiometric mixture ratio,
molecular weight of the combustion products, isentropic exponent, local
velocity, local speed of sound, specific heats at constant pressure and
volume, specific gas constant of the combustion products, and local
static pressure. The indicated performance parameters can be deter-
mined for desired local static pressures and expansion ratios.

A maximum specific impulse calculation routine for constant chamber
pressure is presented as well as an optimum chamber pressure and mixture
ratio calculation to obtain a desired thrust level. The thermodynamic
properties, entropy, enthalpy and specific heat at a pressure of one
atmosphere are determined from polynomials for a temperature range from
298.15°K to 5000°K.



The calculation procedure is limited as to number of elements
taking part in the combustion and formed combustion compounds. However,
space is provided to include or exchange additional elements and
compounds. The basic program uses only a portion of available computer
storage space. This allows the combination of this procedure with
other programs. Many programs have been written that solve for
equilibrium compositions automatically. This program uses mainly the
approach of Gordan et al. (Ref. 1). However, changes have been made,
and additional computation procedures are provided.

Grateful acknowledgement is given Mr. Richard Lewis of General
Electric Company assigned to MSFC Computation Laboratory. Without his
proficiency in mathematics and machine techniques this effort might
well have been far less productive.




CONSERVATION OF ENERGY

Energy exists in various forms, e.g., kinetic energy, potential
energy, electrical energy, chemical energy, heat energy, etc. Experi-
ence has shown that in a closed system the sum of all energies does not
change with time. An addition of heat energy (A Q) to a system can cause

change in all existing energies.

AQ = AU + AW + AEp + AEK + ZAE (1D
The energy differences between state 1 and 2 per unit mass can be

expressed as follows:

1. 1Internal energy ) =u, -y
m

2., Work energy M_ =P,v, - Pjvy
m

P is the pressure and v the specific volume

AEp
3. Potential energy — =2, - Z]
m

z is the geodetic height

AERg  w,t - wy
4. Kinetic energy = >
m go

w is the flow velocity and g, 1is the gravitational constant.

Neglecting the other forms of energy, the first law of thermodynamics

t2; -z+ Pv, - Pivy (2)



CONSTANT ENTHALPY PROCESS
The enthalpy per unit mass(h) is defined as the sum of the internal
energy per unit mass (u), plus the product P . v, the work energy required
to transport the masses. This amount of work, however, no longer exists

in the considered mass, but has been transferred to the surroundings.

With h=u+Pv (3)

2
Wyl - Wy

qZ'QI=hz'h1+"—'—"‘2go tz, -2 4)

The combustion process in a rocket combustion chamber can be assumed
to be adiabatic, which means no heat will be added or taken out of the
system and 9, - 9,7 0. The injection velocity of the propellants and
also the velocities of the formed combustion products in the combustion

chamber are relatively small and can be neglected. Therefore,

2 2
Wz - W1

2g,
Futhermore, the potential energy difference can be neglected. For a

=0

comubstion chamber with a flow in the vertical direction, the difference
in height between the inlet and outlet cross sectional areas is small,
and for a horizontal chamber the height differences between the centers

of geometry of the two areas is zero. Therefore,
z, -z =0

This leaves only the two enthalpy terms before and after the combustion,

and they are equal,

h; = h, (5)

m + PlVl =4, + P2V2




ENTROPY
The entropy change of an ideal gas can be developed from the

second law of thermodynamics,
Tds = dh - vdP (6)

The enthalpy change (dh) can also be expressed by
dh = cpdT

Applying the ideal gas equation
Pv = RT (7

we obtain

ds = — - R —
S CP T R P (8)

Considering an isothermal process with dT = 0 and integrating the

equation yields
s, - 81 = -R(InP, - InPy) 9)

The third law of thermodynamics states: The entropy of matter is
equal to zero tor 0°K. Therefore, the entropy represents absolute values
when this point is used as a reference level. Furthermore, if a pressure
reference of one atmosphere is selected, we obtain

8, ~ s = RlnP,
Entropy of a gas per unit mass can now be calculated for a certain

temperature and pressure

- 0
Sp = Sq - RInP (10)



The Gibbs - Dalton law indicates that the entropy of a nonreactive
mixture of ideal gases is equal to the sum of the entropy values of the
individual constituents, considering their quantities present. Since
most thermodynamic tables list the molar entropy of a species, the total
entropy of a mixture can be calculated when the individual mole numbers
of the compounds are known:

s = Znj(sT) (11)
i
CONSTANT ENTROPY PROCESS

The expansion of the combustion products through a De Laval
nozzle occurs very rapidly ané almost without friction losses or heat
exchange with the surroundings. This is nearly equivalent to a reversible
adiabatic process. Therefore, the total entropy of the gas mixture will
hardly change during the expansion process, and the assumption of a

constant entropy process is justified.

s = SCh (]-2)

Knowing the static pressure at a specific location downstream, the proper-
ties of the fluid can be determined if the chamber properties are known.
MAXIMUM WORK AND EQUILIBRIUM
Work can be obtained from a system as long as the pressure and
temperature are not in equilibrium with the surroundings (potential,
kinetic and other energy forms shall be neglected). Considering the

system and the surroundings as a unit that cannot receive or lose heat




energy, the whole work energy is supplied by the difference between
internal energy before(U') and after (U") the change of state. The internal
energies of the unit before and after the process are composed of the

internal energies of the system and the surrounding,

U' :U1+ U01

U" = U, + Ug

where the subscript zero (o) indicates the surrounding.

Considering that the pressure and temperature of the surrounding
do not vary, then the surroundings change from the initial to the final
state by a constant pressure and constant temperature process. At the
same time, however, the volume of the system changes, and the work done on

the surroundings at constant pressure amounts to

Po(Vy - V3)

Furthermore heat energy (Qg = TodS,) is transferred to the surrounding
without changing its temperature T,. The change of internal energy in

the surrounding amounts to
UOZ - UOI = T()ASQ + Po(vz - Vl)

where AS, = SO2 - So, indicates the entropy change of the surrounding.

The total entropy change equals



The work that can be obtained from this unit is

W < U; + Uy - (U, + Ug,)
W<U-U,+(Un - Up)

W S Uy - U, - ToASe + Po(Vy - V,)

Lf the process is completely reversible, the maximum work will be

obtained
Wmax = Ur - U, - To(Sy - Sp) + Po(Vy - V)
Using the following definitions for enthalpy
H=U+PV
and the Gibbs function
G=H-TS
the work equation reduces to Wmax = Hy - H, - To(S; - S,)

Wmax =G - G;

(13)

(14)

(15)

(16)

This equation states an important fact: During such a process, only the

change of (G) can be converted into work energy while the amount

T, (8, -8, is carried away as heat.

When the state of a system approaches equilibrium, the maximum

work gradually diminishes and is finally zero.

Wmax = 0 = AG (at equilibrium)




For a closed system undergoing a chemical reactlon, an equilibrium state
is achieved when the summation of the Gibb's functions for all present

compounds equals zero.
EQUILIBRIUM CONSTANT

The Gibbs function, or free energy function, is the basis for the

equilibrium therory. The differentiated Gibbs function yields

dG =dH - SdT - TdS 17)

or dG = dU + PdV + VAP - SdT - TdS

In a reversible process, with only expansion work involved, the first
law of thermodynamics yields
dQ =TdS =dU + P4V

Substituting dU in the prior equation gives

dG = VdP - SdT (18)

For an isothermal process.dT = O and the equation reduces to

dG = VdP

With the ideal gas law

PV = nRT
we find _
nRT
dG = = dP

The integration between two states results in

G, - Gy = n—IiT].n-]E)—2
Py

Oor on a mole basis

G, - Gi = RT In=2 (19)
Py



This equation can be interpreted as: The maximum work that can be
obtained in a reversible constant temperature process, going from one
state with a pressure P, to a second state with pressure P,, is equal to
the Gibbs function difference.

Assuming that the Gibbs function (G°) at one atmosphere and all

temperatures are known, the Gibbs function at any other pressure is
G =G+ RTInP (20)

Formerly it was believed that the reactants in a thermochemical reaction
were completely consumed to form the products. But developments in
chemistry have shown that the reactants never disappear. After initiation
of the reaction, the concentration of the reactants decreases while the
concentration of the formed products increases correspondingly until
equilibrium is reached. Guldberg and Waage stated a relationship between
the concentrations and reaction rates: The rate of reaction is
proportional to the active concentration of the constituents.

Consider the following chemical reaction

aA + bB==cC + dD

where A and B are the reactants, C and D the products, and a, b, ¢, d
the corresponding mole numbers. After starting the reaction, more and
more products will be formed from the continuously decreasing reactants.

During this process the Gibbs function of each species will change

5:50 +—liT1nP

10




until a condition is reached in which the same amount of products are
formed from the reactants as reactants are formed from the products.

This is the equilibrium condition. It was established earlier that no
work can be produced from a system when it is in equilibrium with it's
surroundings. In the above reaction, the surrounding of the reactants

is all the products. Therefore, the difference between the Gibbs function

of the products and the reactants must be zero at this condition.

AG =0=cGg +dGp - (aGa + bGp)
Applying equation 20 yields

G G G Gp + R © d_1mp,® - InPg"
0=cGe®+dGp° - (@GA® + bGp") + RT(InPc™ + InPp- - InFp B

Expressing

AE@ = CEECO + dzitf - aEiAF - bEiBO
results in (21)
c d
— — P P
0 =AG’ + RT 1n _—%——D-b_
PAo" Ppg

In this equation the following expression is called the equilibrium

constant.,

c d
Pc Pp (22)
R ey
I?A PﬂB

Since the Gibbs function G 1is a function of temperature only, KP
is independent of pressure and dependent only on temperature. However,
this does not necessarily mean that the concentrations of the reacting
components remain the same when the pressure is increased. Since the
chosen standard condition for the pressure was one atmosphere, the

equilibrium constant K is dependent on the units for pressure. The

P

subscript P has been chosen to indicate this.

11



Pressure has an influence on the chemical equilibrium only when a
reaction occurs with a change in mole numbers or when the gases at
high pressures cannot be considered ideal. Le Chatelier and Braun dis-
covered the principle: If a factor influencing the equilibrium changes,
an effect is produced that tends to reduce the action caused by the
change.

CONDENSED PHASES

A pure substance is defined as having an invariable chemical
composition for all states of aggregation: solid, liquid and vapor.
Single-phase or multiple-phase conditions are considered to be in an
equilibrium state. A pyre substance will have, in general, the follow-

ing pressure-temperature and temperature-entropy diagrams (Ref. FIG. 1

and 2).
P T
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|
i |
‘% Critical Point Liquid | Vapor Phase
5 o
2 K59
: 3
Solid Qo‘
2f
Phase A Gas Phase Vapor Phase
o
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During a melting (fusion), sublimation and vaporization process,
the corresponding two-phase conditions are in equilibrium: solid-liquid,
solid-vapor, liquid-vapor. All three states of aggregation are possible
only at the triple point.

In this report condensed and gaseous compounds are treated in-
dependently, and are expressed by the application of separate equilib-
rium equations. The vapor pressure is associated with the gaseous
compound only and is zero for the condensed phase. Therefore, the
vapor-condensed phase equilibrium is included in this procedure. Solid-
liquid equilibrium states are treated in Reference 2.

A reversible isothermal constant pressure process converting
liquid into vapor can be performed at the equilibrium pressure. The

entropy change during the vaporization is

Asva = AE{V&E
P~ T

The change in the Gibbs function is zero because
AGyap = MHyap - TASyap = 0

This can be generalized for any kind of transition between two phases
of a pure substance, such as solid-vapor or solid-liquid. A pure
substance is assumed to keep the same thermodynamic properties despite
the presence of the same matter in another state of aggregation or
another substance.

As shown in equation 18, the Gibbs function for a reversible

isothermal process is

13



Performing a vaporization process of a substance, the change in the

Py

AGyap :fAV dP = f (Vyap - V)P

Pvap

Gibbs Function is

The volume of a liquid can usually be neglected when compared with the
volume of the vapor. If, furthermore, the vapor behaves like an ideal
gas, the equation reduces to

Y _ P
AG =fvvapdp =fn§T dP =nRT 1np 2
vap

For a unit mole, the equation reduces to

Py

AG = RT1n (23)

Pvap
In equilibrium, the Gibbs function equals zero. This is only
possible when the pressure of the liquid is the same as the vapor pressure
Py = Pyap = Pequ

Neglecting any effect of the applied pressure on the vapor, which is
compatible with the assumption that V? is negligible, and treating the
vapor like a pure substance, the vapor pressure remains a function of

temperature only. The Gibbs function changes to

AGyap = - RT InPeqy (24)

Comparison with equation 23 shows that the equilibrium constant is
equal to the vapor pressure. The pressure of the condensed phase has no

effect on the equilibrium constant.

14




Example:

H, 0g) ==, T =298 °K

O(vap)

AGyap = - RTInKp = -RTInPeqy

AG AH - TAS  AH | AS
InKp = -—>= - — S -t =
RT RT RT R
_ (nv_ap Hyap- 1y Hl) ) (nvap Svap -~ Y Sl)
RT H, 6 R H, 0
AH = 10520 cal mole, is the latent heat
AS = 28.393 cal mole °K
= cal
R = 1.987 mole 9K
10520 28.393
= - +
In Kp 1.987 x 298 = 1.987
Kp = 0.03125 atm

This result is equal to the vapor pressure at T = 298°K.

SPECIFIC HEAT AT CONSTANT PRESSURE
The specific heat at constant pressure is defined as the amount
of heat added to a specified amount of matter to increase the tempera-

ture by one degree while the pressure is kept constant.

AQ

AT
Expressing AQ by the first law of thermodyamics

CP=

AQ = AU + PAV
yields

_AU + PAV

c
P AT

Applying the definition of enthalpy

AH = AU + PAV
we obtain

Cp=—Fx (25)

15



SPECIFIC GAS CONSTANT
The equation of state for an ideal gas is

Pv = RT

At constant temperature and pressure, one mole of two different gases

may be described as

PVl Ml Ml Rl T

PVZ MZ = MZ Rz T

Avogadro's law states that the mole volumina (v-M) of different gases

are the same when the temperatures and pressures are equal.

or

M; R; = M, R, = MR = R

R is called the universal gas constant.

For a mixture of ideal gases enclosed in a volume (V), the total

(26)

(27)

pressure is equal to the summation of the partial pressures of all

constituents when the temperature is homogeneous.

Piot = Z Py
1

(28)

Replacing the pressures by the corresponding term of the general gas

equation, the specific gas constant of the mixture can be calculated.

Mtot Rtot T -y MjRiT
v “i v
T Mj Ry
Riot = =5
° Mtot

16
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Since the mass is equal to the product of the mole number and the

molecular weight,

m = nM (30)

the specific gas constant can also be determined without knowing the

specific gas constant of each constituent.

z niM; Ry
R =
tot T miot
R = Mj Ry (31)
_Fn _ EW
Riot = R = Rz

myot  ZniMj
If a condensed phase is existent, its share is only considered in the
total mass, not in the total mole number, because we neglected the
volume as previously indicated.

DALTON'S LAW

Dalton's law states that the total pressure of a gas mixture is
composed of the partial pressure of the individual components.
Piot = ?Pi

Hereby, a gaseous constituent fills the whole volume and behaves as if
the other gases were not present. When the temperature of all the

gases is the same,

PV

m; Ry T

N
<
i

= m, RzT
or

Py _mBRy
P, m;R,

Since the mass equals the mole number times the molecular weight,

17



we obtain

m = nM

P, _niMi Ry

P, n,M;R,
Using the relationship between the specific gas constant and the

universal gas constant

R = MR
Pr_my
P, B n,
or
P _n
Piot Ptot

The pressures can also be expressed by the general gas equation

Defining the concentration to be

<I®

we obtain

P

1
0
oo}
=

(32)

This relationship can be used to express the equilibrium constants by

concentrations or mole numbers.

18




HEAT OF FORMATION

When a compound is formed from reactants, the heat liberated or
induced is called heat of formation and represents an enthalpy change
during the reaction.

Mostly, thermodynamic processes occur in fixed nonreactive gas
mixtures. In this case, use can be made of the existing thermodynamic
property tables for the given substances, since only changes in state
of these substances must be considered. The enthalpy tables are based
on a reference level that is arbitrary since only enthalpy changes are
significant.

When a chemical reaction takes place, this concept is not adequate.
Compounds may change or new ones may be formed from the reactants. When
an energy balance is made between the reactants and reaction products, a
common reference level has to be established. Since reactants and
reaction products are composed of the same elements, the enthalpy
reference level for the elements is arbitrarily chosen to be zero at
standard conditions (1 atm pressure and 298.150K). The enthalpy of
formation determines the enthalpy level of a specific compound at
standard conditions with respect to the chosen reference level. If the
heat of formations are summed for the reactants and products separately,
their difference indicates how much energy is liberated or has to be
induced during a chemical reaction.

In case of a combustion reaction, the energy difference is
available to heat the combustion products from standard conditions to

a higher temperature.
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STOCHIOMETRY

By definition a stochiometric mixture ratio corresponds to complete
combustion, the formation of saturated molecules in the combustion
product. A method to solve this problem is based on the principles of
oxidation and reduction.

Definitions:

Oxidation occurs when electrons are lost.

Reduction occurs when electrons are gained.

The loss of electrons is represented by a postive valence; the
gain of electrons is represented by a negative valence. The valence,
therefore, determines the degree of combining power of an element or a
radical.

General rules (Ref. 7 and 8)

1. Free elements have no valences.

2, Hydrogen in combination always has a positive valence.

3. Oxygen in combination has two negative valences.

4, The sum of the valences in any compound equals zero.

In an oxidation-reduction reaction, the total increase of positive
valences equals the total increase in negative valences.
Example: Formation of water
H,+ 36, ~ H,0
including the valences

H,? + 16, = H,*2 67
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In this reaction, all compounds have a total valence of zero; however,
in H,0, the valence of hydrogen is (+2) and the valence for oxygen is
(-2). Hydrogen, therefore, has encountered a loss of electrons (oxi-
dation), and oxygen, an increase of electrons (reduction).

The atoms of the various elements differ in their combining capaci-
ties and, therefore, have different valences. To determine the stochio-
metric mixture ratio for a combustion process from the reactants, it is
assumed that in all formed compounds, the elements possess a valence

that is the most common.

element valence
C +4
F -1
H +1
HE 0
N 0
0] -2

If a reactidn takes place between oxygen and hydrogen and the
products formed possess the most common valences of these two elements,
we can transfer the valences to the reactants, because all products are

composed of the reactants.
v v

F ¢]
HgF + Cée -+ Products

valence

<
]

atomic number of an element in the fuel

yrr
il

atomic number of an element in the oxidizer

T
]

M= molecular weight
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EF
F

valences.

In one gram of hydrogen there are vy

ée valences.

In one gram of oxygen there are
0 Mg

v

Since the valences of oxidizer and fuel in a stochiometric com-
bustion must be equal, we can form a ratio of the two values, including
a proportionality factor, so that this ratio equals one.

voloMp

l:——————'———‘ .
~(vic EF Mg) s

The minus sign makes the ratio independent of the sign.
Solving for the stochimetric mixture ratio (¢s), we obtain

_ vrErMp
®s T TVeteME

When each reactant is composed of more elements, as in C,H,, the equation

must read:
(ZTvit)) M
7 Uist L 0

o, = (33)

If one of the propellants is a mixture of two or more compounds, as
0, + F,, the summation of the parenthetical terms must consider the

percentage quantities of each compound.

22




COMBUSTION AND EXPANSION PROCESS IN A ROCKET ENGINE

Most liquid propellant rocket engines use two propellants, a fuel
and an oxidizer. Each propellant, is forced into the combustion
chamber by a pump or by a high-pressure system. Nozzle walls consist of
many small tubes brazed together, and are regeneratively cooled by one
of the propellants, recovering most of the transferred heat energy and
feeding it back into the combustion chamber. Another important device,
the injector plate, consists of a series of small orifices that mix the
fuel and oxidizer in the forward end of the combustion chamber. The
quality of mixing influences the space occupied by the combustion re-
action and, therefore, is important in determining combustion chamber
length., Combustion stability is also affected by the quality of the
mixture,

Cryogenic propellants usually are injected at the boiling point,
unless one of the propellants is a mixture (for example with the
oxidizer liquid fluorine - liquid oxygen, the injection temperature is
the fluorine boiling point and the liquid oxygen is undercooled).
Storable propellants are normally injected at ambient temperatures.

The isenthalpic reaction of the fuel and oxidizer liberates heat
and produces combustion products that dissociate and recombine. When
the mean composition of these products stabilizes (that is, the rates of
recombination and dissociation are equal),astate of equilibrium is reached.
The potential energy of the combustion products is isentropically con-
verted into kinetic energy when expanded through the nozzle. A choked

condition develops at the throat when the following equation is satisfied:
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Pt_( 2 )Y'l )

At this point, the velocity of the gas particles equals the local speed

of sound. Since this velocity can only exist in the throat area, the
mass flowrate can be calculated.

The combustion of the reactants does not occur instantaneously in
a specified area in the combustion chamber but rather in some portion of
the chamber. During this period, the quantity of gases formed progresses;
this naturally requires an increase in velocity. The velocity increase
calls for a drop in static pressure according to Bernoulli's equation

for compressible flow (Ref. 9).

1 +-— (35)

(The equation is only valid in the range of Ma = 0 to Ma = 0.9)
The continuing combustion, therefore, releases energy at constantly
falling pressure levels. The total energy released during the reaction
is a fixed value, but the availability of this energy varies. The com-
bustion occurring in a finite length causes a pressure loss and an in-
crease in entropy.

With rising temperatures, the reaction rates of dissociation and
recombination increase. Therefore, at high temperatures a change of
state of a system reaches equilibrium quickly; however, at low tempera-

tures more time is needed to reach equilibrium.
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During the expansion process, the combustion products change
state continuously. When the reaction rates are so fast that a chemical
and thermal equilibrium is maintained at any point, the condition is that
of shifting equilibrium. If the reaction rates are slow, freezing
almost any dissociation or recombination during the expansion process,

the condition is frozen equilibrium.

THEORETICAL COMBUSTION AND EXPANSION MODEL

The following assumptions are made:

1. Propellants are injected at boiling conditions or at ambient
temperature. Injection velocity is negligible.

2. Combustion occurs instantly in an isenthalpic process at
combustion chamber end stagpation pressure and a predetermined mixture
ratio,

3. The expansion process is isentropic and follows either frozen
or shifting equilibrium conditions by minimizing the Gibbs function.

4, All gases behave according to the ideal gas law.

5. Condensed phases and the corresponding gas phase possess
the vapor pressure.

6. The occupied volume of a condensed phase is negligible.

7. No heat transfer occurs through the nozzle wall.

8. Thermodynamic and performance parameters are uniform in a
cross-sectional area of the nozzle.

9. The velocity of the gas and condensed products are the same

and are parallel to the nozzle axis (one dimensional).
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10. No boundary layer influence is considered.
11. The performance parameters are a function of expansion ratio,
but are independent of nozzle wall contour.

12. There is no jet separation from the wall towards the nozzle

exit.
DEVELOPMENT OF THE EQUATIONS USED IN THE
COMBUSTION AuD EXPANSION CALCULATION
In a combustion process at constant pressure, compounds formed

from the reactants can be represented by the following equation

Np (Zap Yp XeF »++o) ¥ Ng(Z,gYppXegeeo) = (36)
100 110 115
Y ni(Zai¥biXei--o)+ L ni(Zai¥piXeio-o)t 2L ni(ZaiVbiXejeeo)
i=1 i=101 i=111
where
100
z nj(Zai Ybi Xci » ) represent the gaseous compounds
i=1
110
z n; (Z,; Ypi Xcj - - )represent the gaseous elements
i=101
115
E nj(Z4i Ypi Xcj » + « Jvepresent the condensed products
i=111

All equations involve the mole numbers and the partial pressures.

To simplify the problem, the chemical reaction equation is multiplied
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by a factor (A), which makes both the mole number and the partial

pressure of each compound numerically equal.

AN (Zap Ypop Xep o0+ ) + Ng(Z,0YppXep--0)] = (37)
100 110 115
Y Ni(Zai¥piXeieoo) * 2 NiZai YpiXeieoo) t 8 Ni(Zaj YpiXei..o)
i=1 i=101 Si=111

}XrH.= Pﬁ

The equilibrium state can be determined by the following equations.
1. Chemical equilibrium equations
Consider that each reaction product is formed from gaseous

atoms.

ajZ+ biY¥Y +ciX=ZziYpiXci
The equilibrium condition for these reactions follows from equation 21

AG; = 8Gi® + RT (InPj - ajInPgz - bilnPy -ciInPx - ...) (38)

AGi must equal zero at equilibrium. For any other condition close to

equilibrium,AGi will be a small number 6iso that

ac b;In P InP 9
6i= —ﬁ—T .+ lnPi —ailnPZ - bilnPy - ¢;InPy - ... (39)
1

For condensed products, the In P, terms are zero because they have

no influence on the equilibrium constants.

AG°
65 ={ =] -ajlnPz - bilnPy - ciInPx - ... (40)
RT /i
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2. Mass balance equations
The total mass does not change in a reaction; also, the

masses of the individual elements stay the same.

1 115 1)
btot‘K Z bj Nj
=1
1 115
Ctot = 3 2 ol
i=1

These masses must be equal to the masses of the elements in the
reactants.
3. Pressure equation
In a constant pressure reaction, the total pressure remains
the same. Due to Dalton's law, the summation of the partial pressures

of all compounds in the reaction product must be equal to this pressure
110
P= ) P 2)
i=1
4, Constant enthalpy equation.
As was mentioned in the section "Equilibrium Constant", the
enthalpy of the reactants must equal the enthalpy of the combustion
products. The enthalpy of reactants is equal to the heat of formation

plus the heat energy required to go from the reference level to the

injection conditions.
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T T
HO = T (H + f CpldT)y N + = (Hy + f Cp®dT)gNg (43)
F 6 T

ref ref

The enthalpy of the combustion products is equal to the sum of the
individual enthalpies of the formed compounds.

1 .0

Note: The heat of formation is already included in the ﬁTP terms.
5. Constant entropy equation,
The entropy of the combustion products is given by the

following equation as developed in the section "Entropy'.

For gaseous compounds
1 — —

For condensed products

1 —
—— 0y. N.
St =% iz(sT ;N (46)

To determine the equilibrium condition for the combustion process
at constant pressure, the equilibrium, mass balance, pressure, and
enthalpy equations must be solved simultaneously. During the expansion
process, the same equations are considered to determine equilibrium

conditions except the enthalpy equation is replaced by the entropy equation.
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Both sets of simultaneous equations are non-linear. The Newton-Raphson
method is applied to obtain a solution using a finite difference

approximation to the total differential.

NEWTON-RAPHSON METHOD
Consider two nonlinear simultaneous equations in x and y in the

following form

¥,

[}
o

Fi(x, y) =

0

F,=F,(x )
When X and § are the solutions there exists a difference for any
other estimate of X and y; so that

Fy(x ¥) - Fi(xis yi) = AF; # 0

Fz(;’ ;’-) - F (%3 vi) =AF2¢O
The definition of the difference is arbitrary (as far as signs are
concerned), but when it is once established, the proper correction

equations must be set up.

The total differentials of the given functions are

OF, oF,

= + d

dF, 5% dx Yy y
oF

2 dx + 0F, dy

dF, = 9x oy

Going to finite differences, the equations change to

_(eE aF,
AF, (———18x)Ax+(-—-—ay oy

_ (3%, 9F, (47)
AF, = ( - ):ﬁx + (E)x );ﬁy
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These equations are linear in Ax and Ay when numerically solved at the

point‘xiand yi+ Because of the transition from the total differential

to the finite difference form,

Therefore, the correction variables are

. Xj41 = x5+ &

Vi+ 1l =vyit by

X4 and y; +1 approaching x and y.

Using the following mathematical concept

dlnx _

1
dx X

or in finite difference form

Alnx
Ax

1
L C—
- x
. Ax ~ xAlnx
the total differentials can be rewritten.

AFy

AF,

According to these equations,

the equations are only approximate.

(48)

~

oF,; oF,
it § A g1
(8X)x Inx + (ay>yAlny (50)

oF oF
——2 + [ ==—2 A
(ax)xAlnx (8y>y Iny

the set of nonlinear simultaneous

equations is transformed into a set of linear simultaneous equations.

The corresponding correction equations are

1nxi+l = lnxi + Alnx

1nyi+ 1= lnyi + Alny

(51)
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This procedure is used to solve for the equilibrium condition in the

combustion and expansion process.

RESULT OF EQUATIONS LINEARIZED BY THE NEWTON-RAPHSON METHOD
The final equations, as used in the equilibrium calculation
solving for N; = P;, T, A, are presented below. A matrix can be

constructed as shown on page 34 (FIG., 3). The equations are derived in

Appendix B.

Equilibrium equation for gaseous compounds

AF = Aln Pj - ajAlnPyz - bjAlnPy - ciAlnPx - o0 -

Equilibrium equation for condensed phases

T 0
AHT
AF = - a; AlnP7z - bjAlnPy - ciAlInPX - cee - | — AlnT (53)
RT i
Mass balance equations
1 115 1 115
AFg = - & .E aiNj AlnA + = .z aj Nj Aln Nj (54)
i=1 i=1
Total pressure equation
110
AFp= ) P;AInP; (55)
i=1
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Enthalpy equation

, 115 | 115
- 7.0 T
AFH——K z (HT )iNiAlnA+—A- z (HTo)iNiL\lnNi
i=1 i=1
115 (56)
+T Y (Cp°);N;AInT
i=1
Entropy equation
a) for gaseous products
, 110 _
AFg = - = Yy [T - RInP;]N; AlnA
i=1
L[ 1o 110
+x Y (57%);N;AInN; - ) RN;InP; AlnN; (57)
i=1 i=1
110 1100
- ¥ RNjAlnPj|+ 4 ¥ (Cp);N;AInT
i=1 i=1
b) for condensed phases
| 115 | 115
- <0 =l
AFg=-+ ¥ (ST)NjalnA+=  §  (Sp%);N;AlnN;
i=111 i=111
(58)
, 15
0
tx 2 (Cp)NjAImT
i=111
Combining both equations yields
 [115 110 110
aFg =+ ¥ (5r7);NjAInN - Y RN;InP,AlnN;- ) RN;AlnP,
i=1 i=1 i=1
L 115 s 110 _
*x Y (CP)iNjAInT -+ Yy, (STYiNj - ZIRNilnPi Aln A
i=1 i=1 i=

Jfus 0 10 ) 1
aFg=5| L (51)i- L R(nPy+ DIN;AInP;+ 7 Y (Cp)iNiAInT

1=1 i=1 i=1
s 110
- X Y (ST)iNj- 2 RNjInP;jlAlnA

i=1 i=1
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DERIVATION OF THE MOLAR SPECIFIC HEAT AT CONSTANT PRESSURE

By definition:

AdH = NCpdT
(59)

AdH —
Nat - P

The total enthalpy of the product is equal to the summation of the

proper enthalpy portions of the compounds.

115 1
Y, (Hr ;N (60)
i=1

1

H =

The enthalpy is a function of:

H = F(A, N, Hp) (61)

At first, the enthalpy equation is differentiated with respect to T in

order to obtain an expression for the Er,equation.

1. In the case of shifting equilibrium, we obtain:
9H oH — 0 oH ‘
dH = —— dNj + d(H ;i + —— dA
aN; ' 3(Hp)) (Hrdi + 37

The individual partial derivatives are

115 115
oH o] 1 }E — O 1 = 0
AL (8 Ht ;Nj) =7 ¥ (Ht)
oN; _ ON; \A &, A&
115 115
oH s (1 — !
— 0 -
o - 30 Y (H)Nj) =% ¥ N
3(1—{T )i-a(HT )i Ai=l Ai=l
115 115
dH 9 (1 1 TT..0Y. N
52~ A\ L BN =-z 2 (i
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" Substituting the proper terms and dividing by dT yields.

1 115 , 115 , 115
dH =— ¥ (Hp%;dN; t g Y. N;d(HTY; - i Y (H1%);N; da
1—1 1—1 i=1
115 11'5 — 115
dH _ 1 0 le Cd(HTY; 1 w0 dA
.dT ~ (HT igr Ta 1; Ni=gr "ar 21 HT)iN; 77

According to the mathematical concept

and with

we obtain:
115 . 115 115

dH _ 1 — o, NjdInN; 1 = oy . 1 = 0, . dlnA
dT " A '21 Hr)i T Jmr A i§1 (CPIiN; - 37 121 Hr)i N g7
1= = =
115 115 115
dH 1 T 0 dlnNi = 0 0 dlnA
—_— = N, ——d . H N.
dT ATL;I M) Ny g + 7T El (CpiN El (Hp); Ny dinT

The molar specific heat at constant pressure is now

115 115
= _ A dH 1 0 d ln Nj 0
Cp =11 ( ) 115 [EI(HT)Nd1T+TZ(CP)N

5 dT i=1
TN T ) N
i=1 i=1

1%:5 i o). N dlnA
- ) T igqinT

1=

d In Nj dlnP

dinT dlnT
corresponding expression obtained from the equilibrium equation 52.

Since Nj = Py, the term 1 can be replaced by the
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0
(AGT ) +InPj - (2ilnPz + bilnPy + cilnPx+...)=0
T /i

R
. d A_ 0
d1n13’1=a"dlnpz_*_bidlnPX_l_ci lnPJ§+ HT
dInT 1 dinT dlnT dlnT RT

The molar specific heat at constant pressure finally results in

115 d1nP
—_ 1 — 0 dlnPgz dlnPy JainF X 4oL,
CP=— — L (Hr )iNi[al dint T PigmT i dmT
&
Ty N~
i=1

(62)

_ 115 115 115

AT 0 — d1n N; .0 H.0). N, Sna

+< _T > + z (HTo)iNi-ElT,-I'.]""T (Cp i N; - z (Hp ) N; dlnT
RT /i) i=z111 i=1 i=1

2. For frozen equilibrium N; and A, are no longer functions of

temperature. Therefore, equation 62 reduces to

_ . 115
Cp = 115 T.Z (Cp )iNj
T Y N i=1
i=1
115 0
(Cp )i Ny (63)
—_ i=1
C =2
P 115
XN
i=1

DERIVATION OF THE MOLAR SPECIFIC HEAT AT CONSTANT VOLUME
Applying equations 156 and 157 to equation 118 in Appendix B yields the

following equation for Cy

C, =Cp g—;’i)i (64)
3F) 1
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Take the difference of the specific heats from equations 156 and 157

s Os
Cp -C, =T|{ — -{— (65)
e ov=7|(53), - (),

The derivatives are calculated from the property equations:

Combining both equations 140 and 141 yields
ds 9s Os Os
Comparing this with equation 65 shows
daT ds ds
T (CP - Cv) = (5'6)1» v - (5‘15)po (66)
Applying equations 144, 146, 147, 149, 152, 153, results in

T P T ov
dT = ————— [ —- —_— e | —
Cp - Cy (BT)V v+ Ep-co (aT)p dP

Comparison of the coefficients with equations 14z yields

aT) T..EE)

av/p Cp - Cy\3T/y

Ty __ T _(2v

BPV_CP—CVB P
Both equations have the same result

ov oP
ce - ov=7(55),(55),
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Substituting (%%) from equation 118 gives
v

2
- ovy) (3P 67
) .

In the following section expressions are developed for (%%¥T>P and

(8P>T' Starting with the equation of state for an ideal gas

ov
MPv = RT

taking the logarithm, forming the differential, and dividing by d1lnT

yields

dlnM  dlnP  dinv _dlnR , dInT

dinT dInT -dInT dInT dInT
Since

dln?{_o

dinT ~

dlnT__1

dinT

It follows that for a constant pressure process

(dlnv) o1 (dlnM)
dInT Jp dinT Jp

or

‘_i_‘L A _dlnM (68)
dT jp T dinT |p
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Beginning again with the general gas equation, taking the logarithm,

forming the differential, and dividing by dln P yields

dinM  dlnP  dinv _dinR_ diInT
dinP  dInP dinP dInP  dInP

with dln—li
dinP ~ 0
dinP =1
dlnP

For a constant temperature process

dinv - .1 - dlnM
dlnP )y = dInP /

(S‘L) __vl,,diaM
dP T P dlnP | (69)

Solving equation 67 for C,, and substituting equations 68 and 69 for the

or

corresponding terms results in

. dlnM 2
vP "dInT |p

= - — 0
Cv=CR - F dmMm (70)
dinP |
Changing over to molar specific heats according to
EV = MC,,
(71)
Cp=MCp
and using equation 70, we finally obtain
2
1- dinM (72)
— dInTjp

Cy=Cp-R |, 4lnM
dInP |p
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RESULTS OF EQUATIONS LINEARIZED BY THE NEWTON-RAPHSON METHOD TO SOLVE
FOR THE PARTIAL DERIVATIVES AT CONSTANT PRESSURE AND TEMPERATURE

As shown in Appendix A, the equation of state can be expressed by

F=FP, v, T)=0

- (%) (). (28),

Since any other property can be expressed by the three properties, P, V,
T, any other partial derivative can be expressed by the three partial
derivatives.

In this report, the following first partial derivatives are used

2H

aT Jp

dInM

dInT /p

dlnM

d1nP T

This leads to the determination of the specific heat at -constant pressure

Cp and constant volume Cy. These terms can be expressed by the quantities

9lnPgy 0 lnPy o ln PY
9InT Jp'’ 9InT Jp '’ 9lnT Jp’' 77
dInPyz 0ln Py 9 1n Px
dInA Jp’ d9InA 7’ 9lnA Jp' 77

9lnA
9lnT P

To solve for the partial derivatives, a set of equations must be

solved simultaneously. The soultions of the equations, which are
derived in Appendix C, are given below:
1. The derivatives at constant pressure can be obtained from the
following equations:
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a, Equilibrium equation for gaseous compounds

) (AI—IIO_) , 4P  dlnPz , dlnby dinPx .. 73
1

T "2 dmT i dlmT  “iTdInT

RT
b, Equilibrium equations for condensed phases
70 din P
AHT  dlmPz  dlnPy  dlnFX . (74)
) ( RT ) dmT "7 diaT - dlnT
c. Mass balance equation
115
115 dlnA g 41nNg (75)
=- Y aiNiggt .Elal ' dInT
i= =
d. Total pressure equation
0 1‘120 P dln Py
- 1dinT (76)

This simultaneous set of equations can be simplified when the equilibrium

equations for gaseous compounds is solved for i_ﬂ and the result is
d InT

d In Nji

substituted in the mass balance equation for
d InT

This yields
115 110
dln A dln P dlnP
0=- s Nj ——— ‘N:|g: TRTZ .din Py
1§1 " ldlnT+i_z 2ailNi|ai dinT tbi dinT
a7
dln Px AH7 115 dInN;
toy—mr—=2t e Hl =) [+ T a; N, ST
1 dlnT RT /i 1 1"14dInT
1=
In writing a coefficient matrix for these equations, using equations
77, 74, 76, the system is incorporated in the reduced augmented matrix
solving for the mole numbers.

2. The derivatives at constant temperature can be obtained form

the following equations:
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a. Equilibrium equations for gaseous compounds

0= d1ln Pj _dlnPgz  dlnPy c. dlnPx (78)
“dinA " *dmA ~"iTdlmAa T fiT@dlmA T
b. Equilibrium equations for condensed phases
0 = dInPgz .dlnli!_c_dlnPX (79)
T3 7gImA " i dlnA 1 dinA
c. Mass balance equations
115
d ln P;
0=-agA+ i Nj ———1 (80)
ao igl 2iNi g3

This simultaneous set of equations can be simplified by replacing

In P.
the term "L with the proper expression from the equilibrium

d In A
equation. The result is
110 dlnPg dln Py dln Py
0=-30A+i§13iNi i JIn A + b; 1inA +cj IInA T oeas
(81)
115

d1ln Pj
+ . P adicinliolll §
2 aiNi g
i=1
Tlte coefficlent matrix for this simultaneous set, using equations 79,

81, is also incorporated in the reduced matrix.

The relationship between dlnM and 9—11—1—M> is derived in
d In T P d In P/p

Appendix D.
ISENTROPIC EXPONENT

Speed of sound is by definition

(82)
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" Using the adiabatic relationship for a perfect gas,

PvY =P ——:—N = const

taking the logarithm

In P-y1Inp = const

and forming the differential yields

dInP - ydlnp =0

_dInP _pdP
Y=3qmp Pdp

With the relationship

p:-]'—
v

we obtain
Inp=1In1l-1nv Inl1=20

dlnp=-dlnv

dp _ _av

p v
such that

_ _VvdP

V= " Pav

Setting both terms for Y equal to each other and solving for

yields
dP _ PvdP

= -

dp p Pdv

Substituting this in equation 82 gives

Pv [dP v (dP
s [5‘15 (a:) ‘,\[?(E)S RE

(83)

(84)

(85)
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The specific heat ratio is by definition

Cp
Y—‘é-";
from equation 64, it follows that

e _(av) (eB
Cy \9P T\9V /s
Applying equation 69 results in

- 2]y 4 SeMy (8P
Y=°P dlnP |T\3v /4
d1InM
[1 dlnP]TYS (86)

__Yy(op
Ys = P\ov /g

This expression appears in the equation for the speed of sound. Replac-

+

with Y

ing (}é&%—) by equation 64 results in
s

v cI’

viaP /T

Considering furthermore equations 67, 68, 69 gives

yo = v [ Cp
s” P av \* (9P v
_[CP + 7 (57) P(S'J)T]('é?)T
_xf CP
Ys =P Cpv 1_*_dlnM +T'Vz ] dinM
" P dInP |p T° T dInT |p

Applying the general gas equation and going over to molar specific heats

finally yields

Cp

Ve ST, dlaM] T, _dmMT (87)
P17 7 dP |7 "dInT |p
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THERMODYNAMIC PROPERTIES

\ The thermodynamec properties per mole of the individual combustion

products used in the calculation procedure are the specific heat at

constant pressure Eci:,, the enthalpy ﬁ?r and the entropy §,?.. These

. properties are correlated by the following definitions:

=_0
s° =) 2E aT
50 =[S
When the EE,values are represented by the following polynomial

Tp’ =a+bT+cT? +dT+ eT* (88)

in which a, b, ¢, d, e are constant values, the enthalpy and entropy

equations yield correspondingly

7.0 = bz, Sq3 e &5y 89
HT -aT+-2—T +3T +4T+5T const ( )
‘ 0 c d
Q 2 3 € e
! ST =a1nT+bT+—ZT +—§T +ZT + const (90)

1 The enthalpy function must include the reference enthalpy ﬁ0298 15 at
298.15 K. 1In most cases, the properties are tabulated as a function of
! temperature at atmospheric pressure. To minimize the errors that show

up if each polynomial is developed individually, all three polynomials



are developed simultaneously by the least-squares method. This is
advantageous because all corresponding coefficients have the same value,
and it saves storage space in a computer. One polynomial does not cover
the total range from 300 to 5000°K with sufficient accuracy; therefore,
two ranges were considered, one from 300 to 1OOOCK, and another from
1000 to 5000°K. 1In this case, however, a constraint must be placed on
the development of the polynomials so that at 1000°K the intersection
point of the two corresponding polynomials have the same value (but not
the same tangent),

The equations in the calculation procedures use the properties

EPO _Sii -I:I-TO

— 2 — )

R R RT

and the polynomials were developed as

- 0

C

_1_3 =A+ BT+ CT?+ DT + ET* 91)
R

- 0

HT BT CT*® DT® ET* F

—— +.——

= At Smt St Tt b T (92)
— 0

S 2 3 ET4
-E—:A1nT+BT+CT+DT + + G (93)
R 2 3 4

The polynomial coefficients A, B, C, D, E, F, for various compounds and

elements have been published in Ref. 3.
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THROAT AREA CONDITION

Knowledge of flow and thermodynamic properties.of the combustion
products in the throat area is necessary to determine performance para-
meters for a rocket engine; for example, characteristic velocity, flow
rate, expansion ratio, thrust, etc. The approach to compute the throat
condition is iterative and is based on the criterion that the flow
velocity is equal to the speed of sound

W=Ws

(94)

Ma:_vy_=1
Vg

With known chamber data, a first approximation of pressure in the throat
region can be made according to the thermodynamic equation derived for

ideal gases and constant isentropic exponent.

(75)
Ys - 1

2
Pt = PCh[Ys + 1] (95)
The corresponding temperature is

Ty =T -——jL—— 96
t = ch YS+1 ( )

The velocity and the speed of sound must be calculated for this condition
considering a constant entropy expansion process. If the results do not

satisfy the criterion w = wg a new approximation of the pressure will be

performed using the following concept.

Every thermodynamic property can be determined when two other properties

are known.
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Choosing

=
il

F(P, s)
which reduces to

h

F(P)
for a constant entropy process. From experience it is known that there
is a logarithmic relationship between the pressure and the enthalpy.

Differentiating with respect to ln P results in

oh
dh _(alnP)S dlnP

or considering finite differences

oh
Ah _(81nP)s Aln P

During an isentropic process the total energy cannot change. However,
as long as the proper static pressure in the throat area has not been
found, the difference between the chamber enthalpy and the total enthalpy
for the throat region is not zero.

Ah=hc, -h

Applying the mathematical relationship

AP Px+31- Pk
P Pr

with k indicating the previous calculation of the static pressure, we

AlnP =

obtain

noo -he=f22_) Prty- Pk
ch " *"\8mmP/, Py

Solving for P, ., yields

_heh - b

Pr+1=Pr |l +—5—+ 97)
(8 1nP)s
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The total enthalpy in the nozzle is composed of a static and a dynamic

portion h = hgtat + hayn (98)
2
W
h=h + 5=
stat zgo

Multiplying and dividing the dynamic term by WS2 and the molecular

weight gives

Maz WSZ M

h = hstat + ZgoM

Expressing the speed of sound wg by the following thermodynamic relation-

Wg = /goys RT

ship

results in

2

Ma -
h=hstat+"2_1\ZYsRT

This equation must be differentiated with respect to ln P to adapt it to

equation 97.

o(5)
oh _ [ 8hstat Ma? = "\M
(alnp)s‘(alnp)s+ 2 YsR\egmp/, ©

Considering the Mach-number and the specific heat ratio as independent
of the pressure, the derivative of the dynamic term is derived. From

the ideal gas law the following expressions are developed

PvM = RT
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T P ap
o(5%) __l_a() _1|P"Ps | 1|, Pep

M/ e/} L -
oP 1, "RLeP), "R 7 1, TR poP

Applying equation 84

dlnp) _ 1
9InP /s  vg

results in

8(:1{4‘)] _l|ys-

P Jg —R_p Ys

Next, the static enthalpy derivative is determined. The first law of

thermodynamics states:
hstat = u+ Pv

Ohstat =_l
aP /g

P
or
dhstat _E
dlnP J; P

Substituting the corresponding terms into equation 99 yields

oh _ Ma? _12 100
B P

P —
PM _Rr

p

oh RT Ma?
(a lnP)S ‘ﬂ_[l t 0 1)] (10D

At the throat area, the Mach-number equals one. Therefore, the last

equation reduces to

_8h \ _RT 102
(alnp)s"zﬁ(ys'” (1o
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With this expression,the following approximations for the static

pressure at the throat area can be made.

Y RT
heh - [hstat + —%I\—/I__]

— (103)
]

EXIT AREA CONDITION

Pr+1=Pr|l+

To determine the condition at a given expansion ratio e, the
computation is similar to that used for the throat condition. At first,
a proper static pressure must be estimated for the expansion ratio
being investigated. An equation from Ref. 4 serves as a basis for con-

sidering the flow of an ideal gas through an isentropic nozzle.

N 1 Yg - 1
Yg - 1 Y Y (104)
£ = (:ﬁij;_l) S P ®[ystl 1 - P °
2 Pcn Ys - 1 Pen

Since the exit static pressure cannot be determined implicity from this
equation, the following procedure was applied:
1. For any combination of the pressure ratios %%§1= 0.1; 0.01;
0.001; 0.0001; 0.00001, and specific heat ratios Yg= 1.10,
1.15, 1.20, 1.25, 1.30, 1.35, 1.40, the expansion ratio was

calculated.

. P A s
2. Plotting the data Bop versus & for constant specific heat

T
ratios on log- graph paper indicates a fairly linear relation-

ship.
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Pressure Ratio

0.001

0.0001 Pl -} R | . . il : ; \ ;
2 S & 5 678 3p 4 5 878 500

Expansion Ratic ¢ [»

FIGURE 5. PRESSURE RATIO VERSUS EXPANSION RATIO
’ FOR CONSTANT SPECIFIC HEAT RATIOS

A range of 3 to 100 for the expansion ratio of all specific
heat ratios’ (Y;) was taken into account.

Because of the linear relationship of a constant specific
heat ratio curve, an equation of the following straight line

equation can be written for each case.
Yys = MXyg + b

or if log-scales are used

(ln ) - (ln )
In pP = Pih 1 ACh 2 lnﬁ-— + Inc
ch/vyg ln-—-) - (1n ) t/ vs
A¢h At/




8.

The slope of each constant Y-line can be calculated from the
end points.
Knowing the slope and considering one point on the correspond-

ing Yg-line, the term ln ¢ can be computed.

Plotting the different slopes (m) and constants (ln ¢) as a
function of the specific heat ratios (\g), a linear relation-
ship was again found so that a straight line equation could

be written for either case.

m -m
Y Y

SL s2

m - m = (Vo = Yar)
Ys1 Vo1 - Vs, s sl
Inc -1Inc
Y Y..
Inc - Inc = sl Sz -
Ys1 Ys1 ~ Vs2 s = Yo

A general equation can be developed that represents the family

of curves

v = m(yg)x + blys)

m -m
P Y )\ A
In = ( sl sa)(vs - Vi) my | In g

Pch Ys1 ™ Ys2
Inc -Inc
Y Y
( Ys1 7 Vs2 s st Ys1

or

m - m
Yg; Yg A
Sz (Vo - Ygy) T M In—
P . e( Ys1 Vs s 8 Yor] At

Pch

Inc -Inc
Y Y
+ ( s1 s

2
(Ve - Ygy) T1nc (105)
a1 - Ysz > S si YS1
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m=F(Yg)
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.1
-1.08
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H
FIGURE 6.

SLOPE OF CONSTANT s LINES VERSUS SPECIFIC HEAT RATIO




VERSUS SPECIFIC HEAT RATIO

i
In c=F(Yy)
f i £ ESEEEE :
05 1.10 1.15 1.20 1.25 1.30 1.35 1.40
FIGURE 7. ORDINATE SECTION OF CONSTANT v . LINES

57



9. Using real values from Figures 5, 6, 7, the equation reads

A
P -, —[(0.867yS + 0027165)1n;;E+-(0.699228ys + 0.442199)](106)
Pen
10,

From this equation an approximation of the static pressure

(P) at a desired expansion ratio can be made.

With the approximation of the static pressure in the exit

area, the desired expansion ratio (€) will not be obtained

the first time. Consecutive approximations of the static

pressure can be calculated from the generally developed
equation 97 by introduction of an expansion ratio relationship.
The total enthalpy does not change during the expansion process,
and equation 98 can be expressed by the expansion ratio (¢ ).
Since the mass flow rate through the throat section is equal to
the mass flow rate through every other cross sectional area, the follow-

ing equations result:

Airptwy = Apw

(107)
A Wt p
€ =—-:—t__t
A, wp (108)
w =Pt

€

Expressing furthermore the speed of sound in the throat area by

Ws::\/@oYs,thTt

equation 98 finally yields

2
_ Pt Vs, tRt Tt
h = hgtat + e
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. Applying this result to equation 98 yields the partial derivative

shown below:

1
2
(_3_}‘_. _(8hstat) , PEYs, tRt Ty (—p-z) (109)
9InP / 3InP /g 2¢* 9InP /g
According to equation 100 we obtain
Ohstatl _ P
9InP /o " p
Furthermore
@) (&)
AL ) _pl L) L _2Bfoe) _ 2P (o) _ 2 (olnp) _
9InP /  ~ 9P J, PP \dP /., " p?p\3P/, PP \dInP/, P% Vg

Using the general gas equation, we obtain
2
oh =RrTl1 - Py Ys, tRT ] (110)
OlnP /g PzYthTtEZ

Substituting the proper terms in equation 97 finally results in

PPR*T v ¢
t S,
hCh - (hsta.t + PZ Rt Tt 282

PtZI{T'Ys, t
RT (1 T P* Rt T¢vs £°

(111)

Pk+1=Pk 1+

MAXIMUM SPECIFIC IMPULSE
Optimum rocket engine performance is achieved when the mixture
ratio provides the maximum specific impulse. The theoretical perform-
ance calculation in this report includes an option to determine optimum
mixture ratio for a constant combustion chamber pressure. The
following computation procedure is used. Initially, a mixture ratio

is assumed, and the corresponding specific impulse is determined. The
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mixture ratio is then increased twice by a chosen increment, and the
pertinent specific impulse values are calculated. These three points
in an Igp -M - diagram are the basis for the extrapolation routine
explained below.

The specific impulse as a function of mixture ratio for a constant
chamber pressure can be represented by an equation

I = F(K)
Sp Pch

Isp

3/
Predicted Point

FIGURE 8., SPECIFIC IMPULSE AS A FUNCTION
OF MIXTURE RATIO FOR CONSTANT
CHAMBER PRESSURE

FIGURE 9. FIRST DERIVATIVE OF SPECIFIC
IMPULSE AS A FUNCTION OF MIXTURE
RATIO VERSUS MIXTURE RATIO

FIGURE 10. SECOND DERIVATIVE VERSUS MIXTURE
RATIO AS A FUNCTION OF MIXTURE
RATIO
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Based on the known three points, a mean slope can be determined between

two points

. Ispt - Ispa
my =

M1 = Bz
M. = ISEZ B I523
2 M2 - M3

which also holds true for the mean mixture ratios

Xl:Bl_J%_&a
+
Xz:“zz 3

The terms ﬁ1 and m, can be understood as the first derivative of the
original function. A second derivative can be developed by taking into

account the change of the slopes m

my =
Xl "Xz

at a mean mixture ratio of
_X1+Xz
2
Since the specific impulse as a function of mixture ratio is represented
by a curve that resembles an inverse parabola, the first derivative
can be assumed to have a constant slope. Therefore, the equation of
a straight line for the first derivative yields:

-+ _my-m
m - m, = —+——2 (x - x,)
X]_-_XZ
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Considering the second derivative, this equationvchanges to

. (3 od
m - m; = my (X - Xp)

‘The condition for the maximum specific impulse requires

leaving

-m, = My (x - x;)

The three originally calculated points are used to compute My, M,
and X, A new approximation for the mixture ratio P can be obtained

by solving the latter equation for x.

M X, - m
x =4 ——% (112)
m;y
At the point of maximum specific impulse, a secant changes into a tangent;

the difference between two consecutive x-values approaches zero, or

X = [

This approach exactly determines the maximum for a parabolic curve

when three points are known. Since the Isp-HF curve is not an exact
parabola, the predicted maximum is not identical with the real one.
However, with every new calculation point a new set of three points

is available to predict a new and better point. This approach physically

moves an inverse parabola along the line Isp = F ( H)P for a constant
ch
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chamber pressure until its maximum converges into the real maximum.
In the calculation procedure presented in Appendix G, it is assumed

that a maximum specific impulse is obtained when

To avoid any point of inversion, the mixture ratio determined for the
maximum specific impulse is changed by A p= 0.001 to the other side
of the maximum to determine whether the specific impulse in this

location is smaller than the previous one.

THRUST LEVEL UPRATING

When the thrust of an engine is uprated without changing its
geometry, the new operating parameters, mixture ratio and chamber
pressure, can be calculated in a separate option using the calculation
program described in Appendix G.

The thrust increase can be invoked by changing the chamber pres-
sure without varying the mixXture ratio. In this case a new chamber
pressure can be determined under the assumption that the chamber

pressure is directly proportional to the thrust

ES&Z=E.9.§§. (113)
Pem Fi
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The thrust value (Fz) (calculated using the program) belonging to

ch ) must be compared with the desired
2

thrust (FDes)' I{ Soth values do not fall within a certaia

the new chamber pressure (P

extablished tolerance, a new chamber pressure(PCh ) will be determined
2

by applying a straight line extrapolation.

P =P +,Pchz" Pchl(F

chs P TR, F ) (114)

Des ~ ~ 2

This procedure must be repeated until the desired thrust value
is obtained (within a certain tolerance).

Figure 11 indicates that lines for constant chamber pressure,
representing the relationship between specific impulse and mixture
ratio, show a shift in maximum specific impulses to higher mixture

ratios with increasing chamber pressure.

Isp

¢ Line of Maximum Specific Impulse

FIGURE 11, SHIFT OF MAXIMUM SPECIFIC IMPULSE AS A FUNCTION
OF CHAMBER PRESSURE AND MIXTURE RATIO
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For uprated engines a mixture ratio shift should also be taken into
account to obtain high performance.

One method is to determine the chamber pressure so that the desired
thrust level is obtained, and the specific impulse is a maximum. This
option is included in the computer program by combination of the maximum
specific impulse and the constant mixture ratio uprating procedure.

A second method considers that most rocket engines operate by some
percent off the optimum mixture ratio, which yields maximum Isp. Since
the mixture ratio of a rocket engine shifts during flight because of
acceleration, propellant column height above pump inlet, density
change of the propellants as a function of temperature, and many other
reasons, it is preferred to stay on the side of the maximum impulse that
shows the smaller slope. This allows a greater variation in mixture
ratio for the same Isp tolerance, compared to the other side having a
steeper slope.

The calculation proceeds as follows:

At first the combustion chamber at its original performance
level is considered. Then for the same chamber pressure, the mixture
ratio is determined that will yield maximum specific impulse. The
difference between these mixture ratios is expressed as a percentage,
and the sign indicates on which side of the optimum p -value the
combustion chamber is presently operating. Next the chamber pressure

is varied, and the new point of maximum Isp, with the corresponding
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optimum mixture ratio is calculated. Deviating from this optimum mix-

ture ratio value by the initially calculated per cent value, an uprated
mixture ratio is found, with which the desired thrust level and the cal-
culated level must be compared. If the thrust level difference does not

satisfy a chosen tolerance, the whole procedure must be repeated.

COMBINATION OF SHIFTING AND FROZEN EQUILIBRIUM

As stated in Reference 10, dissociation is becoming more and more
pronounced when the temperature rises above 1500°K. In the exit area
of rocket engines, the static temperature is normally below this value.
A real expansion process does not follow either the shifting or frozen
equilibrium assumption, but occurs somewhere between these two cases.
To calculate data that are close to real values, a combination of both
concepts was considered in the calculation program and can be used if
desired. The calculation starts with shifting equilibrium and switches
to frozen equilibrium when the static temperature of the exhaust products

falls below T = 1500°K,

PARAMETERS
Thermodynamic and rocket performance parameters are calculated
according to the generally indicated procedures in text books (Ref. 4).
The equations used in the computation process presented are indicated

in Appendix G,
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1
TOLERANCES
When a combustion-expansion process is calculated, an inaccuracy
of the results develops because of the influence of the two main factors.
First,* the thermodynamic data, entropy, enthalpy, and specific heat at
constant pressure, vary with different sources. Data for the heat of
formation show discrepancies that are caused by the way they were
! obtained (calculated, measured, determined under the assumption of
certain molecular structures). In forming polynomials for these
properties as a function of temperature, an additional inaccuracy deve-
lops depending on the type of polynomial and the temperature range
covered.
Secondly, the calculation procedure does not produce exact answers.
Numerical solutions and iteration procedures can only yield answers
| within a certain tolerance. This refers especially to the determination
of the mole numbers, temperature, enthalpy, entropy and in particular
to the throat and exit area conditions on which all the rocket perform-
ance parameters are dependent.
A theoretical error analysis for the complete calculation procedure
is not favourable because of the complexity of the program.
Usually the following tolerances resulted in a better accuracy
than required (compare Reference 1).
With the nomenclature of Appendix B we apply to:
1. Equilibrium equations

6

AF | < 5 x 107
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relaxed to obtain a solution.

Mass balance equations

Fa
1 - —1 <5
a
0]
F
b
) —
5 <5
o}
Pressure equation
FP
-—1 <
1 50 5
Enthalpy equation
F
H
- — | <5
1 HO
Entropy equation
Fs
1 ~-—=1{<5
SO
Tolerance for the throat
1 -2 )< 2
w
s

Tolerance for

1 -

Des

<1 x 10

x 10

x 10~

area condition

X 10_4

the exit condition

3

These tolerances are too stringent in some cases and must be

performed over a range of chamber pressures

tolerances must be relaxed so that the most

the calculated new approximations sometimes

During the iterations solving for mole

failure in the computations.

When a sequence of calculations is

and mixture ratios, the
critical case will pass.

numbers and temperature,

lead to a divergence and

This occurs occasionally when the first

assumptions of the mole numbers were not close enough, and the
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corrections caused divergence or an underflow in the electronic computer.

To avoid such breakdowns, the following procedures were applied:

1.

If the mole numbers are corrected and become so small
that the computer assigns them equal to zero, these

terms shall be reset to a small value (1 x 10-35).

If .the corrections become greater than 10, they are to

be divided into 10. All corrections shall then be

multiplied by the maximum absolute value obtained.
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APPENDIX A
THERMODYNAMIC RELLATIONS
Each property of state can be expressed by two other properties

of state. From the relationship F (P, v, T) = 0 an important equation
is derived.

v = F (P, T)
T = F (P, v)
dv = (8V> dT + (—B-V—) ap (116)
oT P
T
_[aT 9T
dT = (a ) dP+(8V) dv (117)

P

Replacing dv in one of the equations and rearranging the terms yields
9T ov 2P
P T v

A similar expression will be developed from the relationships

T = F (u, v) (119)
u = F (T, v) (120)
dT = (—BI) du + (i'-r-) dv (121)
Jdu av
\"2 u
du = (-a—‘i) dT + (—9-9-) dv (122)
aT ov
v T

Substituting du in one of the equations and rearranging gives

ou 0T ov T
v u
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The first law of thermodynamics is represented by the equation

dg = du+ Pdv (124)
The second law of thermodynamics reads

dg = Tds (125)

Introducing the definition of enthalpy

h = u+ Pv (126)
Helmholtz function
a = u-Ts (127)
Gibbs function
g = h-Ts (128)
their .differentials are
dh = du+ Pdv + vdP (129)
da = du- Tds - sdT (130)
dg = dh - Tds - sdT (131)

Application of the corresponding equations representing the first and
second law of thermodynamics yields

dh = Tds + Pdv (132)
da = -Pdv - sdT (133)
dg = vdP - sdT (134)

Futhermore, the following relations hold true

i

a F (v, T)

F (P, T)

o
1
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T

Their derivatives are

da

dg

du

dh

ds

daT

1

F (s, v)

F (s, P)

F(T, P)

F (T, v)

F (v, P)

Jda d a
—_ dv + dT
(5%) o+ (53)
v T T v
(-2£) dP+(Tag) dT
0
P T T P
Ju Ju
(55) s+ (F5) o

(22} 4o+ (2R) ap
ds oP
P s
(%) at+(3%) <P
P T
ds
( ) dT+(-——) dv
oT v v/
(_B_T_) dv+(_a_T) 4P
ov oP

(135)

{136)

(137)

(138)

(139)

(140)

(141)

(142)
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Comparing the equivalent terms in the corresponding equations

[22), - v
32) -
(25, - o
8), - -

All of the above equations involve properties and are exact differentials.
Since properties are independent of a path, the following mathematical
concept applies.

dz = Adx + Bdy

( 9 A) - ( a B)
] ] d «
This results in the subsequent relationships

=v) - - 59 (150
S \'4

y




22) - (22).
B8, (32,

The specific heats are, by definition
3 Ju
Cv = (BT)
\%
~ 9 h
-C -
P (8T)
P
Expanding these two equations indicates
- 59, 59
v Js 9T
\%

P - (Z:)P (;;ln

C

\2

C

Applying equations (143) and 145) and expanding the terms

v ) T 2) (49)
v aT opP 9T
v \4 v

Cp = T (__3_,5_> T (_g_s) (_iV_)
0T P v/ip oT P

Substitution of terms from equation (150} and (151) yields

C
2) -3
C
(3r) - =2 (),

(151)

(152)

(153)

(154)

(155)

(156)

(157)

75



APPENDIX B

APPLICATION OF NEWTON-RAPHSON METHOD TO
SOLVE FOR MOLE NUMBERS AND TEMPERATURE

This appendix applies the Newton-Raphson method to equations
39, 40, 41, 42, 44, 45, and 46 to linearize the original non-linear
equations that are used to solve for the mole numbers, Nj, and the
temperature, T.
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1. Equilibrium equation

= 0
AGT
F.=0= RT .+1nPi-ailan-bilnP -cilan....

i ; y
(158)
AF; = 0 - F; for the right solution F; = 0, otherwise F; has a
value
AF; = oFi AA + A AP; + oFi AT
17 9A oP; ' T

oF

9A 0
oF; 1 0F; aj 0F; b 9F4 cj

AFy = AlnP; - 2a;AlnP, - biAlnPY -¢ciAlnPy -....

AHTY Lot 159

When a condensed product is formed, the partial pressure
must be neglected due to the section entitled '"condensed phases. '
The equilibrium equation for condensed phases yields:

AI_ITO
AFi=-aiA1an—biAlnPY-ciAlan-....- — AlnT

RT Ji
(160)
2. Mass balance equation for element Z
] 115
Fa=atot =7 2, 2iNj (161)
i=1
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atot = ao for the correct solution
1 115
AF, = ag - x a; Nj
i=1
oF oF oF
AF, = AA + —— AN; + —— AT
a’” %A oNj 1T
8F 5 1 115
A 0 TR & il
i=1
115

i=1
3F
a= 0
aT
| L5 , 115
AF, = - | 2 aiNj|AaA+ = 3 aj) AN
i=1 i=1
1 115 1 115
AFy = -5 2, aiNj AlnA+ % Y a;Nj AlnNj (162)
1=1 i=1
Pressure equation
110
F =P = _Zl P; (163)
1=

P = P0 for the correct solution
110

AFp = Pg, - E Py
i=1




oF oF oF
P P
AP + _—PAT

AFp = —— AA +
P~ %A oP; LoaT
9F p
5a =0
an__gfl
oP; )
0Fp
7 =0
110 110
i=1 i=1

The summation of partial pressures can only be performed
for the gaseous products because the partial pressures for condensed
phases have to be neglected.

4, Enthalpy equation

115
. 1 0
Fiy == Z (Hp )N, (165)
H=H, for the correct solution
1 115
AFH = H - Z (HT )1
1—1
0FH oFyg oF 1
115
0 Fg 1 0
TE T A :‘_:1 ()it
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i=1
- 5 15 g L5/ . 115
ST 5 L AriNi=5p L JOpaTliNi= 2 0 Ny
i= i=1 i=1
| 15 . RS R
AFH=-K5.Z (A ) N; AA + + Y (Hp); AN
i=1 i=1
115 .
+ 3 (Cp ) N;AT
i=1
, U5 L
7= 0 = 0
AFg = -5 2 (Hp)NjAlnA+ & 3 () N;AInN;
i=1 i=1
115 .
+T ) (Cp)N;AInT (166)
i=1
Entropy equation for gaseous products
, 110 .
Fg =S =% 3 [(B31); - RInPilIN; (167)
i=1

S = SO for the correct solution

110

1 _ 0 -
AFg=80 -+ 2. [S5r); - R InP;] N;
i=1
9Fg 0Fg oFg
=—— AA + AP; + ——
AFg = 5o AA + 5p- AP+ 5= AT




Fs_ 1 [(3+): - RlnP,]N
A T TR 2 T )i - RInP;IN;
110 110 110
9Fg 8Fg 1 _ 0 1 -1
55, "N, "X St)i-|x| 2 RIaPy+N; X RPi
1 i= i=1 i=1
3Fs 9 (1 110 f( ) 8T) 121:0 . (Cp>
0T ~ 8T 1_1 A~ i
, 110 , |110
AFS=-——Z[(ST) - RInP;]N; AA+ % Z(ST)AN
A" i=1
110 110 R 1 110 GPO
Z RInP; AN; ENI AP+ = 3 N; AT
= P Ai—'l T J1
, 110 L 110
AFg = - & > [(ST ); - RInP;IN; AlnA + — >, (sT) N; AlnN;
1=1 i=1
110 110
Z RN;InP; AlnNj - E RN;AInP;
1i=1 ‘ i=1
, 110
t = 3 ON; (cp ); AlnT (168)
1-1

For condensed phases, the partial pressures must be
neglected. The entropy equation is then

1 -
2 BrhN (169)
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Applying the Newton-Raphson method, we finally obtain:

, U5 . , 115 .
AFg=%x 2. Nj(Cp)AlnT+ % Y. Nyj(Sp);almN
i=111 i=111

(170)

—

115 .
%= & (S7)iN;jAlnA
i=111




APPENDIX C

APPLICATION OF NEWTON-RAPHSON METHOD TO SOLVE
PARTIAL DERIVATIVES FOR
CONSTANT PRESSURE AND TEMPERATURE

This appendix applies the Newton-Raphson method to equations 39,

40, 41, 42, 44, 45 and 46 to linearize them so that the partial derivatives
for constant pressure and temperature can be solved easily.
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Derivatives at Constant Pressure

l.

Equilibrium equations considering gaseous compounds expressed

by partial derivatives at constant pressure:

2.

term

3.

AG’
0=({—L} +1nP;j - 2jInP, - bjInPy - ¢;InPy - .... (171)
RT
AETO
0 =d{— +d1nPi-aidlan—bidlnPy-cidlnPX-....
RT /,
) RT )i, dinP; _ dlnP, , dlnPy  dlnPy
dlnT dinT 1dlnT 1dInT 1'dlnT
4 [AGT® a [aGT’\ o d AHT® - ATS®
dinT RT .i_‘(?.—rz RT dT T{-T 5
- 0 -_— - 0
a [AHT AHr , AHt
=T == ——] =T|——= 1) T = - =
dT\ RT /i ®r ) RT /;
—_ 0 .
0= (ABT) ,dlnP;  dlnPy  dlnPy  dliPx
- RT ). dIaT 1dlnT 1dlnT 1dlnT
1
(172)

For condensed phases the equation is identical except that the

dinP; _
dinT ~
= 0
0= AHm . d1ln Py b dln Py . dln Py
= - — - i - i - i T e e e
RT /; dinT dinT dinT (173)

Mass balance equation expressed by partial derivatives at

constant pressure.
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3o = & Zai N; (174)
i=1




115

0=-apgA+ Z aj N
i=1
0 115 115 /0
0=-apdA - Afag+ D ajdN;+ D Ny,
i=l 1—1
da, and daj cannot change since mass is constant.
115
0=-aoAdInA....+ 9 a;N;dInN;
i=1
115
_ dln A d1ln Nj
0=-agA amT + & a; Nj 1T
or
115 115
0=- aijN; dInA + ) a;N; dlnNj
i=1 i=1
0= 2 a dlnA t d1ln Nj
—-1-1 NigmT ! 4 Ni qnT (175)

4, Total pressure equation expressed by partial derivatives at
constant pressure;

110
; P = P1 (176)

e

EdP:

oD dP;

110
8) P
i=1
oP;
Applying the mathematical concept

dlnx
dx

%=
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or
dx = xdlnx

we obtain

110
Y PidinP;=PdlnP

i=1

at constant total pressure the dInP term is equal to zero.
PdinP =20

Dividing the equation by d In T it follows

110
_ d1ln Py
O'iz_:l Pi Tt (177)

Derivatives at Constant Temperature

5. Equilibrium equations expressed by partial derivatives at
constant temperature:

AETO
0= +1nPi-ailnPZ—bilnPY-cilnPX—....

RT /. (178)
ATy
0=d RT .+d1nPi—aidlnPZ—bidlnPY—cidlnPX-....
1
- 0
AG
(%)
0o VBT )i dmnp; _ dmmP, | dInPy  dinPy
dlnA dinA  “1 dlnA ~ ! dlnA 1 d1lnA
— 0
AG
25T
RT /; 0
" dlnA

= 0
AGT
— is only a function of temperature
RT /i

36




dlnP; _ dlnP,  dInPy d In Py
O=3Tma *dma Pdma S dma (179)

6. Mass balance equations expressed by partial derivatives at
constant temperature;

115
ag = Z ai Ny
i=1

(180)

115

0=-Aag+ a; N1
i=1

Since N; = P; we obtain
oa 115
dag ONj
A 522 dagt 2053 aA A 4A = Zlal ox; 4P +ZN1 da1 .
-

Because of the constancy of elements

Dividing the equation by dIn A and applying the following mathematical
concept

dInx

1l
%

[N
i

or

dx = xdIlnx

the result is

d 1n P;

d lnA
O=-aohgTmat Z iNi g InA

P;
d InPy (181)

0= 'a°A+Za1N1 dInA
1=1
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APPENDIX D
DERIVATION OF THE CHANGE IN MOLECULAR
WEIGHT AS A FUNCTION OF PRESSURE AND
TEMPERATURE
Performing a mass balance due to the reaction equation.

AINR(Zap, Yppr Xcpr o)+ N (Z,g, Ypg, Xcgor oo--)]

= ZNI( Z‘ai’ Ybl’ Xci...-) (182)

we find for each element
A(Npap + Ngag) Ly = ZN;ja;Ly (183)
A(NFbF + NG be) L

= ZN.b.L
11

Y Y

A(NFCF + N6 CB) LX = ZNiciL

X
A[NF(aFLZ + bFLY +cpligt ... )+ Ng (aGLZ +bgLy + CeLX
+....)) :ZNi(aiLZ+ biLY+ CiLX+ N
In general the molecular weight is defined as
Mi:aiLZ+ biLY+ c.lLX+ ceee (184)

In a reaction process, the mole numbers and the molecular
weights of the reactants are known. This means the relative mass is
a constant. The mass balance equation reads now

115

Am_= ZlNiMi
1=

Very often the mole numbers of the reactants are determined so
that the total mass of the reactants is equal to one. In th'}s case,

mr:l.
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An average molecular weight can be defined for a mixture as

115
NM = ) N;M;
i=1
115
2 NjM;
i=1
M =
N
110 110
With N= 3 N, = ), P, = P (neglecting the volume of the
i=1 i=1

condensed products) and the total mass of the products equal to the
total mass of the reactants, we obtain

_Amgy
M = P

(185)

Rewriting this equation in a logarithmic form and differentiating
with respect to In T results in

dlnM_dlnA+d1nrnr dInP
dinT " dInT dInT  dlnT °

Since the mass, m,, will not change,

dlnmgy _ 0
dlnT = °°
For a constant pressure process, P does not change and

dlnP _

dinT ~ 0

Finally we obtain

dlnM dln A .
(dlnT)P _(dlnT)p ' (186)
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Starting again from equation (185) in logarithmic form but now
differentiating with respect to InP yields

dlnM_dlnA+d1nmr dlnP
dlnP ~dlnP dlnP dlnP

Due to the constancy of mass

dlnmy _ 0
dlnP ~ ° °
The final result is

dlnM _dlnA
dinP ~dlnP

1

and can also be applied to a constant temperature process

dinM) _fdna .
dInP | \dInP)y
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KE

1 Kcal

1 Kg

1 atm

]

APPENDIX E

CONSTANTS AND CONVERSION FACTORS

1.98726

2.7182818285

32.1740

3087.16928168

2.2046

14.696

Universal gas constant

Euler number

Gravitational constant at sea level

ft/1b

1b

in
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ACC
AISP
AISPX
AISPY
AISPZ
AISPM
AISPRA
AISPRV
ALPHA

AMNF

AMNFS

AMNG

AMNOS

AMNR

AMRW

AMRWD

92

sec

APPENDIX F

NOMENCLATURE FOR CALCULATION PROGRAM

Multiplier in reaction equation to make the
partial pressures and mole numbers numerically
equal

Injector plate area

Local specific impulse

Previous values of AISP during iteration for
maximum specific impulse at constant chamber
pressure

Maximum specific impulse

Real specific impulse at predetermined altitude
Real vacuum specific impulse

Mole per cent value of oxidizer A in a mixture

Mole number of the fuel, determined as one (1)

Mole number of the fuel to yield a molecular
weight of one (1) for the propellants

Mole number of the oxidizer to satisfy the required
mixture ratio of the propellants by weight

Mole number of the oxidizer to yield a molecular

weight of one (1) for the propellants, considering
also the desired mixture ratio by weight

Mole ratios of the combustion products
Mixture ratio by weight
Chosen mixture ratio increment for iteration on

maximum specific impulse at constant chamber
pressure




AMRWL
AMRWM

AMRWS

AMRWX
AMRWY
AMRWZ

AMW
AMWP

AMWR

ANA
ANB
AND
ANG

AN{
AS

ATWC
ATWF
ATWH
ATWHE
ATWN
ATWO
ATWU
ATWX
ATWY
ATWZ

BETA

|

g

Original mixture ratio by weight to determine the
PERCT value for thrust level uprating

Optimum mixture ratio by weight yielding maximum
specific impulse for considered chamber pressure

Stoichiometric mixture ratio
Previous values of AMRW during iteration for
maximum specific impulse at constant chamber

pressure

Average molecular weight per mole of gaseous
products

Relative mass of propellants for the required
mixture ratio

Relative mass of the reaction products defined as

one (1)

Number of Nitrogen gram atoms in oxidizer A and B,
and Fuel G and D
Number of gram atoms in the combustion products

Throat area

Atomic weight of Carbon, Fluorine, Hydrggen,
Helium, Nitrogen, Oxygen, with U, X, Y, Z as
available spaces for other elements

Mole per cent value of oxidizer B in a mixture

Number of carbon gram atoms in the combustion
products

Characteristic velocity
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CA
CB
cD
CcG
CF
CFA
CFRA
CFRV
CFV
CK1
CK2
CK3
CKy,
CN;

CNS

CNSMCP

CONVER

CRS
CRSS

Ccvv

DELTA

94

—
3
o
°,
L

| WL S | UL N | W Rt 3 I )

Number of carbon gram atoms in oxidizer A and B,
and fuel G and D

Local thrust coefficient

Thrust coefficient at predetermined altit

Real thrust coefficient at predetermined altitude
Real vacuum thrust coefficient

Vacuum thrust coefficient

Conversion factor

Conversion factor

Conversion factor

Conversion factor

Mole numbers of the combustion products

Summation of the mole numbers of the combustion
products

Summation of the mole numbers of the gaseous
combustion products only

Error left in the iteration process due to the
approximated values

Specific heat at constant pressure of the individual
combustion products

Specific heat at constant pressure considering all
combustion products

Real characteristic velocity
Local isentropic exponent
Isentropic exponent in the throat area

Specific heat at constant volume considering all
combustion productrs

Mole per cent value of fuel D in a mixture




DH

D1nA

DlnPi

DPA

DPM

DPP

DQ;

DTM

DTP;

E

EQUIVR

ETAC*

ETACFV

ETAW
EXPR
EXPRL

Fi

|r|1 llllllrll ﬁll
| W] — e e —_J

. -
- A
. -
r -1
L
- -
- .
- -
o n
L
L -
L
&
mole

Enthalpy difference between the combustion products
and the elements from which they are formed. All
values divided by R:T

Finite difference of the logarithm of the reaction
equation multiplier.

Finite differences of the natural logarithm of the
partial pressures (mole mumbers)

Change of molecular weight as a function of
temperature at constant pressure

Change of molecular weight as a function of

temperature at constant pressure

, . . 1nP;
Partial derivatives <a P9 at constant pressure

BlnT P
Constant term in the equilibrium equation

Change of molecular weight as a function of pres-
sure at constant temperature

Partial derviatives <%—}:1> at constant
temperature T

Euler number (2.7182818285)

Equivalence ratio; mixture ratio divided by the
stoichiometric mixture ratio

Correction coefficient for the characteristic
velocity

Correction coefficient for the vacuum thrust
coefficient

Correction coefficient for the mass flow rate.
Expansion ratio
Required expansion ratio

Number of fluorine gram atoms in the combustion
products
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FA

FB g Number of fluorine gram atoms in oxidizer A and
FD mole B and fuel D and G
FG
FL [lb:l Desired thrust level
FROZ {—;} Switch constant for frozen equilibrium
FT lbw Local theoretical thrust
FTA 1b Theoretical thrust at predetermined altitude
- =
)
FTRA &b Real thrust at predetermined altitude
FTRV le Real vacuum thrust
[ ]
FTV Bb Theoretical vacuum thrust
FX lb— Previous values for FTRA during iteration for
FY desired thrust level
GAMMA --] Mole per cent value of fuel G in a mixture
H caq Enthalpy of all combustion products
L
Hj £ Number of hydrogen gram atoms in the combustion
[mole products
HA _
HB g Number of hydrogen gram atoms in oxidizer A and B,
HD Pole and fuel D and G
HG
HE{ £ Number of heliumn gram atoms in the combustion
mole products
HEA -
HEB g Number of helium gram atoms in oxidizer A and B,
HED @ole and fuel D and G
HEG
HO Eiq Enthalpy of the propellants
L &
HT{ 91%] Molar enthalpy of the combustion products
mole
HTFD } "Egl Enthalpy of fuel D and G at normal boiling point
HTFG mole or at T = 298.15° K
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HTeA }
HT®B

IA

s [

IC

ID

IE

IF

IH

II

1J

IK

IL

™M

KE

KF

K8

e J

B D e
0 e e e

n
-+

A =)

[
(1%
0

leo

3
0
—

5

=T

—

=

Enthalpy of oxidizer A and B at normal boiling
point or at T = 298.15° K

Switch constant for throat area calculation

Switch constant within the throat area calculation
Switch constant considering either calculation at

a required expansion ratio or many local conditions

downstream of the chamber

Switch constant considering static pressures in a
chosen range

Switch constant considering static pressures in a
chosen range

Switch constant considering static pressures in a
chosen range

Switch constant considering the calculation of a
desired thrust level

Switch constant considering the calculation of a
maximum specific impulse

Switch constant within the calculation routine
for maximum specific impulse

Switch constant within the calculation routine
for maximum specific impulse

Switch constant considering the difference between
an optimum and required mixture ratio

Switch constant considering a combination of a
desired thrust level and a maximum specific impulse

Switch constant within the desired thrust level
calculation routine

Test constants
Gravitational constant at sea level, 32.174
Molecular weight of fuel

Mclecular weight of oxidizer
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KK1i )
KK2i
KK3i
KK4i »
KK54

KK61

KK71)

6A
©B
eD

PC

PAM

PCM

PERCT

PO

PS

PSUM

RS

98

Polynomial coefficients for calculation of
enthalpy, entropy, and specific heat at constant
pressure

Number of oxygen gram atoms in the combustion
products

Number of oxygen gram atoms in oxidizer A and B,
and fuel D and G
Local static pressure of all combustion products

Local partial pressures of the individual
combustion products ‘

combustion chamber end stagnation pressure

Ambient pressure at considered altitude

Optimum combustion chamber end stagnation pressure
which belongs to a required thrust level yielding

maximum specific impulse

Percent value considering the deviation in mixture
ratio off the optimum value yielding maximum

specific impulse

Predetermined local static pressure of the
combustion products

Static pressure of the combustion products in the
throat area

Local static pressure of all combustion products

Previous values for PC during iteration on desired
thrust level

Universal gas constant 1.98726

Specific gas constant for all combustion products




RSS

SHIFT

SO

ST

TL

TC

TS

Tang «

UA
UB
uD
UG

ve )
VF
VH
VHE

J

Oll

[ — oll
~
L —J L

~
-

~

roﬂfol

|
| I—

0Q

(LI

=]
o
.—I

e

Specific gas constant for all combustion
products in the throat area.

Entropy of all combustion products

Switch constant considering shifting equilibrium
calculation

Calculated entropy value which is considered in
the isentropic expansion process

Molar entropy of the combustion products
Temperature

Temperature limit counsidering the transition from
shifting to frozen equilibrium calculation procedure

Theoretical combustion chamber temperature
Theoretical static temperature in the throat area

Slope of the secant for maximum specific impulse
calculation.

Number of gram atoms for an element (to be
determined) in the combustion products

Number of gram atoms for an element (to be
determined) in oxidizer A and B, and fuel D and G

Local velocity

Most common valence of carbon
Fluorine

Hydrogen

Helium

Nitrogen

Oxygen

Element to be determined
Element to be determined
Element to be determined
Element to be determined

Local speed of sound
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VSS

WR

XB
XD
XG

YA
YB
YD
YG

ZA
ZB
2D
G J

OF
OH
CHE
ON
oe
ou
oX

0z J

ic )

1F
1H
1HE
IN

16 (
1U
1X
1y
1z

100

* 1
H
t
e—

"
- D
o0

—
)

llm

O |= 0
(3 [o 2l o]
| I

=]
O |oo
—
LA

Speed of sound in the throat area
Theoretical weight flow rate
Real weight flow rate

Number of gram atoms for an element (to be
considered) in the combustion products

Number of gram atoms for an element (to be
considered) in oxidizer A and B and fuel D and G

Number of gram atoms for an element (to be
considered) in the combustion products

Number of gram atoms for an element (to be
considered) in oxidizer A and B and fuel D and G

Number of gram atoms for an element (to be
considered) in the combustion products

Number of gram atoms of an element (to be
considered) in oxidizer A and B and fuel D and G

Number of gram atoms yielding a relative mass of
one (1) for the propellants considering carbon,
fluorine, hydrogen, helium, nitrogen, oxygen, and
elements to be determined (U, X, Y, Z)

Number of gram atoms yielding a relative mass of
one (1) for the combustion products, considering
carbon, fluorine, hydrogen, helium, nitrogen,

oxygen and elements to be determined (U, X, Y, Z)




APPENDIX G
CALCULATION PROGRAM

In this section the complete calculation procedure is documented.
Input data, determination of chemical elements and compounds, equa-
tions, tests, option to solve for various desired conditions and output
data are listed. The simplified flow chart in Appendix H shuws the
arrangement of all equations and tests.

The computer listing and pertinent flow chai.s are available
and can be obtained on request from the author.
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110

GENERAL COMBUSTION PROGRAM

Molecular Weight of Oxidizer [ g/mole]

Molecular Weight of Fuel [ g/mole]

Mole Number of Oxidizer to Satisfy Desired Mixture Ratio [ mole]
Relative Weight of Propellants for the Required Mixture Ratio [ g]

Number of Gram Atoms Yielding a Relative Weight of One for the
Propellants [ -]




K6 = ALPHA(CA-ATWC + FA-ATWF + HA-ATWH + HEA - ATWHE
+ ANA-ATWN + 6A-ATWO + UA-ATWU + XA -ATWX + YA -ATWY
+ ZA-ATWZ) + BETA(CB-ATWC + FB-ATWF + HB-ATWH
+ HEB-ATWTHE + ANB-ATWN + 6B-ATW6 + UB-ATWU
+ XB-ATWX + YB-ATWY + ZB:- ATWZ)

KF = GAMMA(CG -ATWC + FG-ATWF + HG-ATWH + HEG - ATWHE
+ ANG-ATWN + 6G-ATWO + UG- ATWU + XG -ATWX + YG-ATWY
+2G-ATWZ)+ DELTA(CD-ATWC + FD-ATWF + HD-ATWH
+ HED -ATWHE + AND-ATWN + 6D -ATW6 + UD-ATWU + XD -ATWX
+ YD -ATWY + ZD-ATWZ)

AMRW - AMNF . KF

AMNGO = Ko

AMWP = AMNF - KF + AMN®O -K®6

_ AMNO(ALPHA - CA + BETA - CB) + AMNF(GAMMA - CG + DELTA - CD)

oC AMWP
AMNO(ALPHA -FA + BETA - FB) + AMNF(GAMMA - FG + DELTA - FD)
OF =
AMWP
AMNOG(ALPHA - HA + BETA - HB) + AMNF(GAMMA : HG + DELTA - HD)
OH =
AMWP -
OHE = AMNO(ALPHA - HEA + BETA -HEB) + AMNF(GAMMA - HEG + DELTA - HED)

AMWP

AMNGB(ALPHA - ANA + BETA - ANB) + AMNF(GAMMA - ANG + DELTA - AND)
ON = AMWDP

0%

_ AMNO(ALPHA - 6A + BETA - 6B) + AMNF(GAMMA - 6G + DELTA - 6D)
- . AMWP

AMNGO(ALPHA - UA + BETA - UB) + AMNF(GAMMA - UG + DELTA - UD)
QU = AMWP

AMNGO(ALPHA - XA + BETA - XB) + AMNF(GAMMA - XG + DELTA - XD)
OX = AMWD

111



10.

11.

12,

13.

14,

15,

112

Mole Number of Oxidizer to Yield Molecular Weight of O .or
Propellants [ mole/g]

Mole Number of Fuel to Yield Molecular Weight of One for Propellants
[ mole/g]

Stochiometric Mixture Ratio [ - ]

Equivalence Ratio [ - ]

Enthalpy of Propellants [cal/g]

Test on T for Proper Selection of Temperature Ranges for
Entropy, Enthalpy and Specific Heat Polynomials.

Local Enthalpy of the Combustion Compounds [cal/mole]
i=1-115

Local Specific Heat at Constant Pressure of the Combustion Compounds
[ cal/mole °K] i=1-115

Local Entropy of the Combustion Compounds [ cal/mole °K]
i=1-115

Test Whether Shifting or Frozen Equilibrium is Invoked




AMNG(ALPHA YA + BETA -YB) + AMNF(GAMMA -YG + DELTA - YD)
AMWP

oY =

07 = AMNO(ALPHA -ZA + BETA - ZB) + AMNF(GAMMA - ZG + DELTA - ZD)

AMWP
AMNG
AMNGOS = o s
AMNFEF
AMNFS =20

AMRWS = (GAMMA [CG -VC + FG -VF + HG -VH + HEG - VHE + ANG - VN
+6G-Vo+ UG- -VU+ XG - VX + YG-VY + 2G -VZ]
+ DELTA [CD-VC + FD:VF + HD -VH + HED : VHE + AND - VN
+ 6D -V6+ UD-VU+ XD.-VX + YD -VY + ZD -VZ])- Ko/
-(ALPHA [CA-VC + FA VF + HA-VH + HEA-VHE + ANA: VN
+ 0A-VO+ UA-VU+ XA - VX + YA-VY + ZA -VZ]
+ BETA[CB:-VC +FB:VF + HB:VH + HEB :VHE + ANB - VN
+ 0B-Vo+ UB-VU+ XB-VX + YB-VY+ ZB-VZ]) -KF

AMRW

EQUIVR = 292 Ws

HO = AMNOS(HTOA - ALPHA + HT6B - BETA) + AMNFS (HTFG - GAMMA
+ HTFD -DELTA)

2 3
HT; = RT (KKI + KK23 ;r+ KK31T3 + KK44 Fﬁ + KK5; — z +KK6 —)
CPj = R-(KKI1j + KK2; T + KK3; T? + KK4; T? + KK5; T*)

T? T3 T4
STi = R(KK1jInT + KK2; T + KK3j 5~ + KK4j 5~ + KK5§ T + KK7;)

If FROZ =1 Skip to Step 20
If SHIFT =1 Continue

113



16. Simultaneous Set of Equations Solving for A, T, Pj

114

Qe

Equilibrium Equations [ - ]

Gaseous Products: i =1 to 100

Condensed Products: i =111 to 115, in this case In P; =0

The term of the left-hand side of this equation is equal to -DQ;
and approaches zero for a solution.

The positive parenthetical term on the right hand side of the
equilibrium equation, not multiplied by D In T, is abbreviated
by DH;




R

HT HT HT HT
d+=) - Cils=—=) -Fils=]) -Hls—]) -ug
271~ 57 (R T (E s -5 (R
HT HT HT HT
- AN: [ =——— - 0; | —— - Us | —— - X
t (R . T)los ' (R . T)106 ! (R 'T)l(ﬂ 1(R T)los ( )109
HT \ ST S
- Z: - +1nP + C — - In P10l
(755 - (), (- m 0]+ (R).
+ H. [(ST) - In P103] + HEi[(ST) - In P104] + AN; [(ST) - In P105]
R /103 R /104 R /105
ST ST ’ ST
- |(sT ) + x| (8T )
+ 6 [(R )104 1nP106] + Ul[(R )m 1nP107] xl[(R )m 1nP108]
ST ST
+ -. + Zil |\ = - = i - Gy
Y [(R )109 1nP109] Zl[(R )110 lnPIIO]} DInP; - C;DInPIl101

- F;yDInP102 - H; DInP103 - HE;DInP104 - AN;DInP105 - 6;DInP106

- lnPIOZ]

- UyDInP107 - X;DInP108 - Yi:DInP109 - Z;D1nP110 -[(——;TT)
1

HT HT HT "HT HT
- C. | —— -F.| —— E.| =—— - AN. [ m—=
CI(R'T):M Fl(R'T)loz H; (R T)103 H 1(R'T)104 1(R-T)105

HT HT HT HT . HT
- 0. | —— - Us | —— - X | = - Y. | — - Z.|=— DinT
01( R- T)106 Ul(R . T)l(ﬂ Xl(R ) T)IOB l(R ' T)109 1 (R T)IIO] "
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116

b.

C.

t
Mass Balance Equations [ - ]

Total Pressure Equation [atm or mole]

The partial pressures and mole numbers are equivalent with the
application of A,




‘DInA + Z Ci-P;i - DlnPj

. P. .
i

- P -

Py -

DinP.
1

DInP;y

i-Pi)-DlnA+ ) HE, P; -DInP;

‘DlInA+ 2 AN, P; DInP,

DiInPj

i - DInPj

-DlnPi

-D1InPj

, 115 115 115
A-(oc-K Y Ci-Pi)=-( Y Ci-Pi)
i= i=1 i=1
| L5 115 115
A-(OF-K Y Fi-Pi)=-( Y Fi-Pi)-DlnA+ Y Fy
i= i=1 i=1
, 115 115 115
A-(OH—K z H;j Pi)=-( Z Hi-Pi)-DlnA+ Z H;j
i= i=1 i=1
, L5 115 115
A-(OHE-K > HEi-Pi)=-( Y HE
i=1 i=1 i=1
, 115 115 115
A~(ON-K Y ANi-Pi)z-( 2 ANi-Pi)
i= i=1 i=1
, 115 115 115
A-(OB-K > ei-Pi>=-( 2 Gi-Pi)-DlnA+ Y 6;-P;-DInP;
i=1 i=1 i=1
, 115 115 115
A-(OU-K Y Ui-Pi)z-( > Ui-Pi>-D1nA+ Y Uj
i= i=1 i=1
, L5 115 115
A-(ox.K Y Xi-Pi)=-( Y X Pi)-DlnA+ Y X
i= i=1 i=1
, 15 115 115
A-(OY-K Y Yi-Pi>=-( > Yi-Pi)-DlnA+ Y Y
i= i=1 i=1
, L5 115 115
A"(OZ-X z Zi'Pi)='< z Zi-Pi)-DlnA‘!’ z Z;
i=1 i=1 i=1
110 110
PO- Y P;j= Y P;j-DlnPj
i=1 i=1
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17.

d. Enthalpy Equation [ cal]

Replace enthalpy by entropy equation (16e) when step 44 has been
passed the first time.

e. Entropy Equation [cal/°K]
Use step 16d during the first calculation until step 44 is passed.

Test on Tolerances

1 - >

sO

During the first calculation loop

must be by-passed.

H
! - g6

P, H, S, IC, IF, IH, IHE, IN, Ie6, IU, IX, IY, IZ, are the constants,
calculated during the iterations in the simultaneous set of equations
solving for A, T, and P; (see step 16b, l6c, 16d, l6e), which have
approximately the same value as PO, HO, SO, OC, OF, OH, OHE,
ON, 06, OuU, 0OX, 0Y, OZ.

During all consecutive calculation loops must be by-passed.




115 115
1 HT
A.[HQ-X.R.T:Z (ﬁ)i-Pi]--l:R.T.z
i=1 i=1
115 HT A 115
‘ + ¥ |g=p).-Pi-R T -DInPj+ R-T: Y
i=1 1 i=l

110
A.{so--lA--R ) [(%)i'Pi-Pi'lnPi]
i=1 ;

115 7] 110
CP
+R[ ; (—R)i-Pi DInT - Y

i i=1

Continue

Continue

Continue

Continue

Continue

Continue

Continue

i=111 R .
115
R - X (ﬂ).p..mnA
R /- i
i=111 1
. P a3
H X
S -
I-SO <5x10
1C 7
1-66 <5x10
1F o
l-b—f" <5X10
1H 7
1HE 7
) l-OHE <hx10
1IN
- l< -7
1 oN 5x 10

Continue

R- [Pi(l + In Pj) -(

otherwise

otherwise

otherwise

otherwise

otherwise

otherwise

otherwise

otherwise

1

go

go

go

go

go

go

go

go

(

——A—'

to

to

to

to

to

to

to

to

(

CP

R

HT

)

R-T/;

115

R -
i=

step

step

step

step

step

step

step

step

S

z

11

Py -P5 1nPi]'D1nA

18

18

18

18

18

18

18

18

. P{I'DInA
)'- Pi:l-DlnT
;-

)+ ]}

ST
R
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DQ; is the constant in the equilibrium equation which approaches zero.

18. New Estimates for Simultaneous Set of Equations

i=1toll5
10

'Dln... max

If any |[Dln...| > 10 calculate and multiply all Dln...

values by this factor

19, Test on Condensation Products

120




InP; =1InP; + DInPj
InA =InA+DlnA

1 - —lc-)%- <5 x 107 Continue otherwise go to step 18
10 7 . .
1 - rolii <5x10 Continue otherwise go to step 18
1X r . .
1 - o% <5x10 Continue otherwise go to step 18
1Y 7 . .
1 - roh <5x10 Continue otherwise go to step 18
172 2 . .
1 - reva <5x10 Continue otherwise go to step 18
DQ;| <5x 1076 Skip to step 19 otherwise go to step 18

Determine Pj and test: If P{ = 0 set P{ =1 x 107%

Determine A

InT=InT+DInT Determine T

Return to step 11

HT ST HT ST
If -{— + | — + | = -{ = - InP101<0
(R' T)lol ( R )101 (R : T)m ( R )111 -

call for No.

HT S HT ST
(=) +(2L) + -[22) -mPp;<o0
(R T)i ( R )i (R T)us ( R /s~ A
' call for No.
HT ST
It - + - = -InP: <0
\ (R . T)1 114 ( R /114 !

call for Na.
to step 11

If all values are > 0 go to step 27.

111 and continue

112 and continue

113 and continue

1 14, and continue

115 and return

12;



20,

21,

22.

23,

24,

25,

Entropy of the Combustion Products [cal/g°K]

Test on Tolerance for Constant Entropy Process at Frozen Equilibrium
Condition

New Estimates on Temperature for Constant Entropy Process at Frozen
Equilibrium Condition

Partial Pressures of the Combustion Products for Frozen Equilibrium
i=1to 110

Sum of the Partial Pressures for all Gaseous Combustion Products [atm]

Simultaneous Set of Equations Solving for Derivatives DPP (P = Constant)

a. Mass Balance Equations
For definition of DH; see equation l6a

122




110
_ ST\ . en. - & . . 1n CNi-PO | 1
S=|R- % (R)- CNj - R -2, CN 1nCNSMCP]A
L i=1 1 i=1
S 7 . . .
If 1- 30 <5x10 skip to step 23 otherwise continue
DInT = (SO - 5) InT=InT+DiInT
115
R z CN. cp
A 1 N\ R /i determine T and return to step 11
1=
CN;- PO
1~ CNSMCP
110
PSUM = Y P;
i=1
110
0= z Ci-Pi[Ci-DPPIOI+Fi-DPP102+Hi-DPP103+HEi~DPP104
i=1

+ AN; - DPP105 + 6; - DPP106 + U; - DPP107 + X; - DPP108 + Y; - DPP109

115
+ Z;- DPP110 + DH;] + ), Cj-P;- DPP; -.A- 1C - DPA
i=111
110
O= ) F;-Pi[Ci- DPP101 + F;-DPP102 + H;- DPP103 + HE; - DPP104
i=1

+ ANj - DPP105 + 63-DPP106 + Uj - DPP107 + X;- DPP108 + Y; - DPP109
115

+ Z;-DPP110 + DH;] + Y. lFi-Pi-DPPi - A-1F - DPA
i=11

123



110
z H; . Pi[Ci.DPP101 + F; - DPP102 + H; - DPP103 + HE; - DPP104
i=1

+ AN; - DPP105 + 6; - DPP106 + U; - DPP107 + X - DPP108 + Yj - DPP109

115
+Zi-DPP110+DHi]+ Z H; P; -DPPj - A 1H ' DPA
i=111

110

Y HE;-P;[C;-DPP10l + Fj - DPP102 + Hj - DPP103 + HE; - DPP104
i=1

+ AN; - DPP105 + 6; - DPP106 + U; - DPP107 + X; - DPP108 + Y; - DPP109

115
+ z;-DPP110 + DH;] + Y  HE;-P;-DPP; - A-1HE -DPA
i=111

110

Z ANy 'Pi[ C; -DPPI101 + F; -DPP102 + H; - DPP103 + HE; - DPP104
i=1

+ AN; - DPP105 + 6; - DPP106 + U; - DPP107 + X; -DPP108 + Y; - DPP109

115
+ z;-DPP110 + DH;] + Y AN;-P;-DPP; - A-1N:-DPA
i=111

110

z 8; - Piy[Ci- DPP101 + F; - DPP102 + H;j - DPP103 + HE;j - DPP104
i=1

+ AN; - DPP105 + 6; -DPP106 + U; - DPP107 + X; - DPP108 + Y; - DPP109

115
+7;-DPP110 + DH;] + 9  6;-P;-DPP; - A-10-DPA
i=111

110
z U;j- Pij[ Ci-DPP101 + Fj -DPP102 + Hj - DPP103 + HEj - DPP104
i=1

+ AN; - DPP105 + 65 - DPP106 + U; - DPP107 + X; - DPP108 + Y; - DPP109

115
+ 7;-DPP110 + DH;] + 2 Uj-P; DPP; - A-1U-DPA

i=111 125



25 a. (Continued)

Equilibrium Equation for Condensed Products
i=111 to 115

Total Pressure Equation
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110

Y Xi-Pi[C;i-DPPI101 + F;- DPP102 + Hj - DPP103 + HE; - DPP104
i=1

+ ANj - DPP105 + 6; - DPP106 + U; - DPP107 + X; - DPP108 + Y; - DPP109
115
+ Z;-DPPI110 + DH;] + 9 X;-P;-DPP; - A-1X-DPA
i=111

110

z Yi' Pi[ Ci -DPPI101 + F;- DPP102 + Hi - DPP103 + HE]'_- DPP104
i=1

+ AN; - DPP105 + 6; - DPP106 + U; - DPP107 + X; - DPP108 + Y; - DPP109
115
+Zi-DPPllO+DHi] + z Y; -P; -DPP; - A-1Y:-DPA
i=111
110
z Zi- Pi[Ci- DPP101 + Fi- DPP102 + Hi- DPP103 + HEi -DPP104
i=1
+ AN; - DPP105 + 8, - DPPI106 + U, -DPP107 + X, - DPP108 + Y, - DPP109
115
+ Z; - DPP110 + DH;] + Z Z; -Pi DPP;j - A-1Z - DPA
i=111

C;-DPPI101 + F; - DPP102 + Hj - DPP103 + HE; - DPP104 + ANj - DPP105

+ 0; - DPP106 + Uj- DPP107 + X; - DPP108 + Y; - DPP109 + Z; - DPP110 + DHj
110

Y P;[C;-DPPI101 + F;- DPP102 + H; - DPP103 + HE; - DPP104

i=1

+ AN; - DPP105 + 6;5- DPP106 + U; - DPP107 + X; - DPP108 + Y; - DPP109

+ Z; - DPP110 + DH;]
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b. Derivatives for the Gaseous Combustion Products
Equilibrium Equation for Gaseous Compounds
i=1to 100
For definition of DH; see equation l6a

26. Simultaneous Set of Equations Solving for Derivatives DTP;
(T = Constant)

a. Mass Balance Equations

128




DPP; = C;-DPPI101 + Fj - DPP102 + Hij- DPP103 + HEj - DPP104 + ANj - DPP105

+ 0; - DPP106 + U; - DPP107 + X; - DPP108 + Y; - DPP109 + Z;- DPP110

+ DH;
115 110

O=- Y Ci-Pi+ ) Ci-Pi[C;-DTPIOL + Fj DTP102 + H;j- DTP103
i=1 i=1

+ HE; - DTP104 + ANj - DTP105 + 6; - DTP106 + Uj - DTP107 + Xj - DTP108

115
+ Y; -DTP109 + Zi-DTPIIO] + z C; P;-DTP;
i=111

—
p—
(%2}

110
Fi-P;j+ Y F;i-Pi[Ci -DTPL0l + F;j-DFP102 + H;j -DTP103
1 i=1

O
n
n Vg

i
+ HE; - DTP104 + ANj- DTP105 + 6; - DTP106 + Uj- DTP107 + X; - DTP108

115
+ Y;-DTP109 + Z; -DTP110] + J, F;-P; -DTP;
i=111

115 110
O=- Y H;-Pj+ ¥ H;-Pj[C;i-DTPL0l + Fj DTP102 + H;j - DTP103
i=1 i=1

+ HE; - DTP104 + AN; -DTP105 + 6; - DTP106 + U; - DTP107 + X; - DTP108

115
+ Y; -DTP109 + Z;-DTP110] + 2  H; DTP;
i=111

115 110
O=- Y HE;-Pj+ 3 HE;j -Pj{Ci-DTP10l + Fj- DTP102 + Hj - DTP103
i=1 i=1

+ HE; - DTP104 + AN; - DTP105 + 9; - DTP106 + U; - DTP107 + X; - DTP108

115
+ Y;-DTP109 + z;-DTP110] + ) HE;-DTP;
i=111
129



115 110
O =- z AN;-P; + Z ANi-Pi[Ci-DTPIOl + F;-DTP102 + H; - DTP103
i=1 i=1

. + HE;{ - DTP104 + ANj - DTP105 + 8; - DTP106 + U; - DTP107 + X; - DTP108

‘ 115

| +4Y;-DTP109 + Z; -DTP110] + ), ANj-DTP;
o i=111
‘ 115 110
O=- Y 6 -P;j+ Y 6;-P;j[C;-DTP10l + F; - DTP102 + H; - DTP103
i=1 i=1

+ HE; - DTP104 + ANi -DTP105 + 6; - DTP106 + U; - DTP107 + X;- DTP108

115
+ Y;i-DTP109 + Z; -DTP110] + )  6;-DTPj
i=111
115 110
O=- Z .Ui-Pi+ Y U;j-Pi[Ci-DTPI01 + Fj-DTP102 + Hj - DTP103
i=1

% HEj - DTP104 + ANj - DTP105 + 6; - DTP106 + Uj- DTP107 + X; - DTP108

115
. + Y; -DTP109 + Z; - DTP110] + )  Uj-DTP;
i= 111
115 110
O=- Z Xi-P; + Y Xi-Pij[Ci-DTPI10l + Fj- DTP102 + Hj- DTP103
i=1 i=1

+ HE; - DTP104 + AN; - DTP105 + 6; - DTP106 + U; - DTP107 + X; - DTP108

115
+ Y;-DTP109 + Z; - DTP110] + )  X;-DTPj
i= 111
115 110
O=- Y Y;-P;+ ¥ Y;-P;[C;-DTPI101 + F;-DTP102 + H; - DTP103
i=1 i=1

+ HE; - DTP104 + AN; - DTP105 + ;- DTP106 + U; -DTP107 + X; - DTP108

115

+ Y;-DTP109 + Z;-DTP110] + ) Y;-DTP; a1
i=111



26 a.(Continued)

Equilibrium Equation for Condensed Products
i=111 to 115

b. Derivatives for the Gaseous Combustion Products
Equilibrium Equation for Gaseous Compounds
i=1to 100

27. Separation of Mole Numbers and Partial Pressures Which Will be Used
for Further Calculations [ mole]
i=1toll5

28. Total Mole Number of the Combustion Product [ mole]

Total Mole Number of the Combustion Product Minus the Condensed
Phases [ mole]

29. Test on Desired Calculation Procedure During Expansion

30, Test
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115 .
O=- Y z;-Pj+ ¥ Zij-Pj[C;-DTPI10Il + F; - DTP102 + H; - DTP103

i=1

+ Yi-DTP109 + Z; - DTP110] + ).

O = C;  DTP10l + F;- DTP102 + H; - DTP103 + HE; - DTP104 + AN; - DTP105
+ 6;- DTP106 + U; - DTP107 + X; - DTP108 + Y; - DTP109 + Z; - DTP110
DTP; = Cj - DTP101 + F; - DTP102 + H; - DTP103 + HE; - DTP104 + AN; - DTP105

+ 0;- DTP106 + U; - DTP107 + X; - DTP108 + Y;- DTP109 + Z; - DTP110

115
CNS = ) CN;
i=1
110
CNSMCP = ),
i=1

(a) If shifting equilibrium calculation is desired set SHIFT = 1 and replace
enthalpy equation in simultaneous set of equations by entropy equation

(b) If frozen equilibrium calculation is desired set FROZ =1

(c) If combination of shifting and frozen equilibrium is desired test

If SHIFT
If FROZ

1
1

110

i=1

115

i=111

CNj

If T>TL
If T<TL

go to step 25
go to step 31

Zi-DTPj

set SHIFT
set FROZ

+ HE; - DTP104 + AN; - DTP105 + ¢; - DTP106 + U;- DTP107 + X; - DTP108

1
1
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31.

32.

33.

34,

35.

For Frozen Equilibrium the Mole Numbers do not Change

Specific Heat at Constant Pressure for Frozen Equilibrium [ cal/mole °K]

Enthalpy of the Gaseous Combustion Products for Frozen Equilibrium
[cal/g]

Change of Molecular Weight as a Function of Temperature at Constant
Pressure for Shifting Equilibrium [ - ]

Change of Molecular Weight as a Function of Pressure at Constant
Temperature for Shifting Equilibrium [ - ]

Coefficients of Derivative Compare with Pressure Row in the Matrix




w
o

(o
@]
e,
S
!

o

DIM =0
115
Y, CN;-CPj
i=1
CPP =1%o
2 CNj
i=
115
H= ) CN;-HTj| & and skip to step 37
i=1
DPM = DPA
DTM = P -1
110
P, [C; - DTP101 + F; - DTP102 + H; - DTP103

i=1 + HE; * DTP104 + AN; * DTP105 + 6; -+ DTP106
+ U; - DTP107 + X; + DTP108+ Y; - DTP109

+ Z; - DTP110]
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36. Specific Heat at Constant Pressure for Shifting Equilibrium [ cal/mole °K]

317.

38.

39.

40,

Coefficients compare with enthalpy row in the matrix

Specific Heat at Constant Volume [ cal/mole °K]

Specific Heat Ratio at Constant Entropy [ - ]

Mole Ratios of the Combustion Products [ - ]
i=1to 115

Average Molecular Weight Per Mole of Gaseous Products [ g/mole]
The volume of the condensed phases is considered negligible com-
pared to the gaseous compounds.
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115 115
CPP = 1 -R-T - Y HT) p,.DPA+R-T - 3, £P) . oN;
110 (2 \R-T/; 2\ R/;
Yy CN;-T B B
i=
110 110
+R-T| Y (—RE.-T—T)_-CNi-Ci'DPPlOl + ) (———;I_TT).- CN;j - F; - DPP102
i=1 1 i=1 1
110 110
+ Y (E?—_'%).-CNi-Hi-DPP103+ Y (EH_lT)"CNi-HEi-DPPmé}
i=1 1 i=1 1
110 110
+ Y (%).'CNi-ANi-DPP105+ Y (—;I_—TT).-CNi-ei-DPPIO6
i=1 1 i=1 1
110 110
£ 3 (%’LT)_.CNi.Ui.DprH > (%I—'-T-,-f) CN;j - X; - DPP108
i=1 1 i=1 1
110 110
+ Y (-RIE:T—T)'-CNi-Yi-DPP109+ Y (%)_-CNi-zi-Dano
i=1 1 i=1 1
115 110
HT
+ ) (%).@Ni-Dppﬁ Y (ﬁ) CNi-DHi]}
i=111 1 i=1 !
_ (1 - DPM)?
CVV = CPP - R* "7 Hon)
CPP
R
CRS =
—C%D-[l + DTM] - [1 - DPM]?
N CNj
AMNR =715
2 CNj
i=1
AMW = A - AMWR
T 110
L CN
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41,

42,

43,

44,

45,

46.

138

Convergence

2
Delete (1 - §S(_)') during the first calculation loop

2
Delete (1 - -HEO-) during the following calculation loops

Specific Gas Constant [cal/g°K]

R = 1,98726 [ cal/mole °K]

Local Speed of Sound [ft/sec]
CKj = 37.42098622

Local Velocity [ft/sec]
CK, = 52.92126623

115

1. Y HT;-CN;j from simultaneous set for shifting equilibrium
i=1

1 115

x° Z HTi.CNji from step 33 for frozen equilibrium

i=1

Local Specific Impulse [ sec]

KE = 32,1740 [ft/sec?]

Test

a. For chamber calculation determine the expansion ratio
b. For throat area calculation set

c. For all consecutive calculation loops




T B z
convER =\1-13L /41 -2} +(1-
- PO SO

1H \? 1HE \? IN
+(1'o—H) +(1'ﬁ-ﬁ':') *(“m

VS = CK3sNCRS RS- T - KE

. 115
V = CK, [HO - & Y, HTi-CNi)-KE
i=1

\4
AISP = RE
EXPR = AESC and skip to step 64
PS = PO TS =T RSS = RS
VSS = VS CRSS = CRS

go to step 47

and go to step 47

DQ;?

2 2 2
16 1U
) () (- 5%)
100 115
+ Y D&+ Y
i=1 i=110

139
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47. Local Expansion Ratio [ - ]

48. Weight Flow Rate [1b/sec]
CK; = 0.01049466

49. Characteristic Velocity [ft/sec]
CK, = 14.696 [1b/in® atm]

50. Local Thrust Coefficient [ - ]

51. Local Thrust [1b]
CKZ = 14. 696

52. Thrust at Altitude [1b]
CKZ = 14. 696

53. Thrust at Vacuum [ 1b]
CK, = 14. 696

54. Thrust Coefficient at Altitude [ - ]
CK, = 14,696

55. Thrust Coefficient at Vacuum [ - |
CKZ = 14. 696

56. Real Thrust Coefficient at Altitude [ - ]

57. Real Thrust Coefficient at Vacuum [ - ]

58. Real Thrust at Altitude [1b]
CK, = 14. 696

59. Real Thrust at Vacuum [1b]
CKZ = 14. 696
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EXPR

W

RS-T-VSS-PS
V-PO-RSS-TS

_PO-V-AS-EXPR - CK;

als
( :'A‘ —

RS -T

PC - AS -KE - CK,

CF

w

_AISP-KE

ot
( : <4

FT = AS-PC-CF - CK,

FTA

FTV

CFA =

CFV =

CFRA

CFRV

FTRA

FTRV

FT - EXPR-AS:(PAM - PO) - CK,

FT + EXPR-AS - PO CK,

FTA
AS - PC - CK,

FTV
AS . PC ¢ CKZ

ETACFV:-CFV - EXPR- -Pé%\—d

ETACFV:- CFV

CFRA- AS- PC :CK,

CFRV- AS -PC - CK,
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60.

61.

62.

63.

64,

65.

66.

Real Weight Flow Rate [1b/sec]

Real Characteristic Velocity [ft/sec]
Real Specific Impulse at Altitude [ sec]
Real Specific Impulse at Vacuum [ sec]

a. Calculate X value for plotting purpose

b. Store:
Options
Test: If IA = 0 conditions in the throat area are calculated
If IA = 1 conditions except the throat area are calculated

Test: If IB = 0 print the results of the previous calculation and

determine the approximate throat parameters

IIB =1




WR = ETAW -W

C#R = ETAC# - Cx*

FTRA
AISPRA = WR
FTRV
AISPRV = WR

If V<VS calculate X = EXPR -1
If V>VS calculate X = -(EXPR - 1)

During the first calculation loop set: TC = T
SO =58
During every calculation loop store the results as indicated on page 107

. for printing purpose

If IA = 0 skip to step 66
If IA =1 go to step 69
If IB =0 PRINT, then calculate

CRS
CRS -1

2
PO =PC [Eﬁ_l]

2
T = Tc[ass—ﬁ]

Set IB = 1 and return to step 11
If IB =1 go to step 67
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67. Test on Local Velocity and Speed of Sound

68. Test: IC is an Input Parameter Indicating

a. IC =0 only chamber, throat and exit conditions are considered

b. IC =1 intermediate locations between chamber, throat and exit

area are considered

69. Test: Determination of whether the point of calculation is upstream

or downstream of the throat area
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v

If | 1 -—]>0.2x 10* calculate

Vs
(1 2527)
PO =PO]|1 + T
TTAMW (CRS + 1)

and return to step 11

\ 4
- — <L . -

Set: IB=0
IA =1
PRINT

and go to step 68

If IC = 0 calculate

PO = PC - E-[(O. 867- CRS + 0,272)InEXPRL + (0.699- CRS + 0. 442)]

and return to step 11

If IC =1 calculate
PO=PC -10

and return to step 11

If IC =0 test

If VS >V skip to equation PO in step 70
If VS <V go to step 70

If IC =1 skip to step 71
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70. Test on Required Expansion Ratio

71. Test on Expansion Ratio

The test on VS and V shall avoid an iteration on an expansion ratio in

the subsonic range

72. Test to Define Assumed Static Pressure Differences for Various

Ranges during the Expansion Process

73. Static Pressure in the Nozzle Between Chamber Pressure and 1 atm
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EXPR -3
If | 1l - EXPRL >1x10 calculate
2 . R . T2
HO-(H+ Ps’: CRSS-RS® T2
PO = POl + RSS - TS -2 PO? . EXPRL
- rs - T(1 CRSS-PS“- RS ‘T
. CRS - PO - RSS - TS - EXPRL?
and return to step 11
EXPR |’ -3
If.l ' oExpR;| < * 1O
setIA=0
PRINT

and go to new input reading

If EXPR > EXPRL

Test: If VS>V
PRINT
and go to step 72
If VS <V continue

2 2 2
HO-(H+ PS?. CRSS - RS- T z),
PO=PO |1+ RSS -TS -2 -EXPRL? - PO
) RS -T(1 CRSS-PS¢ - RS -T
CRS - POZ - RSS - TS - EXPRL?

set IC =0

and return to step 11
If EXPR < EXPRL
PRINT

and go to step 72.a.

(a) IfID =1 skip to step 79 otherwise continue
(b) HIE =1 skip to step 77 otherwise continue
(c) IfIF =1 skip to step 75 otherwise go to step 73

PO =PO - 10
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74.

75.

76.

77,

78.

79.

80.

81.

Test

Static Pressure in the Nozzle Between 1 atm and 0,2 atm

Test

‘Static Pressure in the Nozzle Between 0.2 atm and 0.1 atm

Test

Static Pressure Between 0.1 atm and 0,02 atm

Test

Test: If IG = 0 maximum specific impulse can be calculated
If IG =1 desired thrust level for a fixed mixture ratio is

calculated




If PO>1

return to step 11
If PO<L1

set PO =1

IF =1

return to step 11

PO=PO -0,2

If PO=0,2
setIE =1 PO =0.3
IF =0

return to step 11

P0=PO"001

I PO=0.1
set ID =1
IE =0

return to step 11

PO =PO - 0.02

If PO< 0,02
set-IA =0
ID=20

go to new input reading

If IG=0 go to step 82
If IG=1 skip to step 103
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82,

83.

84.

85.

86.

87,

88.

89.

Test: If IH = 0 no maximum specific impulse is considered
If IH = 1 maximum specific impulse is calculated for a constant
chamber pressure and varying mixture ratio (exit

pressure equals ambient pressure)

Test: During two calculation loops II = 0, afterwards II = 1

New Mixture Ratio for the Approach of Maximum Specific Impulse

AMRWD is Loaded, but an Assumed Value

Determination of the Slope for a Tangent through Two Consecutive
Points on the Specific Impulse Versus Mixture Ratio Curve

Test: Calculation for maximum specific impulse

Check whether maximum has been obtained

Test: Slope of tangent is not small enough K = 0,001

Slope of tangent is within required tolerance K = 0,001

New Mixture Ratio for the Approach Towards Maximum Specific
Impulse




If IH
¥ IH

0 go to new input reading
AISPZ = AISPY
AISPY = AISPX
AISPX = AISP

1 set:

and go to step 83

If I1 =0 go to step 84
If II =1 skip to step 86

AMRW = AMRW + AMRWD

Set PO = PC
II=1

AISPX - AISPY

tan @ = FTRWX - AMRWY
If I3 =0 go to step 88
If IJ =1 skip to step 93

I tana < |K| skip to step 90

If tan o > |K| go to step 89

AMRWY + AMRWX

AMRWZ = AMRWY
AMRWY = AMRWX
AMRWX = AMRW

after second calculation loop and return to step 3

AISPY - AISPX

AMRWY - AMRWX

AMRW = 2 T AISPZ - AISPY . AISPY - AISPX
AMRWZ - AMRWY AMRWY - AMRWX
AMRWZ - AMRWX
2
set PO = PC

and return to step 3
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90.

91.

92,

93.

94.

95.

96.

917.

98.

Store Maximum Values for Constant Chamber Pressure

New Mixture Ratio to Check on the Obtained Maximum Specific Impulse
Value K = 0,001

Test: Maximum Specific Impulse is Obtained

Maximum Specific Impulse is not Within the Required Tolerance

Repeat Iteration Using the Mixture Ratio Calculated in Step 91

Print the Maximum Values Stored in Step 90

Initialize

Test: Determine the derivation of the loaded mixture ratio from the
one for maximum specific impulse during the first calculation
loop

Consecutive Passes

Calculate the Deviation of the Original Loaded Mixture Ratio from
the One for Maximum Specific Impulse at LLoaded Chamber Pressure.

Sign is Important for Step 101
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AISPM = AISP
AMRWM = AMRW

PCM = PC
AMRW = AMRWM + -0 &,
[tan |
SetlJ =1 PO = PC and return to step 3

If tan a changes sign and
If AISPM > AISP go to step 95
If tan o does not change signs or

If AISPM < AISP go to step 94

Set1J =0 PO = PC and return to step 89

PRINT [ maximum values for constant chamber pressure]

SetII =0
IJ=0
IfIK=0 go to step 98

If IK =1 skip to step 100

AMRWM - AMRWL

PERCT = AMRWM
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99.

100.

101.

102.

103.

104,

105,

154

Set

Test:

H
o

If I1, no further calculation for desired thrust level is

considered
IfIL =1 calculation for a desired thrust level deviating in
mixture ratio by PERCT from the one for maximum

specific impulse

Calculate Mixture Ratio Which Deviates by PERCT from the One

for Maximum Specific Impulse at Presently Considered Chamber

Pressure

Set Switch to Avoid Maximum Specific Impulse Calculation for the

Following Calculation Pass

Test:

Desired thrust level has been obtained

K= 0,001

Desired thrust level has not been obtained

Test: First calculation loop

Set

Consecutive passes




IK =1

If IL = 0 go to new input reading

4

If IL =1 go to step 101

AMRW = AMRWM - AMRWM: PERCT

SetIG =1
PO = PC

and return to step 3

FTRA

If |1 - TEL <K
set IG=0
IK=0
IM=0
PRINT
and go to new input reading
AR e

go to step 104

If IM=0 go to step 105

If IM=1 skipto step 108

Set: PX

PC

FX = FTRA



106.

107,

108,

109.

110,

111,

156

Calculate New Combustion Chamber End Stagnation Pressure

(First Calculation Loop)

Set

Set

Calculate New Combustion Chamber End Stagnation Pressure

(Consecutive Passes)

Set

Test: If maximum specific impulse values are considered set IG

If constant mixture ratio is considered set IG = 1

1l
o



PC

PO =
IM =

= PC

FL
FTRA

PC

1

and skip to step 111

PY =PX

PX =

PO =

If TH
If IH

PX - PY
PX+FX-FY
PC
=1 set IG =
=0 set IG =

FY = FX
PC FX = ETRA

-(FL - FX)

0
1

and return to step 3

and return to step 3
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APPENDIX H

ENGINEERING FLOW CHART
FOR THE
CALCULATION PROGRAM

The symbol in each box refers to the
proper equationor test in Appendix G
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0OC, OF, OH, OHE,
ON, 08, OU, OX,
oY, 0Z

w

Solias

28

115
CNs= § CNg
is=l

11
CNSMCP= §, CN;
1

0

29

Set Switch for
FROZ

or SHIFT

FLOW DIAGRAM O

or G

25
Solving for DPP:

Simultaneous
Equation
Solving for DTP;

26

36

Store: TC, SO
and Others




F GENERAL COMBUSTION PROGRAM

Return to
Step 11

EXPR
I - exercls

Return to

I

AISPZ = AISPY AMRWZ = AMRWY
AISPY = AISPX AMRWY = AMRWX
AISPX = AISP AMRWX = AMRW

77 {PO=PO-0.1
ki

8
oot D

Step 11

Go to
New Input Reading

Return to
Step 11

Go to New
Input Reading

IG=0
K=0
M =0

103

AISPM = AISP
90 | AMRWM = AMRW

PRINT

Go to New
Input Reading

PCM = PC
91 AMRW Return to
Step 89
9z w=1
98
Return to
Step 3
P 99
FTA
LA
101
Go to
New Input Reading
102
Return to
Step 3

159



August 27, 1965 APPROVAL T™M X- 53334

CALCULATION OF ROCKET PERFORMANCE PARAMETERS
BASED ON THE EQUILIBRIUM COMPOSITION OF
THE COMBUSTION PRODUCTS

By Klaus W. Gross

The information in this report has been reviewed for security
classification. Review of any information concerning Department
of Defense or Atomic Energy Commission programs has been made
by the MSFC Security Classification Officer. This report, in its
entirety, has been determined to be unclassified.

This document has also been reviewed and approved for technical
accuracy.

Wlncce h./%m

KLAUS wW. GROSS
Simulation Unit

Bk, Hewtrnygd™

B. K. HEUSINGER
Chief, Propulsion Evaluation Branch

4=

H_G. PAUL
Chief, Propulsion Division

Kyt & Mt vernt

A{; F. B. CLINE 7
Director, Propulsion and Vehicle Engineering Laboratory

161




DISTRIBUTION

DIR Dr. von Braun DEP-T
I-SE-Ch Dr. Mrazek I-RM-M
R-RP Dr. Stuhlinger MS-T (5)
R-AS Mr. Williams CC-P
R-DIR Mr. Weidner

R-AERO-DIR Dr. Geissler

R-AERO-A Dr. Farmer

R-ASTR-DIR Dr. Haeussermann
R-COMP-DIR Dr. Hoelzer

R-TEST-DIR Mr. Heimburg

R-TEST-S Mr. Driscoll

R-P&VE-DIR Mr. Cline

R-P&VE-DIR Mr. Hellebrand

R-P&VE-A Mr. Goerner

R-P&VE-P Mr. Paul

R-P&VE-P Mr. McCool

R-P&VE-P Mr. Isbell

R-P&VE-PA Mr. Thomson

R-P&VE-PA Mr. Lombardo

R-P&VE-PT ‘Mr. Wood

R-P&VE-PE Dr. Head

R-P&VE-PP Mr. Heusinger

R-P&VE-PP Mr. McKay

R-P&VE-PP Mr. Igou

R-P&VE-PP Mr. Gross (25)

MS-H Mr. Akens

MS-IP Mr. Remer

MS-IL Miss Robertson (8)

GE/MSFC Miss M. Morgan

CCSD/M Mr. F. H. Dickinson

Scientific and Technical Information Facility (25)

Attn: NASA Representatives (S-AK/RKT)
P. O. Box 33
College Park, Maryland 20740

NASA Headquarters
National Aeronautics and Space Administration
Washington, D. C. Mr. Del Tischler Code RP

Lewis Research Center
21000 Brookpark Road
Cleveland 35, Ohio Dr. Sanford Gordon

162




DISTRIBUTION (Cont'd)

Dr. D. Vestal

Auburn University
College of Engineering
Auburn, Alabama

Mr. George Sopp
Rocketdyne

Division of North American Aviation, Inc.

6633 Canoga Avenue
Canoga Park, California 91304

Mr. Robert O. Chase

TRW Systems

One Space Park

Redondo Beach, California 90278

163



