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ROLE OF CONDUCTIVITY IN HYDROMAGNETIC STABILITY OF PARATIEL FLOWS
by Philip R. Nachtsheim and Eli Reshotko™

Lewis Research Center

SUMMARY

The role of the electrical conductivity in the stability of magnetohydro-
dynamic channel flow with parallel magnetic field is examined through exact
numerical solution of the pertinent sixth-order system of disturbance equations
throughout an extended range of magnetic Reynolds numbers. The results ob-
tained indicate that the conductivity of the fluid acts as a stabilizing agent,
as long as it is small, and as a destabilizing agent, if it is large. It is
concluded that the conductivity reverses its role as a stabilizing agent at a
magnetic Reynolds number of order unity. Examination of the contributions to a
disturbance energy balance equation shows that the conductivity acts as a de-
stabilizing agent by setting up a time-independent Maxwell stress that has the
same sign as the vorticity of the basic flow.

INTRODUCTION

The hydromagnetic stability of laminar flows of electrically conducting
fluids has been analyzed by many authors. In particular, it has been shown
that, when a uniform magnetic field is imposed in the direction of the laminar
flow, the flow is always more stable than in the absence of a magnetic field.
This alinement of the magnetic field is especially significant and will be the
configuration examined herein, since the mean motion of the fluid is not af-
fected by the imposed magnetic field; therefore, the net effect of the magnetic
field on the stability of a given velocity distribution can be investigated.

Previous treatments of this problem have not made clear the role of the
conductivity of the fluid in the stability phenomenon. Previous investigators
have considered two extreme limiting cases of the hydromagnetic stability prob-
lem; namely, the stability of a fluild of very low and very high electrical con-
ductivity.

Stuart (ref. 1) treated the case of a fluid at a very low conductivity in
a very strong magnetic field. His results indicated that the magnetic field
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stabilized the motion, but his treatment of the problem involved several
simplifying assumptions, primarily the assumed smallness of the magnetic
Reynolds number. These assumptions precluded any investigation of the effect
of the conductivity alone on the stability phenomenon. Velikhov (ref. 2), on
the other hand, treated the case of a fluid of very high electrical conduc-
tivity. His results showed that the minimum critical Reynolds numbers were
markedly greater than at the low values of the conductivity examined by Stuart.
This would lead one to believe that the stabilizing effect of the magnetic
field is enhanced as the conductivity is increased. However, Velikhov found
this trend reversed at the large values of the conductivity investigated; that
is, an increase at these high values of the conductivity was destabilizing,
and the minimum critical Reymolds number for infinite magnetic Reynolds number
is below that obtained for large but finite magnetic Reynolds number. However,
with Velikohov's simplifying assumptions, primarily the assumed largeness of
the magnetic Reynolds number, again no indication could be obtained of when
the conductivity reversed its role as a stabilizing agent.

In the present report, the role of the conductivity is clarified by ex-
amining the stability problem between the limiting cases of very low and very
high conductivity. This is accomplished by solving the complete disturbance
equations numerically without invoking the simplifying assumptions made in
earlier treatments of this problem.

SYMBOLS

Vector components with a numerical index refer to dimensional quantities;
vector components with a literal index refer to nondimensional gquantities.

A Alfven number, ‘/BZ/pngo

B reference magnetic induction

bq 0o disturbance magnetic induction

c cp + icy

ci time amplification factor of disturbance wave
Cp phase speed

E electric field

e disturbance energy

J electric current density

k wave number

L reference length



Re

Re

Ko

I

magnetic interaction parameter, OBZL/pUm
pressure

magnetic Prandtl number, ougv
disturbance pressure

Reynolds number, U@L/v

magnetic Reynolds number, ou Uyl
disturbance vorticity amplitude, " - @2®
time

veloclty

reference velocity

disturbance veloclty components
Cartesian coordinates, dimensional
Cartesian coordinates, nondimensional
dimensionless wave number, Tkq
disturbance vorticity

disturbance electric current density amplitude, "
permeability (vacuum value)

fluid kinematic viscosity

P+ (B - g)/2Ho

disturbance total pressure amplitude
fluid density

electrical conductivity

disturbance stream function

disturbance stream function amplitude
disturbance vector potential

disturbance vector potential amplitude




Subscripts:

i imaginary part
r real part
c differentiation with respect to c¢

cr critical

FCRMULATION OF PROBLEM

The general equations of magnetohydrodynamics are the equations of elec-
trodynamics for moving media and the Navier-Stokes equations modified to in-
clude the electromagnetic body force. ZFor an incompressible fluid with a
scalar conductivity the governing equations are (ref. 3)

p<%_§+'ﬁ-v§>=-v1>+3x§+pvvzﬁ (1)
UXE = - g% (2)

VX B = pod (3)

J = o + U x B) (4)

v-U=0 (5)

v.B=0 (6)

The kinematic viscosity coefficient v is taken to be a constant, and the ex-
cess charge density and displacement currents are neglected in the preceding
equations in accordance with the usual magnetohydrodynamic approximations.

The steady flow under consideration is the flow with parabolic velocity
profile between perfectly conducting parallel planes in the presence of a con-

stant imposed magnetic field parallel to the fluid velocity.

The solution of the steady equations that satisfies the imposed conditions
is

ﬁ : I:Ul(XZ)J o, O]
B : [By, 0, 0]

where By 1is the constant imposed magnetic field and



x
Uy = Um<l - L—2> (7)

where 2L is the spacing between the planes and Up is the velocity at the
centerline (xz = 0). It is now proposed to consider the equations governing
small two-dimensional disturbances U : (uq,uz2,0), P : (bq,b5,0), and p, which
are superimposed on the steady-state solution. There is no loss in generality
in assuming that the disturbances are two-dimensional in nature, since, for the
problem under consideration, the motion is always more stable for three-
dimensional than for two-dimensional disturbances as pointed out by Stuart
(ref. 1). This is the analogue of Squire's theorem (ref. 4) established in the
ordinary incompressible parallel flow gtagility theory. Periodic sinusoidal
disturbances are considered in which wu, b, and p are all functions of xo
multiplied by exp|iky(xy - clt)], where c¢7 is the complex phase velocity and
kq 1s the wave number in the X,-direction. Since kq is always positive,
the disturbances are amplified or damped according to whether the imaginary
part of ¢y 1s positive or negative. If the imaginary part of c1 1is zero,
the disturbance is neutrally stable. The steps leading to the disturbance
equations are carried out in the appendix. This procedure consists of super-
imposing U, B, and p onto the steady-state solution, substituting them into
the general equations (1) tq (6), and linearizing the equations with respect to
the small disturbances U, b, and p. Elimination of the variables Uy, P,
and p leads to two simultaneous ordinary differential equations for bs and
ug. If Uyo(xp) and By¥(xp) denote quantities proportional to the amplitude
functions of wu, and by, respectively, the following nondimensional simulta-
neous equations are found to govern ¢ and

LI ZC(,ZCP" . CL4:CP — iaRe [(UX _ c)(q)n _ &2@) - U;CP - Az(‘lf” _ CLZW)] (8)
V- 0P = daRen [(Uy - )y - ¢ (9)

where x = xl/L, y = xz/L, c = cl/Um, o =Lky, Re = UmL/v is the Reynglds
number, Re, = op Uyl is the magnetic Reynolds number, and AZ = B%/pUmpo is
the Alfven number squared. The primes denote differentiation with respect to
y. It is to be noted here that, in the absence of a magnetic field (A% = 0),
equation (8) reduces to the ordinary Orr-Sommerfeld equation.

Two new parameters enter into the consideration of the stability of the
flow of an electrically conducting fluid; namely, the magnetic Reynolds number,
which is proportional to the conductivity of the fluid, and the Alfven number,
which is proportional to the strength of the imposed magnetic field.

Equations (8) and (9) and the boundary conditions (appropriate for per-
fectly conducting planes which bound the flow)

y=2%1:9=0"=y=0 (10)

constitute an eigenvalue problem, which, for o, Re, Rey, and A? fixed, con-
sists of determining c¢ 1n order to satisfy the boundary conditions.

Farlier treatments of the eigenvalue problem have considered the limiting



cases Re, << 1 (ref. 1) or Reyp >> 1 (ref. 2). In both limiting cases, the
governing equations can be simplified somewhat. The resulting simplified eqgua-
tions are more amenable to solution than the coupled equations (8) and (9).
However, if it is proposed to examine the behavior of the solutions of equa-
tions (8) and (9) between the limiting values of Rey << 1 and Rey >> 1, the
complete set of equations must be considered.

Simplified Disturbance Egquations

The assumption underlying the simplified treatment of the eigenvalue prob-
lem in reference 1 will now be examined. For many electrically conducting
fluids or slightly ionized gases used in laboratory experiments, Re, is
usually very small. However, the assumption Rep << 1 is by itself not suf-
ficient to derive Stuart's form of the disturbance equations. Stuart's simpli-
fied disturbance equation can be obtained from equations (8) and (9) by fol-
lowing the method of Tatsumi (ref. 3); namely, elimination of ¢, making the
transformation 6 = ¥" - a“V, and performing the limiting process Rey — O
but AZRem. finite. These steps result in the following equation for 0O:

0" - 2a%6" + a0 = iuRe [(Uy - c)(8" - a20) - UZ0 + 10A4%Re 6] (11)

The boundary conditions for equation (11) follow from equations (8) and (9)
and equation (10) if the limiting form of these equations is considered. The

boundary conditions are
y=%1:0=6"'=0 (12)

The transformation and subsequent limiting process clearly show the nature of
the assumptions underlying this simpler eigenvalue problem. In terms of physi-
cal properties, the assumptions are the flow of a fluid of low conductivity and,
in addition, under a very strong magnetic field. It is to be noted here that
the quantity AZRem = GB%L/pUm = N 1is referred to as the magnetic interaction
parameter. When this parameter is negligibly small, equation (11) is identical
to the Orr-Sommerfeld equation. Other properties of this extreme limiting case
are that the two parameters A2 and Rey have been collapsed into a single
parameter, N = AZRem, and that the order of the coupled differential system
(eas. (8) and (9)) has been reduced from six to four. Also the six boundary
conditions (eq. (10)) have been used in conjunction with equation (9) to formu-
late the four boundary conditions (eq. (12)) for the case of the infinitely
conducting wall.

Numerical Solution of Bigenvalue Problem

The numerical solution of the eigenvalue problems formulated will now be
considered. The general method used is quite analogous to the method estab-
lished in reference 5 for solving the Orr-Sommerfeld equation; therefore, it
will be sufficient to give only a brief account of the steps required to gen-
eralize the established method in order to handle this problem. Furthermore,
since equation (11) is a limiting form of equations (8) and (9), the present
account will be concerned with the more general system (egs. (8) and (9))

6



together with the boundary conditions of equation (10).

Before describing the numerical method, a simplification of the problem,
which halves the range of integration, should be pointed out. This simplifica-
tion is based on the observation that the disturbances in equations (8) and (9)
can be separated into even and odd functions, since the variable coefficients
in these equations, namely Uy and Uy, are even functions of y. In ordinary
hydrodynamic stability theory, the even solution, which has the simpler flow
pattern, usually gives a lower minimum critical Reynolds number and will be the
solution examined herein. This simplification enables one to consider only
even solutions in half of the channel through introduction of appropriate sym-
?egry conditions at y = O. The new boundary conditions for equations (8) and

9) are

y=0:0" =¢"=y"'=0 (13)

It

y=1l:9=09"=¥=0 (14)
The approach to the eigenvalue problem for fixed o, Re, AZ, and Repy

used herein is to find values of ¢ = c, + icy (eigenvalues) for which equa-

tions (8) and (9) have solutions (eigenfunctions) that satisfy the boundary

conditions equations (13) and (14).

In order to find an eigenvalue, the following iterative procedure is car-
ried out. A trial solution of equations (8) and (9) is obtained by numerical
integration. In order to integrate numerically, additional boundary values are
specified at both boundaries y =0 and y =1, and a value of ¢ 1is speci-
fied. Then both integrals are stepped in toward the middle y = 1/2. The addi-
tional boundary values and the eilgenvalue c¢ have to be adjusted in order to
match the solutions in the middle. After a trial integration, subsequent
boundary values and eigenvalues are automatically calculated by the Newton-
Raphson technique of finding successive approximations.

The various elements that enter into the preceding iterative procedure will
now be put forward. Instead of solving equations (8) and (9) as they stand, a
system of second-order differential equations is formulated by introducing the
disturbance vorticity amplitude function s = ¢" - «Zp. In terms of the vorti-
city amplitude, the system (eqs. (8) and (9)) goes over to

" = q,zq) + s (15)
Vo= ol + iaRem[(UX - )y - qo] (18)
s" = azs + igRe [(UX - C)S - U;;CP - Az(llf" _ CLZ\IT)] (17)

In order to obtain a system of equations in which derivatives of the dependent
variables do not appear on the right side, ¥" is eliminated from equation (17)
by means of equation (16) giving

s" = s + ioRe[(U, - ¢)(s - fomy) - (U} - iaN)g] (18)



where
N = AZRey

Equations (15), (16), and (18) are solved subject to the boundary conditions
(egs. (13) and (14)) that employ the definition of the vorticity amplitude
function.

For a forward solution (y increasing) starting at y = 0, the initial
values are specified according to the following table

olo'|s s' v Yt

y=0

1i0 {s{(o)|o jwo)jo

For a backward solution (y decreasing) starting at y = 1, the initial
values are

o' | s s! vt

y=1

0l0 |s(1)]s*'(1)|o0 vt (1)

The additional boundary values that have to be specified in order to integrate
numerically are those enumerated in the second row of each table. The condi-
tion @(0) =1 is a normalizing condition and fixes the size of the whole so-
lution. With the preceding boundary values specified and a value of ¢ speci-
fied, trial solutions of equations (15), (16), and (18) are obtained. Next,
the process of matching at a common point is carried out. The matching point
was taken to be y = 1/2 to equalize the numerical errors that grow in propor-
tion to the number of integration steps taken. At the matching point, the so-
lution must be continuous. The requirements of continuity lead to six condi-
tions that have to be satisfied at y = 1/2. The six quantities 8S(0), ¥(0),
s(1), s'(1), ¥'(1), and c¢ have to be adjusted in order to satisfy these con-
ditions. Let the difference between the forward and backward solutions eval-
vated at y = 1/2 be designated by gi(i =1 . . . 6) and set up a correspon-
dence between the differences and the various functions according to the fol-
lowing table:

¢ |ot|s [s' |V [V'

8 |82 (83|84 85|86

Now, the g; depend on the adjustable parameters (the additiocnal boundary con-
ditions and c). The Newton-Raphson method is used to fulfill the condition of
continuity at the matching point (i.e., all g; = 0).

For ease in writing, the various adjustable parameters are designated ac-
cording to the following scheme:



s(0) | ¥(0) | s(1) | s"(1) | ¥'(1) |c

b4 Z Z 4 Z Z

1 2 3 4 5 6

If the chosen values z; produce a solution that gives all g, as approxi-

mately zero, a better approximation is obtained by starting Wi%h z; + Az,
The quantities Az are solutions of the equations
dg; _
0 =g, + azj Azj (i=1...8) (19)
J=1

The partial derivatives agi/ézj are obtained by solving additional initial-

value problems. All the partial derivatives with respect to the additional
boundary conditions Zi(i =1 .. .5) can be obtained by solving equations
(15), (16) and (18) with appropriate initial conditions since these equations
are linear. For example, derivatives with respect to s(O) of the variables in
the forward integration are obtained by solving equations (15), (16), and (18)
starting at y = O with initial conditions given according to the following
table:

(p (\D! s S’ ‘Jf 1[;!

y =0 :

010 110 0|0

For the backward integration, the variables are taken to be independent of
s(0). For derivatives with respect to c, a different system of equations has
to be solved. This system is obtained by partial differentiation of the terms
in equations (15), (16), and (18) with respect to c. The quantities

op _ ds _ oY _
8%-: U 3% = 8., and 5% = Ve

satisfy the system of equations
9 = az@c + Se (20)

¥ o= ofy, iaRem[KUk - cle - 9 - wﬂ (21)

C

So = mzsc + iaRe[KUX - c)(se - dali¥g) - (U; - iaN)gp, - (s - iaNWﬂ (22)

The appropriate initial conditions for equations (20) to (22) are homogeneous
initial conditions for both the forward and backward integrations.

After obtaining a trial solution and the various partial derivatives,
equation (19) can be solved for the corrections. Successive applications of
this procedure should converge to an eigenvalue c.

The procedure Just outlined for finding an eigenvalue ¢ for «, Re, A?,



and Rep fixed was programed for solu-

11 T T . T T
Present method // tion on the IBM 7094 computer located
| Fourth- and sixth-order at the Lewis Research Center.

10 0oop—&xact numerical solu- 4 In reference 5, the question of
& th(Wm=L5ﬂ0h“v/ the accuracy and ra%e of convergence of
= //’ the method is discussed with regard to
2 9 / / solutions of the Orr-Sommerfeld equa-
2 // //// tion. Also, several simplifications
s y/ //’ are pointed out there that reduce the
> 8 / amount of labor that is required in the
= ‘/// application of the method.
% /// Carrying out the foregoing proce-
e 7 v 1 dure for a system of second-order
£ / A/AC'WU””QWW equations enables one to obtain exact
£ e ///' 2%ﬁ%$c numerical soluticns of equations (8)

600 // / Stuart {ref. 1) and (9), and equation (11).

? 0 .ol .02 .03 .04 .05 SOLUTIONS

Magnetic interaction parameter, N
Solutions for Rep K1

Figure 1. - Minimum critical Reynolds number.

A comparison will now be made of
the exact numerical solutions of equations (8) and (9), the sixth-order sys-
tem; the exact numerical solutions of equation (11), the fourth-order system;
and Stuart's asymptotic solution of the fourth-order system. This comparison
is made under the conditions that should satisfy the assumptions made by Stuart
in going from the sixth-order system to the fourth-order system. These condi-
tions would correspond to the flow of mercury with a magnetic Prandtl number
Pry  of l.5XlO'7. For a Reynolds number of 104, the value of the magnetic
Reynolds number would be about 1.5x10-3.

Figure 1 shows the minimum critical Reynolds number as a function of the
interaction parameter N corresponding to the solutions of the three eigenvalue
problems. The significance of the minimum critical Reynolds number is that all
disturbances will be damped in flows with Reynolds numbers below the minimum
critical value. The exact numerical solutions of the sixth- and fourth-order
systems yield identical results. Thus, it can be inferred that Stuart's trunca-
tion from the sixth-order to the fourth-order system is justified when

Re, < 1.

Also shown in figure 1 are Stuart's results for this case. The difference
in the values of Re., &t the same value of the interaction parameter is due
only to the difference in the methods used to solve equation (11). The results
obtained by Stuart differ from those obtained by the present method by as much
as 30 percent. Furthermore, the value of Re,. obtained by the present method
for N = 0, in which case equation (11) reduces to the Orr-Sommerfeld equation,
agrees with the value of Recy, which Thomas (ref. 6) obtained by solving the

Orr-Sommerfeld equation.

10
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Figure 2. - Neutrat stability diagrams for very large magnetic Reynolds numbers (from
ref. 2). Alfven number, 0.08.

Solutions for Rem Not Small

The solution of the complete eigenvalue problem corresponding to the dif-
ferential equations (8) and (9) (i.e., the sixth-order system) and boundary
conditions will now be discussed for the case where Rey, 1is not restricted to
be small. The case Rey >> 1 was solved by Velikhov by obtaining asymptotic
solutions of equations (8) and (9) at large values of aRe and oRey - The re-
sults obtained by Velikhov for an Alfven number, A = 0.08, are shown in fig-
ure 2. As may be seen, the minimum critical Reynolds numbers are considerably
higher than those for Rep << 1 shown in figure 1. Hence, it could be con-
cluded that the stabilizing effect is enhanced as Rep, 1s increased. However,
as can be seen from figure 2, the higher Rey yield the lower Repp. As
pointed out by Tatsumi (ref. 3), it seems probable that there exists some value
of Rep above which the role of conductivity as a stabilizing agent is re-
versed. From the various factors considered subsequently and the results of
the next section on the balance of disturbance energy, it appears that the con-
ductivity reverses its role as a stabilizing agent at values of Rey of order
unity.

The question of reversal of the stabilizing effect of conductivity is ex-
amined by fixing Re and o« and determining the variation of e¢3 for in-
creasing Rep in numerical solutions of equations (8) and (9). A destabiliz-
ing effect of increasing Re, will be evidenced by ¢4 increasing. This
would be equivalent to Velikhov's calculated decrease of Reppr as Rep 1is in-
creased. Velikhov, however, made his calculations after passing to the limit
of large Repn and hence could not give an indication of when the conductivity
reversed its role as a stabilizing agent. In the present study, on the other
hand, the entire range of Rep from Rey << 1 to Rey >> 1 has been investi-
gated by varying the magnetic Prandtl number.

The results of the present calculations are shown in figure 3. These cal-
culations were carried out at a fixed point in the a, Re plane; that is,
a =1, Re = 9000. Since Re was held constant, each value of Re, shown in
figure 3 corresponds to a different magnetic Prandtl number, Pry
(Prp = Rep/Re = pov). Scales of both quantities Rep and Prp are shown

11
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Figure 3. - Effect of increasing magnetic Reynolds number. Nondimensional wave number, 1; Reynolds number, 9000.

as abscissae in figure 3, where Cy, the time amplification factor is shown as
the ordinate. Cuxrves are shown both for constant values of the magnetic inter-
action parameter N, and for the Alfven number A, which is directly propor-
tional to the magnetic field strength.

The results presented in figure 3 may be interpreted in the following
manner: Imagine, for example, a flow in a given channel where the fluid vis-
cosity and flow velocity arefixed and the flow is subjected to disturbances of
a given wavelength. This corresponds to a fixed point in the o, Re plane.

In this example, the conductivity of the fluid and the strength of the imposed
magnetic fleld can be altered at will. The point o = 1, Re = 9000 is an
unstable point in the absence of a magnetic field, as shown by the curve A = 0,

N =0 1in figure 3.

To be noted immediately is that, for an electrically conducting fluid, the
presence of any magnetic field tends to reduce the amplification rate below
that obtained in the absence of a magnetic field. This is true regardless of
whether the magnetic Reynolds number is large or small. For a given magnetic
Reynolds number, the damping rate relative to the nonmagnetic case increases
monotonically with an increase in magnetic field strength; for a given magnetic
field strength (represented by constant A in our example) the damping rate
increases monotonically with increasing interaction parameter. The magnitudes
of these variations, however, depend on whether the magnetic Reynolds number is

small or large.
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For a constant interaction parameter N, the variation of amplification
rate c¢; with magnetic Reynolds number is negligible until Rep increases
past order unity, whence it increases sharply relative to the value for
Rep <1 and gradually approaches the value in the nommagnetic case as Rep
becomes very large. The present results for Rep << 1 are consistent with
those obtained from the fourth-order system (eq. (11)). It is seen that cj
depends only on the single parameter N when Rep << 1, but varies also with
Reyy when Rey exceeds order unity. As Rey, 1increases at constant N, the
growth rates increase, but are always less than in the nommagnetic case.

For constant A, which in our example is interpreted as constant magnetic
field, increasing the conductivity always gives damping. However, there is
substantial increase in the damping rate with the magnetic Reynolds number when
Rey, is small; for large magnetic Reynolds number, an increase in Rep tends
to increase the damping only slightly.

A more detailed physical description of the nature of the stability prob-
lem as Rep 1increases past unity may be obtained by examining the terms in a
disturbance energy balance. This examination is made subsequently.

The general situation here in which two transport properties enter,
namely, the electrical conductivity and the viscosity, is quite analogous to
the situation in which the viscosity coefficient alone enters. In ordinary
hydrodynamic stability, it is known that viscous mechanisms are stabilizing
(the dissipation) as long as the viscosity is large enough (Re small enough).
It is only when the viscosity becomes small enough (Re large enough) that
viscous mechanisms come into play which destabilize the resulting motion by
providing a means of transferring energy to the disturbance motion through the
Reynolds stress. In magnetohydrodynamic stability, the role played by the re-
sistivity (the reciproeal of the conductivity) is analogous to the role played
by the viscosity in ordinary hydrodynamic stability; that is, at small Rep
(high resistivity) the conductivity o is primarily stabilizing because of the
predominance of the Joule heating. AL large Rep, the conductivity tends to be
destabilizing under certain conditions because there is a mechanism that can
transfer energy to the disturbance motion.

DISTURBANCE ENERGY BALANCE

Formulation of a disturbance energy balance and subsequent examination of
the various contributions to the rate of change of disturbance energy gives an
insight into the mechanics of the disturbance motion and enables one to identify
the various processes that are operating.

The starting point for the derivation of the disturbance energy balance
equation are equations (A9) to (Al2). Multiplying the terms in equations (A9)
by uy, (A10) by wuy, (All) by A%by, and (A12) by Azby, adding, and perform-
ing some algebraic manipulations yield (for By = 1):

13



du 2
- - - A% “x L2 A g2, [p2 0
€= - (uu A%b b)) > ¢ Rem_J {A. (byuy + byuy)

- ga}z (uem) - % (uyr) + Rie [3855 (u,t) - g— (HXC)] A° [y (byJ) - % (bxj)]}
(23)

where
2 2 2 2
8_=_ux+uy+A2bX+by
2 2
and
DE o€ OF

The quantity & 1is the dimensionless kinetic energy of the fluid plus the
energy of the magnetic field, all referred to the kinetic energy of the mean
flow. The quantity ¢ = ou BX - Juy/dy is the dimensionless vorticity of the
disturbance flow, and gby/ax - Obx/dy is the dimensionless curl of the
disturbance magnetic fleld which by Amperes law is equal to the disturbance
electrical current density.

Equation (23) gives the time rate of increase of the disturbance energy
(per unit volume) of a fluid element that moves with the basic flow. The terms
in this equation are to be integrated over a cell that extends across the chan-
nel in the y-direction and along the channel for a distance of wavelength.
A1l terms in the braces in equation (23) vanish either because a disturbance
guantity vanishes at the boundaries of the flow for the integration across the
channel or because of periodicity in the direction along the channel. The
equation giving the time rate of increase of energy of the disturbance motion

is therefore:

2n/a fL 2nfa L1
D .//. .//. e dx d .//. J/f ax d < 0
= x dy = v\ iy 5
Dt Jeeo --1 =0 y=-1 Y

y=-

du. 2
2 X 1L .2 A .2
+ - = 24
Abxby ay Re ¢ " Re, > (24)
Of course, it is the real part of each disturbance amplitude that is required

in equation (24).

]

It is appropriate at this time to identify the various factors on the
right side of equation (24), which contribute to the rate of change of the dis-
turbance energy. As in ordinary hydrodynamic stability theory, there appear
the Reynolds stress term and the viscous dissipation term, the first and third
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terms, respectively, on the right side of cquation (24). As is well known,

the dissipation term is always stabilizing, and the Reynolds stress term can be
elther stabllizing or destabllizing. The new texrms that appear in the stability
of a conducting fluid are the second and fourth terms. The fourth term
(—Agjz/Rem) can be identified as joule heating and appears in the energy balance
equation in such a way that this term will always be stabilizing. The quantity
by in the second term can be identified as a component of the Maxwell stress
tensor of electromagnetic theory. The question of whether this new term is
stabllizing or destabilizing can be answered by solving the eigenvalue problem
and computing the eigenfunctions.

The disturbance quantities on the right side of equetion {24) can be ex-
pressed 1n terms of the complex amplitude functions @ and ¥ by means of the
relations

oy = 8 4ot (y)exp[ i (x - ct)]} (25)
uy = RZ‘—i@@(y)exp[i@(x - atﬂ} (25)
by = Rl{w’(y)exp[i@(x - ctﬂ} (27)
by = RZ{—i@W(y)exp ia(x - ctﬂ} (28)

where Rl denotes the real part of the complex guantity. The integration with
respect to x can be performed in equaticn (24) after substitution of equa-
tions (25) to (28). For neutral disturbances (c: = 0)

1L
1 2 fo 1
t 1 dUX
“/[ & dx dy = 2nm dy &-{vios - o) T
y=-1 Yx=0 =0
4au o
X 1 " z n ~
+ AZ(WI’.‘V:‘L - Ilfr\ﬁfi) —d? - EEE [(CPI. - CLZCPI.) + (QD:L - @2@1)]
B s amn)? e G - ey’ (29)
cRey |V T OTr 1T ey

The range of integration is taken from y = O +to 1 since all the integrands
are even functions. For other than neutral disturbances, 1t is only necessary
to multiply the right side of equation (29) by factor exp(Z2acit) in order to
obtain the time rate of change of disturbance energy.

In view of the conclusion drawn in the previous section concerning the role
played by the conductivity as a stabllizing agent, 1t is of interest to com-
pare the various terms that contribute to the disturbance energy balance when
Repy ds small and when it 1s large. Figure 4 ghows the digtributlion across
half the channel of the electromagnetic terms in the energy balance equation for
the two cases Rey = 0.00135 and 88.5 (N = 0.0216 for both). The area under
thege curves represents the net contribution to the rate of increase of the
disturbance energy. For Re, = 0.00135, the Maxwell stress 1ls negligible and

15



. 004 T N T ——T 16 T —— —
Magnetic Reynolds number, Magnetic Reynolds number,
Re | Rep
et 88 .
B 0. 00135/
0 ESS 12
_ I
5 88.5 /
3 -/ il
£ -.004 , —— S .08
s ———— Maxwell stress / > [
® I Joule dissipation I
5 / : |
2 -.008 504
Y >
@ / & 000135+ /
5 / 5 88 5 "
£ 0.00135 o S 1 -l
S - op— g o : "
;‘; / E | —Note change N
e 7 in scale |
2 o / 2 | +—
2 j/ £ ' 0.00135 88.51l
< =
8 / 2 l 7 |
-.020 // E -4 | | i
— < Reynolds stress
—-— — Viscous dissipation
- 024 -6 | | I ﬁl
0 .25 .50 .15 1.00
Normal distance from center of channel, y ]
Figure 4. - Maxwell stress and Joule dissipation. - 3L l ] J
Nondimensional wave number, 1; Reynolds 0 .25 .50 .75 1.00
“number, 9000; magnetic interaction parameter, Normal from center of channel, y
0.0216.

Figure 5. - Reynolds stress and viscous dissipation.
Nondimensional wave number, 1; Reynolds num-
ber, 9000; magnetic interaction parameter, 0.0216.

is not plotted, but the joule dissipation contributes substantially to the
stabilization of the motion {the area under the curve being negative in this
case). For Rey = 88.5, the Maxwell stress becomes significant and is de-
stabilizing. Of course, the Joule heating is again stabilizing, but the con-
tribution is much less than in the previous case.

Figure 5 shows the distribution across half the channel of the hydrodyna-
mic terms in the energy balance equation for the two cases. The distribution
of the viscous dissipation energy is very closely the same for the two Rey
values, but, for the Reynolds stress energy distributions, there is less area
under the curve for Rey = 88.5 +than for Rey = 0.00135. However, this de-
crease in production of disturbance energy by the Reynolds stress is offset by
the destabilizing effects of the decrease in the joule dissipation and the in-
crease of disturbance energy by the Maxwell stress (fig. 4). The net effect of
increasing the conductivity is then a consequence of the balance between the
Reynolds stress mechanism on the one hand and the joule dissipation and Maxwell
stress mechanism on the other hand. This net effect can be determined by esti-
mating the areas under the curves in figures 4 and 5. This comparison leads to
the result that, at a fixed point in the «,Re plane, the net effect of in-
creasing the conductivity N (the magnetic interaction parameter) constant is
destabilizing in agreement with the results presented in figure 3. As the Re,
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is ralsed, the behavior of the various terms in the energy balance equation
under the conditions mentioned previously can be summarized as follows:
Reynolds stress: stabilizing in that there is less production of disturbance

energy; viscous dissipation: negligible change; Maxwell stress: destabilizing,

production of disturbance energy occurs only at high values of Rep; joule dis-
sipation: destabilizing, the amount of energy that can be dissipated is re-

duced as the conductivity is raised. If N 1is not held constant but is allowed

to increase as Rey 1increases, the flow is again stabilized as observed by
Velikov (ref. 2).

CONCLUSIONS

The stability of plane magnetohydrodynamic channel flow with parallel mag-
netic field has been reexamined through exact numerical integration of the
pertinent sixth-order system of disturbance equations, subject to appropriate
boundary conditions. The results confirm that Stuart's reduction of the prob-
lem to a fourth-order disturbance equation is valid for magnetic Reynolds num-
ber small compared with 1. However, Stuart's asymptotic values are about
30 percent below the presgent numerical results. For magnetic Reynolds numbers
of order 1 or greater, there are significant changes in the stability charac-
terigticg. This is borne out by a calculation of the various viscous and mag-
netic contributions to the rate of change of disturbance energy.

It is shown that the resistivity enters this problem in two ways: (1) it
sets up a time-independent Maxwell stress that augments the disturbance energy
when it is of the same sign as the vorticity of the basic flow, and (2) through
Joule digsipation the disturbance energy is decreased. For small resistivity
(Rem >> 1) the former dominates, leading to a net augmentation of disturbance
energy, while for large resistivity (Rey, << 1) the dissipative effect is
dominant.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Chio, September 22, 1965.
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APPENDIX - DERIVATION OF DISTURBANCE EQUATIONS

Although the disturbance equaticns used herein appear in the literature
(e.g., ref. 5), they must be displayed in component form in order to formulate
a disturbance energy balance equation. Since this form appears in the process
of deriving the disturbance equations, a brief derivation of these equations
follows.

The startlng point for the derivation is equations (1) to (6). FElimina-
tion of d from equations (1) and (3) results in

§E +U . W) = v+ =B . B+ Vil (A1)
Plot Mo
where
3-F
=7+
2“0

Since two-dimensional disturbances are being considered, only a two-dimensional
magnetic field need_be considered. A second equation is obtained by the elimi-
nation of B and J from equations (2) to (4) with the aid of equations (5)
and (6) and results in

ag - - —> 1 —>
S0 E=E W v (A2)

The stability investigation is limited to mean flows that satisfy equation (7).

The disturbance equations are obtained by introducing a two-dimensional
disturbance into equations (5), (6), (Al), and (A2); that is, let

T-T+3: (UL +uy, up, 0)
E-E+5 : (B + Dy, by, O)
PP+ p
where the lower-case quantities are small perturbations of the basic quantity.

After thig is accomplished and after subtracting out the basgic flow, the dis-
turbance equations are

du au du db
1, 1 1 o 1 1 2
— L = - + Lt 4w .
st " Tl Sy T (43)
dugp dug A1t 1
o2 ouz) _ o _z A4
ol + 0 5o o a + v, (a4)
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+ U = by —= + By —= + —— Vb
S TS T a, T E Ty VL (a5)
dby ob du
2 2 1 >
5+ Uy 5%, By 5%, + T VDo (a8)
Bul . Buz o (a7)
db db
1 2
- 8
where
=2 2
T =D -+ B b
Ho

It is convenient to cast the disturbance equations into nondimensional form by
making the following replacement of variables:

X = xL, xp - yL, t -

L
-— t
Un
Uy = UxUp, By — BB
uy - uxUﬁ’ u, - u U bl - be’ by = byB

y m’

1 - {pUZ)n

where L, Uyp, and B are fixed reference dimensional quantities. The dis-
turbance equations in nondimensional form are

R N AL R L (820)
g.:_X+UX§§=byg§_X+BX%+Ei—mVZbX (A11)
g;z + Uy g;l = + By g;l + ﬁ%; vzby (A12)

19



+ =
5 Ty 0 (A13)
db db
X y
+ =
where
22 _ _B?
2
oUpMo
is the Alfven number squared
L
Re = Eﬁ—
v
is the Reynolds number, and
Rep, = opUylb

is the magnetic Reynolds number.

Besides these basic nondimensional quantities, certain other combinations
of them are often used; namely,

Pry, = ougv
the magnetic Prandtl number and
2
N = oB“L
pUp

the magnetic interaction parameter. The following relations apply:
Reyp = Pry * Re
and
_ po
N=A Re,

The number of dependent variables can be reduced by introducing a stream
function for the disturbance velocity and a vector potential for the magnetic

field. Let

)
v = 5 (815)
Uy = - %% (A16)
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_ oY

bx = 5y (A7)
oY
by = - 5~ (A18)

Substitution of equations (A15) to (AL8) into equations (A9) to (Al2) leads
to the following disturbance equations:

4du. o
X _ _ ox 2 ey
% " @y Ox t Ul T g A B t g (O + Oyyy) (419)
o, + U0, =+ + %R y + = (o + o, ) (A20)
xt XXX 3§ X*XX ' Re XXX Xyy
aUy 1
Yoy + Uplyy = - > Yy + Bylyy + Re (\l’m + Wm,y) (A21)
1
VYop + Up¥yy = Byl + R (Yaxex + Yoyy) (A22)

Elimination of x Tbetween equations (Al9) and (A20) by cross differentiations
leads to

a%u,
Oyt + Ooet + U@y + Ope) - o7 Oy = AZ[BX(\PXW + \ym)]
+ 2 (0 + 20 + 0o, ) (A23)
Re yyvy XXYY XXKXK
If the form of the disturbance is taken to be
o = o(y)exp|ialx - ctﬂ (A24)
¥ = y(y)exp [lalx - ct)] (a25)
equation (A23) becomes
oM - 2af" + atp = iQRe{(Ux - e)(o" - ofp) - Upp - AZ[Be(v" - o@w)]}
(A26)

where the primes denote differentiation with respect to y, and equations (A21)
and (A22) become

¥ - oy = daRey [(Uy - c)¥ - Byo) (a27)

Equations (A21) and (A22) lead to a single independent equation since equa-
tion (A21), for the assumed form of the disturbance, can be obtained from equa-
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tion (A22) by differentiation with respect to y.

Equations (A26) and (A27) are the final form assumed by the disturbance
equations. Since By 1is a constant, it is appropriate to replace By Dby
unity; that is, the reference quantity B is taken to be By. This final step
yvields equations (8) and (9).
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