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AN APPROXTMATE METHOD FOR SOLVING
THE SINGLE-DEGREE~CF~FREEDOM ROLL EQUATION
WITH TIME-DEPENDENT COEFFICIENTS

By C. William Martz
Langley Research Center

SUMMARY
//f;;li:?

An approximate analytical method (with three alternate integration pro-
cedures) is developed for solving the single-degree~of-freedom roll equation
with time-dependent coefficients. The method is applied with each integration
procedure to two sample problems and shows good agreement with more exact
numerical solutions. Information governing the approximate error of each inte-

gration procedure is also presented. éég?ZZﬁ%év’

INTRODUCTION

One method often used to improve the accuracy of predicting the flight
trajectories of rocket vehicle systems has been that of spinning the vehicle
slowly very soon after launching. This tends to average out the effects of
any asymmetrical vehicle loads on the trajectory. In other instances a vehicle
may be designed to spin at higher rates for the purpose of spin stabilization.
In either case the spin is usually provided in flight by means of deflected
control surfaces, canted or twisted fins, or with small spinner rockets or gas
Jjets.

During the preliminary design of these vehicles, the fin cant (if this is
the method chosen to produce the rolling moments) must be determined for each
stage to produce the desired spin rates. This computation involves solutions
of a first-order differential equation having time-variable coefficients.
These solutions are carried out with a step-by-step numerical integration pro-
cedure usually with the aid of a high-speed digital computer.

The present paper presents an approximate analytical method (with three
alternate integration procedures) for solving the single-degree-of-freedom roll
equation with typically varying coefficients. The use of this method avoids
the tedious step-by-step method of solution and allows quick and accurate hand
computation of the results. The method is applied to two actual flight vehicle



situations and the results compared with more exact solution determined

numerically.l

In this paper, the approximate method is applied only to the roll equa-
tion. However, the method can be (and has been) applied successfully to other
physical problems.

SYMBOLS

The units used for the physical quantities defined in this paper are given
in both the U.S. Customary Units and the International System of Units (81).
Factors relating the two systems are given in reference 1.

A,a,D constants for simulating roll damping terms, second™! (see
eq. (4))

Al = Aeat + D

Ky = Aedt + D

B,v,C,c constants for simulating roll driving terms, second~1 (see
eq. (4))

C1,Co proportionality factors, seconds per radian and radians,
respectively

Ei,Es complex Fresnel integrals defined by equations (9a)

Ix inertia of vehicle about spin axis, slug-foot® (kilogram-meter?)

kl,kg,k3 constants defined by equations (15a) to (l5c)

MX,p roll damping moment per unit p, foot-pound-seconds per radian
(joule-seconds per radian)

MX,S aerodynamic roll driving moment per unit &, foot-pounds per
degree (joules per degree)

Mj jet damping moment coefficient, foot-pound-seconds per radian
(joule-seconds per radian)

My time-dependent roll input moment, foot-pounds (Joules)

P vehicle spin rate, radians per second

1The more exact numerical method uses a fourth-order Runge-Kutta procedure
with extrapolation to zero interval size as a correction factor and with tabu-~
lar look-ups for the coefficients.
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Ap approximate error in spin rate, radians per second

9 spin rate at midinterval time, radians per second

Py spin rate at zero interval time, radians per second (In multi-
step problems, this quantity is final spin rate of previous
interval.)

Pgss steady-state spin rate, radians per second

t interval time, seconds (t =0 at beginning of each interval)

t midinterval time, seconds

u independent variable used in complex Fresnel integral

y transformation variable defined by equation (5)

6] differential deflection of control surfaces or fins producing
rolling moment, degrees

Aedt error in €@t (see eq. (13))

Subscript:

o zero interval time

A dot over a symbol indicates the first derivative of the quantity with
respect to time.

ANALYSIS

The single degree-of-freedom rolling-moment equation can be written as
follows:

Ixp + My pp = My sd 4 My +  Msp (1)
Inertial Aerodynamic  Aerodynamic  Auxiliary Jet
acceleration damping driving driving damping
moment moment moment moment moment

(time
dependent )

The aerodynamic driving moment can be generated by deflected control surfaces,
canted fins, or any asymmetric rolling-moment condition dependent upon aero-
dynamics. The My term was included for time-dependent rolling moments such
as would be obtained with small spinner rockets or gas jets. The jet damping
moment, included for completeness, is rather hard to predetermine and is highly



dependent upon the configuration of the rocket motor propellant. In the fol-
lowing analysis, the jet damping term is considered absorbed within the aerody-'
namic damping term. For conditions where the coefficients in equation (1) are
constants, the solution can be written as

where p, 1is the initial spin rate and the steady-state spin rate is
MX’58 + My
Pgg = :
MX’P
Of primary interest in this paper is the condition in which the coeffi-

cients of equation (l), normalized with respect to Iy, are not constant. The
normalized equation to be solved is

e 95 S ¥ LR (3)

Ix Ix Ix

P+

In this equation, Iy can change continuously during a thrust period. The
terms My,p and My 55 are both functions of air density, vehicle velocity,
and Mach number which change throughout a flight; also, MX/IX must be given

the capability of varying with time. The general form of equation (5), chosen
from practical considerations to simulate these possible variations, is

P+ p(D + Aeat> = BePt + cect (&)

The method for solving equation (3), then, consists of fitting actual problem
histories of the normalized driving and damping moments to the constant and/or
exponential coefficients of equation (4) which can be integrated for spin rate.

Tt is not implied that My 6a/IX is simulated by BePt and MX/IX by
2

cect, Rather, it is suggested for reasons of flexibility that the sum of the
input terms be simulated by the sum of the two exponentials. Since the two
input terms on the right of equation (4) are of identical form, their partic-
ular solutions will be of the same form. Thus, for purposes of solving equa-
tion (4), only the B term will be considered. The response of the C term
will be added to this solution by the principle of superposition.

Three procedures are presented for integrating equation (4). These pro-
cedures referred to as the asymptotic method, the tabular method, and the




mid-damping method are discussed in the following sections. With all three
methods, it is sometimes necessary to divide total problem time into two or
more steps or time intervals as explained in the section entitled "Limitations
and Applications."” The method to be used is then applied once in each time
interval, the final value of spin rate in an interval being used as the initial
value of spin rate for the next interval.

Asymptotic Method

In the asymptotic method, the dependent variable is first transformed as
follows. If

A_at
221Dt
y = pe? (5)

equation (4) (neglecting the C term) becomes

bt+leatspt
y =B &

(6)
This equation can be integrated repeatedly by parts in two different ways.

Each result is in the form of an asymptotic series which transforms through
equation (5) to a separate spin rate solution. The more useful solution is

the following convergent series:

o Bt L aest (Aeat)? ) (heat)> .
b+ D a+B+D (a+b+D){ea+B+D) (a+b+D)2a+b+D)(3 +b+D)
- Aleat_1}-Dt 2
+ e a( ) PO - B 1 - A + A
b+ D a+b+D (a+b+D){2a +b+ D)
4> .
- + ... + similar C terms (73,)
(a + b+ D)(2a +b + D)(3a + b+ D)

In application, each series should be extended until the first term not used
is "negligible."

The second solution, an asymptotic series useful for very small values of
b+ D - a

is
Aeat ’




b

A eat pedt

Areat
- =(e®t-1)-Dt
, o &(e*-1) {po_g[l_m

o Bebt[% _b+D-8a_ (b+D- a)(b+D-2a) (b+D-a)b+D-2a)(b+D-3a) .

(Aeat)E (Aeat)5 T ]

-a .  (b+D-a)(b+D - 2a)

A2

- (b +D - a)(b +D - 2a)(b + D - 3a) + .. :‘} + similar C terms (7b)

o)

As before, the series are extended until the first terms not used are
"negligible."

tion

Approximating

Normally, equation (7a) is a fast, efficient, and accurate means of
approximating the solution of equation (3). However, if convergence is too
slow, another of the integration methods can be used.

Tabular Method

The tabular method picks up the integration of equation (4) at equa-

(6) which is

A

A-
a

y = Be

eat by 1 + at + 2 t

bt+hedtsDt

2+2
, rearranging terms, and integrating give

2
(A+b+D)° ¢ Aa (t +A+b+D)
2Aa f e 2 Aa dt
0

The independent variable is transformed by letting

Then

Aa t+éib_+2)
in Aa
$ 7.2
2
Aa [A+b+D
in\ Aa

e du




The integral is now in the form of the complex Fresnel integral tabulated in
reference 2.

The p solution with the € term included by superposition is

A _ (A+0+D)° _ (A+c+D§2
E(l’eat)’Dt 2Aa in SAa in
P =ce Py * Be K;(El - El,O + Ce " By - E2,O)

where

~ )

By -5 | [ +AtD+D
in Aa

L = $Complex Fresnel integrals P
tabulated in reference 2 (9a)

—

Ep = E AQQ:+_A + c +]§
Vin Aa

J

N
in _ [ f1-3)_ i+
As -Aa 2 Aa 2

gConvenient relationships (9p)

Aa _ :55(1 +1i) = éi(l - i)
ix 21 21

S

The spin acceleration p can be determined from equation (4). Note that this
solution does not degenerate for zero damping (A = D = 0) or constant damping
(a = 0). However, for A =D=0 a straightforward integration of equation (4)
yields the following solution:

X
P = P, + %(ebt - 1) + %(eCt - 1)

B Zero damping

= Bebt + CeCt

e/
1




p= poe_At v (ebt - e—At> — (eCt B e-At) Constant
A+D A+c
damping (10)
p = -Ap + BePt + cect coefficient

Mid-Damping Method

The use of a constant damping coefficient in equations (10) introduces the
third method for integrating equation (4) - that is, the mid-damping method.
In this method the value of the damping coefficient at the midinterval time is
used throughout the interval and the B and C terms are exponential as
before._ Therefore, the terms D + Aeat are replaced with their midinterval
value A} and the constant damping solution becomes

- iy ALt
p = poeALt + _L(ebt - e Aﬂ) O fect -1 (11)
A1 + D Al +c

where

Ay = Aedt + D

LIMITATIONS AND APPLICATION

The method for solving the roll equation consists of fitting actual his-
tories of the driving and damping moments, normalized with respect to Ix, to

the constant and/or exponential coefficients of equation (4). The equation

is then integrated in one of three ways. This curve fitting 1s a limitation
on the accuracy of the method. However, the errors generated depend upon the
skill of the curve fitter and in any case can be kept as small as desired with
the use of more intervals. When fitting the coefficients of the damping term,
first plot the values of MX,p/IX on semilog paper as a function of time. If

the plot is essentially a straight line over a given time interval, the constant
term D is zero and the values of A and a are easily determined from the
zero intercept and slope of the faired curve. If the plot is curved, determine
by trial and error the value of D required to straighten the plot over the
required time interval and compute the values of A and a from the straight-
ened and faired curve.




Think now about fitting the normalized input moments of equation (3) by
considering a rolling-moment input which increases linearly with time from
2 ft-1b (2.72 J) to 6 ft-1b (8.16 J) over a 10-sec period. One exponential
term cannot adequately simulate this curve. However, by thinking of fitting
an exponential curve having a displaced origin, one can visualize a flatter
curve which will more closely simulate the requirements as shown in figure 1.
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Figure 1.- Exponential simulation of a linear moment variation.

This, of course, is the same as using two exponentials - one with a zero
exponent - to meet the need. However, this improved simulation requires cal-
culations of increased quality and quantity since the additional term involves
the difference of two large numbers.

In addition to curve-fitting errors, the accuracy of the method is limited
by approximations which were used in the integration procedures. Consider first
the tabular method in which the approximation

2¢2
et ~ 1 + at + 2%




was used. As shown in the appendix, this approximation causes errors in spin
rate over an interval as given approximately by

_ Bebt + Cect - p(Aeat + D)

aeat

Op Aedt (12)

where

2
Aedt = eat _ (1 + at + agte) (13)

The absolute value of the spin-rate error becomes larger as the value of at

is increased with the result that solutions usually must be divided into two

or more steps or time intervals. Equation (12) can be used to determine these
step lengths for a given accuracy requirement. However, a much faster and more
desirable method is to use step lengths consistent with a factor-of-2 change in
the damping term Mx,p/ix. This "factor-of-2 criterion” is consistent with good

accuracy (about 2 percent error). If more or less accuracy is desired, a
smaller or larger factor can be used and the relative error will be governed by
equation (13).

Now consider the mid-damping method. The use of a constant (midinterval)
damping coefficient over the entire interval causes a loss in accuracy toward
the midpoint of the interval. The approximate value of the spin-rate error,
developed in the appendix, is given by

k -A )t k t
bp ~ kgt + —2 e(a 1) -1 - _LE(a+b)t - 1] - Df (p - 7) at (1)
0

Al - a a+b
where
kl = kge(a—Al)t + k3€(a+b)t (153)
kp = Alpy - —B— (15b)
Al + b

10




. k3 = :rég__ (15¢)
Al+b

t — _
f (p - 5) at = Pt + __Blﬂ_ - Po (e"Alt ; 1> + _B_Zé__ébt - 1) (154)
0

Al +b Aj A +b

Equation (14%) shows that the absolute value of the error builds up near the
center of the intervals while remaining lower near the end points. Also, the
use of longer intervals does not necessarlly decrease the accuracy of the
method near the end points. Thus, longer intervals can be used accurately if
only the final spin rate of each interval is required.

Finally, with the asymptotic method of integration, no additional errors
are involved since approximations are not used with this method.

In some problems, the semilog plots of MX,p/IX, MX,55/IX: or Mx/IX have

discontinuities where the rocket motor cases drop off or torque motors start or
stop, and so forth. These discontinuities are the usual cause for additional
time intervals, and are illustrated in figures 2 and 3, the data plots for the
sample problem.

Sample Problem

The approximate method was used separately with each integration procedure
to simulate the flight spin history of the second stage of the Trailblazer IT
vehicle described in reference 3. These simulations start with the separation
of a first-stage rocket from the second-stage configuration during an exiting
trajectory. Ignition of the second-stage rocket motor occurs at this separa-
tion and the motor thrusts about 6 sec followed by a 20-sec coasting period.
During this 26-sec postseparation period, the second-stage configuration is
exiting the sensible atmosphere, and its spin rate must be increased from about
0 to 65 rad/sec by means of precanted booster fins. The problem is to prede-
termine the fin cant required to produce this increase in spin rate and in the
process to generate the spin history of the vehicle over the 26 sec.

It is assumed that a particle trajectory has been computed to furnish time
histories of Mach number, velocity, and dynamic pressure for converting the
aerodynamic driving and damping coefficients into the time histories of MX,p/IX

and MX,S/IX shown in the semilog plots of figures 2 and 3, respectively.

These plots were faired with straight-line segments for reasons previously
discussed. For these straight-line variations, the C and D terms of equa-
tion (L4) are not needed and are set equal to zero. Both plots have natural
breaks at the end of thrusting (41.2 sec), and the break at 48 sec was chosen
to best fit the curves.

11
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Figure 2.- History of the roll damping term for Trailblazer II second-stage flight.
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In application of the tabular method to the problem, intervals were
determined by the factor-of-2 criterion and modified (at no loss in accuracy)
with equation (12) to the intervals given in table I.

TABLE I

CONSTANTS FOR PROBLEMS 1 AND 2

Problem 1:
Step
Constants
1 2 3 i >

A, secml . .. ... 0.244 0.11k 0.0433 0.0146 0.00296
B/5, sec™l/deg . . . 8.85 6.65 2.48 0.82 0.162
Cc, sec™k . . .. .. 0 0 0 0 0
D, sec-l ., . . . .. 0 0 0 0 0
a, secmL . . . . .. -0.1359 -0.3022 -0.3022 -0.2280 -0.2280
b, sec1 . . . . .. -0.0621 -0.3078 -0.3078 -0.2317 -0.2317
e, sectL . . . . .. 0 0 0 0 0
t, S€C . w v e . . . 2.8 1.6 1.8 3.5 3.5
to, S€C  « 4 . . . . 0 5.6 8.8 12.4 19.4
Initial p, = O rad/sec

Problem 2:

Constants for problem 2 are the same as for problem 1 except initial
P, = 200 rad/sec.

Although these time intervals are tailored to the tabular method, they were
used also with the mid-damping method for purposes of comparison. Equa-

tions (8) and (11), with constants determined from figures 2 and 3 and given in
table I, were used to generate the spin rate histories shown in figure 4 for
these two approximation methods and compared with the more accurate results of
the numerical integration method. Continuous curves are illustrated for these
two approximate methods. In practice, however, only end points of the inter-
vals would be computed with the mid-damping method. These end points would
then be faired for the final spin-rate history. Also shown in figure 4 are
several values computed by the asymptotic method (eq. (7)). The use of the
asymptotic method reduced the number of problem intervals to three - each cor-
responding to cne of the straight-line segments of the semilog plots in fig-
ures 2 and 3 and to steps 1, 2, and 4 of table I. All results were computed
for ® = 1.75°, a value that was determined by trial and error to produce the
required spin rate. Since spin rate at any given time is proportional to ®

1k
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Figure 4.~ Comparison of Trailblazer II second-stage spin histories
computed by tabular, mid-damping, and asymptotic methods with
more accurate numerical integration results for initial spin
rate of zero. B = 1.75°.

and to initial spin rate (i.e., p = Cl(Po) + 02(8)), the trial-and-error proc-

ess is fast and simple after once computing the proportionality factors.

As might be expected from consideration of the errors involved, the asymp-
totic method appears to be slightly more accurate than either of the other two
approximation methods; however, all approximations are within about 2 percent
of the numerical solution.

In an effort to exploit the weakness of the mid-damping method, problem 1
was rerun with an initial spin rate of 200 rad/sec, a value considerably above
steady-state roll. These results, presented in figure 5, show that all
approximation methods again compare quite well with the numerical solution.

As in problem 1, the spin-rate error generated by assuming exponential depend-
ence of the driving and damping terms is illustrated by the difference between
the asymptotic and numerical solutions.
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Figure 5.- Comparison of Trailblazer II second-stage spin histories
computed by tabular, mid-damping, and asymptotic methods with
more accurate numerical integration results for initial spin
rate of 200 rad/sec. & = 1.75°.




CONCLUDING REMARKS

An approximate analytical method (with three alternate integration pro-
cedures) is developed for solving the single-degree-of-freedom roll equation
with time-dependent coefficients. The method is applied with each integration
procedure to two sample problems and found to compare closely with more exact
numerical solutions. The closed-form solution avoids tedious step-by-step
integration and allows rapid hand computation of results. Of the three inte-
gration procedures presented, the asymptotic method, if convergent, was
Judged superior for solving the roll equation. Information governing the
approximate error of each integration procedure is also presented.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., August 13, 1965.
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APPENDIX

ERRORS OF APPROXTIMATION

Tabular Method

Errors considered herein are those resulting from the approximation

alt?2

eat =~ 1 + at +

The first-order approximation of the general error expression for p 1is

Ap = P peat o B pcat (A1)

where

2+2
Aett = eat _ (1 + at + &%

dp P _ Bebt + Ccect - p(Aeat + D)

deat aeat aeat

Mid-Damping Method

The use of a constant (midinterval) damping coefficient over an interval
results in errors determined approximately as follows. No curve-fitting errors
were considered. Equation (4) without the C term can be written as

13 = —Alp + Bebt (AE)
where

Ay = Ae®v + D

18




APPENDIX

-

The first-order approximation of the general error expression for ﬁ is

R ey 20 7

and from equation (A2)

However, for best results, these slopes should be evaluated at their mean value
over the associated error increment. Thus,

9p 1 t t
=— My = -p oAby = -MApf Lo f_ p dA) = - f_ pahe®® dt
oAy sy JE T
Also,
% 1 [P "
-_— Ap = -Al,meanAp = —Ap — L/: Al d.p = - \_/:_ Alp dt
dp tp I3 T

_f; (Aeatf)> at - D(p - 5)

Since in equation (A3), Ap = a(4p) and A(Bébt) = 0, the approximate error

equation can be written as

t t
aA
(&p) _ _f pahedt at - f_ Ae?tp at - D(p - 5)
dt T t

19



APPENDIX .

where values of p and P are obtained from equation (11). Finally, by .
integration,

t k. A
aln 2 a-A1jt
Apzf (p)dt=klt+ Ea( 1) -:]
o dt n

Al—&

) %E(a+b)t _ 1] ) Dfot (p - 5) at (Ak)

where
a—Kl)f —_
Ky = kee( + 1(.3e(8‘+b)t
kp = Afp, - —2
Al+b
k3 - - AB
Al+b

fot (p - 5) dat = -pt + B/Kl - iﬂ (G—Klt - 1) + —]i?'_(ebt B l)

A +b Ay Ay + D

20
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