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AN APPROXIMATE METHOD FOR SOLVING 

THE SINGLE-DEGFEE -OF -FREEDOM ROLL EQUATION 

WITH TIME-DEPENDENT COEFFICIENTS 

By C .  W i l l i a m  Martz 
Langley Research Center 

An approximate ana ly t i ca l  method (with three  a l t e r n a t e  in t eg ra t ion  pro- 
cedures) i s  developed f o r  solving t h e  single-degree-of-freedom roll equation 
with time-dependent coef f ic ien ts .  
procedure t o  two sample problems and shows good agreement with more exact 
numerical so lu t ions .  
g ra t ion  procedure i s  a l s o  presented. 

The method i s  applied with each in t eg ra t ion  

Information governing the  approximate e r r o r  of each i n t e -  

INTRODUCTION 

One method of ten used t o  improve t h e  accuracy of pred ic t ing  t h e  f l ight 

This  tends t o  average out t h e  e f f e c t s  of 
t r a j e c t o r i e s  of rocket vehicle  systems has been t h a t  of spinning the  vehicle  
slowly very soon after launching. 
any asymmetrical vehicle loads on the  t ra jec tory .  
may be designed t o  spin a t  higher rates f o r  t h e  purpose of sp in  s t a b i l i z a t i o n .  
I n  e i t h e r  case t h e  spin i s  usua l ly  provided i n  f l i g h t  by means of def lec ted  
cont ro l  surfaces ,  canted or twis ted  f i n s ,  o r  with small spinner rockets or gas 
je ts .  

I n  other  instances a vehicle  

During the preliminary design of these vehicles ,  t h e  f i n  cant ( i f  t h i s  i s  
t h e  method chosen t o  produce t h e  r o l l i n g  moments) must be determined f o r  each 
s tage  t o  produce t h e  desired spin rates. This computation involves solut ions 
of a f i r s t - o r d e r  d i f f e r e n t i a l  equation having t ime-variable coe f f i c i en t s .  
These so lu t ions  a r e  ca r r i ed  out with a step-by-step numerical i n t eg ra t ion  pro- 
cedure usua l ly  with t h e  a i d  of a high-speed d i g i t a l  computer. 

The present  paper presents  an approximate ana ly t i ca l  method (with three 

The use of t h i s  method avoids 
a l t e r n a t e  in t eg ra t ion  procedures) f o r  solving t h e  single-degree-of-freedom roll 
equation with typ ica l ly  varying coef f ic ien ts .  
t h e  tedious step-by-step method of solution and allows quick and accurate  hand 
computation of the  results. The method i s  appl ied t o  two a c t u a l  f l i g h t  vehicle  



s i tua t ions  and the  r e s u l t s  compared with more exact solut ion determined 
numerically 

I n  t h i s  paper, t h e  approximate method i s  applied only t o  t h e  roll equa- 
t i o n .  
physical  problems. 

However, t he  method can be (and has been) applied successful ly  t o  other  

SYMBOLS 

The units used f o r  t h e  physical  quan t i t i e s  defined i n  t h i s  paper a r e  given 
i n  both the U.S. Customary Units and t h e  In t e rna t iona l  System of Units (S I ) .  
Factors r e l a t i n g  t h e  two systems a r e  given i n  reference 1. 

A,a,D constants f o r  simulating roll damping terms, second-l- ( see 
eq. (4)) 

A1 = Aeat + D 

constants f o r  simulating r o l l  dr iving terms, second’l ( s ee  
eq. (4)) 

propor t iona l i ty  f ac to r s ,  seconds per  radian and radians,  
respect ively 

complex Fresnel  i n t eg ra l s  defined by equations (9.) 

i n e r t i a  of vehicle  about spin ax i s ,  slug-foot2 ( kilogram-meter2) 

constants defined by equations ( l5a) t o  ( l 5 c )  

r o l l  damping moment per  u n i t  p ,  foot-pound-seconds per  r a d i a n  
( joule-seconds per  radian)  

aerodynamic roll dr iv ing  moment pe r  u n i t  6, foot-pounds per 
degree ( j o u l e s  per  degree) 

j e t  damping moment coe f f i c i en t ,  foot-pound-seconds per  radian 
(joule-seconds per  rad ian)  

time-dependent r o l l  input  moment, foot-pounds ( j o u l e s )  

vehicle  spin r a t e ,  radians per  second 

h e  more exact numerical method uses  a fourth-order Runge-Kutta procedure 
with extrapolation t o  zero i n t e r v a l  s i z e  as a cor rec t ion  f a c t o r  and with tabu- 
l a r  look-ups fo r  t h e  coef f ic ien ts .  

2 



AP 
- 
P 

PO 

approximate e r r o r  i n  spin r a t e ,  radians per  second 

spin r a t e  a t  midinterval t i m e ,  radians per  second 

sp in  r a t e  a t  zero i n t e r v a l  time, radians per  second ( I n  multi- 
s t ep  problems, t h i s  quant i ty  i s  f i n a l  spin r a t e  of previous 
i n t e r v a l . )  

pss  s teady-state  spin r a t e ,  radians per  second 

t i n t e r v a l  t i m e ,  seconds (t  = 0 a t  beginning of each i n t e r v a l )  
- 
t midinterval t i m e ,  seconds 

U independent var iable  used i n  complex Fresnel  i n t eg ra l  

Y transformation var iab le  defined by equation ( 5 )  

6 d i f f e r e n t i a l  def lec t ion  of control  surfaces  or f i n s  producing 
r o l l i n g  moment, degrees 

Aea t e r r o r  i n  e a t  (see eq. (13)) 

Subscript  : 

0 zero i n t e r v a l  t i m e  

A dot over a symbol ind ica tes  t h e  f i r s t  der iva t ive  of t he  quant i ty  with 
respect  t o  time. 

ANALYSIS 

The s ing le  degree-of-freedom rolling-moment equation can be wr i t t en  a s  
follows : 

I n e r t i a l  Aerodynamic Aerodynamic A u x i l i a r y  Jet  
ac  c elerat i on damping driving dr iving damping 
moment moment moment moment moment 

( t i m e  
dependent ) 

The aerodynamic dr iv ing  moment can be generated by def lec ted  cont ro l  surfaces ,  
canted f i n s ,  or any asymmetric rolling-moment condition dependent upon aero- 
dynamics. The M, term was included f o r  time-dependent r o l l i n g  moments such 
a s  would be obtained with small spinner rockets o r  gas jets.  The j e t  damping 
moment, included f o r  completeness, i s  ra ther  hard t o  predetermine and i s  highly 
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dependent upon t h e  configuration of t h e  rocket motor propel lan t .  
lowing analysis,  t h e  j e t  damping t e r m  i s  considered absorbed within the  aerody-' 
namic damping term. 
constants, t h e  solut ion can be wr i t t en  a s  

I n  t h e  f o l -  

For conditions where t h e  coef f ic ien ts  i n  equation (1) are 

-% ,Pt 
1, 

P = (Po - Pss)e + pss  

where po i s  t h e  i n i t i a l  spin rate and t h e  s teady-state  spin r a t e  i s  

- %,66 + Mx 
- 

%P 
ps s 

Of primary i n t e r e s t  i n  t h i s  paper i s  t h e  condition i n  which t h e  coef f i -  
c i en t s  of equation (l), normalized with respect  t o  
normalized equation t o  be solved i s  

Ix, are not constant.  The 

I n  t h i s  equation, Ix can change continuously during a t h r u s t  period. The 
terms &,p and ~ , 6 6  a r e  both functions of a i r  densi ty ,  vehicle  ve loc i ty ,  
and Mach number which change throughout a f l i g h t ;  a l so ,  M,/Ix must be given 
t h e  capabi l i ty  of varying with t ime. 
from p r a c t i c a l  considerations t o  simulate these  possible  va r i a t ions ,  i s  

The general  form of equation (31, chosen 

The method f o r  solving equation ( 3 ) ,  then, cons i s t s  of f i t t i n g  a c t u a l  problem 
h i s t o r i e s  of t h e  normalized dr iv ing  and damping moments t o  t h e  constant and/or 
exponential coe f f i c i en t s  of equation ( 4 )  which can be in t eg ra t ed  f o r  sp in  rate. 

It i s  not implied t h a t  % 66/Ix i s  simulated by Bebt and ~ / I x  by , 
Cect. Rather, it i s  suggested f o r  reasons of f l e x i b i l i t y  t h a t  t h e  sum of t h e  
input terms be simulated by t h e  sum of t h e  two exponentials.  Since the  two 
input terms on t h e  r i g h t  of equation (4)  a r e  of i d e n t i c a l  form, t h e i r  p a r t i c -  
u l a r  solutions w i l l  be of t he  same form. Thus, f o r  purposes of solving equa- 
t i o n  (k), only the  B term w i l l  be considered. The response of t he  C t e r m  
w i l l  be added t o  t h i s  so lu t ion  by the  p r i n c i p l e  of superposit ion.  

Three procedures a r e  presented f o r  i n t eg ra t ing  equation ( 4 ) .  
cedures referred t o  a s  t he  asymptotic method, t h e  t abu la r  method, and t h e  

These pro- 

4 



mid-damping method a r e  discussed i n  t h e  following sec t ions .  With a l l  t h ree  
'methods, it i s  sometimes necessary t o  divide t o t a l  problem t i m e  i n t o  two o r  
more s teps  o r  t i m e  i n t e r v a l s  as explained i n  the sec t ion  e n t i t l e d  "Limitations 
and Applications." The method t o  be used i s  then appl ied once i n  each t i m e  
i n t e rva l ,  the f i n a l  value of spin r a t e  i n  an i n t e r v a l  being used as t h e  i n i t i a l  
value of sp in  r a t e  for t h e  next i n t e r v a l .  

Asymptotic Method 

I n  the  asymptotic method, the  dependent var iab le  i s  f i rs t  transformed as 
follows. I f  

%at+Dt 

equation ( 4 )  (neglec t ing  the  C term) becomes 

Y = Pe 

This equation can be in tegra ted  repeatedly by p a r t s  i n  two d i f f e ren t  ways. 
Each r e s u l t  i s  i n  the  form of an asymptotic s e r i e s  which transforms through 
equation ( 5 )  t o  a separate  spin r a t e  solut ion.  The more use fu l  so lu t ion  i s  
the  following convergent series: 

Bebt ( Aeat)2 
(a + b + D)(2a + B + D) (a t b + D)(2a + b + D)(3a + b + D) 

( 5 )  

A3 
( a  + b + D)(2a + b + D)(3a + b + D) 

+ . . .I} + similar c terms ( 7 4  

I n  appl ica t ion ,  each s e r i e s  should be extended u n t i l  t he  f i rs t  term not  used 
i s  "negl ig ib le . "  

The second so lu t ion ,  an asymptotic s e r i e s  u se fu l  f o r  very s m a l l  values  of 
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~ 51 - 
b + D - a + (b + D - a)(b + D - 2a) - (b + D - a)(b + D - 2a)(b + D - 3a) 

+ . 
Aeat (Aeat)2 (Aeat)3 

b + D - a + (b + D - a)(b + D - 2a) (..:.I- A A2 

- t(eat-l)-Dt 
+ e  

. .I} + similar c terms + . (b + D - a)(b + D - 2a)(b + D - 3a) 
A3 

A s  before, t he  s e r i e s  a r e  extended u n t i l  t h e  f i rs t  terms not used are 
"negligible ." 

Normally, equation (7.) i s  a fast, e f f i c i e n t ,  and accurate means of 
approximating the  so lu t ion  of equation ( 3 ) .  
slow, another of the  in tegra t ion  methods can be used, 

However, i f  convergence i s  too  

Tabular Method 

The tabular  method picks up t h e  in tegra t ion  of equation ( 4 )  a t  equa- 
t i o n  (6 )  which i s  

bt+$at+Dt 
j , = B e  

a2t2 Approximating ea t  by 1 + a t  + -, rearranging terms, and in t eg ra t ing  give 
2 

2 
A A (A+b+D)2 A+b+D 

y = poea - + ~e - a 2Aa Lt e % k + r )  d t  

The independent var iable  i s  transformed by l e t t i n g  

"(t + A  + b + D ) 2  = Z U 2  
2 Aa 2 

Then 

6 



The i n t e g r a l  i s  now i n  t h e  form of the  complex Fresnel  i n t e g r a l  tabulated i n  
reference 2. 

The p solut ion with the  C term included by superposition i s  

I 
~ where 

E1 = E [E[ + A '2 + 

Complex Fresnel  i n t e g r a l s  

} Convenient re l a t  i on sh i p  s (9b) 

The spin accelerat ion $ can be determined from equation ( 4 ) .  Note t h a t  t h i s  
so lu t ion  does not degenerate f o r  zero damping (A = D = 0)  or constant damping 
(a = 0 ) .  
y i e l d s  t h e  following solution: 

However, f o r  A = D = 0 a straightforward in tegra t ion  of equation ( 4 )  

P = Po + b - 1) + ,(,ct - q 
Zero damping 

$ = Bebt + CeCt 
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and, for a = D = 0, 

J 
Constant 

coef f ic ien t  
damping (10) 

Mid-Damping Method 

The use of a constant damping coef f ic ien t  i n  equations (10) introduces the  
t h i r d  method f o r  in tegra t ing  equation ( 4 )  - t h a t  i s ,  the  mid-damping method. 
I n  t h i s  method the  value of t h e  damping coef f ic ien t  a t  t h e  midinterval time i s  
used throughout the  i n t e r v a l  and t h e  B and C terms are exponential as 
before.  - Therefore, the terms 
value A 1  and t h e  constant damping solut ion becomes 

D + Aeat a r e  replaced with t h e i r  midinterval 

where 

- - 
A 1  = Aeat + D 

LIMITATIONS AND APPLICATION 

The method f o r  solving the r o l l  equation cons is t s  of f i t t i n g  a c t u a l  h i s -  
Ix,  t o  t o r i e s  of the dr iving and damping moments, normalized with respect t o  

the  constant and/or exponential coef f ic ien ts  of equation ( 4 ) .  
i s  then integrated i n  one of th ree  ways. 
on t h e  accuracy of the  method. 
skill of the curve f i t t e r  and i n  m y  case can be kept as small as desired with 
the use of more i n t e r v a l s .  When f i t t i n g  t h e  coef f ic ien ts  of the  damping term, 
f i r s t  plot  the  values of M x  Ix on semilog paper as a function of t i m e .  If 

t h e  p l o t  i s  e s s e n t i a l l y  a s t r a i g h t  l i n e  Over a given t i m e  i n t e r v a l ,  the  constant 
term D is zero and the  values of A and a are e a s i l y  determined from t h e  
zero intercept  and slope of the  f a i r e d  curve. If t h e  p l o t  i s  curved, determine 
by t r i a l  and e r r o r  the  value of 
required t i m e  i n t e r v a l  and compute t h e  values of A and a from t h e  s t r a i g h t -  
ened and fa i red  curve. 

The equation 
This curve f i t t i n g  i s  a l i m i t a t i o n  

However, t h e  e r r o r s  generated depend upon t h e  

, P I  

D required t o  s t ra ighten  the  p l o t  over t h e  

8 



Think now about f i t t i n g  the  normalized input moments of equation ( 3 )  by 
I considering a rolling-moment input which increases l i n e a r l y  with t i m e  from 

2 f t - l b  (2.72 J)  t o  6 f t - l b  (8.16 J)  over a 10-sec period. One exponential  
term cannot adequately simulate t h i s  curve. 
an exponential  curve having a displaced origin,  one can v i sua l i ze  a f l a t t e r  
curve which will more c lose ly  simulate t h e  requirements a s  shown i n  f igu re  1. 

However, by thinking of f i t t i n g  

5 -  

0 2 4 6 8 10 12 

Time, sec 

Figure 1.- Exponential simulation of  a l i nea r  moment var ia t ion.  

This, of course, i s  t h e  same a s  using two exponentials - one with a zero 
exponent - t o  meet t h e  need. 
cu la t ions  of increased qua l i ty  and quantity s ince t h e  addi t iona l  t e r m  involves 
t h e  d i f fe rence  of two l a rge  numbers. 

However, t h i s  improved simulation requi res  ca l -  

I n  add i t ion  t o  cu rve - f i t t i ng  e r ro r s ,  the accuracy of t h e  method i s  l imi ted  
by approximations which were used i n  the  in tegra t ion  procedures. 
t h e  t abu la r  method i n  which the  approximation 

Consider f i rs t  
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was used. A s  shown i n  t h e  appendix, t h i s  approximation causes e r r o r s  i n  spin , 

rate over an i n t e r v a l  as given approximately by 

where 

The absolute value of the  spin-rate  e r r o r  becomes l a r g e r  as t h e  value of a t  
i s  increased with t h e  r e s u l t  t h a t  solut ions usual ly  must be divided i n t o  two 
or  more steps o r  time i n t e r v a l s .  
s t e p  lengths f o r  a given accuracy requirement. However, a much f a s t e r  and more 
desirable  method i s  t o  use s tep  lengths consis tent  with a factor-of-2 change i n  
the  damping term %,p/Ix. This "factor-of-2 c r i te r ion"  i s  consis tent  with good 

accuracy (about 2 percent e r r o r ) .  
smaller or l a r g e r  f a c t o r  can be used and the  r e l a t i v e  e r r o r  w i l l  be governed by 
equation (13). 

Equation (12) can be used t o  determine these  

If more or  l e s s  accuracy i s  desired, a 

Now consider the  mid-damping method. The use of a constant (midinterval)  
damping coeff ic ient  over the  e n t i r e  i n t e r v a l  causes a l o s s  i n  accuracy toward 
the midpoint of the in te rva l .  
developed i n  the appendix, i s  given by 

The approximate value of t h e  spin-rate  e r r o r ,  

where 

k2 =(Po - _  ) 
A 1  + b 

10 



(15d) t (p - F) d t  = -Et + (- - )(." - 1) + &?b--pt - 1) 
A 1  + b A 1  + b 

Equation (14) shows t h a t  t he  absolute  value of t h e  e r ro r  bu i lds  up near the  
center  of t he  in t e rva l s  while r e m i n i n g  lower near t h e  end poin ts .  Also,  t h e  
use of longer in t e rva l s  does not necessar i ly  decrease t h e  accuracy of t he  
method near t h e  end points .  Thus, longer in te rva ls  can be used accurately i f  
only t h e  f i n a l  spin r a t e  of each i n t e r v a l  i s  required.  

F ina l ly ,  with the  asymptotic method of in tegra t ion ,  no addi t iona l  e r r o r s  

I n  some problems, t he  semilog p l o t s  of Q,9,/Ix, Mx,sG/Ix, o r  Mx/Ix have 

a r e  involved s ince approximations a re  not used with this method. 

d i scon t inu i t i e s  where t h e  rocket motor cases drop off or torque motors s t a r t  or 
stop, and so f o r t h .  
t i m e  i n t e rva l s ,  and a r e  i l l u s t r a t e d  i n  f igures  2 and 3 ,  t h e  data p l o t s  f o r  t h e  
sample problem. 

These d iscont inui t ies  are the  usual cause f o r  addi t iona l  

Sample Problem 

The approximate method was used separately with each in tegra t ion  procedure 
t o  simulate t h e  f l i g h t  spin h i s to ry  of t h e  second s tage of t h e  Tra i lb lazer  I1 
vehicle  described i n  reference 3. These simulations start  with t h e  separat ion 
of a f i r s t - s t a g e  rocket from t h e  second-stage configuration during an ex i t i ng  
t r a j e c t o r y .  Ign i t ion  of t he  second-stage rocket motor occurs a t  t h i s  separa- 
t i o n  and t h e  motor t h r u s t s  about 6 see followed by a 20-see coasting period. 
During t h i s  26-sec postseparation period, the second-stage configuration i s  
e x i t i n g  the  sensible  atmosphere, and i t s  spin r a t e  must be increased from about 
0 t o  65 rad/sec by neans of precanted booster f i n s .  
termine t h e  f i n  cant required t o  produce t h i s  increase i n  spin r a t e  and i n  the 
process t o  generate t h e  spin h i s to ry  of the vehicle over t h e  26 see. 

The problem i s  t o  prede- 

It i s  assumed t h a t  a p a r t i c l e  t r a j ec to ry  has been computed t o  furn ish  t i m e  
h i s t o r i e s  of Mach number, ve loc i ty ,  and dynamic pressure f o r  converting the  
aerodynamic dr iving and damping coeff ic ients  i n t o  the  time h i s t o r i e s  of %,p/Ix 
and Mx,8/Ix shown i n  the  semilog p l o t s  of f igures  2 and 3, respect ively.  

These p l o t s  were f a i r e d  with s t r a i g h t - l i n e  segments f o r  reasons previously 
discussed. For these  s t r a i g h t - l i n e  var ia t ions ,  t h e  C and D terms of equa- 
t i o n  (4) a r e  not needed and are s e t  equal t o  zero. Both p l o t s  have na tu ra l  
breaks a t  t h e  end of t h rus t ing  (41.2 sec ) ,  and the  break a t  48 sec was chosen 
t o  best fit t h e  curves. 
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Figure 2.- History of the r o l l  damping term for Trai lblazer  I1 second-stage f l i g h t .  
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I n  appl icat ion of t h e  t abu la r  method t o  t h e  problem, i n t e r v a l s  were 
determined by the  factor-of-2 c r i t e r i o n  and modified ( a t  no l o s s  i n  accuracy) 
with equation (12)  t o  t h e  i n t e r v a l s  given i n  t a b l e  I. 

TABLE I 

CONSTANTS FOR PROBLEMS 1 AND 2 

Problem 1: 

Constants  

A ,  sec-1  . . . . . .  
B/6, sec- l /deg  . . .  
C ,  sec-1  . . . . . .  
D, sec-1  . . . . . .  
a ,  sec-1  . . . . . .  
b, sec-1  . . . . . .  
c ,  s ec -1  . . . . . .  
t ,  sec  . . . . . . .  
to, sec  . . . . . .  

- 

I n i t i a l  po = o rad /sec  

1 

0.244 

8.85 

0 

0 

-0 - 1.359 
-0.0621 

0 

2.8 

0 

2 

0.114 

6.65 

0 

0 

-0.3022 

-0.3078 

0 

1.6 

5.6 

Step  

3 

0.0433 

2.48 

0 

0 

-0.3022 

-0.3078 

0 

1.8 

8.8 

4 

0.0146 

0.82 

0 

0 

-0.2280 

-0.2317 

0 

3.5 

12.4 

5 

0.00296 

0.162 

0 

0 

-0.2280 

-0.2317 

0 

3.5 

19.4 

Problem 2: 
Constants for problem 2 a r e  t h e  same as for problem 1 except  i n i t i a l  
po = 200 rad/sec.  

Although these time in t e rva l s  are t a i l o r e d  t o  t h e  t abu la r  method, they were 
used a l s o  with the  mid-damping method f o r  purposes of comparison. 
t i o n s  (8) and (ll), with constants determined from f igu res  2 and 3 and given i n  
t a b l e  I, were used t o  generate t h e  spin rate h i s t o r i e s  shown i n  f igu re  4 f o r  
these  two approximation methods and compared with t h e  more accurate  r e s u l t s  of 
t he  numerical in tegra t ion  method. Continuous curves a r e  i l l u s t r a t e d  f o r  these  
two approximate methods. I n  p rac t i ce ,  however, only end poin ts  of t h e  i n t e r -  
va l s  would be computed with t h e  mid-damping method. 
then be fa i red  f o r  t he  f i n a l  spin-rate  h i s to ry .  
severa l  values computed by t h e  asymptotic method (eq.  ( 7 ) ) .  
asymptotic method reduced the  number of problem i n t e r v a l s  t o  th ree  - each cor- 
responding t o  one of the s t r a i g h t - l i n e  segments of t he  semilog p l o t s  i n  f i g -  
ures  2 and 3 and t o  s t eps  1, 2, and 4 of t a b l e  I .  A l l  r e s u l t s  were computed 
f o r  
required spin r a t e .  6 

Equa- 

These end poin ts  would 
Also shown i n  f igure  4 a r e  

The use of t h e  

6 = 1.75’, a value t h a t  w a s  determined by t r i a l  and e r r o r  t o  produce t h e  
Since spin r a t e  a t  any given time i s  proport ional  t o  

14 
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Figure 4.- Comparison of Trailblazer I1 second-stage spin histories 
computed by tabular, mid-damping, and asymptotic methods with 
more accurate numerical integration results f o r  initial spin 
rate of zero. 6 = 1 . 7 5 O .  

and t o  i n i t i a l  spin rate (i ,e. ,  p = C1(po) + C 2 ( 6 ) ) ,  t h e  t r ia l -and-er ror  Proc- 

e s s  i s  fast  and simple a f t e r  once computing t h e  proport ional i ty  f a c t o r s .  

A s  might be expected from consideration of t h e  e r r o r s  involved, t h e  asymp- 
t o t i c  method appears t o  be s l i g h t l y  more accurate than e i t h e r  of the  other  two 
approximation methods; however, a l l  approximations are within about 2 percent 
of t h e  numerical solut ion.  

I n  an e f f o r t  t o  exploi t  t h e  weakness of the  mid-damping method, problem 1 
w a s  rerun with an i n i t i a l  spin rate of 200 rad/sec, a value considerably above 
s teady-state  r o l l .  
approximation methods again compare qui te  w e l l  with the  numerical solut ion.  
A s  i n  problem 1, the spin-rate  e r r o r  generated by assuming exponential depend- 
ence of the  dr iving and damping terms i s  i l l u s t r a t e d  by the  difference between 
t h e  asymptotic and numerical solut ions.  

These r e s u l t s ,  presented i n  f igure  5 ,  show t h a t  a l l  
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CONCLUDING REMARKS 

An approximate ana ly t i ca l  method (with three a l t e r n a t e  in tegra t ion  pro- 
cedures) i s  developed f o r  solving t h e  single-degree-of-freedom roll equation 
with time-dependent coe f f i c i en t s .  The method i s  appl ied with each in t eg ra t ion  
procedure t o  two sample problems and found t o  compare c lose ly  with more exact 
numerical solut ions.  The closed-form solution avoids tedious step-by-step 
in tegra t ion  and allows rap id  hand computation of r e s u l t s .  O f  t h e  t h r e e  i n t e -  
gra t ion  procedures presented, t h e  asymptotic method, i f  convergent, was 
judged superior  f o r  solving the  r o l l  equation. Information governing t h e  
approximate e r r o r  of each in tegra t ion  procedure i s  a l s o  presented. 

Langley Research Center, 
National Aeronautics and Space Administration, 

I Langley Sta t ion ,  Hampton, V a . ,  August 13, 1965. 



APPENDIX 

ERRORS OF APPROXIMATION 

Tabular Method 

Errors considered herein a re  those r e su l t i ng  from t h e  approximation 

a2t2 e a t  n. 1 + a t  + - 
2 

The f i r s t -o rde r  approximation of t h e  general  e r ro r  expression f o r  p i s  

Ap = - aP k a t  = d~ Aeat 

deat deat 

where 

li, Bebt + Cect - p(Aeat + D) 
a t  

- - - -  dP - - 

ae deat ae a t  

Mid-Damping Method 

The use of a constant (midinterval)  damping coe f f i c i en t  over an i n t e r v a l  
r e s u l t s  i n  e r r o r s  determined approximately as follows. No cu rve - f i t t i ng  e r r o r s  
were considered. Equation ( 4 )  without t h e  C term can be wr i t t en  as 

where 

A 1  = Aeat + D 

18 



APPENDIX 

The f i r s t -o rde r  approximation of t h e  general  e r ro r  expression f o r  i s  

and from equation (A2) 

However, f o r  bes t  r e s u l t s ,  these slopes should be evaluated a t  t h e i r  mean value 
over t h e  associated e r r o r  increment. Thus, 

Also,  

= - Lt (Aeati) d t  - D(p - F) 

0 d ( 4 )  Since i n  equation ( A 3 ) ,  & x - and A Bebt = 0, the approximate e r r o r  
d t  

equation can be wr i t t en  as 

t t 
- d b P )  = -& p&eat d t  - Aeatfi d t  - D ( p  - F) 

d t  



APPENDIX 

where values of p and 6 a r e  obtained from equation (11). Fina l ly ,  by 
in tegra t ion ,  

wh 

- L L (  a+b) t - 4 - D S , ”  (p - 5) d t  
a + b  

re 

k l  = k2e + k3e ( a + b ) t  

AB 

A 1  + b 
k3 = - 

20 
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