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A STUDY OF THE ACCURACY OF ESTIMATING THE ORBITAL
ELEMENTS OF A LUNAR SATELLITE BY USING RANGE
AND RANGE-RATE MEBEASUREMENTS

By Harold R. Compton
Langley Research Center

SUMMARY

A parametric study has been made to determine the effects of tracking mode
and orbital parameters on the accuracy of determining the state of a lunar sat-
ellite. A comparison of the relative advantage of using either range or range-
rate measurements was made, and the results indicate that the advantage of one
data type over the other is very dependent on the semimajor axis and somewhat
dependent on the nodal position and eccentricity but is not dependent on the
inclination. For example, it was found that for lunar orbits with medium eccen-
tricity and with semimajor axes of approximately 2500 kilometers, the orbital
elements could be determined with equal accuracy by using elther range or range-
rate data when the ratio of the standard deviation of range measurements to the
standard deviation of range-rate measurements was approximately 1500 seconds.
For lunar orbits with semimajor axes smaller than approximately 2500 kilometers,
range-rate measurements gave a more accurate determination of the elements,
whereas for orbits with semimajor axes greater than approximately 2500 kilo-
meters, range measurements proved to be the better data type of the two. It
was also found that range and range-rate measurements are similar data types in
that they produce similar correlation matrices for the state variables and
simultanecus use of both data types does not significantly reduce correlations
between the elements.

Over a range of inclination angles from 2° to 40° with respect to the
earth-moon plane, the results showed that the accuracy of determining the ori-
entation angles increased as the inclination increased whereas the accuracy of
determining the in-plane variables remained nearly constant. The effects of
variations in the nodal position on the accuracy of determining the orbital
elements were found to be periodic. The eccentricity, argument of periapsis,
and the longitude of the ascending node were best determined when the orbit was
viewed on edge whereas the semimajor axis, inclination, and the time of periap-
sis passage were best determined when the orbit was viewed broadside. It was
also found that the accuracy of estimating the elements increased with an
increase in eccentricity.



INTRODUCTION

Current plans for lunar research missions include the establishment of
satellites 1n orbit about the moon. For unmanned missions the elements of the
orbit in which the vehicle is moving must be known within a reasonable degree
of accuracy in order to determine the location of the satellite when data are
taken by the satellite. For manned missions the position must be known with a
high degree of accuracy. The knowledge of the orbital elements may also be
used to determine certain selenodetic constants and in particular the coeffi-
cients of the harmonics of the lunar gravitational field. It is therefore of
interest to investigate the accuracy to which the orbital elements of a lunar
satellite can be determined by earth-based tracking.

The basic earth-based data types are range, range-rate, and angular meas-
urements. Since the accuracy of making angular measurements of a vehicle
moving in orbit about the moon is low, this particular data type was not con-
sidered. Hence the results presented in this paper are based solely on the use
of range and range-rate measurements. It is of interest not only to estimate
the accuracy to which the elements can be determined but also to ascertain the
relative advantage of one data type over the other. Therefore a parametric
study in which both data types were used was initiated.

In order to make the parametric study, the statistical equations which
were used to estimate the accuracy to which the orbital elements could be deter-
mined were programed in double precision on an IBM 7094 electronic data proc-
essing system. The basic theory and equations used in the program are given in
appendixes A and B.

SYMBOLS

Unless otherwise specified, the unit of length is the lunar radius, which
is 1738 kilometers, and the unit of time is the period of a lunar surface
satellite divided by 2x, which is 1035 seconds. The coordinate system and
angular parameters are illustrated in figure 1.

A,B matrices containing partial derivatives of a given data type with
respect to orbital elements

a semimajor axis of lunar satellite orbit

I eccentric anomaly; operator used in appendix A

e eccentricity of lunar satellite orbit

i) functional relation between observable quantity and parameters to

be estimated (see eq. (A2))

i inclination of orbital plane of lunar satellite to earth-moon plane



17,my,n3

Zg,mg,ng

X,¥,2

i

direction cosines (see appendix B)

mean anomaly

+ number of observations

mean angular rate of lunar satellite

position of lunar satellite

weighted least squares function defined in equation (A7)

distance from center of earth to center of moon

distance from center of moon to lunar satellite

vector from center of moon to lunar satellite

time

time of ith measurement

time of periapsis passage

true anomaly

weighting matrix

coordinate axes with origin at center of moon (The X-axis is posi-
tive in the direction from the center of the moon away from the
center of the earth, the Y-axis is positive in the direction of
rotation of the moon, and the Z-axis is positive in such a direc-
tion that it forms a right-handed axis system.)

position components of lunar satellite

ith measurement of general quantity y, where i =121,2, .. . N

parameter to be estimated (subscript denotes particular paramet?r)

error

error in ith measurement



Ay covariance matrix of estimated parameters

M gravitational constant of moon
E mean motion of moon about earth
o) range or distance from center of earth to position of lunar sat-

ellite; in appendix A the symbol p is used with double sub-
scripts to denote the correlation between the variables indi-
cated by the subscripts

ith measurement of p

Ke]

i

D vector from center of earth to position of lunar satellite

§) range rate or radial velocity of lunar satellite with respect to
center of earth

bi ith measurement of p

g standard deviation or one-sigma uncertainty (When this symbol
appears with a subscript, it is taken to mean the one-sigma
uncertainty in the estimation of the variable indicated by the
subscript. )

w argument of periapsis, angle measured in lunar satellite plane
from ascending node to periapsis

Q longitude of ascending node of lunar satellite orbital plane
measured in earth-moon plane in direction of rotation of moon
from positive X-axis

Q' longitude of ascending node measured in YZ-plane (see sketch 1)

ANALYSIS

In order to simplify the problems associated with the analysis in this
study, certain assumptions were made. The moon was assumed to be a point mass
rotating about the earth in a circular orbit. A single observation station
making uncorrelated, unbiased range and range-rate measurements of a lunar sat-
ellite moving in a two-body orbit and not occulted by the moon was assumed to
be located at the center of the earth. All the results presented were obtained
by assuming a constant one-sigma error in the range measurements and range-rate
measurements of 15 meters and 0.01 meter per second, respectively. These val-
ues are conservative estimates of the tracking data accuracy applicable to the
NASA deep space net (DSN) tracking system (see ref. 1). Data were assumed to
have been processed for 1, 2, 3, 4, 5, and sometimes 10 consecutive orbits.
Usually 26 range and 26 range-rate measurements equally spaced in time were
simulated during each orbit.
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The fundamental approach made in this error analysis was to simulate range
and range-rate measurements over a given period of time and from this simulation
to calculate a covariance matrix from which the variances of the elements could
be obtained. The covariance matrix was obtained from a weighted least squares
simulation. (See appendix A for details of the simulation.) The form of this
matrix is

Ay = 02(ATA)'1 (1)

where the (i,j) element of A 1is equal to the partial derivative of the ith
observation with respect to the jth element to be estimated and where o 1is
the standard deviation of the measurements. Explicit expressions for the par-
tials of range and range rate with respect to the Keplerian elements are given
in appendix B. It can be seen from equation (1) that no actual values of the
measurements are needed, and in particular only the standard deviation of the
observations is used. Therefore, with a fixed tracking schedule and only one
type of data, the one-sigma uncertainty in the estimation of the elements is
proportional to the standard deviation of the data type. Thus, when the accu-
racy of estimating the elements is compared for two data types, an important
parameter is the ratio of the standard deviations of the data types, for
example, cp/cé. The covariance matrix for the simultaneous use of two data

types is shown in appendix A.

In order to make a parametric study of the effects of a given element on
the accuracy of determining the elements, five elements of a chosen nominal
orbit were held constant and the sixth was varied over a given range. The one
exception to this procedure was in the eccentricity variation for which, instead
of the nominal value for the semimajor axis, a value of 5000 kilometers was
used. This exception was made in order to insure that over the given range of
eccentricities the distance from the center of the moon to the lunar satellite
was never less than the radius of the moon. The elements of the nominal orbit
used in this investigation were chosen to provide a low periapsis (approximately
50 km) in an orbit with medium eccentricity and inclination. These elements are
as follows:

a = 2235 kilometers
i = 309
Q = 30°
w = 180°
e = 0.2

te = O second

In this study the angle w always appears in the partial derivatives as
an angle added to the true anomaly v in the argument of either a sine or



cosine function. Inasmuch as the true anomaly rotates through 360° each orbit,
the argument of this sine or cosine function rotates through one period regard-
less of the value of w. Hence, the effects of a variation in w wupon the
accuracy of estimating the elements are negligible as long as integral orbits

of tracking are used and occultations are not considered. BSimilarly, no results
are presented for a variation in tg5, because this parameter only defines where

the vehicle is located in the orbit and, 'as long as measurements are made over
complete orbits, the effects of changing t, are negligible.

RESULTS AND DISCUSSION

Effects of Tracking Schedule on Accuracy of Estimating the Elements

The partial derivatives contained in the A matrix are fundamental to the
entire orbit-determination process. A large derivative is said to have a large
information content and, similarly, a small derivative is said to have a small
information content. It can be shown that the accuracy of estimating any param-
eter increases as the information about that parameter increases or hence as the
derivative of the observable quantity (range or range rate) with respect to the
parameter increases. Figures 2 and 3 are presented to show how the partials of
range and range rate with respect to the orbital elements change with time.
These derivatives are plotted as functions of time over five orbital periods.
The orbital period is approximately 2.6 hours. It can be seen that the partials
have a periodic nature with a period equal to that of one orbit.

In figures 2 and 3 the amplitudes of the curves representing the partial
derivatives of range and range rate with respect to the semimajor axis continue
to increase with time. This increase is due to the mixed secular terms such as
n(t - to)sin E which are contained in the analytical expressions for these
derivatives. Because the information content of the data increases rapidly
with time due to the mixed secular terms, the semimajor axis should be deter-
mined more accurately over long time arcs. The amplitudes of the partial deriv-
atives of range and range rate with respect to the inclination appear to be
decreasing with time, but the reason for this decrease is the fact that the
derivatives vary as sin @ and, in the particular case shown in figures 2
and 3, £ is 30° at time zero and is decreasing at a rate of 0.54° per hour
due to the rotation of the X-axis. Since the amplitude of the partial deriva-
tive with respect to inclination is a maximum when Q = 90° or Q = 2700, it
is expected that the inclination would be best determined when the orbit is
viewed broadside, that is, when £ equals 90° or 270°. Likewise, a very weak
determination of the inclination is expected when Q = 0° or Q = 180°
because, regardless of the inclination, identical time histories of range and
range-rate measurements would be obtained - that is, the observations are inde-
pendent of inclination.

When the orbit is viewed nearly on edge, that is, when § 1is very near 0°
or 180°, the partial derivatives of range and range rate with respect to Q
and w are related through the expressions



ga = — cos 1 (2)
%s = %% cos 1 (3)

Therefore if the inclination is not large, the derivatives are approximately
equal, and figures 2 and 3 show that even with an inclination of 30° and with
Q = 30° they are not vastly different. If the relations in equations (2)

and (3) were always exactly true, the normal matrix A,TA/U2 would be singular
and noninvertible, because one columm of the A matrix would be proportional
to another column and therefore one row of the normal matrix would be propor-
tional to another row. Thus, in a real-orbit-determination process where the
measurements are made with the orbit being viewed nearly on edge, the normal

matrix is expected to be poorly conditioned for inversion by use of finite-
decimal arithmetic.

The special case of near-zero inclination also has problems associated
with it. By referring to the equations in appendix B, it can be seen that when
i 1s nearly zero the partial derivatives of range and range rate with respect

to  and w are related through the following expressions regardless of the
nodal position:

% % ()
0  w
P P
= 3 (5)

Again, the normal matrix 1s expected to be poorly conditioned for inversion.
Thus, trouble might be expected in trying to invert the normal matrix asso-
ciated with an orbit having near-zero inclination.

No physical significance should be attached to the fact that the partial
derivative of range with respect to the eccentricity remains positive as shown
in figure 2. This fact is due to the position of the line of nodes during the
observation period. The node angle would be different for different observa-
tion periods and hence the derivative might be negative.

The accuracy of estimating the orbital elements varies significantly with
the number of orbits tracked, the number of observations made during each orbit,
and the position of the satellite in the orbit at the time of the observations.
In order to show how the accuracies vary with the number of orbits tracked,
figure 4 is presented. This figure illustrates how well the elements of the
nominal orbit could have been determined if the vehicle had been tracked by
making range and range-rate measurements every 6 minutes over a period of 1 to
10 orbits. As would be expected, the accuracy of estimating the elements
increases with the number of orbits tracked. It is also seen in figure 4 that
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range measurements and range-rate measurements having one-sigma errors of
15 meters and 0.0l meter per second, respectively, (Up/dé = 1500 seconds) can

be used separately to determine the elements to approximately the same accuracy.
It is shown subsequently that this result is due to the particular values of
the orbital elements utilized and that in particular the relative advantage of
one data type over the other is dependent upon the semimajor axis, the nodal
position, and eccentricity. Thus, this result cannot be generalized to include
all lunar orbits. The lowest curve in each set of curves presented in figure 4
shows the one-sigma values resulting from the simultaneous use of range and
range-rate measurements. These values are, of course, smaller than the values
obtained when either data type 1s used separately.

Interpolation in figure 4 between integral orbits to obtain one-sigma val-
ues for fractions of orbits is only approximate, and the reason for this can be
understood by referring to the discussion of figures 2 and 3 where it was shown
that, in general, the time variation of the partial derivatives is periodic,
with a period being equal to that of one orbit. ©Since the elements of the nor-
mal matrix are sums of products of these partial derivatives and since the
covariance matrix is the inverse of the normal matrix, it is apparent that the
values of the elements of the covariance matrix are largely dependent upon the
times at which the observations were made. Therefore if measurements are simu-
lated over a fraction of an orbit, the values of the matrix elements will vary
according to the portion of the orbit investigated, and for this reason the
curves in figure U4 between integral orbits may not be as smooth as indicated.
Hence, interpolation in figure 4 is only approximate.

Before proceeding to other results, it should be noted that in a real orbit
determination the covariance matrix associated with tracking the satellite for
a single orbital period may be difficult to obtain due to numerical operations
in the computer. In particular, the normal matrix may be nearly singular, and
experience has shown that single-precision
arithmetic is not adequate for inversion 7
of this matrix. During a single orbital i
period, the moon rotates through a very
small angle. Thus, the problem under con-
sideration approaches the stationary-moon
problem for which the normal matrix ATA/G2
becomes singular. The covariance matrix is Q!
the inverse of the normal matrix, as was
shown in equation (1), and hence it cannot L
be obtained if the normal matrix is
singular.

L— orbital plane
The following argument shows why the

normal matrix is singular when the moon is
stationary. It has been shown in refer-

ence 2 that, in the case of the stationary
moon, range-rate measurements (and it can

be similarly shown for range measurements) X
are independent of the angle Q' which is
defined in sketch 1. Sketch 1
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Therefore, the following relations hold:

S _ 0 (6)
89'
_6_;‘)__ =0 (7)
agl

By writing 1, Q, and w as functions of Q' and noting that p and )
are functions of i, Q, and , the following equations can be derived from
equations (6) and (7) by direct substitution:

ég _cos i sin Q ég . 8in Q ég -0 (8)
oi sin i 3  sin i dw

cos

§é _cos i sin Q éé , sin Q éé _ (9)
oi sin 1 3 sin i o

cos

The coefficients of the partial derivatives in equations (8) and (9) are the
partial derivatives of i, Q, and  with respect to Q'. Equation (8)
indicates that Op/di, Op/dQ, and Jp/dw are linearly related and hence
the A matrix is at most of rank 5. Thus, the normal matrix ATA/cr2 has
a rank of at most 5 and is therefore singular and noninvertible. From
equation (9) it is clear that the same conclusions hold for range-rate data.
Usually if a normal matrix is poorly conditioned for inversion, high corre-
lations between the parameters which cause this poor conditioning can be
expected. A high correlation between 1, @, and w is therefore expected,
and, as shown subsequently, these three parameters are highly correlated.

The problem of determining the elements based on range and range-rate data
for a single orbital period is not exactly the statlionary-moon problem because
the moon has rotated through an angle of 1.5°. However, it is questionable
whether 1.5° of rotation is sufficient to reduce the linear relations between
i, Q, and ® enough to allow the normal matrix to become invertible in finite-
decimal arithmetic. Experience has shown that single-precision, 8-decimal
arithmetic is not adequate to lnvert the normal matrix associated with one
orbit of tracking. This difficulty was circumvented by programing the problem
in double precision, that is, 16-decimal arithmetic.

It is of interest to know whether the one-sigma estimation error presented
in this report obeys the \ﬁf law which states that the one-sigma uncertainty
in estimating a parameter is inversely proportional to the Vﬁ where N is
the number of measurements made. By referring to equation (1), it can be seen
that if the partial derivatives which are used in the elements of ATA  were
constant, then the one-sigma estimation error would obey the dﬁ law exactly.
It has been shown that these derivatives are not constant but periodic and
therefore if a sufficient number of measurements were used over the tracking



interval, one would expect the elements of ATA  to be approximately propor-
tional to N. Hence one would expect the one-sigma estimation error to approx-
imately obey the \ﬁﬁ law. Figure 5 is presented to show that the data in this
report do approximate this law and hence can be generalized to include an arbi-
trary number of observations. In order to obtain the one-sigma values shown in
figure 5, it was assumed that N observations of the satellite were made over
five consecutive orbits. This process was repeated several times for the same
five orbits but with N changed each time. These one-sigma values were
plotted as functions of N on log-log paper in figure 5, and it can be seen
that for all six elements the curves have a slope of approximately -1/2, as

was expected.

In the discussion of figure 4 it was pointed out that the simultaneous
use of the two data types produced estimates of the elements which were more
accurate than those obtained from the use of either data type alone. However,
by referring to figure 5 it can be seen that an accuracy equivalent to that
obtained from the simultaneous use of the two data types can be achieved by
using more observations of the same data type.

In a real orbit determination, the simultaneous use of several data types
would be expected to help eliminate high correlations between the parameters
and thereby cause the normal matrix to be better conditioned for inversion.

As stated previously, if a normal matrix is poorly conditioned for inversion,
high correlations between the parameters causing the poor conditioning can
usually be expected. Therefore, it is of interest to know whether the simul-
taneous use of range and range-rate data serves to eliminate high correlations

between the parameters.

The correlation matrices obtained after one orbit by using range, range-
rate, and range plus range-rate data are presented in figure 6 (see appendix A
for the definition of the correlation matrix). In the previous discussion of
the stationary-moon problem, it was pointed out that i, @, and w are
expected to be highly correlated after one orbit of tracking, and figure 6
shows that a high correlation does exist. Note that the correlations between
these three parameters which were obtained by the simultaneous use of range
and range-rate data are not significantly lower than those obtained when either
data type is used alone. The correlation matrices after five orbits are shown
in figure 7. It can be seen that the parameters i, Q, and ® are still
highly correlated in all three correlation matrices. The correlation between
 and @ is slightly higher than that between i and @ and 1 and w
due to the nearly linear relation between § and w when i is small. A
comparison of the three correlation matrices was made after each orbit up to
10 orbits. Except for the one-orbit case, it was found that the three matrices
were similar -~ that is, elements which were highly correlated on one matrix
were highly correlated on the other. Hence it was concluded that range and
range-rate measurements are similar data types and that their simultaneous use
does not produce any appreciable reduction in the correlations.

10



Effects of Variations in the Elements on the
Accuracy of Determining the State

The effects upon the accuracy of determining the elements due to a varia-
tion in the semimajor axis are illustrated in figure 8. This figure is a plot
of the one-sigma value of the error in the estimation of the elements after
five consecutive orbits of tracking as a function of the semimajor axis. The
semimajor axis was varied between 2235 and 5000 kilometers, and i, Q, o, e,
and t, were held constant at the nominal values previously given. For each
value of the semimajor axis considered in the present study (2235, 2500, 3500,
4000, 4500, and 5000 km), it was assumed that 26 range and 26 range-rate meas-
urements equally spaced in time were made every orbit for five consecutive
orbits. It can be seen that, except for the elements a and t,, the accuracy
of determining the elements increased as the semimajor axis increased when
range measurements alone were used, whereas the accuracy decreased for the
elements a, e, and t5 and increased for the elements i, , and w when
range-rate measurements alone were used. In general, for lunar orbits with
semima jor axes of approximately 2500 kilometers, the orbital elements could be
determined with equal accuracy by using either range or range-rate data when
Gp/cé = 1500 seconds. For lunar orbits with semimajor axes smaller than

approximately 2500 kilometers, range-rate measurements gave a more accurate
determination of the elements, whereas for orbits with semimajor axes greater
than approximately 2500 kilometers, range measurements proved to be the better
data type of the two. Also, it can be noted in figure 8 that the relative
advantage of one data type over the other is not constant, that is, the curves
diverge. It is concluded that the data type producing the best set of elements
is very dependent on the semimajor axis.

A range of satellite orbital inclinations from 2° to 40° with respect to
the earth-moon plane was considered. The elements a, Q, w, e, and to were
held constant at the nominal values while 1 was varied over the given range.
It was assumed that the satellite had been tracked over a period of five con-
secutive orbits by making 26 range and 26 range-rate observations per orbit
equally spaced in time. The results are presented in figure 9. This figure
shows typical curves for the variation of the one-sigma error in determining
the elements with the sine of the inclination. Over the range of inclinations
in the investigation, the accuracy of determining the orientation angles i,

Q, and o increased significantly as the inclination increased, whereas the
accuracy of determining the in-plane elements a, e, and to remained approx-
imately constant. It should be noted that the curves for o, and Oy have a

slope of -2 and the curve for o¢i has a slope of -1. 8imilar plots not pre-
sented herein showed that these slopes are independent of the nodal position
and hence it was concluded that oy and oy are inversely proportional to
sin?i and that o4 1is inversely proportional to sin i. This result was
unexpected inasmuch as it was not apparent from the form of the partial deriv-
atives. It can be seen from figure 9 that over the range of inclinations from
20 to LOC either range or range-rate measurements can be used to determine the
elements with approximately equal accuracy when Gp/dé = 1500 seconds. It was

11



concluded from this figure that the relative advantage of one of the data types
over the other does not change over the range of inclinations in the present

investigation.

The curves shown in figure 10 indicate that the position of the line of
nodes during the tracking period is a very significant parameter in the deter-
mination of the orbital elements. The results presented in this figure are
those obtalned by assuming that the satellite had been tracked over a period
of five consecutive orbits during which time the nodal line had rotated through
an angle of 7°. The values of  shown in figure 10 are the values at the
beginning of the tracking period. Again 26 range and 26 range-rate observations
were assumed to have been made during each orbit, with the elements other than
2 being held at the nominal values. ZFor the elliptic orbit in the present
investigation, it was found that the elements Q, w, and e are best deter-
mined when the orbit is viewed on edge (9 = 0° and 180°) whereas the elements
a, i, and %5 are best determined when the orbit is viewed broadside
(@ = 900 and 270°). The very large variation in the curve for gy 1s due to

the fact that, as stated earlier, the partial derivatives of range and range
rate with respect to 1 are approximately proportiocnal to sin Q. As Q
approaches 90° and 270°, the amplitudes of these derivatives approach the maxi-
mum values, and therefore the inclination is more accurately determined at
these nodal positions. The curves in figure 10 show a periodic property with a
period equal to 1 lunar month. They are also symmetric about 90° and 180°
because occultation was not considered. If occultation had been considered,
this symmetry would have been partially destroyed. In the discussion of fig-
ures 2 and 3 it was stated that Jp/dQ is approximately equal to Jp/dw and
that Op/d is approximately equal to Op/dw for near-zero inclinations.
Therefore for small inclinations, high correlations between Q and w and a
similar accuracy of estimation would be expected. It can be seen in figure 10
that even with a medium inclination, the curves for op and o, are very much
alike with approximately the same variations. The correlation coefficient
after five orbits is 0.9985. It can also be seen in figure 10 that the relative
advantage of one data type over the other is not constant over the range of
nodal positions in the investigation but remains within a factor of approxi-
mately 2. -

The effect of eccentricity upon the accuracy of estimating the elements
is illustrated in figure 11. It was assumed that the elements i, Q, w, and
to were held constant at the nominal values while the semimajor axis was fixed
at 5000 kilometers and e was varied between 0.0l and 0.6. The results shown
are those obtained by assuming that the satellite was tracked over a period of
five consecutive orbits with 26 range and 26 range-rate observations made per
orbit. Except for the accuracy of estimating e which had only a slight var-
iation, the accuracy of estimating the elements was found to increase as the
eccentricity increased. However, it can be seen that for eccentricities above
0.1 the accuracy of determining the orientation angles i, {, and w 1is not
appreciably improved when e increases whereas the scale of the orbit, which
is inferred by the semimajor axis a, improves significantly. The results
indicate that the accuracy of estimating the time of periapsis passage 1ty is
very dependent upon the eccentricity. Since the position in orbit is dependent
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upon t, and, furthermore, since the knowledge of to greatly improves with

an increase in eccentricity, it can be concluded that the position in orbit is
better determined at the higher eccentricities. It should also be noted that
the data presented in figure 11 seem to indicate that range measurements are
better than range-rate measurements for all values of ej; however, it must be
remembered that in this case the semimajor axis is fixed at 5000 kilometers and
that, as noted previously, range data have a definite advantage over range-rate
data for large values of a., Hence, it should not be concluded that range meas-
urements are always better than range-rate measurements for all values of e.
However, it can be concluded that for the elements a and t, the relative
advantage of one data type over the other is somewhat dependent upon e. As
shown in the following paragraph, the accuracy of determining the position of

a satellite in orbit is primarily limited by the accuracy of determining the
orientation angles, and it can be seen from figure 11 that the relative advan-
tage of one data type over the other for determining these angles is independ-
ent of e. Therefore it can also be concluded that in the determination of the

position of a satellite, the relative advantage of one data type over the other
is independent of e.

One of the more important parameters to be estimated in any orbit-
determination problem is the position of the satellite. It is therefore of
interest to know how accurately this position can be determined. A qualitative
expression for the accuracy of determining the position in terms of the one-
sigma errors in the estimates of the elements can be obtained as follows. The
vector T 1is written as

T = 7(a,i,0,w,e,t0,t) (10)

and therefore at some fixed time

5= e+ En v Fpa s Tpw s Tpe + T agg (11)

da oi 0N ow de Ot

Equation (11) is then put into rectangular (x,y,z) component form where the
partial derivatives of x, ¥y, and 2z with respect to the orbital elements are
maximized with respect to the position in orbit and the angular variables i,

2, and . By using the triangle inequality, the length of the vector Ar can
be written as

| 2| = |ax] + |ay| + | 2z] (12)

The maximized partial derivatives can then be substituted into the relation
given in inequality (12) and if the largest coefficient of each incremental
change in the elements from the three-component inequality is selected, the
following equation can be written:

13



[&T] S 3](1 + e)ra + a(l + e)(AL + A + Aw) +(l—ga—§)(5Ae+nAto) (13)

By assuming that the small incremental changes in the elements are equal to the

standard deviations of the elements and that IAfl is equal to the standard
deviation of the position P, inequality (13) can be written as

op S3|(1 + e)oa + a(l + e)(og + og + oy) + <I-§§—5>(506 + noto) (1)
- e

It can be shown by substituting the one-sigma errors in the estimates of the
elements from figure 4 into inequality (14) that the major contribution to the
uncertainty in the position is the uncertainty in the orientation angles.
Hence, it is very important to make measurements which allow an accurate deter-
mination of these angles in order that the position of the satellite might be
determined with the most accuracy.

Another point of interest, which is also noted in reference 3, is that the
reflection of any given orbit through the earth-moon plane would give the same
time history for range and range-rate measurements as that of the original
orbit. This fact implies that an addition of 180° to both the node and the
argument of periapsis would not result in any change in the accuracy of deter-
mining the elements and that without a priori information it would not be known
which of the two orbits was being tracked.

CONCLUDING REMARKS

A parametric study of the effects of tracking mode and orbital parameters
on the accuracy of determining the state of a lunar satellite has been made by
using range and range-rate measurements. A comparison of the relative advantage
of using either range or range-rate measurements indicates that the advantage
of one data type over the other 1s very dependent on the semimajor axis and
somewhat dependent on the nodal position and eccentricity but is not dependent
on the inclination. For lunar orbits with medium eccentricity and with semi-
major axes of approximately 2500 kilometers, the orbital elements could be
determined with equal accuracy by using either range or range-rate data when
the ratio of the standard deviation of range measurements to the standard
deviation of range-rate measurements was approximately 1500 seconds. For lunar
orbits with semimajor axis smaller than approximately 2500 kilometers, range-
rate measurements gave a more accurate determination of the elements, whereas
for orbits with semimajor axes greater than approximately 2500 kilometers, range
measurements proved to be the better data type of the two. It was concluded
that range and range-rate measurements are similar data types in that they pro-
duce similar correlation matrices for the state variables and simultaneous

14



use of both data types does not significantly reduce correlations between
the elements.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., October 11, 1965.
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APPENDIX A
DETATLS OF WEIGHTED IEAST SQUARES SIMULATION

A special case of a weighted least squares process was used in the error
analysis presented in this report. This appendix is included to illustrate
the basic equations which were used in the IBM 7094 electronic data processing
system. In particular, the method of obtaining the covariance matrix of the
orbital elements is shown. This method is essentially the same as that
described in reference Uk,

The solution of the eguations of motion of a point mass about a central
body contains six constants of the motion which may be taken as a, 1, Q, w,
e, and t,. The observable quantities, range and range rate, written as func-

tions of these six constants at any given time t are

= f(a,i,0,0,e,t0,t)

©
1

(A1)
= F(a,i,0,w,e,tqy,t)

hol)
]

Theoretically only six properly chosen measurements would be required to deter-
mine the six elements of equations (Al) provided there were no errors in the
measurements. ©Since a measurement error €5 1s associated with any measure-

ment p; or p;, more than six measurements can be used to obtain a "best" set

of elements. The notion of "best" is to be defined subsequently. The sub-
script i denotes the ith measurement.

Equations (Al) represent the functional equations for range and range rate
but similar representation can be made for any measurable quantity. The fol-
lowing equation can be written for the ith measurement of the general quan-
tity y and error in the ith measurement e4:

yi = fi(@j,ti> + ey (A2)

In equation (AE), ¥; 1is analogous to the ith measurement of range or range
rate (defined in eq. (Al)) whereas oz,j is analogous to the elements in equa-

tion (Al). In general, f is a nonlinear function in the aj's, and in order

to make the problem amenable to solution, the basic equations are linearized
about a nominal set ag. If the true values of ay are assumed to be close to
a nominal set ag, then yo(ti) = yg = f(ag,ti) where yg is the calculated
value of the ith measurement obtained by using the nominal set ag. The fol-

lowing equation can then be written:

16
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Ay =y - Vs = f(“j:ti) - f( 3ot ') + ey (A3)

If equation (A3) is expanded in a Taylor series about the nominal set ag and

if the terms of order higher than the first are dropped, the following equation
is obtained:

=M (a, °)+...ai(f—i-—2(onj—a§>+ei (AL)

Ay. 1 - a,l
i
3oy dat 5
o o}

Bf(ti)

The notation —-L means the partial derivative of f(ak,ti) with respect
J
o

to the jth element evaluated at the prescribed set ag, j=1,2, .. .6, at

the time ti. By denoting (aj - a%) = Aaj, equation (A4) can be written as

6
= % éfﬁii) s + e (A5)
o+ J 1

i J

j=1

o}

Equation (A5) can be written in matrix form as

Ay = AL+ ¢ (A6)

where Ay 1is an N X 1 column vector of the observed minus the computed val-
ues of y, A is an N X 6 matrix of known partial derivatives, Aa is a

6 X 1 column vector of deviations of the elements from the nominal set, and €
isan N X 1 column vector of observation errors. The problem is to find the

A
best estimate Aa, of Ao when Ay and A are given. If Aa is determined

A
and the nominal values a® are used, the best estimate of a is G = a® + Aa.

In order to specify what is meant by best estimate, some quantitles must
first be defined. Denote & as the best estimate for Kz § = AQ as the best
estimate of the true value of the observable, and y - § =y - A& = ¢ as the

best estimate of the observation error. Note that the deltas have been dropped
to simplify notation.

The best estimate of o 1is now defined as that a which minimizes the
sum of the squares of the weighted components of the residual vector y - Aad.
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In order to account for the difference in confidence between various observa-
tions and the possible relations between them, a so-called weighting matrix W
which is assumed to be a symmetric, positive-definite N X N matrix is intro-
duced. The weighted least squares function which is to be minimized can now

be written as
Ua) = (v - aa)TW(y - Aa) = eTwe (AT)

In order to minimize the function in equation (AY), the variational prin-
ciple given in reference 4 is used. This principle states that in order for
Q to be an extremum, the first variation in Q must vanish and in order for
this extremum to be a minimum, the second variation must be positive-definite.
If this principle is applied, with only the variation in o being considered,
the following equation can be written:

8q = -8ar ATW(y - Aa) - (v - Aa)TwWAsa

-280T ATW(y - Aa) (A8)

i

The value of this equation must be zero for an extremum, and the fact that o
is arbitrary implies that the best estimate & must satisfy the equation
ali(y - a8) = 0 (49)

or

ATwAG = ATwy (A10)

-1
Premultiplying both sides of equation (A10) by (ATWA) gives the best
estimate

-1
& = (ATWA) ATwy (A11)

provided ATwa  is nonsingular. In order to show that this is the « which
minimizes Q, it is sufficient to show that the second variation is positive-
definite, where the second variation 1s

82Q = 25ar ATWASq (A12)

For arbitrary ©oa, equation (A12) is greater than zero if W is positive-
definite. One of the basic assumptions was that W dis positive-definite, and
therefore & in equation (All) is the best estimate of «.

18
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The remainder of this appendix is devoted to the development of the covar-
iance matrix. Equation (A1l) has been used to determine the best estimate &
and it is now desirable to determine the statistics of 4d. For example, how
well was o estimated? The definitions of the variance and the first mixed
moment can be used to write that the covariance matrix for & is E(GET)
where E denotes the expected value of the variable in the parentheses. By
use of equation (All), the following equation can be written:

E (&aT) - E [(ATWA) L AThyy TWTa (ATWTA) ] (A13)

Since all terms except the random variable y are constant in equation (AlB),
the operator E operates only on y and yl. Hence,

E(84T) = (ATWA)-IATWE(WT)WI'A (ATWTA) -t (A1L)

Reference U4 shows that the best choice of W is the inverse of the covariance
matrix for the measurements where this covariance matrix is E(ny). Assume

that each measurement is of equal weight Gde., cylz = 2 2 .« e . GYN2> and

that the observations or measurements are completely uncorrelated. If these
assumptions are made and if it is noted that E(yyT) is the covariance matrix
for the measurements, then

W = [E(WT)] =L T (A15)

and
WE(yyT) = I (A16)

where I 1is the identity matrix. Hence, equation (Alk) becomes

Az = E(88T) = (ATVA)'l(ATWTA)(ATWTA)’l

(ATwa)1 = o 5(aTa)"1 (A17)
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Note that in the terms of the orbital elements

1
’_ 0a? Pgi%%3 Pan%%0 Pau’a% Pae%% Pato%a%,
2 . O
P1293% o1 P30%% P10%: % Pie%%  Pite"i%,
2
P0a%"% Pai90% oq Pl Pre%%  Pato’a%o o .
3 = (aATwa =c2éﬂh) (418)
A5 = ( ) v
2
Pue %% Pai %71 Pun %0 % Pue®ae Pt 97t
2
Peae% Pei%Y1 Pene’n Peule%w %e Pet%e%t,
g o, O [s] g, O, [s) g, O P o, O O't 2
Pra%t.%  Peoi%tli P%te"e Prgalto’e Pogeltye o
where p 30,05, Pan0500> and so forth, are the first mixed moments and pg4,

Paqs and so forth, are the correlation coefficients. This matrix was used to

obtain the results in the present report. It can be seen from equation (ALl7)
that no actual measurements are needed to determine the variances of the
elements; in particular, only the variance of the measurements is needed. The
covariance matrix for the simultaneous use of two data types such as range and
range rate can be written in several ways, one of which is

-1
T T
g - [ 2
O'p GF.)

The correlation matrix is a matrix having ones as the diagonal terms and
the correlation coefficients of equations (A18) as the off-diagonal terms.

It should be remembered that equation (Al7) is a special case of the gen-
eralized weighted least squares as given in equation (Al13). From the special
form given in equation (A17), it can be seen that for a single data type the
variances of the elements are proportional to the variance of the measurements.
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EQUATTIONS FOR PARTTAL DERTVATIVES OF RANGE AND RANGE RATE

WITH RESPECT TO ORBITAL ELEMENTS

The elements of the A matrix which are the partial derivatives of range
and range rate with respect to the orbital elements are as follows:

fo! 1 1/2
i =3 (r + Rll)l:g Z—ig n(t - tg)sin E] - %RZQ i:‘-_- n(t - to)(1 - e2) /
(B1)
% - L g sin g (B2)
oi P
% _ 1
$ = - 5 Rrmy (BB)
% _1
"% Rris (Bk4)

Q/
°
=

™ 5 a(r + Rh_)[(%)e $in®E - cos E]
+ Rr12<%)2[% S sin B + (1 - e2) /231n %1} (B5)

(1 —ee)/

52
%Gp_ = - %E‘rg(r + Rll)e sin E + Rlp 2(1 - e2)l/2] (B6)
O
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B _1) % ¢ Py ) O -m) + | E-M
a P p5a+§ raa mlaa \Fﬂaa( ) a 2
ol 3l
+R_‘/a—‘_[;7,l_a_(E-M)+(E-M)_-—l+(1-e2)l/2—2
r da da a
eyl E D L or
+RE1(E-M)+12(1 e)/]<2r\/; rz\[aTLaa) (B7)
a_é.=£ —b-af_—)—ganl cosQ+§@sin QEll(E—M)+n2(l-e2)l/2:] (B8)
i e oi
30 . 0 R 1/2
é%:% —p£+§Rr11—;\/5flm1(E-M)+m2(l-62) /]} (B9)
o) . 90 R 1/2
ﬁ:% -p&_i+ger2+;\[aTl 1o(E - M) - 17(1 - e2) /:] (B10)

.1 _éa_p+ tRm, - 2o \fBm 17(E - M) + 1p(1 - e2)l/{] £e sin%E - a cos E +@a(r+Rll)sinE
e P de 1T r re

- LB Rige(a - e2) /2 4 {ngz + 2 @Ez(g -M) - 191 - e2)l/2j]} El - e2) 25 20 e2)1/2]§ sin E> (B11)

% _n{_83% _ legm - B (E - 1) + (1 - Y2 N2 i E L E
ato_o<nato {gl IZ\IE 1 ) 2( e?) — © sin I’2(1‘ l)ae cos

- {ng + 2 @[12(13 - M) - 13(1 - e2)1/2:]} [(%)2(1 - e2)l/2]> (B12)
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where

p2 = R + r2 + 2Rrlj

p=-s P -2
g_:zg_%ir‘in(t - to)sin E
aa_a(E - M) = - % n(t - t0)2 cos B
% = - %1%2 1on(t - to)(1 - e2)1/2
:—:1 - - 2 % men(t - t0)(1 - e2)1/2

o2 _ 2 2 (s - 0)(1 - e2)1/2

r

In the equations in this appendix a, i, Q, ®, e, and t, are the conven-
tional Keplerian elements. The mean anomaly M 1is given by Kepler's equation

M=n(t - tg) =E - e sin E
where n 1is the mean angular rate of the satellite.

The direction cosines are as follows:

Zl = cos O cos - 8in O sin  cos i

lp = -sin 8 cos O - cos © sin O cos i
m; = cos 6 sin Q@ + sin 6 cos Q cos i
mo = -sin 6 sin @ + cos 6 cos Q cos 1
ny = sin 6 sin i
np = cos 6 sin i
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Partiol derivatives of range with respect fo the elements
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Figure 2.- Variation with time of the partial derivatives of range with respect to the elements.
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Partial derivatives of range rate with respect to the elements
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Figure 3.- Variation with time of the partial derivatives of range rate with respect to the elements.
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Figure 6.- Correlation matrices after one orbit.
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Figure 7.- Correlation matrices after five orbits.
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