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Symbol Definition 

m Meteoroid mass in grams in space 

V Meteoroid velocity before deceleration in the atmosphere 
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Xi,. . . , X, 

Xi' si 

Representation of log m,  log v, 1 Be I, e, and A, respectively. 

Sample weighted mean, and weighted standard deviation for 
the variable X. where i = I, . . . , 5 

- 

1 

r.. 
11 

Sample weighted correlation coefficient between X. and X. 
1 I f o r i ,  j = i ,  ... , 5 

R The determinant of the sample weighted correlation coefficients 
r . . f o r i ,  j = I, . . . , 5 

Cofactor of the element r.. in the determinant R 
11 

U R..  
11 

S e Standard e r r o r  of the estimate of Xi from the equation of the 
regression plane 

V 



DE FINITION OF SYMBOLS ( Concluded) 

Symbol 

r1*2345 

r.. 1J-klm 

X 

El 

M 
P 

P 
FM 

F> 

mv F 

Fmv’ 

Z 

Definition 

Multiple correlation coefficient for Xi in relation to X,, . . . ,, X5 

k’ 5’ Partial correlation coefficient between X, and X. with X 

and X 
1 J 

held fixed, where i, j ,  k ,  1, m = 1, . . . , 5 m 

Data point for log m not less than the weighted median log m 

Data point for log m less than the weighted median log m 

Metior absolute photographic magnitude 

Mean number of sporadic and stream meteors per  second per  
square meter of level surface with absolute photographic 
magnitude equal to or  less  than M 

Mean number of sporadic and stream meteoroids per second 
per  square meter of level surface with mass  equal to o r  
greater than m grams 

P 

Mean number of sporadic and stream meteoroids per  second 
pe r  square meter of level surface with momentum equal to or 
greater than mv gram kilometers per  second 

Mean number of sporadic and stream meteoroids per  second 
per  square meter of level surface with kinetic energy equal to 
o r  greater than mv’ gram kilometers’ second-’ 

Mean number of sporadic and stream meteoroids per second 
per  square meter of level surface with the geometric mean of 
momentum and kinetic energy equal to or  greater than mv3/’ 
gram kilometers 3/2 ~ e c o n d ’ ~ / ~  

Zenith angle to meteor radiant in radians 

vi 
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TECHNICAL MEMORANDUM X- 53360 

STATISTICAL ANALYSIS OF PHOTOGRAPHIC METEOR DATA, PART 11: 
VERNIANI'S LUMINOUS EFFICIENCY AND 
SUPPLEMENTED WHIPPLE WEIGHTING 

SUMMARY 

This report  is Part 11 in a series of four reports on the statistical 
analysis of the Hawkins and Southworth random sample of 285 sporadic photo- 
graphic meteors. The four parts of the analysis comprise the combinations 
from two alternative formulations for meteoroid mass and two alternative for- 
mulations for data weighting. Parts I and II have the same weighting as a function 
of air-entry velocity and other parameters. But the surprisingly large disparity 
between the results with &k's luminous efficiency suggests the possibility of 
considerable bias from weighting inversely with the 1.5-power of velocity. 

INTRODUCTION 

Justification and Purpose 

The technology of meteoroids and of their interaction with fields and with 
natural and artificial bodies in space is of considerable scientific and engineering 
interest. 
pretation because of indirection, extrapolation, and bias in  random samples 
caused by physical selectivity. The difficulty of using a sample of photographic 
meteor data to infer the flux distributions of meteoroids as functions of dynamic 
parameters is that the results a re  'sensitive both to the luminous efficiency 
formulation as a function of velocity and to the manner of weighting of the data. 
A study of the statistical consequences of such different' alternatives should 
alleviate the decision problem. This report, with Part I 11 I of this series, will 
present in more detail some results that were mentioned in two recent papers 
12, 31. 

Each of the several sources of data continues to be of difficult inter- 



Method and Notation 

A multivariable statistical analysis is made with weighting functions of 
meteor height, velocity, celestial latitude , zenith angle, and earth-encounter 
probability. The sample is then equally divided with respect to an intermediate 
mass  value , and weighted cumulative distributions for several parameters are 
plotted for the two gradations with respect to mass,  jointly or  separately. The 
analysis is repeated without the weighting with respect to the earth-encounter 
probability. All weighting factors are adjusted so that the sum for the sample 
is equal to the sample size. All f lux values are cumulative with respect to the 
indicated parameter (e. g. , mass,  momentum, etc. ) and are in numbers per  
second per  square meter of level surface. All logarithms are for base ten. 
Statistical notation is according to Hoe1 [ 41. 

Scope 

The same data sample and the same weighting as in Part I [I] of this 
series are used in the present analysis; i. e. , Hawkins and Southworthls [5, 6,1 
random sample of 285 sporadic photographic meteors described in Part I [ I I .  
But instead of calculating the meteor mass values as in Part I [ I] by using 
Epik's [71 physical theory of meteors,  Hawkins and Southworthls [ 61 tabulated 
values are used. These mass values were  computed by Hawkins and Southworth 
[ 61 using Hawkins [ 81 "short trail method, I t  which is said to presuppose 
Verniani's [ 91 meteor luminous efficiency directly proportional to velocity. 

The weighting function for the present analysis was developed in Part I 
[ 11. After weighting inversely with the square of meteor height at maximum 
brilliance, inversely with the 3/2 power of the air-entry velocity, inversely with 
the apparent fraction of the circle of celestial latitude through the meteor radiant, 
and inversely with Gpik's [ IO] earth-encounter probability, it w a s  found that a 
weighting also inversely with exp (0. 182)  maximized symmetry with respect to 
the ecliptic plane (where Z is the zenith of the meteor radiant in radians). Be- 
cause the meteors with radiants more than 42" below the ecliptic were obscured 
by the horizon, the meteors with radiants more than 42' above the ecliptic were 
given double weight for arithmetic considerations of celestial latitude. This 
"spatial" weighting factor f, is used in consideration of a population of meteoroids 
in space regardless of whether or  not they may encounter the earth. The ' I t e r -  

restrial" weighting factor f t  is similar to f, except that f t  does not involve 6pik's 
101 probability that a meteoroid with given orbital parameters will encounter 

the earth during one revolution of the particle. The meteor data and values of 
the weighting functions were tabulated in Part I [ 11. 

2 



DISCUSS~ON OF RESULTS 

The results with the set of mass values used in the present analysis are 
quite different from those reported in Part I f 11 with the mass values calculated 
from 6pik's 171 physical theory. The results of the multivariable statistical 
analysis are tabulated in Appendix I. For  example, with 'Yerrestrial" weighting, 
r E  (direct correlation between the logarithms of mass  and velocity) changed 
from 0. 01 to -0.69, while the corresponding partial correlation ru. 345 changed 
from 0.10 to 0.41; r i 4  (direct  correlation between log mass and eccentricity) 
changed from 0. 11 to -0.45, while the corresponding partial correlation 235 
changed only from -0.14 to -0.23; and r15 (direct  correlation between log mass 
and elongation from the apex of the earth's way) changed from 0. 11 to 0.54, 
while the corresponding partial correlation ri5.234 changed only from -0.02 to 
-0.07. The indicated changes in rj4 and r i 5  appear to reflect the changes in rQ 
and r12.345 through r24 = 0.81 and r 2 5  = - 0.64. 

With weighting, the median value log rn = -1.88 divides the 
sample into two parts with a lower weighted mean log m = -2.35 and an upper 
weighted mean log m = -1. 38. With "terrestrial" weighting the corresponding 
median, lower mean, and upper mean for log m are -1.46, -1.98, and -1.17, 
respectively. Figures 1 through 5 each show cumulative distributions of para- 
meters  over the separate mass-subsets. 

Cumulative distributions of eccentricity are shown in Figures 1 and 2 
fo r  "spatial" and "terrestrial" weighting, respectively. The separation of the 
"high" mass cumulative distribution from that for the meteors of "low'' mass  
depends more on the ordinary'correlation r i 4  than on the corresponding partial 
correlation rlk 235; e. g. , Figures 1 and 2 show that meteors of low mass tend 
to have high eccentricity in agreement with the negative correlations r 1 4  = -0.47 
and -0.45, respectively, from Appendix I. 

Figures 3 and 4 show for the cumulative distribution of arithmetic 
celestial latitude of meteor radiant the same as Figures 1 and 2, respectively, 
showed for the cumulative distribution of eccentricity. The barely separable 
plots in Figures 3 and 4 reflect the numerically low correlations r13 = 0.10 and 
0.04, respectively, from Appendix L But the widely separated "terrestrially" 
weighted cumulative distributions of velocity in Figure 5 reflect the strongly 
negative correlation ri2 = -0. 69 from Appendix I. 

3 
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The results of the present analysis differ more\widely from those in 
Part I [ 11 with the same weighting than had been expected. This is caused by 
the interacting roles of mass and velocity, and possibly to a bias with respect 
to velocity that may not be appropriately reduced by the weighting function that 
is inversely proportional to the 3/2 power of velocity. The next run of this 
analysis, with the Hawkins and Upton's [ ii] weighting as a function of magnitude 
above the limit of the photographic plate, instead of weighting as a function of 
velocity, is now expected to give more convincing results. 

4 
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Figures 6 through 10 show weighted whole -sample log cumulative distri- 
butions with respect to the logarithms of dynamic parameters such as mass ,  
momentum, etc. In each case the plots seem to be approximately linear over 
the large-mass half of the sample weight. Presumably, the smaller masses are 
not adequately represented, and therefore should be ignored in Figures 6 through 
io. 

Figure 6 shows that the logarithm of the "spatiallyf' weighted cumulative 
distribution of log mass has a unit negative slope with respect to log mass  for 
the present set  of mass values, just  as was found in Part I [I] with the other 
set. Also the corresponding slope with "terrestrialf' weighting in Figure 7 has 
the same value ( -i. 34) as w a s  found in Part I [ I I , with the other set of mass 
values, and as w a s  found previously by Hawkins and Upton [ i l l  with a somewhat 
smaller sample and different weighting. 

Figures 8 through 10 show that the slope (-1.34) in Figure 7 is invariant 
with respect to replacing log mass with the logarithms of momentum, kinetic 
energy, and the geometric mean of momentum and kinetic energy, respectively. 
The derivation in Appendix I1 indicates that this is the result that should be found 
if mass and velocity were statistically independent. But the correlation is not 
numerically s m a l l  in the present case; and different slopes were found in Part I 
[ I] with numerically smaller correlation. No explanation for this effect has 
been found. 

Any ordinate in Figures 7 through 10 is converted into log cumulative 
mean total flux by subtracting -15.18 (the logarithm of the area-time exposure 
product in square meter seconds) and adding 0.08 (the logarithm of the factor 
by which mean total flux exceeds mean sporadic flux) ; see Part I 11. 
results are shown in Figure ii. 

The 

CONCLUSIONS 
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FIGURE I. SPATIALLY WEIGHTED DISTRIBUTIONS OF ECCENTRICITY 
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Sample Cumulative Distributions Separately for 'High' and 'Low' 
Mass Regimes with Terrestrial Weighted f t  
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log F M ~  = 0.537 M p  -13.81 

log F, = -1.34 log m -14.94 

log Fmv = -1.34 log (mv) -13.34 

log Fmv2 = -1.34 log ( m v 2 )  -11.62 

109 Fmy3/2 = - 1.34 (mv3/2)  -12.38 

PARTIAL 

Terrestr ia l  Weighting f +  

0.405 for log m vs. log v 

0.195 for log m VS. lflel 

-0.435 for log v VS. l B e l  

0.835 for log v vs. X 

CORRELATIONS 

Spatial Weighting f, 

0. I35 for log m VS. l&l 
-0.235 for log m vs. e 

0.521 for lpel VS. e 

-0.797 for X vs. e 

FIGURE 11. SUMMARY RESULTS 



APPENDIX I. NUMERICAL RESULTS FROM THE MULTIVARIABLE 
STATISTICAL ANALYSIS. X i y . .  . ,X, = log my log v, 

, e ,  ANDA, RESPECTIVELY 
lPe l  

STATISTICAL 
PARAMETER 

- 
Xi 

x2 

x3 
x4 

x5 

- 
- 
- 

S I  

s2 

s3 

s4 

s5 

rii 

'I2 

13 

14 

15 

r22 

r2 3 

r2 4 

r2 5 

r33 

16 

WITH SPATIAL 
WEIGHTING f 

S 

-I. 8652 

I. 4240 

28.9383 

0.7040 

83.1402 

0.6285 

0.1793 

18.9195 

0.2214 

21.2353 

I. 0000 

-0.7101 

0.1040 

-0.4714 

0.6828 

I. 0000 

-0.1242 

0.8324 

-0.8258 

I. 0000 

WITH TERRESTRIAL 
WEIGHTING ft 

-I. 5691 

I. 2870 

25.8878 

0.5505 

97.1172 

0.5433 

0.1684 

22.2727 

0.2418 

24.4780 

I. 0000 

-0.6879 

0.0380 

-0.4529 

0.5429 

I. 0000 

0.0465 

0.8108 

-0.6369 

i.0000 



. 

STATISTICAL 
PARAMETER 

r34 

r35 

r44  

r45 

r55  

R 

Rll  

Rl2 

Rl3 

R14 

15 

R 2 2  

3323 

R24 

R25  

R33 

R34 

R35 

R44 

R45 

~- 

WITH SPATIAL 
WEIGHTING f 

S 

-0.2718 

0.1196 

I. 0000 

-0.4496 

I. 0000 

0.0132 

0.0300 

-0.0361 

-0.0032 

0.0155 

0.0027 

0.3690 

0.0392 

-0.2166 

-0.1872 

0.0185 

-0.0270 

-0.0202 

0.1459 

0.1059 

WITH TERRESTFUAL 
WEIGHTING ft 

-0.1343 

-0.0606 

I. 0000 

-0.1649 

I. 0000 

0.0313 

0.0658 

-0.0763 

-0.0100 

0.0323 

0.0070 

0.5399 

0.0637 

-0.3726 

-0.2371 

0.0396 

-0.0483 

-0.0248 

0.2976 

0.1678 

17 
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APPENDIX II. SLOPE OF LOG-CUMULATIVE-FLUX VS LOG-MASS, 
LOGMOMENTUM, ETC. FOR METEOROIDS ASSUMING 

STATISTICAL INDEPENDENCE OF MASS AND VELOCITY 

Let F,, the meteoroid cumulative-flux with respect to mass  m,  be 

F = d 6 m  P2 , 
> 

where P6 and & are constants. A meteoroid with mass m not less than some 
limiting value mL, but otherwise random, has the following probability density 
function for m: 

A meteoroid with m > mL that has a particular velocity v, but that is otherwise 
random, can satisfy the requirement 

mvn > M 

with probability P 
C Y  

where n is a constant; i. e. , n = I for momentum, 2 for kinetic energy, etc. 
Then, if v is randomly distributed in the interval vL < v < vu and has some 
continuous probability density function f(v) , then the probabiity P that a 
meteoroid with m > mL but otherwise random will satisfy mv > M is found 
from 
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V P2 V 

kP = / (c) f(v)dv v-""f(v)dv , ( 5) 

L V 
L V 

where k is constant is determined by the further condition that P = i when 
M = m  v ;Le . ,  L L  

n 

V 
$2 v-@' f(v)dv . 

L k = v  

Then, by Equations ( 5) and ( 6 )  

Therefore, because M in Equation (7)  
exponent, the slope of log-cumulative-flux vs  log-mass should be invariant with 
respect to the substitution of momentum o r  energy for mass  when mass and 
velocity are statistically independent. 

and m in Equation ( i) have the same 
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