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THEORETICAL ELASTIC MISMATCH STRESSES 

by Robert H. Johns 

Lewis Research Center 

SUMMARY 

Stress-magnification factors were obtained for  the effect of mismatch of the middle 
surfaces at junctions in shell structures. The results are directly applicable only when 
the thickness and the slope on one side of a mismatched joint a r e  the same as those on the 
other. Results a r e  found for biaxial s t ress  states with any principal stress ratio at the 
joint, including cases in which the s t resses  a re  of opposite sign. Both principal and 
effective stress-magnification factors are given for long o r  local mismatch. The results 
a r e  presented both graphically and in equation form. 

As expected, the increase in s t ress  is substantially higher when the membrane stress 
normal to the mismatch is greater in magnitude than that parallel to the mismatch. The 
effective s t ress  factors a r e  highest when the membrane stress normal to the mismatch 
is about twice the membrane stress parallel to  the mismatch. This case would occur, 
for example, at a longitudinal seam in a cylindrical pressure vessel. Principal stress-
magnification factors for a given amount of mismatch do not vary with s t ress  ratio if the 
membrane stress normal to the mismatch is greater than that parallel to the mismatch. 

INTRODUCTlON 

Mismatch between components of pressure vessels can result in substantial local in­
creases in stress. consequently, an investigation was conducted to evaluate the magni­
tudes of the mismatch s t resses  for a complete range of membrane s t r e s s  ratios at a mis­
matched joint. 

Recent utilization of high-strength materials with relatively low plane-strain fracture 
toughness in pressure vessels has emphasized the importance of considering s t resses  
arising from all sources. The fabrication problems associated with increasingly larger 
size space boosters tend to increase the possibility of having increased local s t r e s s  
levels due to mismatch between the components from which the pressure vessel is man-
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ufactured. Consequently, mismatch s t resses  and their effect on pressure vessel strength 
take on added importance. 

The first published work on mismatch s t resses  known to the author (ref. 1) provided 
a solution for the stresses in a flat plate with a mismatched welded joint loaded in tension. 
The analysis was then modified in the same report to give the s t resses  in an axially 
loaded, circular cylinder of constant thickness with a mismatched circumferential joint. 
Reference 2 presents general linear equations in te rms  of edge-influence coefficients for  
the bending moment and shear force at a shell junction, including the effect of an axisym­
metric mismatch in a thin-walled pressure vessel. 

Use of the equations of reference 2 to determine the effect of mismatch on the s t r e s s  
distribution was verified experimentally as shown in reference 3. The cases studied were 
circular cylindrical pressure vessels with a continuous inner surface or  a continuous 
outer surface at a change in thickness at a circumferential joint. Agreement between 
theory and experiment was excellent. More recently, a nonlinear solution for the dis­
continuity s t resses  at an axisymmetric junction between very thin shells of revolution, 
including the effect of mismatch at the joint, has been provided in reference 4. 

Reference 5 is a brief note describing a simple, general method for determining 
mismatch s t resses  in a pressure vessel, with results given for a circumferential joint in 
a circular cylinder. The analysis is applicable only to shells of constant thickness, and 
s t resses  are found only at the junction. The last limitation is not deemed serious because 
the maximum s t resses  due to  mismatch occur very near o r  at the junction. Analyses in­
dicate that principal s t resses  may be a percent or so higher away from the joint under 
certain conditions. 

In general, the s t r e s s  field varies continuously along the meridian of a pressure-
vessel dome. Also, flight loads and hydrostatic pressures produce variations in s t ress  
along the meridian, as well as circumferentially, in most propellant tanks. Knowing the 
resultant mismatch s t resses  in any s t ress  field is therefore desirable. 

The purpose of this report is to present equations to  determine mismatch s t ress-
magnification factors for any stress ratio and for any amount of mismatch in a pressure 
vessel  with equal wall thicknesses on both sides of the joint. The approach described in 
reference 5 is extended herein to include mismatch between any two elements of equal 
thickness in a pressure vessel, but the joint need not be circumferential as it was in 
reference 5. Results a r e  presented graphically for mismatch up to 100 percent and for 
stress ratios from minus infinity to plus infinity. It is recognized that the case of 
100 percent mismatch appears academic, since the structure would theoretically part at  
the joint. In practice, however, a weld bead would probably be at such a seam to act as 
a transition section. Stress concentrations resulting from reduced thickness or reen­
trant corners a re  not considered in the determination of the stress-magnification factors. 

In addition to a general analysis of the problem, several special cases were con­
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sidered in more detail. These cases included tensile specimens, seams in pressurized 
spherical shells, and longitudinal and circumferential joints in cylindrical pressure ves­
sels. The results for  negative s t r e s s  ratios may be useful for  the analysis of pressurized 
shell structures carrying axial compressive loads such as the thrust loads acting on 
launch vehicles. 

The information provided should also be of help in the selection of permissible 
amounts of mismatch to  be included in specifications for  design and manufacture of pres­
sure  vessels or  other shell structures. The results a r e  presented in a manner suitable 
for ready use  by a designer or  stress analyst. 

SYMBOLS 

d mismatch (distance between middle surfaces at junction), in. 

h thickness, in. 

K s t ress- magnification factor 

M bending moment, in. -lb/in. 

N normal force, lb/in. 

n s t r e s s  ratio, ol/02 

R radius of curvature of joint, 

1, Poissonts ratio 

(5 normal s t ress ,  psi 

Subscripts: 

b bending 

c r  critical 

d discontinuity 

e eff ective 

mem membrane 

P principal 

1 normal to  mismatch 

2 parallel to mismatch 

in. 
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ANALY S IS 


In the ANALYSIS, equations are derived for  mismatch stresses, and the figures which 
show a graphical presentation of the equations are mentioned. The significance of these 
figures is discussed in the 'DISCUSSION. 

General 

The general procedure used herein for  determining stresses resulting from mis­
match in a pressure vessel  was used first in reference 5. It is directly applicable only 
when the thickness and the slope on one side of a mismatched joint a r e  the same as those 
on the other. Junctions between shells of different geometries with a continuous slope at 
the junction, as well as joints in shells of a given geometry, are thus included. 

Jf a mismatch exists at a circumferential joint between elements of different thick­
nesses in a moderately thin pressure vessel, the edge-influence coefficient approach out­
lined in reference 2 can be used to find the s t resses .  For highly s t ressed pressure ves­
sels with very large radius-to-thickness ratios, nonlinear equations such as presented in 
references 4 and 6 are necessary to find discontinuity stresses if the geometry varies 
across  the junction. If the problem is simply mismatch between shell elements of the 
same thickness and slope, however, nonlinear shell equations in which the s t ress -
magnification factor is a function of the s t r e s s  level are not necessary to determine the 
mismatch s t resses  even for  very thin, highly s t ressed pressure vessels. 

The reason nonlinear shell equations a r e  not necessary in determining mismatch 
s t resses  in constant thickness shells is that the mismatch moment is a function of mis­
match and the force in the shell normal to the mismatch only. A shear  force, as well as 
a bending moment, exists at the joint. Because the thickness is the same on both sides 
of the joint, a point of inflection in the deflection curve due to  mismatch exists at the 
joint. Antisymmetry requires that the deflection due to  mismatch on one side of the junc­
tion be equal and opposite to that at an equal distance on the other side as shown in fig­
u re  l(a). This antisymmetry also requires that the joint not deflect but only rotate be­
cause of the mismatch. The fact that the deflection at the joint and the force normal to 
the joint a r e  the same as if no mismatch were present requires that the average s t r e s s  
parallel to the mismatch remain unchanged. Only uniform membrane s t r e s s  and dis­
continuity bending stress due to mismatch a r e  thus present at the joint. The mean 
s t resses  parallel and perpendicular to the mismatch at the joint are not affected by the 
mismatch moment or shear  force. 

In this report, only simple beam formulas, without the use of edge-influence coef­
ficients, a r e  required for  the solution. The forces and stresses only at the mismatch 
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(a) Deflection of middle surface. 

(b) Loading and geometry. 

Figure 1. - Mismatched jo in t  in shell. 

are discussed. The method of analysis used does not furnish any information about the 
distribution of forces away from the joint. Since the s t resses  contributed by the mis­
match a r e  usually maximum at or very near the joint, the information furnished herein 
is believed to be all that is necessary for  most s t r e s s  analysis purposes. 

Analyses of axially symmetric mismatched joints performed with the use  of edge-
influence coefficients indicate that principal s t resses  associated with mismatch may be 
a percent or so higher at a slight distance from the joint. These s t resses  may not be a 
maximum right at the joint because the bending s t resses  due to  the mismatch shear force 
may increase somewhat fas ter  than those due to  the mismatch bending moment decrease. 
However, the e r r o r  involved in neglecting this small  increase in s t r e s s  which may occur 
is believed to be negligible fo r  engineering purposes. 

If a change in curvature a lso occurs at the mismatch, additional discontinuity 
s t resses  result from this change. The mismatch s t resses  can be superimposed upon the 
geometrical discontinuity stresses and the membrane s t resses  to  obtain the total stress. 

Basic Equations 

As shown in figure l(b), N1 is the membrane force per  unit length normal to the 
mismatch in the shell and N2 is the force per  unit length parallel to  the mismatch. 

The corresponding membrane s t resses  are 



and 

respectively. The bending moment at the joint due to the eccentricity of the middle sur ­
faces or  mismatch is 

Md = Nld 

The effect of this bending moment is the same as if an external moment of the same 
magnitude were uniformly distributed along the junction which has this mismatch. One-
half of the mismatch moment is applied to the shell on each side of the joint because the 
thicknesses, and therefore stiffnesses, are assumed to  be identical. The bending s t r e s s  
in the direction normal to the mismatch is, thus, 

6M1- 6 Md 3Nld - d'l,b=*--*--=*-- * 3h'1, mem 
h2 h2 h2 

If the mismatch is assumed to  be relatively long, little change in the curvature of the 
shell can take place in a direction parallel to  the mismatch. Consequently, the bending 
s t r e s s  parallel to  the mismatch is 

'2, b = "1, b = *3v d 
'1, mem 

where v is Poissonls ratio. The resultant s t resses  are then 

and 

Let the membrane stress normal to the mismatch be n times the membrane s t r e s s  
parallel to the mismatch 
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-

'1, mem - nu2, mem (5) 

Then equations (4a) and (4b) become 

and 

u2 = (1 * 3vn%)02, mem 

Pr inc i pa I S t resses 

In determining critical s t resses  and stress-magnification factors, the stress of 
largest absolute magnitude is considered critical, whether it be tensile or  compressive. 
Thus, only the positive sign need be used in equation (sa)when critical principal s t r e s ses  
a r e  found for  positive o r  negative n. Thus, 

In equation (6b), the positive sign should be used with positive n and the negative 
sign with negative n in determining critical principal s t resses .  For  positive n, the 
critical principal s t r e s s  is 

For negative n, 

Depending upon the value of n, u1 mem may be greater than, equal to, or  l e s s  than 

'2, mem' By use of equations (5), (6ai), (6bl), and (6b2) the principal stress-
magnification factors perpendicular and parallel t o  the mismatch a re ,  respectively, 
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Positive or  negative n: 

= 1 + 3 -d 
hOI,mem 

Positive n: 

a2 = 1+ 3vn-d 
CJ2, mem h 

Negative n: 

O2 = 1 - 3vn-d 

('2, mem h 

Positive stress ratio n. - For design purposes, only the larger  of the two principal 
s t resses  is usually of interest. If n is between 1and -1, the numerically maximum 
membrane stress is parallel to the mismatch. Then, from equations (5), (7), and (8a), 
f o r  positive s t r e s s  ratios n the principal stress-magnification factors Kp a r e  

O < n < l :  

K p , 1 = .  
2,mem 

-- O l  n = n (1+ 3%) (9) 
'1,mem 

a2 = 1+ 3vn-d 
Kp,2 = '2, mem h 

A comparison of equations (8a) and (9) shows that for  large mismatch and biaxiality 
(d/h and n approaching 1) the larger  stress is perpendicular to  the mismatch. For 
smaller mismatch and biaxiality, however, the maximum s t r e s s  is parallel to  the mis­
match. Solving equations (8a) and (9) for  n gives 

. 
1n =  

1 + 3(1 - V) -d 
h 
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Figure 2 (p. 16) is a plot of this equation and shows the region in  which equation (8a) 
or (9) is critical. 

F o r  n greater than 1, the maximum membrane s t r e s s  is perpendicular to  the mis­
match. Then, f rom equations (5), (7), and (8a), 

n >  1: 

al = 1 + 3 -d 
5,1= h'I, mem 

11?n 11v2, mem 

If equations (7)and (11)a r e  compared, it can be seen that the maximum s t r e s s  is always 
perpendicular to the mismatch for  n greater than 1 as is *U be expected. A plot of maxi­
mum principal stress-magnification factor as a function of mismatch and s t r e s s  ratio is 
presented in figure 3(a) (p. 17) for relatively long mismatches. 

If the mismatch is relatively short  in length (less than about 5 characteristic lengths
m),local distortions will occur which relieve mismatch s t resses  parallel t o  the mis­
match. These local distortions a r i s e  because complete radial constraint requiring ra­
dial planes to remain so is not present for local deviations from proper contour. The 
tendency is to induce strains because of Poisson's effect but not s t resses .  Thus, 
Poisson's ratio should be set equal to zero in equation (8a) for  the case of local mis­
match. The maximum principal stress-magnification factor for  local mismatch is plot­
ted as figure 3(b) (p. 17). Note that the maximum s t r e s s  in the structure can never be 
l e s s  than the membrane s t ress .  Thus, the minimum stress-magnification factor is 1. 

Principal stress-magnification factors for  a circumferential joint in a cylindrical 
pressure vessel a r e  given in figure 4 (p. 18). Those for  a mismatched joint in a uniaxi­
ally s t ressed member, a joint in a spherical pressure vessel, or  a longitudinal seam in 
a cylindrical pressure vessel  are the same and a r e  shown in figure 5 (p. 18). These 
figures a r e  simply cross plots f rom figure 3 (p. 17). 

Negative stress ratio n. - If n is negative, equation (8b) is used in place of equa­
tion (8a) in determining stress-magnification factors. As mentioned previously, if n is 
between 1 and -1, the numerically maximum membrane stress is parallel to  the mis­
match. Using equations (5), (7), and (8b) yields 
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- 1 < n < 0 :  

Kp, 1	= 
('2, mem 

In determining which principal stress is critical, only the absolute magnitudes of 
equations (8b) and (9) are of interest. Since n is negative for this case, an equation 
identical to equation (10) results when the absolute values of equations (8b) and (9) a r e  
solved for n. Therefore, figure 2 (p. 16) also separates the regions in which equation 
(8b) or (9) is critical. 

For n between -1 and -m, the membrane stress with the maximum absolute value 
is perpendicular to the mismatch. Then, from equations (5), (7), and (8b) 

-03 < n < -1: 

= 1 + 3 -d 
(7)%=. 

1, mem h 

1- 3vn-d 
- h-

%,2 = 
'1, mem n 

A s  for the case where n is greater than 1, the s t ress  with the larger  absolute value is 
always perpendicular to the mismatch for n less  than -1. 

As a result of the foregoing analysis, figure 3 (p. 17) can be used to find the principal 
stress magnification factors for both positive and negative n. These factors are based 
on the assumption that the stress larger  in absolute magnitude, whether it be tensile or  
compressive, is critical. 

Effective Stresses 

Maximum effective s t ress .  - If the distortion energy theory is used as a yield cri­
terion, the effective stress is 
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Substitution of equations (sa)and (6b) into equation (13) gives effective stresses including 
the effect of mismatch. In finding maximum effective stresses, the surface with com­
pressive bending s t resses  must be considered in addition to the surface with tensile bend­
ing s t resses .  When equations (sa)and (6b) are substituted into equation (13), positive 
bending parallel to  the mismatch is associated with positive bending perpendicular t o  the 
mismatch. Similarly, the negative signs are used simultaneously when compressive 
s t resses  a r e  considered. 

Performing the previously mentioned substitution results in the following equation for  
effective stress at the mismatch on the surface with tensile bending s t resses  (indicated 
by (+)): 

-= ‘2, mem((z - n + 1)+ 3n[(2n - 1)+ v(2 - + 9n2(1- v + v )(E,,>,’ (14a) 

Similarly, the effective s t r e s s  on the surface with compressive bending s t resses  (indi­
cated by (-)) is 

‘e(-) = 02 mem - n + 1) - 3n[(2n - 1)+ v(2 - nd (i)+ 9n2(1- v + v2)(--) (14b)d 2  
h 

Equations (14a) and (14b) must be compared to  determine the critical effective s t ress .  
Solving these two equations simultaneously results in n = 0 and 

n=-1 - 2v 
2 - v  

F o r  mismatched joints with s t r e s s  ratios between zero and the value given by equa­
tion (15), the maximum effective s t r e s s  is on the surface with compressive bending 
s t r e s s  and is given by equation (14b). Conversely, for all other stress ratios, the maxi­
mum effective s t r e s s  is on the surface with tensile bending s t resses  and is given by equa­
tion (14a). 

The effective s t r e s s  in the membrane region is 

0e ,mem = u2 ,mem i n 2  - n +  1 

I.  



The effective stress magnification factors Ke associated with the mismatch are there­
fore obtained by dividing equations (14a) and (14b) by equation (16). The resulting equa­
tions are 

’ 3n [3n(l- v +  v2 d) - + 2 n - I +  v(2 - n)lj’” (17a)Ke(+)= 2 h h‘e, mem n - n + l  

and 

0 


Ke(-) = 3n 2 [ 3 n ( l - v + v2 d- - 2n +- 1 - v(2 - n)l1I2 (17b) 
‘e, mem n2 - n +  1h h 

Stress-magnification factors for  long mismatch. - For v = 0.3, equation (15) gives 
n = 0.235 as the s t r e s s  ratio above which the maximum effective stress is on the surface 
with tensile bending. Equation (17a) therefore gives the stress-magnification factors for  
stress ratios greater than 0.235 and less than zero if Poissonps ratio is 0.3. In a like 
manner, equation (17b) gives stress-magnification factors for  s t r e s s  ratios less  than 
0.235 bud greater than zero. 

Effective stress-magnification factors for  long o r  continuous mismatch (v = 0.3) are 
given in figures 6(a) and (b) (p. 19)f o r  positive and negative stress ratios, respectively. 

Stress-magnification factors for  local mismatch.._- If a mismatched joint is axially 
symmetric, symmetry and continuity require that radial planes remain radial. A s  is 
well known from familiar discontinuity analyses, circumferential bending moments and 
stresses equal t o  Poisson’s ratio t imes the corresponding meri.diona1 values a r e  induced. 
This same tendency exists for  relatively long mismatched joints oriented in any direction, 
as was assumed in equation (3b). However, as mentioned previously, ifthe mismatch is 
relatively short in length, local distortions will occur. Then the tendency is to induce 
s t ra ins  because of Poisson’s effect but not stresses. 

An approximate effective stress-magnification factor for  local mismatch can there­
fore  be obtained simply by setting P o i s s o n ? ~ratio equal to  zero in equations (17); the 
following equations result: 

Ke(+) = 
3n - 2 k n c +  2n - li]1/2 

‘e, mem n2 - n +  1h h 

and 
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Substitution of v = 0 into equation (15) gives n = 1/2. The maximum effective 
stress-magnification factor therefore occurs on the surface with compressive bending 
stresses and is given by equation (18b) for  stress ratios between zero and 1/2 for  local 
mismatch. It occurs on the tensile bending stress surface for all other values of stress 
ratio n. Effective stress-magnification factors for local mismatch obtained from equa­
tions (18) are presented in figures 6(c) and (d) (p. 20) for  positive and negative stress 
ratios, respectively. 

Special cases. - Equation (17a) was solved for  several frequently occurring cases, 
and the results are as follows: 

n = 0 (Uniaxial load parallel to mismatch): 

n = 1/2 (Circumferential joint in cylindrical pressure vessel): 

n = 1 (Mismatched joint in spherical pressure vessel): 

-

1 + 3 ( 1 + ~ ) - + 9 ( 1 ­d 
h 

n = 2 (Longituc inal joint in cylj tdrical pressure vessel): 

13 




n = 03 (Uniaxial load perpendicular to mismatch): 

The last equation was obtained by successive applications of LPHospita12srule, made ne­
cessary by the indeterminate form of the equation when n is infinite. A simple check 
can be made of equation (23) if the tensile specimen is narrow. Setting v equal to  zero 
gives 

which compares with equation (4a). Equations (20) to  (23) a r e  plotted as figures ?(a) 
to (d), respectively (p. 21). 

DISCUSS ION 

Gene raI 

Stress-magnification factors have been determined in this report for  shells of con­
stant thickness with varying amounts of mismatch and for  any biaxial s t r e s s  field. Be­
cause of the method of analysis used, it was not necessary to  use edge-influence coeffi­
cients. In fact, the usual edge-influence coefficient approach is normally used only for  
axially symmetric joints, whereas the method used herein is applicable for almost any 
joint in a shell. 

The results a r e  a function of dimensionless mismatch, s t r e s s  ratio, and Poisson's 
ratio only. Contrary to the usual solutions for shell problems, the curvature of the shell 
does not enter into the equations o r  affect the results. Also, as discussed in the 
ANALYSIS section, because shells of constant thickness a r e  being considered, nonlinear 
shell solutions a r e  unnecessary even though the shells may have high radius-to­
thickness ratios and be highly stressed. 

All curves of stress-magnification factors given herein a r e  presented fo r  two dif­
ferent conditions, namely, long or  local mismatch. A mismatch is considered local if 
its length is l e s s  than about 5 characteristic lengths m. For local mismatch, local 
distortions due t o  Poisson strains a r e  assumed to take place to relieve s t resses  parallel 
to the mismatch. For long or continuous mismatch, however, such as at an axially sym­
metric joint, changes in curvature parallel to the mismatch cannot take place. The 
simple procedure used to find the s t resses  for the case of local mismatch was to set 
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Poissonts ratio equal to zero in the equations which had been derived for  cases of long or  
continuous mismatch. 

Stress Distribution 

As with the more usual solutions for  discontinuity s t resses  in shells, the s t resses  
resulting from mismatch should decay exponentially with distance normal to the joint. 
The effect of the mismatch is thus felt for  several characteristic lengths on either side of 
the joint. If it is desired to know the distribution of s t ress  away from the joint to a fairly 
high degree of accuracy, it may be necessary to use finite deflection theory, particularly 
if the shell is very thin and highly stressed. 

Mismatch s t resses  a r e  antisymmetric on either side of a joint; that is, s t resses  on 
the outer surface on one side of the joint a r e  the same as those on the inner surface at an 
equal distance on the other side of the joint if the thickness is constant. 

Only s t resses  at the joint are given herein. These s t resses  a r e  essentially the max­
imum s t resses  and, thus, usually all that is of interest to the designer. Occasions do 
ar ise ,  however, when it is desirable to  know the distribution of s t r e s s  away from the 
mismatch. Some work with regard to this subject is presently being done at the Boeing 
Company. In addition, they a r e  also investigating angular mismatch, that is, an imper­
fection which is a discontinuity in slope such as a cusp o r  a 'tsink-intt at a joint. 

Principal Stresses 

Some materials a r e  subject to brittle failure even though the basic s t r e s s  state may 
be elastic. Fo r  such situations, principal stress-magnification factors a r e  usually more 
useful than effective stress-magnification factors. Principal stress-magnification fac­
to r s  may be particularly useful when mismatch s t resses  in pressure vessels a r e  being 
considered, because most joints o r  seams in pressure vessels a r e  either circumferential 
o r  along a meridian and thus parallel to the principal s t resses .  

Depending upon the s t r e s s  ratio and the amount of mismatch, the maximum principal 
s t r e s s  may be either parallel o r  perpendicular to the mismatch. A plot of the parameters 
bounding the regions of different directions of maximum principal s t ress  is given in fig­
u r e  2. For  relatively low values of the s t ress  ratio n and mismatch dfh, the maximum 
principal s t r e s s  is parallel to the mismatch. This situation a r i ses  because of the over­
riding influence of the maximum membrane s t ress  which is parallel to  the mismatch for  
n less than 1. Conversely, values above and to  the right of the appropriate curve indi­
cate maximum s t r e s ses  perpendicular to the mismatch. 
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Poisson's ratio, 
V 

0.3 (Lonq mismatch) 
(Local ismatch) 

\ KP = n ( l + 3 $ ­

for t h i s  region ­
\
\ 

I 
\ 
\ 

.2tKp = 1+ 3 u n  d (positive n) or  
-
'. 

K = 1- 3 u n  - (negative n) 

. ' ~ f f t h ~ r e ~ ! ,  i , 
0 
. 2  . 3  . 4  . 5  . .7 .a . 9  1.0 

Stress ratio, +n = ul,mem/u2, 

Figure 2. - Parameters def in ing direction of maximum pr incipal  stress. 

Plots of principal stress-magnification factor for  long and local mismatch are pre­
sented in figures 3(a) and (b), respectively, for both positive and negative stress ratios 
n. 	 Note the similarity of the two figures. The only difference is that the s t ress-
magnification factor is 1for local mismatch for  small values of n, whereas it is greater 
than 1 for long mismatch in all instances. Actually, for intermediate lengths of mis­
match, this factor lies somewhere between 1 and the value given in figure 3(a) in the 
region where the s t ress  parallel to the mismatch a2 is critical. The line of demarca­
tion between the region where the maximum principal stress is perpendicular to the mis­
match and that where it is parallel to the mismatch should be noted. Stress-magnification 
factors a re  the same for positve,and negative n for the same percentage mismatch. 

Values of n to the left of the intersection of the appropriate mismatch curve with 
the abscissa axis in figure 3(b) have maximum stresses  parallel to the mismatch and 
thus a principal stress-magnification factor of 1. Shells with stress ratios and mismatch 
in this region thus have no increase in the maximum stress due to the local mismatch, 
since it is assumed that there exists no s t ress  due to the Poisson effect. Note that prin­
cipal stress-magnification factors for a given percentage mismatch are the same for all 
shells in which the membrane s t resses  normal to the mismatch are equal to or greater 
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than the membrane stresses parallel t o  the 
mismatch. 

Figures 4 and 5 are cross plots fo r  
some of the data in figure 3. Figure 4 pre­
sents principal stress-magnification fac­
to r s  for  a circumferential joint in a cylin­
drical pressure vessel. Principal stress-
magnification factors for  all cases in which < 

the membrane s t r e s s  normal to the mis­
match is equal to o r  greater than that par­
allel to  it are presented in figure 5. These 
factors a r e  good for  both long and local 
mismatch, because the s t resses  induced 
by the Poisson effect do not enter into the 
calculations. 

Effective Stresses 

The maximum distortion energy theory 
is perhaps the most widely accepted yield 
criterion. F o r  this reason, s t ress-
magnification factors a r e  given herein in 
te rms  of effective s t resses  based on the 
distortion-energy theory as well as prin­
cipal s t resses .  For  a material with a 
reasonable amount of ductility, effective 
stress-magnification factors can thus be 
used to  predict onset of plastic flow. 

Effective s t ress-magnification factors 
a re  presented in figure 6 as a function of 
s t ress  ratio for  various amounts of mis­
match. Figures 6(a) and (b) a re  for long 
mismatch, and figures 6(c) and (d) a r e  for  
local mismatch. Note that the s t ress -
magnification factor increases rapidly with 
increasing s t r e s s  ratio for positive n to 
a peak at a s t r e s s  ratio of about 2. A 
s t r e s s  ratio of 2 corresponds to a longitu-
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dinal seam in a cylindrical pressure vessel. Mismatch stresses are very sizable in mag­
nitude, particularly for this case. For n = 2 and 10 percent mismatch, for example, I 

bending effective stresses equal to  30 percent of the membrane effective stress occur. 
By contrast, 10 percent mismatch in the circumferential seam of a cylindrical pressure 
vessel produces only 5 percent increase in stress. In further comparison, 10 percent 
mismatch in a sphere produces about 20 percent bending, and 10 percent mismatch in a 
uniaxial specimen gives r i se  to bending s t resses  of about 26 percent of the nominal s t ress .  
These numbers are for  long mismatch and are somewhat different for  local mismatch. 
Note that effective stress-magnification factors for  local mismatch a r e  higher than for  
long mismatch for  all negative s t r e s s  ratios. Also, for a given s t r e s s  ratio, the in­
crease in s t ress  is almost proportional to the amount of mismatch, with the effective 
s t r e s s  increasing at a faster  rate for  greater amounts of mismatch. 

Figure 7 presents effective stress-magnification factors for  several common types 
of joints in pressure vessels. Effective stress-magnification factors for  a circumferen­
tial joint in a cylindrical pressure vessel are shown in figure 7(a). Bending s t resses  
associated with local mismatch a r e  smaller than for  long mismatch for  small  values of 
d/h. The s t r e s s  magnification factors for  both long and local mismatch, however, are 
about the same over the entire range of d/h. Note that these factors a r e  larger  than 
the princ-ipal stress-magnification factors given in figure 4 for  the same condition. 

The influence of mismatch on the s t ress  state in a spherical pressure vessel is 
shown in figure 7(b). There is very little difference between long and local mismatch; 
for  less  than 50 percent mismatch, a long mismatch is only slightly more severe than 
one that is local. 

Figure 7(c) is of considerable interest because it is concerned with longitudinal 
seams in cylindrical pressure vessels. Bending s t resses  a r e  almost linear with amount 
of mismatch for this case; also, a local mismatch is somewhat worse than a long one. 

The simple case of mismatch in a uniaxially s t ressed member is presented in fig­
u re  7(d). Although the curves in figures 7(c) and (d) appear to be linear, examination 
of equations (22) and (23), which were used to plot these figures, shows that they a r e  not. 
There is a significant difference between local and long mismatch, with the former being 
worse than the latter in a uniaxially loaded member. 

CONCLUSIONS 

From a study of theoretical elastic mismatch s t resses ,  the following conclusions 
were drawn. They apply only to  mismatch between shell elements with the same thick­
ness and slope at the joint. 

1. The principal stress-magnification factors for  a given percentage mismatch a r e  

. 




the same for  all shells in which the membrane s t resses  normal to  the mismatch are equal 
to  or greater than the membrane s t resses  parallel to  the mismatch. 

2. Principal stress-magnification factors are the same for positive and negative 
stress ratios for  a given percentage mismatch. 

3. In the consideration of effective stresses, mismatch is most serious if the mem­
brane s t r e s s  normal to  the mismatch is about twice that parallel to the mismatch, such 
as at a longitudinal seam in a circular cylindrical pressure vessel. The stress-
magnification factor is quite sizable, however, whenever the membrane stress normal to  
the mismatch is about equal t o  or greater than that parallel to the mismatch. 

4. In a reas  in which the membrane s t ress  normal to  the mismatch is much l e s s  than 
the s t ress  parallel to the mismatch, a small  amount of mismatch may not increase the 
s t r e s s  significantly, if at all. 

5. For  a given s t r e s s  ratio, the increase in stress is almost proportional to  the 
amount of mismatch, with the effective s t r e s s  increasing at a faster rate for  greater 
amounts of mismatch. 

6. A local mismatch has a higher effective stress-magnification factor than a long 
mismatch for all  negative s t r e s s  ratios. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, October 15, 1965. 

REFERENCES 

1. 	Sechler, E. E. : Stress  Rise Due to Offset Welds in Tension. Rept. No. EM 9-18 
(TR-59-0000-00774), Space Technology Labs., Inc., Aug. 28, 1959. 

2. 	Johns, Robert H. ; and Orange, Thomas W. : Theoretical Elastic Stress  Distributions 
Arising f rom Discontinuities and Edge Loads in Several Shell-Type Structures. 
NASA T R  R-103, 1961, Appendix L. 

3. 	Johns, R H. ; Morgan, W. C. ; and Spera, D. A. : Analysis of Stress at Several Junc­
tions in Pressurized Shells. A M  J. ,  vol. 1, no. 2, Feb. 1963, pp. 455-457. 

4.  	Wittrick, W. H. : Non-Linear Discontinuity Stresses in Shells of Revolution Under 
Internal Pressure.  Int. J. Eng. Sci. ,  vol. 2,  May 1964, pp. 179-188. 

5. 	Johns, Robert H .  : Mismatch Stresses  in Pressure  Vessels. AIAA J.,  vol. 2, no. 10, 
Oct. 1964, pp. 1827-1828. 

6. 	Smith, George W. : Analysis of Multiple Discontinuities in Shells of Revolution Includ­
ing Coupled Effects of Meridional Load. Rept. No. GD/A 63-0044, General 
Dynamics/Astronautics, July 31, 1963. 

NASA-Langley, 1966 E-3083 23 



“The aeronautical and space activities of the United States shall be 
conducted so as to contribute . . . to the expansion of human Rnowl­
edge of phenomena in the atmosphere and space. The Administration 
shall provide for the widest practicable and appropriate dirsemination 
of information concerning its activities and the results thereof.” 

-NATIONAL A N D  SPACE ACTOF 1958AERONAUTICS 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: Scientificand technical information considered 
important, complete, and a lasting contribution to existing knowledge. 

TECHNICAL NOTES: Information less broad in scope but nevertheless 
of importance as a contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: Information receiving limited distri­
bution because of preliminary data, security classification, or other reasons. 

CONTRACTOR REPORTS: Technical information generated in con­
nection with a NASA contract or grant and released under NASA auspices. 

TECHNICAL TRANSLATIONS: Information published in a foreign 
language considered to merit NASA distribution in English. 

TECHNICAL REPRINTS: Information derived from NASA activities 
and initially published in the form of journal articles. 

SPECIAL PUBLICATIONS: Information derived from or of value to 
NASA activities but not necessarily reporting the results .of individual 
NASA-programmed scientific efforts. Publications include conference 
proceedings, monographs, data compilations, handbooks, sourcebooks, 
and special bibliographies. 

Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 


NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 


Washington, D.C. PO546 



