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CONFIDENTIAL
INTRODUCTION

This document contains unedited reproductions of technical papers
on some of the most recent research results on the aerodynamics of high-
speed aircraft from the NACA Laboratories. These papers were presented
by members of the staff of the NACA Laboratories at the NACA Conference
held at the Ames Aercnautical Laboratory July 8-10, 1953. The primary
purpose of this conference was to convey to contractors of the military
services and others concerned with the design of aircraft these recent

research results and to provide those attending an opportunity to dis-
cuss the results.

A list of the conferees is included.
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CHAIRMAN 'S REMARKS

Nearly a year ago in an experimental investigation of wing-body
interference at transonic speeds Richard T. Whitcomb showed that for
zero lift a wing-body combination had the same drag rise as a body of
revolution having the same axial distribution of cross-sectional area
as the wing-body combination. This, in fact, constituted the experi-
mental proof of what we call the area rule. Once the area rule had
been clearly stated and proven experimentally it occurred to many that
the essence of this idea may have existed in the body of linear theory.
This, in fact, has proved to be the case but these parts of the theory
and their significance had been overlooked by everyone.

Since the first work establishing the area rule for the transonic
range, a very considerable study of the problem has been made to attain:
first, maximum benefit from its application; second, establishment of
its limitations; and third, extension from the transonic to the super-
sonic range. As of the date of this conference there has been insuffi-

cient time to accumulate the necessary information to answer every
question that might be raised.

The first four papers, however, are presented to review, to extend,

and to summarize the area-rule question theoretically, experimentally,
and in applications.
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THE ZERO-LIFT DRAG CHARACTERISTICS OF WING-BODY
COMBINATIONS AT TRANSONIC AND
MODERATE SUPERSONIC SPEEDS

By Richard T. Whitcomb

Langley Aeronautical Laboratory

This paper is concerned primarily with the application of the
"area rule" to the interpretation and improvement of the drag-rise char-

acteristics of wing-body combinations at transonic and moderate super-
sonic speeds.

Consideration of the general physical nature of the flow at tran-
sonic speeds, together with comparisons of the flow fields and drag-rise
characteristices for wing-body combinations and bodies of revolution has
led to the conclusion that near the speed of sound the drag rise for a
thin low-aspect-ratio wing—body combination is primarily dependent on
the axial distribution of cross-sectional area normal to the airstream
(ref'l). (The drag rise, sometimes referred to as pressure drag, is
the difference between the drag level near the speed of sound and the
drag level at subsonic speeds where the drag is due primarily to skin
friction.) In order to illustrate the concept, figure 1 shows a wing-
body combination and a body of revolution. A typical cross-section
normal to the airstream for the wing-body combination is shown at AA.
The cross-sectional area of the wing is wrapped around the body of
revolution so that the body has the same cross-sectional area at BB.
A1l the other cross-sectional areas of the body of revolution are the
same as those for the wing-body combination at the same axial stations.
On the basis of the conclusion just stated, the drag rise for this body
of revolution should be similar to that for the wing-body combination.

This relationship of the drag-rise increments for the wing-body com-
bination and the comparable body of revolution is due primarily to the gen-
eral similarities of the major portions of the extensive flow fields of the
configurations. These similarities are illustrated in figures 2 and 3
which present schlieren photographs of the flow fields for unswept- and
sweptback~-wing—body combinations, together with those for equivalent
bodies of revolution. The combinations have been rolled to three positions
so that side, plan, and intermediamte views are seen. Near the edges of the
pictures, the observed shocks for the combinations in each view are gen-
erally similar to those for the equivalent bodies. These comparisons



2 weeddodd com"rom\mm i ®

are indicative of the similarities of the extensive fields beyond the
view of the schlieren. Near the configurations there are differences

of the flow fields for the wing-body combinations and equivalent bodies
of revolution. However, the major portion of the energy losses associ-
ated with the shocks is produced in the extensive regions at appreciable
distance from the configuration. Therefore, from a drag standpoint, it
may be assumed that these differences near the configuration are of
secondary importance. The general similarities of the extensive flow
fields at distances from the configuration may be attributed to several
aerodynamic phenomena characteristics of flow near the speed of sound.
First, the field of any given displacement is concentrated in a plane
nearly normal to the airstream. Because of this fact, the streamwise
locations of the effects of the displacements of the wing are essentially
the same as those for the corresponding effects produced by the compar-
able body of revolution. Secondly, at these considerable latersl dis-
tances from the configuration, the field is primarily dependent on the
general displacement of the configuration rather than on the details of
the shape. The generally close similarities of the effective fields for
the wing-body combination and the comparable body of revolution in the
regions producing the main portion of the shock losses suggests that

the energy losses associated with the shocks for the two configurations
should be similar. Since the drag rise for thin low-aspect-ratio wings
is due primarily to shock losses, the drag rise for the combination
should be approximately the same as that for the equivalent body of
revolution.

In figure 4, the measured drag-rise increments for various swept-,
delta-, and unswept-wing—body combinations and complete airplanes at
a Mach number of 1.03 are compared with the increments for equivalent
bodies of revolution. The aspect ratios of the wings are 4 or less
and the thickness ratios are T percent or less. Except for one con-
figuration, there is a general qualitative agreement between these drag-
rise increments. Deviations from exact agreement are due to second-order
effects, such as differences of the flow fields as shown in figures 2
and 3. The single case of marked disagreement is for a swept-wing air-
plene configuration. This disagreement cannot be fully explained at
present. As would be expected, the correlation between the drag-rise
increments of the wing-body combinations and the equivalent body of
revolution generally becomes less close as the Mach number is increased
beyond 1.0. The severity of this divergence veries markedly depending
on the configuration.

It would be expected on the basis of this concept that, near the
speed of sound, the minimum drag rise would be obtained by designing a
wing-body combination with an area distribution similar to that for a
smooth body of revolution with the highest possible fineness ratio. The
fineness ratio that should be used is probably considersbly less than
that required for minimum total drag because of such problems as airplane




A

L

CONFIDENTTIAL 3

.

e e 3% %e o ® ®® o0 o s0e & ese oo

e o e & o e o o ® e e e o ® @
oo o . e e o ® oo o ee o o

* o o . . coe . . . o

®® eee oo cee o -

stability and structural weight. One method ‘of®cbtafnihg *this favorable
area distribution is to reshape the body. A number of experiments have
been made to determine the effectiveness of such reshaping. Represen-
tative results, obtained in the Langley 8-foot transonic tunnel, are
presented in figure 5.

On the left-hand side of this figure are shown the effects of such
a body modification on the zero-1lift drag-rise characteristics of a
6-percent-thick, aspect-ratio-4, 45° swept-wing—body combination. The
s0lid line shows the variation of drag for the wing in combination with
a body of revolution of fineness ratio of 11. The wing is placed on
the body in such a menner that the leading edge of the wing is at the
maximum diameter of the body. With this arrangement, the indentation
used did not change the maximum cross-sectional area of the body. The
dashed lines are the results obtained for the wing in combination with
a body of revolution indented circularly to obtain the same area dis-
tribution as for the original body alone. For comparison, the results
for the body alone are also shown. Indentation eliminated approximately
90 percent of the drag rise associated with the wing at Mach numbers from
1.00 to 1.05. When the Mach number is increased beyond 1.05, the drag”~
rise for the indented wing-body combination approaches that for the
original wing-body combination.

On the right-hand side of figure 5 are presented the effects of
body indentation on the zero-1ift drag-rise characteristics for a
4-percent-thick, 60° delta-wing—body combination. The solid curve
shows the drag characteristics for the wing in combination with a body
of revolution having a fineness ratio of 7.5. The dashed line indicates
the drag variation after the body has been indented circularly to pro-
duce an area distribution for the combination the same as that for the
original body alone. In this case the indentation reduced the maximum
cross-sectional area of the body somewhat. It may be noted that again
a significant reduction in the drag rise was obtained by such an inden-
tation at transonic speeds. However, in this case, the drag rise for
the indented wing-body combination is significantly greater than that
for the body alone. This deviation from the result which might be
expected on the basis of the area-distribution concept is probably due
to the fact that the body required to obtain the smooth area distribution
of the combination had a rather sbrupt change in shape near the trailing
edge of the wing. This shape probably led to severe local velocity gra-
dients. Since the proper functioning of the body fields in offsetting
the drag of the wing depends to a great extent on the velocity gradients
being small, it might be expected that these severe gradients would lead
to an incomplete reduction in drag. Also, near the speed of sound, a
shock was present over this corner and may have caused some separation
at this point, which would not be expected on the original body alone.
It is probable that a further reduction in drag could have been obtained

‘-
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at transonicespesds by smotthitg®the Yontout® bf*the body slightly.

Similar reductions in drag near the speed of sound have been obtained
by body indentation for other delta and unswept wings.

Results obtained with smooth-surfaced configurations have indicated
a marked reduction in drag at subsonic speeds assoclated with the use of
indentation with swept and delta wings. However, with fixed transition
this difference is not present. The influence of surface conditions on
the effects of indentation apparently decreases with increase in the
Mach number to supersonic speeds. The effect of body indentation on
the drag characteristics at 1ifting conditions is discussed in the paper
by Edward C. Polhamus. Obviously, the volume of the indented wing-body
combinstion is not as great as that for the original wing-body combina-
tion. However, increasing the size of the body to recover the volume
lost in indentation would increase the drag for the indented combination
by a small fraction of this reduction in drag obtained.

The question now might arise as to whether it would be possible to
obtain drag reductions at transonic speeds by adding to an existing wing-
body combination to obtain a more favorable area distribution. Recently,
investigations have been made of such additions on a 60° delta-wing air-
plane. Results are presented in figure 6. First, the fuselage was
extended approximately 8 percent to obtain a more favorable area dis-
tribution of the rearward portion of the airplane. This addition resulted
in significant reductions in the drag rise. Further reduction was obtained
by adding side falrings to the extended configuration to fill the dip in
the area distribution as shown. The body lines with these additions were
still relatively smooth. Additions which lead to severely irregular body
lines would not be recommended.

The effects of the changes in body shape on the total drag coeffi-
cients at Mach numbers up to 2.0 are shown in figure 7. The configurations
are the same as those shown in figure 5. The results for Mach number
above 1.15 were obtained in the Langley 4- by k-foot supersonic pressure
tunnel. For the swept-wing——body combination, body indentation had little
effect on the drag at Mach numbers from 1.4 to 2.0. For the delta-wing—
body combination, body indentation reduced the drag at all Mach numbers
up to 2.0 but by a progressively smaller amount. The fact that reduc-
tions were obtained at these supersonic speeds indicates that to a certain
extent the factors affecting drag at moderate supersonic speeds may be
similar to those for transonic speeds for low-aspect-ratio thin wings such
as this one. However, since the waves are conical rather than plane in
nature when the Mach number is incressed to supersonic values, it would be
expected that the use of the transonic concept would not give the maximum
reductions in drag possible at supersonic speeds.

Considering the conical nature of the flow at moderate supersonic
speeds, a method has been developed which interrelates the wave drag of
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wing-body combinations at these’ speeds®with 8xi%l® dift¥ibhffions of cross-
sectional area. With this method a number of area distributions are used
to determine the drag at a given supersonic Mach number. These distri-
butions are obtained by cutting the configuration with planes inclined
to the airstream at the Mach angle. This method is basically the same

as one developed by Jones considering the linear theory of Hayes. A
description of the method, together with a discussion of its applica-
tions, is presented in the next paper by Robert T. Jones. However, some
preliminary results obtained at Langley are presented in figure 8 which
show how the drag may be reduced at supersonic speeds by reshaping the
fuselage on the basis of this method. The results are for a delta-
wing—body combination. The first three configurations shown are the
same as those shown in figure 7. The body of the fourth configuration
‘was indented circularly so that the various area distributions deter-
mined by this supersonic method for a Mach number of 1.4 were relatively
smooth. It may be seen that this indentation reduced the total drag
coefficients at supersonic speeds by significantly greater amounts than
did the indentation designed for a Mach number of 1.0 (dashed line).

At a Mach number of 1.4, the further reduction is roughly half the
remaining pressure drag of the wing.

In conclusion, the results presented have shown that, near the speed
of sound, the drag rise for a low-aspect-ratio thin wing—body configura-
tion is generally a function of the axial distribution of cross-sectional
area normal to the airstream. By using this relationship, it is possible
to reduce greatly the drag rise of the conventional wing-body combinations
by redesigning the fuselage to produce a smooth axial distribution of area
for the combination. The resulting reshaped fuselage of the combination
should not have abrupt changes in contour. Of course, to obtain the
lowest possible drag coefficients, the fineness ratio of the equivalent
body should be sufficiently high.

REFERENCE
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WING-BODY COMBINATION AND EQUIVALENT BODY OF REVOLUTION
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TRANSONIC FLOW PAST BODY WITH STRAIGHT WING

EQUIV. BODY




‘ CONFIDENTIAL 7

> e LN ] L L] e L e © S0¢ ¢ oce o
* ¢ o ¢ e o s o e L] e o L * e

- e s oo L L * e L L ¢ e ¢ ®e e o
¢ ® o L] . LEX ] L e e o * e e o
LR ece e ¢ee@® o & s LR ] e e L «cse oo

i ]c“
/ - ~ 4 . - i

0° ROLL EQUIV. BODY

] Figure 3 el
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EFFECT OF BODY INDENTATION ON TRANSONIC DRAG RISE

EFFECT OF ADDITIONS TO BODY
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Figure 7
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THEORY OF'WINE-BOISY DRAG’ &I SUPE’RSONIC SPREpS**
By Robert T. Jones

Ames Aeronautical Laboratory

At subsonic speeds the pressure drag arising from the thickness of
the body or wings is negligible as long as the shapes are sufficiently
well streamlined to avoid flow separation. In that range there exists
no possibility of either favorable or adverse interference on the pres-
sure distributions themselves. If one body is so placed as to receive
a drag from the pressure field of another, then the second body is sure
to receive a corresponding increment of thrust from the first.

At superscnic speeds this tolerance, which was permitted the
designer, disappears, and the drag becomes sensitive to the shape and
arrangement of the bodies. The primary factor certainly is the thick-
ness ratio; nevertheless, there exist arrangements in which a large
cancellation of drag occurs. Examples of the latter are the sweptback
wing and the Busemann biplane.

In the preceding paper Richard T. Whitcomb has shown how the drag
at transonic speeds may be reduced to a surprising extent by simply
cutting out a portion of the fuselage to compensate for the area blocked
by the wing. The purpose of the present paper is to discuss some of the
theoretical aspects of this method of drag reduction and to show how the
basic idea may be extended to higher speeds in the supersonic range.

The deduction by Richard T. Whitcomb of the "area rule" was based
on considerations of stream-tube area and the phenomenon of “choking,"
wvhich follow from one-dimensional-flow theory. BEach individual stream
tube of a three-dimensional flow field must obey the laws of one-
dimensional flow. Although the three-dimensional field cannot actually
be determined on this basis alone, nevertheless it provides a good
starting point for our thinking. The results demonstrate again the
effectiveness of basic and simple considerations.

Although one-dimensional-flow theory thus provides a clue to the
area rule, the necessary principle appears more specifically in the
three-dimensional-flow theory. Thus, the formulas for wave drag given
by linear theory, if followed toward the limit as M approaches 1.0
(from above), show that the wave drag of a system of wings and bodies
depends solely on the longitudinal area distribution of the system as a
whole. This phenomenon was first noted by W. D. Hayes in his 1946 thesis
(ref. 1). For a more complete derivation of Hayes' formula the reader
may consult reference 2. However, because of the limitations of the
theory at transonic speeds, this result was not thought to be of
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(ref. 4) and others, restricting themselves to very narrow shapes,

expressed the wave drag in terms of the longitudinal area distribution N
for Mach numbers above 1.0, where the linear theory has a better
Justification.

It should be noted, however, that both of the problems cited are
limiting cases’ of the more general problem of supersonic drag and it
should be borne in mind that only in certain cases has it been possible
to reduce the general theoretical formulas to the form of an area rule.
It can be shown that the flow field about any system of bodies may be
created by a certain distribution of sources and sinks over the surfaces
of the bodies. Hayes' formula relates the drag of such a system to the
distribution of these singularities. 1In order to obtain a formula for
the wave drag in terms of area distributions, a simplified relation
between the source strength and the geometry of the bodies, namely, that
the source strength is proportional to the normal component of the stream
velocity at the body surface, has been adopted.

There are examples (e.g., Busemann biplanes) for which this assump-
tion is not wvalid. If, on the other hand, we limit ourselves to thin
symmetrical wings mounted on vertically symmetrical fuselages, there
are indications that a good estimate of the wave drag at supersonic
speeds can be obtained on the basis of the simplified relation assumed.

If Hayes' method of ¢alculation is followed, at M = 1.0 the
express1on for the wave drag of a system of wings and bodies reduces to
Von Kérmén's well-known formula for the wave drag of a slender body of
revolution, that 1is,

pv2 t/2 -
PM—>1.0) ° fz/e fl/e §"(x)8" (x1)log|x - x| ax axy

Here S(x) represents the total cross-sectional area intercepted by a
plane perpendicular to the stream at the station x (see fig. 1) and
S"(x) 1is the second derivative of S with respect to x. If Sears
method (ref. 5) is followed, S'(x) may be expanded in a Fourier's
series and, in this way, a formula for the drag which is completely anal-
ogous (ref 6) to the well-known formula for the induced drag of a wing
in terms of its spanwise load distribution may be obtained. Thus, if

cos O

N e~




LA

oo see ® L L] L 3 ) % & 000 © 280 oo
e o o e o @ ¢« o » . o © *® * o
* e oo - . * e [ ] L ® o8 ® oo e o
* o o L] L ] (X X ] L e o o L2 J L J
L X ede e e0e o ¢ oo L X J . e * ses oo

and

S'(x) = EE::An sin no

(see fig. 2), the wave resistance is

xpvz 2
D = 8 E nA,

Of all the terms of the series, each contributes to the drag but only
Ay and Ap contribute to the volume or the base area of the system.
Thus, in order to achieve a small drag with a given base area or with a
given over-all volume within the given length, the higher harmonics in
the curve S'(x) should be suppressed. This formula enables us to
classify a given shape as "rough" or "smooth" in a quantitative fashion.

In order to extend these considerations to supersonic speeds a
series of cross sections of the system made, not by planes perpendicular
to the stream but by planes inclined at the Mach angle or "Mach planes"
must be considered. By means of a set of parallel Mach planes (£ig. 3),
an "equivalent body of revolution” using the intercepted areas was con-
structed and the drag was computed by Von Kirmén's formula. The theo-
retical basis of this step is the fact that the complete three-
dimensional disturbance field may be constructed by the superposition of
elementary one-dimensional disturbances in the form of plane waves.

(See ref. 7.) It is evident that the set of parallel Mach planes may be
placed at various angles around the x-axis (fig. 3). When the flow field
is constructed, it is necessary to superimpose disturbances at all these
angles and, when the drag is completed, to consider the drag of all the
equivalent bodies of revolution. The final value of the drag is simply
the average of the values obtained through a complete rotation of the
Mach planes.

In order to make these statements more specific, the equation of
one such Mach plane may be written as follows:

X=x-y"cos ¥ - 2' sin v

where y' = VME -ly and 2z' = VMz - 1 z. By assigning different

values to X while keeping vy constant, a series of parallel planes at

the same angle ¥ around the x-axis is obtained. By assigning different
values to V¥ while keeping X constant, a set of planes enveloping that
Mach cone whose apex lies at the point X = x can be obtained.
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After a valie of \r ié’séiéétéd:.%ﬁg wiﬁé-ﬁsdy system is cut
through with a series of planes corresponding to different values of X.
The total intercepted area in each plane is then equated to the area
intercepted by this plane passing through the equivalent body of revolu-
tion. If we denote the area intercepted obliquely by s(X,V¥), then the
area S(X,y) is defined by: '

s(X,y) = s(X,¥) sin p

where p 1is the Mach angle (i.e., sin p = i . The term S(X,y) is

thus the area intercepted by normal planes passing through the equivalent
body of revolution on the assumption that this body is slender.
Therefore,

s'(X,y) = g% s(X,v¥) = E A, sin né

with

X
Xo

Here, however, both the length 2X, and the shape of the equivalent
body vary with the angle V. The drag of each equivalent body of revolu-
tion, which is denoted by D'(V¥), is then determined by applying Sears'
formula:

cos 0 =

2
D' (v) =ngV E nAna

The total drag of the wing-body system is the average of all these values
between ¥ =0 and V¥ = 2x; that is,

1f2"
— 1
D—E[— o D' (y)ay

In general, the coefficients An are functions of the angle of
projection V. However, the calculation shows that the first two
coefficients Aj; and Ao are again related in a simple way to the
base area and the volume V. Thus,
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None of the higher coefficients contribute to the base area or volume,
but they invariably contribute to the drag.

The rules for obtaining a low wave drag now reduce to the rule that
each of the equivalent bodies obtained by the oblique projections should
be as smooth and slender as possible, the "smoothness" again being
associa?e? with an absence of higher harmonics in the series expression
for S'(X).

In order to check the agreement between these theoretical formulas
for the wave drag and experimental values, comparisons of the calcula-
tions with the results of tests made on falling models at Ames
Aeronautical Laboratory have been made. This comparison was made by
George H. Holdaway who supplied the accompanying illustration (fig. 4).
In some of these cases it was found necessary to retain more than
20 terms of the Fourier's series in order to obtain a convergent expres-
sion for the drag.

If the variety of the shapes represented here are considered, the
agreement is certainly as good as can be expected from the linear simpli-
fications. The agreement is naturally better in those interesting cases
in which the drag is small.

Figure 5 shows an analysis of one of the experiments of Richard T.
Whitcomb. The linear theory, of course, shows the transonic drag rise
simply as a step at M = 1.0. Such a variation may be expected to be
approached more closely as the thickness vanishes. 1In order to represent
actual values here, a nonlinear theory would be needed. For many pur-
poses, it will be sufficient to estimate roughly the width of the
transonic zone by considerations such as those given in reference 8. 1In
the present case it will be noted that agreement with the linear theory
is reached at Mach numbers above about 1.06 and the linear theory clearly
shows the effect of the modification.

For further theoretical studies of wing-body drag, shapes have been
selected that are especially simple analytically, namely, the Sears-Haack
body and the biconvex wing of elliptic plan form. Figure 6 shows the
effect of wing proportions on the variation of wave drag with Mach num-
ber, both with and without the Whitcomb modification. In each case, the
modification has the effect of reducing the wave drag to that of the body
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Tn *the’ case of the lowzaépéét-ratio wing, this drag

alone at M=*".0

reduction remains effective over a considerable range of higher Mach num-

bers. With the higher aspect ratio, however, the drag increases sharply
at higher speeds so that, at M = 1.6, the modification nearly doubles
the wave drag.

The rapid increase of drag in the case of the high-aspect-ratio
wing is, of course, the result of the relatively abrupt curvatures
introduced into the fuselage lines by the cutout. Such abrupt cutouts
are necessarily associated with wings having small fore-and-aft dimen-
sions, that is, unswept wings of high aspect ratio.

These considerations led us to the problem of determining a fuselage

shape for such wings that is better adapted to the higher Mach numbers.
The first step in this direction is obviously simply to lengthen the
region of the cutout; thus, the rapid increase of drag with Mach number
is avoided. The problem of actually determining the best shape for the
fuselage cutout at any specified Mach number has been undertaken by
Harvard Lomax and Max. A. Heaslet at Ames Laboratory. Their solution
of this problem provides a definite method for determining the distri-
bution of sources and sinks along the fuselage axis that will achieve a
minimum value of the drag for a gilven wing shape at any specified Mach
number. Furthermore, by admitting singularities of higher order,
quadrupoles, and so forth, which would distort the rotational symmetry
of the fuselage, they have been able to show that the wave drag of a
wing-body system can be reduced, in principle at least, to & minimum
value associated with the given over-all length and volume of the system,
that is, to the value for a simple Sears-Haack body containing the whole
volume of the system.

By adopting the simplified relation between the source strength and

the body shape, the result of this theory may be described by a relatively

simple concept, which is illustrated by figure 7. If modifications of
the first type only are considered, the problem is to determine the area
ASe to be removed from the fuselage to make the best compensation for a
given wing. (See fig. 7.) If a station along the fuselage axis and a
Mach plane passing through this station are selected, this plane can be
revolved around the axis, and at each angle V¥ the normal projection,
or frontal projection, of the area intercepted where the plane cuts
through the wing can be measured. After these areas are plotted against
¥ and integrated between O and 2rx, the term -ASp 1is obtained as the
average of the values of Sy. At any Mach number the total volume to be
subtracted from the fuselage is equal to the wing volume. At higher
Mach numbers, since the modification extends over a greater length, the
area subtracted at individual cross sections becomes less.

Figure 8 shows the calculated result of designing the fuselage cut-
out for a specific Mach number, M = 1.2 in this case. The lower curve
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is an envelope showing the mihimim*Va1ucs *that’ cdn®ve BMile¥®d by such
a radially symmetric cutout.

Figure 9 shows the magnitude of the gains that are possible by
higher-order modifications of the fuselage shape. There are three
lower bounds here and the symbols agp, ap, . . . attached to them
refer to a representation of the fuselage shape by singularities of
increasingly higher order. The curve labeled ap is that given in
figure 8 and shows the maximum effect of radially symmetric modifica-
tions. Although the fuselage shapes for the other curves have not
actually been determined, the curve labeled ay + ap may be thought of
as referring to a cutout with an additional elliptic modification. It
will be interesting to pursue this investigation further and ascertain
Just how the fuselage must be distorted to cancel the wave drag of the
wing completely, as indicated by the lowest envelope curve. Of course,
it will be necessary to start with a certain minimum dismeter in order
to preserve a real shape.

In order to test this theory of determining optimum body shapes we
have started a program, using models similar to those investigated theo-
retically. ©Several of these models have already been tested in the Ames
2- by 2-foot wind tunnel and the results agree fairly well with calcula-
tions made on the assumptions given earlier. Figures 10 and 11 show the
theoretical and the experimental curves. The aspect ratio of the wing
in these preliminary cases is not sufficiently high (A = 2) to enable
really striking gains to be shown. However, it is evident that the cal-
culated differences are all reproduced in the experimental values. The
experimental series include models having higher aspect ratios and more
significant gains are expected to appear.

There are, of course, examples of wing-body systems which would
hardly benefit by any change in shape of the fuselage. It is easy to
decide whether a gain is possible or worthwhile by comparing the actual
wave drag of the system with that of a Sears-Haack body containing the
over-all volume of the system. In the case of a 63° wing-body combina-
tion (ref. 9), this comparison yields 0.0045 as a lower bound for the
wave drag coefficient and 0.005 for the actual value. In such cases,
for which the wave drag is initially very low, further reduction by
reshaping the fuselage is not worthwhile. Appreciable savings in drag,
however, can be made in many cases by a calculated shaping of the fuse-
lage. Unswept wings of high aspect ratio are benefited most and require
the most careful consideration of the fuselage shape.

These new developments illustrate again the fact that the disturbance
fields at transonic and supersonic speeds are essentially three-
dimensional phenomena. It was not long ago that our ideas concerning the
wing section, which had their origin in the older incompressible flow
theory, had to be relinguished because of the predominating effects of

wing plan form. Now the win%fan@,t%;_fuselage must be designed together.
Re - e M =, ,éa )
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DRAG OF EXTERNAL STORES AND NACELLES AT TRANSONIC
AND SUPERSONIC SPEEDS
By Norman F. Smith, Relph P. Bielat, and Lawrence D. Guy

Langley Aeronautical Laboratory
INTRODUCTION

The problem of designing nacelles and stores is one of providing the
desired volume in an acceptable shape or position at the lowest possible
cost in airplane performance. There is considerable evidence that such
volume can often be more efficiently carried within the basic wing-body
combination, especially at supersonic flight speeds. Discussion of sub-
merged or integral arrangements, however, involves complex design studies
which are beyond the scope of this paper. This paper deals entirely with
external stores and nacelles, primarily wing-mounted on airplane-type
configurations. The status of the problem is reviewed and the research
which has been done on the subject examined in the light of recent devel-
opments.

DISCUSSION

Figure 1 shows a plot of drag coefficient based upon individual
frontal area against Mach number. The shaded areas show the Mach numbers
and drag-coefficient values corresponding to nacelles and stores which
have been investigated to date. All of these data have been published.

A list of the ones which are used in detail in this paper is given in the
references. The values of drag coefficient which have been obtained in
the transonic range vary from above 0.8 to near zero. At the three higher
supersonic Mach numbers, the values vary from nearly 0.8 to around 0.23.
The lower shaded band shows the range of drag values covered by isolated-
body drags for satisfactory supersonic bodies of fineness ratio 6 to 9,
approximately (refs. 1, 2, and others). This figure shows that zero
interference and even greatly beneficial interference have been obtained
on configurations in the transonic range up to M = 1.2 (refs. 3 to 5,
for example). Apparently, however, no beneficial interference has yet
been encountered with airplane-type configurations at the three higher
supersonic Mach numbers shown, and only in a few cases has interference near
zero been attained. It should be noted here that nacelle drags near zero
have in some cases been obtained for large ram-jet nacelles mounted on
missile configurations (ref. 6). This large favorable interference was
obtained in extreme aft positions wherein half the nacelle length
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extended beyond the fuselage base, positions very different from those
used for airplane nacelles. (Further evidence of large favorable inter-
ference for nacelles in this region has been found in the theoretical
work of ref. 7.)

The store and nacelle data which make up these shaded areas in
figure 1 have been examined in detail to determine some of the factors
which govern the drag of these installations.

Transonic Speeds

The drag level for nacelles or stores at subsonic Mach numbers is
important, of course, as 1s the Mach number at which drag rise begins.

The principles governing these items are relatively well known and are
not discussed herein.

In the transonic region, the type of flow which follows the onset
of shocks - with shock interactions and interference, local choking, sep-
aration, and so forth - is very complex. The interference problem is
therefore a very difficult one for theoretical treatment. Also, the
nature of the flow plus the large number of configuration variables
involved makes experimental investigation difficult in that results tend
to be rather specific in nature. It is therefore of interest to apply a
simplifying principle, when one is avallable, such as the transonic area
rule discussed in a previous paper by Richard T. Whitcomb. Consequently,
the bulk of the transonic data which have been obtained on stores and
nacelles, most of which have been published and analyzed with respect to

spanwise and chordwise position, has been re-examined in the light of
the area rule.

Figure 2 shows the transonic drag-rise data for the series of span-
wise symmetrically mounted nacelles tested in flight by the Langley Pilot-
less Alrcraft Research Division on a 45° swept wing of aspect ratio 6,
t/c = 0.09 (ref. 5). On the right-hand side of the figure is a sketch
which shows the location of the nacelle and a diagram of the cross-
sectional area variation of each configuration. In this figure and in
figures 3 and 4, the data are plotted as drag increments above the level
for M = 0.8 1n order to eliminate the skin-friction drag. Figure 2
shows that the highest drag rise is obtained with the nacelle position
glving the highest peak on the area diagram and the highest slopes for-
ward and aft. The lowest drag 1s obtained with the nacelle position
which affects the wing-body area diagrem least. In looking at the
transonic drag rises in terms of spanwise variation of nacelle position,
it is noted that the drag is least at the tip, rises to a peak value
at O.hb/2, and decreases again as the nacelle is moved still farther
inward to 0.18b/2. This phenomenon had thus far gone unexplained. The
area rule provides, in this case and others to be mentioned subsequently,
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a simple explanation. It will be noted that the differences between the
drag curves are small. This is a result of the fact that these nacelles
are small, corresponding roughly to single-engine units.

LR}

Figures 3 and 4 show similar results obtained from wind-tunnel tests
conducted in the Langley 8-foot transonic tunnel and 4- by 4-foot super-
sonic pressure tunnel (refs. 8 to 10 and some unpublished data) of a
sting-mounted configuration involving a series of nacelles of twin-engine
size on a swept wing of aspect ratio 3.5 with 47° sweep and a thickness
ratio of 6 percent. The serles shown in figure 3 is a family of pylon-
mounted nacelles which involves a forward and downward movement at one
spanwise station, and the series in figure 4 consists of different types
of nacelles. Again correlation with the area diagram is clear, with the
top configurations having the least favorable area diagrams and the high-
est transonic drag rises.

The equivalent stream-tube area corresponding to the internal flow
has been subtracted from the areas shown in figure 4. Note the particu-
larly low drag rise for the installation buried in the wing root with
provisions for air intake at the leading edge. This installation is
actually more a submerged installation than an external one but is shown
here because of 1ts excellent drag characteristics and because it was a
part of the test series. Plots of drag-rise data for the configurations
shown in these two figures at 1ift coefficients up to 0.5 have been made
. and show that the curves maintain the same relationship to each other as

do the curves shown here for Cp = O.

Examingtion of the nacelle and store information from the Langley
Pilotless Aircraft Research Division, 7- by 10-foot tunnels, and 8-foot
transonic tunnel shows area-diagram correlations consistent with those
shown in these three examples.

The dashed lines in figures 3 and 4 connect the limited number of
supersonic points which are available for some of these configurations.
The supersonic points in figure 3 show that the high drag levels obtained
transonically do not necessarily persist into the supersonic speed range.
The indication is thus that the requirements for low wave drag in the
transonic range may be different from those in the supersonic speed range.
The supersonic range will be treated in more detail subsequently.

Because interpretation of area diagrams tends to become somewhat
indefinite in some cases, a very simple parameter concerning the area
diagram has been devised. In figure 5 the data from the series of d4if-
ferent nacelles and the series of pylon-mounted nacelles, most of which

had were shown in figures 3 and 4, have been plotted as incremental drag
coefficients against x/1, where x is the distance from the area peak
of the wing-fuselage combination to the area peak of the complete-model
configuration, the areas having been obtained by sectioning the models



N N A N R A R
¢ o e @ ® & o . CX ] . . s v @
)+ *8 o220 o L LX) .‘CONFIWIAL... e ‘

in planes perpendicular to the longitudinal axis. Data for M = 1.0 are
shown at the left; data for M = 1.1, at the right. The M = 1.1 condi-
tion corresponds to the completion of the drag rise, while at M = 1.0 the
drag values are still rising rapidly. The correlation at both Mach numbers
is very good. A number of different nacelle configurations and different
types of area diagrams are involved, as will be remembered from figures 3
and 4. The correlation shows that the highest drags are obtalned when

the area peaks coincide, with the drag decreasing rapidly as the area

peaks are displaced. Note that the parameter used does not show effects

of area coincidence alone. As the peaks are moved, slope changes forward
and aft also occur. This parameter is therefore only one small step
removed from visual interpretation of the area diagram.

Thus, by reanalysis of a large amount of nacelle and store data, it
was found that correlation with the area rule is found for many types of
nacelles or stores in positions from wing root to wing tip, and that
explanation of phenomena not heretofore explained is afforded. Because
the configurations considered were all designed without regard for the
area rule, 1t is very difficult to extract quantitative data from this
work. Changes in area-dlagram characteristics from one configuration to
another involve random simultaneous changes in peak height, local slopes,

and over-all shapes. Controlled experiments are needed to provide valid
quantitative data.

Proof of the importance of the area rule is strengthened by demon-
stration of its use in the design of configurations complete with
nacelles. TFigures 6 and 7 show unpublished results for two delta-wing
configurations from wind-tunnel and flight tests by the Pilotless Aircraft
Research Division. The configuration shown in the left side of figure 6
has an area diagram which shows a very high peak and high slopes forward
and aft, due largely to the nacelles. The drag for this configuration is
very high, as is the drag (plus interference) for the nacelles, obtained
by subtraction. Data obtained in the Langley 16-foot transonic tunnel for
the same configuration, but with air flow through the nacelles, show some-
what lower drag. The area diagram for this case, which 1s reduced by
allowance for the equivalent stream-tube area through the nacelles, is
shown by the long dashed lines.

A sketch of a second version of this configuration is shown in the
right side of this figure. The wing Was enlarged and thinned somewhat
and the nacelles were split into forward and aft pairs. The fuselage was
lengthened and was undercut slightly in order to make the area diagram
for the complete configuration correspond closely to a parabolic distri-
bution of higher fineness ratio than the previous model. The drag curve
shows a drag reduction for this configuration of nearly 50 pércent, or
LO percent of the configuration at left with air flow. The nacelle con-
tribution in this case is not known, but it is clear that a similar
reduction in nacelle drag and interference has occurred.

‘l'lllllllllllll'ii.b
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Figure 7 shows that in both of these cases, the drag characteristics
of the complete configuration are closely simulated by drag characteris-
tics of the body of revolution having an equivalent longitudinal area
development. The measured drags for the equivalent bodies have been cor-
rected to the skin-friction level of the complete configuration in each
case. The configuration at the left is one of the configurations dis-
cussed by Richard T. Whitcomb in a previous paper wherein the item of
equivalent bodies was treated in some detail.

Supersonic Speeds

In the supersonic speed range, the bulk of the experimental data,
which have been obtained in addition to the data from the Langley
4- by 4-foot supersonic pressure tunnel shown in figures 3 and 4, is
that obtained in the Langley 9- by 12-inch supersonic blowdown tunnel
(refs. 11 to 13). TFigure 8 shows the configurations tested: a half-
model fuselage with a semispan unswept, a 45° swept, and a 60° delta

wing. The store is of the Douglas store shape and was tested with the
store center of gravity in the locations shown on the sketches. The store
and wing surfaces were tangent for those chordwise positions where the
maximm thicknesses coincided and were separated by a very short pylon for
other positions. The store size may be considered to correspond roughly
to a single-engine nacelle on a large bomber alrplane.

The data presented in figure 9 are plotted in the form of store-plus-
interference drag CDN against spanwise position for M = 1.41 and 1.96.

Data for M = 1.62 are also available and agree well with the other two
Mach numbers but are omitted here for simplicity. The data show that,

in general, for all three wing configurations, moving the store outward
decreases the store drag. A similar plot of chordwise positions (fig. 10)
shows that moving the store forward decreases the drag. Exceptions to
these generalizations are evident, however, in the solid symbols connected
by dashed lines for the swept and delta wings, for which positions the drag
is a great deal lower than would be expected or predicted by a straight
line drawn through the remaining symbols.

Attempts to correlate these and some unpublished data on the basls
of nacelle position with respect to the wing leading edge, fuselage nose
Mach line, wing local maximum thickness, to mention a few, all failed -
if any correlation was obtained it contained exceptions which could not
be explained. This difficulty of correlating or generalizing is, of
course, similar to that mentioned previously for nacelle and store studies
at transonic speeds.

An extension of the transonic area rule was utilized in an attempt
to correlate these data. The more complete supersonic theory, which
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involves sectioning the configuration by a series of planes tangent to
Mach cones, has been described in a previous paper by Robert T. Jones.

The method used here, as an exploratory approach, involves only one
set of the planes indicated by the theory; that is, parallel vertical
planes which intersect the configuration plan form along Mach lines. It
will be noted that the fuselage in this case employed a cylindrical after-
body. The fuselage nose, therefore, can affect the pressure drag of the
nacelle and wing, but the nacelle and wing cannot appreciably affect the
pressure drag of the fuselage afterbody. It therefore appeared that the
principal lines of influence or interference were Mach lines originating
at the fuselage center line and that sectioning or viewing the model along
these particular Mach lines might correlate the principal variations.
Figure 11 shows the results of the correlation. The drag data for all the
configurations shown in figure 8 have been plotted against x/l, which is
the area-peak displacement parameter defined in the sketch (top part of
fig. 11). (x is the distance between the peak of the area diagram of the
store and the peak of the area diagram of the wing-fuselage combination,
the area diagrams beilng obtained by sectioning the semispan configuration
along Mach lines in the lateral plane and plotting the cross-sectional
area given by each slice at the intercept on the fuselage center line.)

Clearly, the data show a strong trend similar to the one shown in
figure 5 for the transonic case. If located in a region where its area
peak adds to the wing-fuselage peak (viewed along the Mach line), the -
store produces higher drag than 1f located a short distance forward or
aft of the X =0 point. It will be noted that data from three differ-
ent wing configurations, a straight, a swept, and a delta wing, and data

at three supersonic Mach numbers, 1.41, 1.62, and 1.96, are all included
in this plot.

This correlation plot explains the low drag points which appeared to
contradict the spanwise and chordwise trends shown in figures 9 and 10.
The solid symbols to the right of x/l = O are for these configurations.
These drag values are in proper positions as located by the area diagram
parameter x/l, and the low drag is explained by area-peak displacement.

Iv will be noted that at neither end of the curve of figure 11 has
a minimum drag been reached. This means that minimum drag values will
be attained at more extreme forward or aft nacelle positions than those
tested. Practical difficulties may appear, however, in using such posi-
tions for airplane configurations.

There is considerable scatter of points from the trend line which has
been drawn through the data. Only a part of this scatter can he explained -
by the data-accuracy spread shown by the width of the trend line. Some
scatter in any correlation of this kind is to be expected, inasmuch as
it is not reasonable to expect a perfect explanation of a complicated
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flow condition in terms of this very simple parameter. There are a large
number of details which can greatly affect the drag. These details are
wing-fuselage and wing-nacelle junctures, the detail design of each com-
ponent, the effects of localized shock patterns, and so forth. Such
details would influence the pressure drags to some extent and would partic-
ularly influence the friction drag which is not included in the area rule.

It should be mentioned that attenuation of interference effects as
bodies are separated is also involved in the supersonic case. This fac-
tor causes the pressure interference between store and fuselage to dim-
inish as the store is moved tipward on the wing. This item is included
in the complete treatment mentioned previously which considers all the
planes. The interference problem in the case of the tipward store is
reduced to one of local interference of a more familiar nature between
wing and store.

CONCLUSIONS

The following conclusions are indicated:

1. The transonic area rule can be applied to configurations involving
many kinds of stores or nacelles in locations from wing root to wing tip.

2. The area rule is shown to function at supersonic Mach numbers in a
similar fashion, utilizing in this first analysis, sectioning vertically
along Mach lines originating at the fuselage center line.

3. The appreciable scatter which is present in the area-rule correl-
ations may be reduced in later refinements but will always be present
because of detail conditions or differences. It is emphasized, therefore,
that good detail design of components, junctures, and so forth, must be
adhered to. The area rule then offers a useful means by which the designer
may arrange or integrate these components into the complete configuration
having the best possible area and drag characteristics.

4. Quantitative data are lacking in all correlations because this
analysis was based upon previous investigations which were not planned
for obtaining such data. Further research 1s needed, using the area
rule and other theory as a guide, to obtain quantitative design data on
the interference and optimum location of stores and nacelles.
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PRESSURE DRAG OF BODIES AT MACH NUMBERS UP TO 2.0
By Robert L. Nelson and William E. Stoney, Jr.

Langley Aeronautical Laboratory

The drag of bodies has now assumed greater importance because, as
shown in the previous papers by Richard T. Whitcomb and Robert T. Jones,
the transonic drag rise of an airplane can be the same as its equivalent
body. Obviously, the airplane designer would like his airplane to have
a low-drag equivalent body. This paper shows some of the factors which
minimize the drag of bodies at transonic and supersonic speeds and shows
some of the penalties caused by deviating from low-drag body shapes.

Drag reductions can be obtained in two ways, first, through increasing
the body fineness ratio, and secondly, through better shaping the body
profile at a given fineness ratio. The effects of fineness ratio are
discussed first and then, more completely, detail shape effects.

Largest reductions in body drag result from increases in body fine-
ness ratio as is shown in figure 1. In figure 1 the variation of air-
plane drag with equivalent body fineness ratio at M = 1.05 is plotted.
In order to do this the pressure drag of an airplane is assumed to be
the same as that of its equivalent body and Cp 1is based on wing area

in order to get the results in more familiar terms. For the calculations,
airplane volume and wing area are assumed to be constant. The values
used are representative of a bomber-type airplane. The data points are
from free-flight model tests of parabolic bodies having different meximm-
diameter positions and base sizes (refs. 1 and 2). The curve simply con-
nects the lower drag points. The difference between the total-drag curve
and the friction-drag curve represents the minimum pressure drag for a
given volume and fineness ratio for these body shapes. The minimm total-
drag curve shows the large reduction in airplane drag obtained with an
increase in equivalent body fineness ratio. Largest reductions in drag
occur at fineness ratios below 12, whereas the minimum drag occurs at
about a fineness ratio of 24. This value will change somewhat for other
Mach numbers and Reynolds numbers. Careful attention must be given to

the nose and afterbody components which make up the body as indicated by
the spread of test points at a given fineness ratio. Although not shown
in figure 1, two wing-body configurations from the previous paper by
Norman F. Smith, Ralph P. Bielat, and Lawrence D. Guy had approximately
the same ratio of volume-to-wing area as for this plot. One configura-
tion, of fineness ratio 6.5, had a Cp of 0.036 while the other, having

an equivalent body fineness ratio of 9 and a %etter shape, had a Cp

of 0.022. This effect of fineness ratio and the level of drag therefore
is verified by the actual wing-body tests. The prime importance of fine-
ness ratio on drag has been shown and the problem will now be analyzed

|
1
|
1
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In figure 2 the breakdown of a typical curve of drag coefficient
against Mach number for a body neglecting base drag is shown. For bodies
with bases, the base drag can be calculated by using the results of Love,
Chapman, Cortright and Shroeder, and others (refs. 3 to 5). The friction
drag can be calculated by the usual methods. The supersonic pressure
drag for good bodies can be calculated at Mach numbers above that for
shock attachment Mg by the second-order theory of Van Dyke (ref. 6).
This paper considers mainly the range of Mach number below Mg where
the problem is difficult to analyze theoretically. This range is defined
by the Mach number for peak drag Mp and the drag rise Mach number Mpg.

Figure 3 shows correlations of drag rise and peak drag Mach numbers
for a number of parabolic bodies (refs. 1 and 2). For the upper series
of test points the Mach number for peak drag is plotted against nose
fineness ratio. The curve shown is the Mach number for shock attachment
to parabolic noses. The curve and the test points show the same general
trends and indicate the dependence of the Mach number for peak drag on
the Mach number for shock attachment.

For the lower series of test points, the drag rise Mach number is
plotted against the nose or afterbody fineness ratio, whichever is the
least. The nose and afterbody test points fall within the same band and
indicate that the drag rise Mach number may be determined by either the
nose or afterbody and is dependent mainly on fineness ratio.

Before discussing the peak drag of bodies, an examination is made
of some of the effects of nose shape on drag at various Mach numbers.
Figure L4 shows the drags of a number of fineness-ratio-3 noses. Althouzh
drags at this fineness ratio are relatively high, this fineness ratio was
chosen so that the drag increments between the different shapes were more
easily measurable. The results are presented in bar-graph form at
M=1.05 1.24, and 2.0. The nose shapes include the cone, the parabolic
nose having its vertex at maximum diameter, the L-V Haack nose (designed
for minimum drag for a given volume and length), the hypersonic optimum

or x° nose, the Von Karmén nose (designed for minimum drag for a

given length and diameter), and the xl/2 nose (which is a parabolic nose
having its vertex at the tip). At M = 1.05, the results are from free-
flight model tests from the Langley helium gun (at the testing station at
Wallops Island, Va.); at M = 1.2k and 2.0, the results are from the Ames
1- by 3-foot supersonic tunnel (ref. T) except for the perabolic nose.

For the parabolic nose, the results are from second-order theory. At

M = 1.05, the x1/2 nose, which has a relatively blunt tip, has the
least drag and is followed by the Von Karmdn nose. At M = 1.24, the
same result holds true. At M = 2, the hypersonic optimum nose has the
least drag. This result also holds true at Mach numbers greater than 2.

The xl/2 nose at M = 2 has higher drag as a result of its blunt tip.
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Although the Von Karmin nose has good drag characteristics over
the Mach number range tested, it must be remembered that this nose was
derived for vanishing thickness. For finite thickness, this slender-
body-theory result does not apply. Recent work at the Langley Laboratory
has solved the minimum problem for finite thickness by using linearized

theory. The resulting nose shapes have finite slopes at their maximum
diameters.

Another indication that noses with finite slope at maximum diameter
can have lower drag than noses with zero slope at maximm diameter is
shown by some results for a family of noses generated by parabolic arcs.
In figure 5 the nose pressure drag coefficient is plotted against the
shape parameter X which is related to the slope of the nose at maximm
diameter. For K = 1, the parabolic nose has zero slope at maximum
diameter. Reducing K gives slope at maximum diameter and for K = o,
the result is a cone. Both helium-gun tests at M = 1.2 and second-
order theory at M = 1.4 show the same trend; therefore, minimm drag
in the vicinity of K = 0.7 1s indicated. This result indicates that,
for parabolic noses, removing the restriction of zero slope at maximum
diameter has resulted in a reduction in nose drag. Far complete bodies,
the reduction of nose drag by the use of such shapes may be offset by a
greater interference drag of the nose on the afterbody.

In order to obtain an explanation of this drag reduction, the
geometrical changes in the noses with a change in the shape parameter K
have been examined. Examination of the nose profile shapes and the nose
area distributions yielded no significant clues. However, the slopes of
the nose-area distribution curves give an important result as is shown
in figure 6.

The nondimensional slope of the nose area distribution is plotted
against nose station x/! for a number of velues of K. Note that in
going from K = 1.0 to 0.75, the peak slope of the area distribution
curve is reduced, whereas a further decrease of K to 0.5 and to O
causes an increase in the peak slope; therefore, the lowest drag nose
has the lowest peak slope. In figure 5 is also shown the drag value

at M= 1.2 for the xl/2 nose, which had the lowest drag at low super-
sonic speeds of all the noses presented earlier. The slope of the area
dlstribution curve for the xl/2 nose is the lowest value possible and
is constant as is shown in figure 6. Thus, from this experimental and
theoretical study of the effect of nose shape on drag, the peak slope of
the area distribution curve is seen to be an important parameter which
influences the drag at low supersonic speeds. This parameter has less

importance at higher Mach numbers since the x3/11L nose with a relatively
high peak slope had the least drag at M =

A correlation of the peak drag of bodies using as part of the correla-
tion parameter a function which is prqportional to the slope of total body
area distribution curve has bee
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Figure 7 shows 39 body shapes included in the drag correlation for
smooth bodies. The bodies have different fineness ratios, maximum-diam-
eter locations, base sizes, and profile shapes. In figure 8 the peak
pressure drag coefficient is plotted against a shape parameter which
includes the function f which is related to the slope of the body area
distribution curve, the base diameter ratio, and an effective body fine-
ness ratio, which neglects any parallel portion of the body. The neglect
of this cylindrical section presupposes small interference effects between
the nose and afterbody. The drags of all the bodies are from free-flight
model tests at high Reynolds numbers so that the flow i1s turbulent at
both subsonic and supersonic speeds. The peak pressure drag was obtained
by taking the difference between the peak total drag and the subsonic
drag. For bodies having base areas greater than 20 percent of the maximum
area, the drags were corrected for base pressure. Fin drag was subtracted
for all models. The peak pressure drag correlates well by using this
correlation parameter and indicates that for these body shapes the inter-
ference drag is small. The one body for which the correlation is poor
has a low-fineness-ratio, highly convergent afterbody. This correlation
is similar to a transonic drag correlation made by the Fort Worth Division
of Convair in that the slopes of the area distributions are weighted in
the same manner.

Since the correlation appears gqod, one would obviously seek low
drag, for a given fineness ratio, by minimizing the quantity

f - 2(\ - %&). However, this minimization cannot be done directly since

base drag must be included and the proper combination of base size and
afterbody length must be found for low drag.

Figure 9 shows the results of some tests (ref. 2) in which the after-
body drag included both afterbody pressure drag and base drag. The tests
were made with free-flight models flown from the helium gun. The noses
on all the models were of high fineness ratio to minimize the interference
of the nose on the afterbody. The stabilizing fins were thin and swept
back to reduce the interference drag between the fins and the afterbody
and to minimize the effect of the fins on the base pressure. At M = 1.05,
the test Reynolds numbers for all models were over 8 x 10°; at these
Reynolds numbers and with the presence of the fins, the flow at the base
is turbulent and thus the results are representative of full-scale values.
Twelve bodies had parabolic afterbodies of three fineness ratios and four
base sizes, whereas four additional models had conical afterbodies. In
the left-hand plot of figure 9 at M = 1.05, the pressure plus base drag
coefficient of the afterbody is plotted against the base radius ratio
Ty /Tmax for the three afterbody fineness ratios. The plot shows that,

as the afterbody fineness ratio increases, the base size for minimum drag
approaches zero. The right-hand plct shows che base size for low drag
against afterbody fineness ratio. It can be seen that the three points
fall on a straight line through rb/r = 1, which corresponds to a

max
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conical boattail angle which is constant and equals 4.5°. This angle

of 4.5° corresponds with previous ballistic experience. Since the after-
bodies have bases at fineness ratios below 6, any jet flow through the
base must not cause higher base drag. This effect of the jet on base
pressure is discussed in the paper by Edgar M. Cortright, Jr., and Fred D.
Kochendorfer.

By using this plot of base size for low drag against afterbody 1/d
in conjunction with the peak-drag correlation parameter, a series of
bodies have been designed which should have low drag based on body frontal
area at M = 1.05. The bodies bad profiles of the x./2 shape with
maximum diameters located so as to minimize the correlation factor ¢
for a given base size.

However, drags of these supposedly reduced drag bodies were no lower
than those of the lowest drag parabolic bodies presented in figure 1. The
drag reduction indicated by the correlation parameter therefore was not
realized. A comparison of the peak pressure drags of two of these bodies
with the drags predicted by the correlation is presented in figure 10.

As indicated by the vertical distance between the mean line from the
correlation and the data points, the predicted drags are 40 to 60 percent
below the actual values. It is felt that this difference is due to inter-
ference between the nose and afterbody components. The 39 bodies for which
the data correlated well had either zero slope of the nose at maximum
diameter or had finite slope followed by a long parallel portion; as a
result, the interference drag was small. However, for these two models,
the nose with finite slope at maximum diameter was followed by the after-
body which also had finite slope at maximum diameter. In any event the
correlation should be used with caution in designing low-drag bodies for
body shapes for which the interference drag can be high. A qualitative
estimate of the interference drag between the nose and afterbody is given
in a recent paper by Fraenkel {(ref. 8).

Up to this point only smooth bodies have been discussed. Designing
an airplane to a good area distribution, however, is difficult and bumps
may occur in the area distribution curve. Figure 11 shows the area dis-
tributions of twelve bumpy bodies which were equivalent bodies of air-
plane configurations. In order to get a rough indication of the effects
of the bumps on the drag, a comparison of the drag for each model with
that for a parabolic body having the same length, maximum diameter,
maximum-diameter location, and base size was made. Figure 12 shows a plot
of the measured peak pressure drags of the twelve bumpy bodies against
the peak pressure drags of the corresponding parabolic bodies, calculated
by using the correlation shown earlier. The vertical distance from the
dashed line to the data point represents the drag increment due to the
bump. Except for one case, the drags of the bumpy bodies are from about
20 to 60 percent greater than for the parabolic bodies. The one case for
which the drag of the bumpy body appears lower probably results from the

- - ! g
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drag of the bumpy body being low as a result of separation of flow over
the afterbody, and, of course, the calculation of the parabolic-body
drag does not account for this effect.

Since the effects of the bumps can be large, it is of interest to see
whether the peak-drag correlation for smooth bodies will hold for bumpy
bodies.

Figure 13 shows the peak drag correlation for the twelve bumpy bodies.
The peak pressure drag was obtained in the same manner as for the smooth
bodies except that an additional correction was made for bodies with for-
ward facing steps in the area distribution curves. It was assumed that
the pressure over the step area corresponded to the pressure rise through
an oblique shock ahead of a two-dimensional forward facing step as given
in a recent paper by Love (ref. 3). The peak drags for the bumpy bodies
show the same trends as for smooth bodies; however, the scatter about the
mean curve is much greater. Again, two bodies with highly convergent low-
fineness-ratio afterbodies do not agree with the correlation.

The drag rise Mach numbers for these twelve bodies followed the same
trend as for the parabolic bodies shown earlier. The Mach numbers for
peak drag were more complex, being more a function of detail nose geometry,
than for the smooth bodies.

In conclusion, first, largest reductions in drag are possible through
increases in both total body fineness ratio and the fineness ratio of the
component parts. Second, the drag rise Mach number is dependent'mainly
on the shortest body component fineness ratio, whereas the Mach number
for peak drag is a function of nose fineness ratio and shape. Third,
the peak drags of smooth bodies and bumpy bodies can be correlated by
using a simple parameter which depends only on body shape if the inter-
ference drag is small.
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DRAG DUE TO LIFT AT MACH NUMBERS UP TO 2.0
By Edward C. Polhamus

Langley Aeronautical Laboratory
INTRODUCTION

The previous papers have shown that, if the "area rule" is utilized
properly, it is possible to obtain values of zero-lift drag which, for
a wide variety of wing-fuselage configurations, approach that for the
basic fuselage alone. This fact mekes the selection of a wing somewhat
less dependent on its zero-lift drag and therefore allows a wider range
of wings to be considered with regard to other problems. The purpose
of this paper therefore is to discuss the effect of wing geometry on the
drag due to 1lift and methods of reducing the drag at 1ifting conditions.

In figure 1 a typical variation of the drag with lift coefficient
for a plane, or flat, wing is shown by the solid line on the left-hand
side of the figure. For a plane wing the minimum drag occurs at zero
1ift and theoretically has a parabolic shape with the increment due to
1lift ACp equal to a constant times the 1ift coefficient squared. In

general, the data for the wings presented in this paper were fairly
linear plotted against CL2 up to lift coefficients of about 0.3 and

therefore the slope ACDICLE will be used to describe the drag-due-to-

1ift characteristics of plane wings in this 1ift range. For a cambered
or cambered and twisted wing the drag curve, as shown by the dashed line,

does not have its minimum at zero lift and therefore the drag polars will

be used to describe the characteristics of this type of wing.

Now, if viscous forces are neglected, the drag due to the 1ift can
be divided into two components - a thrust component of the suction force
caused by the flow about the nose of the airfoil, and a drag component
of the normal force. For a two-dimensional wing these two components
exactly balance each other; however, for a three-dimensional wing the
drag component of the normal force is greater than the thrust component
of the suction force, since a higher angle of attack is required to
develop the same 1ift, and an induced drag results. At subsonic speeds
the rate of change of the induced drag with 1ift squared can be approxi-
mated by l/nA as illustrated in the bottom part of the right-hand side
of figure 1. Additional drag also occurs if the suction force is not
fully developed at the leading edge. For the extreme case of zero suc-
tion the drag due to lift is equal to the component of the normal force,
and the rate of change is therefore equal to the reciprocal of the
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lift-curve slope as illustrated in the top part of the figure. The

drag curve of a wing usually lies somewhere between these two extremes

and its relative position between these two limits is dependent to a *
large extent on the amount of suction developed at the leading edge and

is therefore a function of such parameters as Reynolds number, Mach num-
ber, thickness, and leading-edge radius. The two limits, of course, are
primarily a function of plan form and Mach number.

EFFECT OF REYNOLDS NUMBER

Figure 2 shows the effect of Reynolds number on the drag due to
lift of an aspect-ratio-2 delts wing having an NACA 0005-63 airfoil
section (ref. 1 and unpublished data). The results are presented in

the form of the drag-rise parameter Ly CL2 against Reynolds number

for several Mach numbers. Also shown are the subsonic and the M = 1.7
theories for full leading-edge suction and the values for zero suction
given by l/CLa.

The results indicate that at a Mach number of 0.25 there is a
rather large increase in drag due to 1lift with decreasing Reynolds num-
ber but that as the Mach number increases the effect of Reynolds number
diminishes and is relatively unimportant at a Mach number of 1.7. The
increase with decreasing Reynolds number is probably due in part to the
fact that the combination of low Reynolds number and a relatively sharp
leading edge is conducive to leading-edge separation resulting in a loss
of leading-edge suction. 1In addition, a part of this variation is
probably due to the fact that at low Reynolds numbers the transition
point moves forward with increasing 1ift resulting in an increase in
viscous forces with 1lift. The decreasing effect of Reynolds number
with increasing Mach number is due to the fact that the difference
between the theory and the zero-suction case decreases with increasing
Mach number and the fact that the flow about the leading edge is
affected by compressibility. It should be pointed out that, while the
Reynolds number based on the mean aerodynamic chord was used here to
define more clearly the variation with Reynolds number for a given wing,
it appears that the drag due to lift at a given Mach number is more
dependent upon the Reynolds number based on leading-edge radius. A
recent correlation (ref. 2) based on this parameter succeeded in bringing
the drag-due-to-1ift parameter into fair agreement for a large number of
aspect-ratio-2 delta wings having various airfoil sections. It should
also be pointed out, however, that, for plan forms where compressibility
effects are a function of thickness ratio or leading-edge radius, corre-
lations based on the leading-edge Reynolds number would not be expected
to bring the data into agreement at all Mach numbers.
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EFFECT OF THICKNESS

Figure 3 illustrates the effect of wing thickness ratio on the drag-
due-to-1ift factor for unswept wings of aspect ratio L4 at Reynolds num-

bers of approximately 4 X 106 (refs. 3, 4, and unpublished data from the
Langley 16-foot transonic tunnel). In addition to the experimental data,
the theory for full suction is also shown. It will be noted that at sub-
sonic speeds a decrease in thickness ratio from 8 percent to 4 percent
increased the drag-due-to-lift factor; for example, at a Mach number

of 0.6 it was increased by approximately 60 percent. This increase with
decreasing thickness ratio is probably due to the fact that the L-percent-
thick airfoil section has a considerably smaller leading-edge radius and
therefore develops less leading-edge suction. However, it will be noted
that as the Mach number is increased the curves tend to converge and at
a Mach number of about 0.88 there is little effect of thickness. This

is due to the fact that, although the thick wing develops more suction
at low speeds, the effect of compressibility on the flow about the
leading edge is greater than for the thin wing. Above a Mach number

of 0.88, the L4-percent-thick wing has considerably less drag due to lift
than the 6-percent- and 8-percent-thick wings due to the fact that in
this Mach number range the resultant force is normal to the wing chord,
and since the thin wing has the higher lift-curve slope it has the lower
drag due to 1lift. This is illustrated by the two dashed curves repre-
senting the reciprocal of the lift-curve slope for the L-percent- and
6-percent-thick wings.

Figure 4 shows the effect of thickness on the drag due to lift of

a delta wing of aspect ratio 2 at a Reynolds number of 3 X 106 (ref. 1).
At subsonic Mach numbers it will be noted that the results are similar
tc those for the unswept wings (fig. 3} with the thin wing having the
highest value of drag due to lift. However, at the higher Mach numbers
the effect of thickness did not reverse for the delta wing as it did
for the unswept wing and the thin wing still had the highest drag due
to 1ift. It will also be noted that even at the highest Mach number
tested the drag is lower than the reciprocal of the lift-curve slope,
an indication of some suction being developed. This is due to the fact
that the Mach number normal to the leading edge of this wing never
exceeded a value of about 0.80. The vertical dashed line represents
the free-stream Mach number for which the Mach number normal to the
leading edge is equal to 0.9 which is approximately equal to the Mach
number of the unswept wings for the case of zero suction. In order to
indicate the variation with Mach nurber in the transonic range, the
results of & rocket-propelled model of similar plan form having a

thickness of 6% percent (ref. 5) is shown by the long and short dashed

curve.
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EFFECT OF LEADING-EDGE RADIUS

The effect of leading-edge radius on the drag due to lift of an
unswept wing (ref. 1) is illustrated in figure 5. The wing had an
aspect ratio of 3, a taper ratio of 0.39, and a thickness of 3 per-
cent and was tested with a biconvex section and with a biconvex sec-
tion modified with an elliptical nose having a radius of 0.045 percent
of the chord. It will be noted that the results are similar to those
obtained in the thickness investigation, with improvements with
increasing leading-edge radius occurring only at subsonic speeds. It
should be pointed out that the two curves are coincident at supersonic
speeds.

Figure 6 presents the results obtained on a 45° swept wing of
aspect ratio 4 which was tested with several modifications to the basic
NACA 65A006 airfoil section in the Langley high-speed T7- by 10-foot
tunnel. The three configurations tested were a sharp edge having zero
radius, the normal radius of 0.2k percent chord, and a radius of
0.72 percent chord. Inasmuch as only a limited Mach number range was
covered in these tests, the results are presented as AClp plotted

against Cp at a Mach number of 0.90. The results indicate that no

improvement occurred with increase in the leading-edge radius at this
Mach number.

EFFECT OF ASPECT RATIO

Figure 7 illustrates the effect of aspect ratio on the drag due to
1ift through the Mach number range. The wings were of delta plan form
and 3 percent thick and had aspect ratios of 2 and 4 (ref. 1). The
results indicate, as would be expected, that the higher aspect ratio
has the lower drag due to 1lift throughout the Mach number range. How-
ever, it will be noted that the difference between the two aspect ratios
is considerably greater than that indicated by the theory. It will be
noted, however, that the effect of aspect ratio on the reciprocal of the
lift-curve slope, which represents the zero-suction case, is approximately
twice that for the full-suction theory at subsonic speeds. The larger
effect of aspect ratio obtained in the experiments is therefore not sur-
prising since these thin wings lose a good portion of suction.

EFFECT OF SURFACE SHAPE

The previous figures have illustrated the effect of various parameters
on the drag due to lift of planar wings, and have shown that, in general,
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the drag due to lift is considerably higher than the theoretical values
due largely to separation at the nose and the accompanying loss of
thrust. However, a theoretical study by Jones (ref. 6) has shown that
an effective leading-edge thrust can be cbtained by cambering and
twisting the wing.

Figure 8 presents the results of cambering and twisting a 45° swept
wing of aspect ratio 4 (ref. 7 and unpublished data from the Langley
8-foot transonic tunnel and the low-turbulence pressure tunnel). On the
left-hand side of the figure the results are presented for the case of
the cambered and twisted wing having 4.5C incidence at the fuselage
which results in low fuselage angles at moderate lift coefficients. The
results are presented as a plot of Cp against Cj at a Mach number

of 0.9 for the plane wing at zero incidence, for the wing cambered and
twisted for a uniform load distribution at a C;, of 0.4 and M = 1.2

(e = 4.5°), and for the wing cambered and twisted for a triangular span
load and a rectangular chord load at & Cp, of 0.4 and M = 0.9 (e = 13°).

The triangular span load of the latter case was used in an attempt to
improve the pitching-moment characteristics. The results indicate large
increases in drag for both the camber and twist distributions. However,
on the right-hand side of the figure, results are presented for the wing
cambered and twisted for a uniform load tested on a slightly different
fuselage but having approximately zero incidence at the fuselage. These
results indicate substantial reductions in drag above a 1ift coefficient
of about 0.15 for the cambered and twisted wing. For the case of zero
incidence the fuselage is developing 1ift at the design condition and
therefore the wing-fuselage combination represents the wing alone for
which the camber and twist were designed considerably better than the con-
figuration having h.SO incidence which results in low fuselage angles

in the moderate 1lift range.

Figure 9 presents the results of an aspect-ratio-2 delta wing tested
with three different surface shapes (ref. 1): a planar surface, a sur-
face cambered and twisted for a trapezoidal spanwise load distribution,
and a surface which was planar over the inboard 80 percent of the local
semispans. This third surface was a modification of the surface required
for an elliptical span loading and was used in order to simplify con-
struction. It should be mentioned that the wing incidence was zero at
the plane of symmetry for all three cases. At a Mach number of 0.91,
it will be noted that both types of surface modification resulted in
improvements in the drag characteristics but that the simple nose camber
was superior below a lift coefficient of about 0.3. As the Mach number
increased the improvements diminished for both surfaces and at a Mach
number of 1.53 no improvement was obtained; however, less penalty occurred
for the simple nose camber.
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Figure 10 shows the results obtained from tests in the Langley
8-foot transonic tunnel of a similar wing in which the extent of the
nose camber was varied. The wing had an aspect ratio of 2.2 and a
modified NACA O00L4-65 airfoil section. Two nose cambers were tested
and both were of constant chord, one being 4 percent (modification A)
and the other 8 percent (modification B) of the mean aerodynamic chord.
The camber covering 4 percent of the mean aerodynamic chord was obtained
by shearing the ordinates so that the bottom surface was parallel to the
chord line. The camber covering 8 percent of the mean aerodynamic chord
was obtained by extending the chord and displacing the leading edge an
smount equal to 1.3 percent of the longitudinal distance X from the
wing apex. This was a modification of the surface shape required for
an elliptical loading at a lift coefficient of 0.15 and was similar to
that presented in figure 9 except that it was of constant chord. On
the left-hand side of the figure drag polars are shown for the basic
wing and the two modifications at a Mach number of 1.0. The results
indicate that modification A (4 percent) had no effect on the drag
while modification B (8 percent) resulted in a substantial reduction in
drag except for an extremely small increase at zero 1lift. Although the
coefficients are based on the actual areas, it should be pointed out
that even the actual drag for a given 1lift 1s less for modification B
than for the basic wing. The effect of Mach number on the variation of
drag at a 1ift coefficient of 0.3 for the three configurations is shown
on the right-hand side of the figure. It will be noted that both modi-
fications resulted in improvements at the lower Mach number but that
modification A had no effect above a Mach number of about 0.90; however,
modification B resulted in improvements throughout the Mach number
range investigated.

EFFECT OF TRIMMING

In order to reduce the weight and zero-1ift drag of an aircraft,
tailless configurations are saometimes used. However, since a tallless
design, in general, obtains its trim from a surface on the wing, large
deflections of this surface are required because of the short moment
arm. These large deflections, of course, result in additional drag
which could have an important effect on the performance. This is
especially true at supersonic speeds because of the increased stability
caused by the rearward movement of the wing aerodynamic center in going
from subsonic to supersonic speeds and the higher drag due to flap
deflection. Figure 11 illustrates this effect of trimming on the varia-
tion of the drag with 1ift. The model was an aspect-ratio-2 delta wing
having an NACA 0005-63 airfoil and a constant-chord flap equal to 10 per-
cent of the wing mean aserodynsmic chord (ref. 8). At a Mach number
of 0.90, it will be noted that a positive flap deflection of 4O resulted
in a reduction in the drag due to 1ift. However, for a stable tailless
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configuration negative deflections are required to trim the airplane
through the positive lift range which results in an increase in the
drag due to 1ift. At a Mach number of 1.90, the increase due to
trimming the airplane is considerably greater than at 0.90 because
of the aforementioned increase in stability and drag due to flap
deflection at supersonic speeds.

EFFECT OF APPLICATION OF THE AREA RULE

In the previous papers it was shown that indentations of the fuse-
lage according to the Mach number of 1.0 area rule resulted in large
decreases in the zero-lift drag of wing-fuselage combinations at tran-
sonic speeds. The question now arises as to whether these benefits are
maintained under lifting conditiomns. Figure 12 shows the effect of a
Mach number of 1.0 body indentation on the drag of a wing-fuselage com-
bination. The wing had an aspect ratio of 4, 45° of sweep, a taper ratio
of 0.3, and an NACA 65A006 airfoil section and was tested in the Langley
8-foot transonic tunnel. The results are presented as total drag coeffi-
cient against Mach number for 1lift coefficients of O and 0.3 and indicate
that the large reductions in drag at transonic speeds due to body inden-
tation were to a large extent mainteined in the 1lifting condition. At
supersonic speeds the Mach number 1.0 indentation had negligible effect
at either 1lift coefficients of O or 0.3.

Figure 13 shows the improvement in the maximum lift-to-~drag ratio
associated with this application of the area-rule concept. The results
for both the basic configuration and the configuration with the indented
body are plotted against Mach number and it will be noted that, below
a Mach number of about 1.4, the 1ift-to-drag ratios were improved and at
& Mach number of 1.0 (the design condition) the increase amounted to
approximately 37 percent.

At the present time little has been done in attempting to develop
area distributions which might actually reduce the drag increment due
to lift. However, figure 14 presents the results of one such investiga-
tion conducted on a wing of aspect ratio 4 having 450 of sweep (ref. 9).
The basic body was cylindrical rearward of the wing leading edge and was
modified by several types of indentations. The first indentation,
designated by the letter in the figure, was symmetrical around the
fuselage and was determined by the Mach number 1.0 area rule. The other
two indentations tested were more abrupt indentations superimposed first
on the upper half C) and then on the lower half C) of the symmetrical

indentation. On the left-hand side of the figure the drag at zero 1ift
is presented against Mach number and it will be noted that all the modi-
fications gave about the same reduction in drag. On the right-hand part




o AP CHEDitbmbeind L o

of the figure the same comparison is made for a 1lift coefficient of 0.3.
The results indicate that the symmetrical area-rule indentation resulted
in sbout the same reduction in drag as at zero 1ift which is consistent
with figure 12. However, when the more abrupt indentations were added,
additional reductions in drag resulted with the lowest occurring for the
indentation below the wing.

COMBINED EFFECTS

At transonic speeds it has been shown that application of the area
rule and the use of camber and twist results in significant reductions
in drag. Figure 15 shows the effect of combining these two methods at
transonic speeds. The tests were conducted in the Langley 8-foot tran-
sonic tunnel on a model having 45° of sweep, an aspect ratio of 4k, a
taper ratio of 0.6, and an NACA 65A006 airfoil section. The model was
tested (1) with the basic wing and body, (2) with the basic wing and
the body indented according to the area rule, and (3) with the wing
cambered and twisted for a uniform load at Cf = O4 and M=1.2 in

combination with the indented body. On the left-hand side of the fig-
ure drag polars are presented for the three configurations at a Mach
number of 1.0. It will be noted that indenting the fuselage resulted
in large reductions in drag throughout the 1lift range. Camber and twist
resulted in a rather large increase in minimum drag but resulted in
improvements above a lift coefficient of about 0.2. On the right-hand
side of the figure the maximum lift-to-drag ratios are plotted as a
function of Mach number. At a Mach number of 0.8 the improvement is due
mainly to the camber and twist and resulted in an increase from 13 to 17.
At a Mach number of 1.0, the improvement is due mainly to the body
indentation and resulted in an increase from about 7.5 to 11.5.

CONCLUDING REMARKS

In conclusion, it appears that Reynolds number has a rather large
effect on the drag due to lift of thin wings at low speeds but that this
effect decreases considerably with increasing Mach number.

Comparisons of wings of various thicknesses indicate that at sub-
sonic speeds an increase in thickness is beneficial, whereas, in general,
at transonic and supersonic speeds no gains and possible losses occur
unless the wing leading edge is highly swept which results in relatively
low subsonic speeds normal to the leading edge. Similar results are
indicated with regard to leading-edge radius.
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Although camber and twist are effective in reducing the drag due
to 1lift at the design condition, providing the correct wing incidence
is used, it appears that simple nose camber will result in similar
gains with less penalty near zero lift.

The reductions in minimum drag associated with application of the
area rule by means of fuselage indentations are maintained in the lifting
condition and significant improvements in the lift-to-drag ratios result.
In addition, from preliminary tests, it appears that local modifications
to the fuselage indentations may result in additional reductions in drag
at 1lifting conditions.
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LONGITUDINAL CHARACTERISTICS OF WINGS
By Thomas A. Toll

Langley Aeronautical Laboratory

INTRODUCTION

The previous papers have summarized recent information relative to
the drag at zero 1ift and the variation of drag within the lower range
of 1ift coefficients. In considering the complete range of 1ift coef-
ficients for normal flight operations, the performance characteristics
and longitudinal stability are perhaps equally important factors in the
selection of the wing configuration. One objective of the designer can
be regarded as the achievement of the best possible compromise between
performance and stability over the ranges of Mach number and 1lift coef-
ficient that are l1ikely to be encountered. This paper deals with various
approaches toward reallzation of this objective in so far as the wing cr
wing-fuselage characteristies are concerned. Consideration 1s given only
to wings of 6-percent thickness or less.

SYMBOLS
A wing aspect ratio
CL 1ift coefficient
Chn pitching-moment coefficient
L/D lift-drag ratio
M Mach number
R Reynolds number
b wing span
c local wing chord
< mean aerodynamic chord
r wing section leading-edge radius
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t maximum thickness of wing section
Xgo distance measured rearward from leading edge of wing mean .
aerodynamic chord to wing aerodynamic center
JAs S8 shift in longitudinal position of wing aerodynamic center at
low 1lift
Axcp change in longitudinal position of wing center of pressure
Aycp change in lateral position of wing center of pressure
A wing taper ratio; ratio of tip chord to root chord
Ac/h wing sweep angle measured with respect to quarter-chord line
ME wing sweep angle measured with respect to leading edge
Sn deflection of leading-edge flap, measured in plane parallel to -

plane of symmetry, positive when leading edge 1s down

RESULTS AND DISCUSSION -

Wing Plan Forms

Wing plan forms which are representative of those in which interest
has been centered are shown in figure 1. The three wings at the left
have attracted considerable interest because of their attractive perfor-
mance c%pabilities. In general, these wings require some modification
or fix 1if satisfactory high-1lift stabllity is to be attained. The
three composite wings shown at the center represent an approach toward
achieving good stability while maintaining the benefits of a moderately
high aspect ratio and at least a part of the benefits resulting from
large sweep. The wings at the right represent plan forms that might be

expected to avoid high-lift stabllity problems through use of small sweep
angles.

Wings of Large Sweep

Basic characteristics.- The nature of the stability problem that -~
exists for wings of the type shown at the left of figure 1 is illustrated
in figure 2. Results for several such wings are published in references 1
to 8. The wing geometry and Reynolds numbers are given at the right of
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the figure. Each of these wings shows some pitching-moment instability
within the normal operating lift range. Although the magnitude of the
instability and the 1ift coefficient at which the instability begins vary
somewhat for the different wings, the most severe condition exists at a
Mach number of about 0.9 for each of these wings. At a Mach number of 1.0
the stability problem is essentially eliminated for two of the wings and
is alleviated somewhat for the third. At supersonic speeds higher than
those considered in figure 2, the wing-fuselage normally does not present
a major stabllity problem. Of the plan forms shown in this figure, wings
having about the aspect ratio and sweep angle of the wing at the top have
recelved the greatest amount of attention with regard to means for improving
their behavior. The objective in the studies that have been made is not
necessarily the achievement of linear pitching-moment characteristics of
the wing-fuselage combination, since, when a tail is used, the additional
contribution of a tail generally is not linear. It is desirable however
to avoid abrupt changes in slope such as those shown in figure 2.

Before considering the effects of variations in the geometry of the
wing shown at the top of figure 2, it is appropriate to study the manner
in which aerodynamic characteristics are altered through application of
the area-rule concept in the design of the fuselage. The pitching moments
and 1ift-drag ratios obtained at Mach numbers of 0.9 and 1.0 for the wing
mounted on a cylindrical fuselage and on the fuselage modified by an
indentation in accordance with the area-rule concept are presented in
figure 3. (For additional details, see refs. 2 and 9). The results at
M = 0.9 are representative of conditions in the subsonic speed range
where the indentation has little effect on the 1lift-drag ratio. The
results at a Mach number of 1.0 represent a transonic condition for which
the indentation provides an appreciable gain in lift-drag ratios. At
either Mach number, the effect of the indentation on pitching moments is
small and amounts primarily to a slight extension of the 1ift range before
instabliiity begins. Indentations applied to some other wing-fuselage
configurations have provided considerably larger performance gains than
that indicated here; however, the effect on stability still was small.

It should be pointed out that the 1lift-drag ratios presented in the
various figures contained herein should be interpreted only with respect
to the variables considered on a given figure, since the investigations
to be summarized employed different fuselage shapes and also differed in
certain other details.

In considering wings of the aspect ratio and sweep angle shown in
figure 3, the question arises as to whether benefits can be derived by
selecting some taper ratio different from the value of 0.6 used. Fig-
ure 4 presents results from reference 8 at Mach numbers of 0.8 and 0.91
for wings having taper ratios varying from 0.3 to 1.0. The assumed cen-
ters of gravity for these wings have been adjusted to give the same slope
of the moment curves for all wings near zero lift and at low Mach numbers.

PR S
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The moment curves show that high-1ift instability occurs for all wings,
but that there is a progressive increase in the 1ift coefflcient at

which instability begins as the taper ratio is increased from 0.3 to 1.0.

Essentially no change in the lift-drag ratios 1s indicated for these
wings over the range of taper ratlos considered. These wings, however,
all were of 6-percent thickness. Since the taper-ratio-0.3 wing would
seem to be the most efficient structure, its thickness probably could
be reduced somewhat and some performance advantage thereby achieved at
transonic and supersonic speeds. This wing was selected as the basic
plan form for an extensive study of various modifications.

Modifications to swept wings.- The effect of a variation in leading-

edge radius is compared in figure 5 with the effect of 6° droop of a
20-percent-chord leading-edge flap. The point symbols give results for
a sharp nose, for the normal nose of the basic 65A006 airfoil, and for
a nose having three times the radius of the nose of the basic airfoil.
The solid-line curves were obtained from reference 10 and represent
results obtained with the nose flap deflected 6° on the basic wing. At
the selected Mach numbers of 0.8 and 0.9 the variation in leading-edge
radius had no significant effect on either the stability or the lift-
drag ratios of this wing. Deflection of the leading-edge flap improved

the 1ift-drag ratios and extended the linear range of the pitching-moment

curves. The advantage of droop was smaller at the higher Mach number.

Some limited tests at transonic speeds (refs. 11 to 13) and at supersonic
speeds have indlicated that only a very small advantage can be expected by

deflecting a leading-edge flap on a wing of the type used here.

The effects of leading-edge droop indicated in figure 5 also are
representative of effects resulting from camber, camber and twist
(refs. 14 and 15), and large-span slats. In general, such modifications
improve the drag characteristics and extend the linear range of the

pitching-moment curves but do not alleviate the instabllity at high 1ift.

More significant effects on stability at high 1ift have been
obtained by such devices as fences, leading-edge chord-extensions, and
notches in the wing leading edge. (See refs. 4, 5, and 10.) About the
same effect has been indicated (ref. 16) for external stores if they
are carefully positioned along the wing span. Each of these devices
appears to depend largely on an abllity to upset the stability of the
leading-edge vortex that frequently exists on thin swept wings at moder-
ately high angles of attack. Any change in flow phenomena that destroys
the vortex will greatly decrease the effectiveness of these devices.

The effects of these devices on pitching moments result largely from
controlling the location at which stalling is initiated and not through
any appreclable reduction in the amount of separation. As would be
expected, therefore, such devices have little effect on drag

characteristics.
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It has been shown in references 10 and 11 that combining a leading-
edge chord extension with a full-span drooped nose flap permits both the
performance benefit of the nose flap and the stability advantage of the
chord extension to be obtained simultaneously. The effects of this com-
bination and of some additional modifications are shown in figure 6. The
results for the basic wing are given by the solid curves. Results for the
chord-extension combined with the deflected nose flap are given by the
short-dashed curves. Note the rather large gains in both stability and
lift-drag ratios that are obtained. The additional modifications con-
sisted of a wing cutout with refairing of the wing contour near the fuse-
lage intersection and a trailing-edge extension. These additional modi-
ficatlions provided some additional control over the pitching-moments at
high 11ft but did not provide completely satisfactory stability at the
selected Mach numbers of 0.8 and 0.9. It is a point of interest that a
modification opposite to the wing cutout shown here — that is, a forward
extension of the wing chord near the fuselage — has been found to aggra-
vate the high-1ift stability problem (ref. 17, for example). A comparison
of the lift-drag ratios of the latter two modifications with those obtained
with only the nose flap and chord-extension shows that the trailing-edge
extension sometimes gave some improvement, but the leading-edge cutout
had an adverse effect. All three modifications provided improvements
over results obtained with the basic wing.

Composite wings.- A more extreme method of handling the stability
problem involves use of composite wing plan forms. In figure 7 results
gor an Mawing' a W-wing, and a plan form sometimes referred to as a

cranked wing are compared with results for the basic 45° swept wing
from which the composite plan forms were derived. In order to facilitate
the comparison, the pitching-moment curves for all wings were adjusted to
the same slope near zero 1ift at Mach number 0.8. The results indicate
that the M-wing at least offers an effective means for controlling high-
1ift stability in the critical Mach number range near C.5. Selection of
different Jjuncture locations or different sweep angles of the inboard

and outboard panels should make it possible to achieve additional improve-
ments in the shapes of the pitching-moment curves. It must be emphasized,
however, that the more favorable stability characteristics obtained with
these plan forms again result from controlling the locations at which
flow separation is initiated and not from any material decrease in the
amount of separation. Tuft surveys indicate separation at the root and
tips of the M-wing and at the panel junctures for the W and cranked wings.
At the selected Mach numbers of 0.8 and 0.9 the lift-drag ratios for the
M-wing compare favorably with those of the basic swept wing. It is not
known, however, to what extent the characteristics of the composite wings
might be improved by such devices as nose flaps or camber. Some minimum
drag penalty has been indicated for M- and W-wings at transonic speeds;
however, no penalty has been noted above a Mach number of about 1.25.

(See ref. 18.)
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Modifications to triangular wings.- Experience in applying modifica-
tions to triasngular wings so far has been quite limited. The effects of
one modification — a leading-edge chord-extension — are shown in figure 8.
The characteristics of the basic model without chord-extensions are given
at Mach numbers of 0.85 and 0.95 by the solid-line curves. The insta-
bility which covered only a small lift-coefficient range was essentially
eliminated by the chord-extensions (dashed curves). The results shown
here are representative of the entire Mach number range for which insta-
bility of the basic model existed. In thils case the effect of the fix
might be regarded as belng complete; however for some other triangular-
wing models having different fuselage configurations, this type of fix
did not completely eliminate the instability. The effect of the modifi-
cation on lift-drag ratios generally has been found to be insignificant,
as is indicated in this figure. It has not yet been clearly established
whether the stabllity advantages of modifications such as the chord-
extension and the performance advantage of a cambered leading edge can
be obtalned simultaneously by combining the two devices.

Wings of Small Sweep

Considerations regarding use of small sweep.- In considering the
possible use of straight wings or wings of reduced sweep as a means of
avoiding stabllity difficulties, the possibility of a penalty in perfor-
mance 1s of course of paramount interest. Whether such a penalty exists
can be determined only as a result of detalled design studies with con-
sideration given to aerodynamic data of the type discussed in the pre-
ceeding papers and in references 19 to 24.

Another factor that needs careful consideration is the magnitude of
the shift in aerodynamic center of these wings while passing from sub-
sonic to supersonic speeds. An attempt to correlate this shift for thin
wings in the regilon of zero lift is indicated in figure 9. The incremen-
tal change in aerodynamic-center position (defined as the difference
between maximum forward and maximum rearward aerodynamic-center positions
below a Mach number of 1.15) is plotted against sweep angle. Results are
considered for aspect ratios of 2, 3, 3.5, and 4. Wings having values of
the taper ratio parameter A less than 0.4 are indicated by open symbols
and wings with A\ greater than O.4 are indicated by solid symbols. For
the range of plan forms considered, there appeared to be very little cor-
relation with aspect ratio and, in general, little correlation with taper
ratioj although for small sweep angles there is an indication of a larger
aerodynamic-center shift for the larger taper ratios. A fairly definite
trend with sweep angle results and indicates an increase in the
serodynamlc~center shift by about 6 percent of the chord as the sweep
angle is reduced from 45° to 00.

e
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Straight wings.- The stability characteristics of two straight wings
are shown in figure 10. The results for the aspect-ratio-4 wing shown at
the top were obtained in the Langley 16-foot transonic tunnel at a Rey-
nolds number of 6 X 10°. Results given in the bottom plot are for an
aspect-ratio-3 wing tested in the Ames 2- by 2-foot transonic tunnel at
a Reynolds number of 1.5 million. The characteristics of these wings
are generally similar. Nonlinearities again appear in the pitching-
moment curves, particularly at Mach number 0.9. In these cases, however,
difficulties may result from excessive stability, rather than from a loss
in stability, at high 1ift. As was indicated for the other wings, =
final evaluation depends on the stability characteristics that are
obtainable with the horizontal tail installed.

Selection of Sweep Angle.- With regard to the wing contribution to
stability, it would be desirable to indicate some quantitative relation
between pltching-moment nonlinearities — whether they are stabilizing
or destabilizing — and the wing geometry. Results of an attempt to form
such a relation are indicated on figures 11 and 12. The analysis has
been made in terms of the center-of-pressure change with increasing 1ift.
Evaluations of this change were made by subtracting center-of-pressure
locations at low 1ift from the center-of-pressure locations at a 1ift
coefficient of 0.6 and at the maximum 1ift coefficient. Results from a
systematic series of wings tested on a transonic bump through maximum
1ift and to Mach numbers of about 1.2 at a Reynolds number of 1.0 X 106
were used 1n the analysis. The six wings considered on figure 11 had a
taper ratio of O, an aspect ratio of 4.0, and sweep angles varying from
-140 to 450, Figure 12 gives results obtained with the same wings, but
with the tips clipped to give an aspect ratio of 3 and a taper ratio of
0.1k,

Since the wings were tested as reflection-plane models, both the

e )
longitudinal change - and the lateral change ( /2 in center of
c b

pressure could be determined. The results show that, in general, the
longitudinal center-of-pressure changes at a Mach number of 1.1 were
considerably smaller than the changes at a Mach number of 0.9. TFairly
large lateral changes occurred at both Mach numbers, however. Whether

a rearward or a forward change in wing center of pressure is desired

for a particular design will depend on factors not dealt with in this
paper; however, for purposes of illustration, it is of interest to con-
sider the case for which a minimum change in longitudinal position of
the center of pressure is desired. For the pointed wings of aspect
ratio 4, a sweep angle in the vicinity of 200 or 300 would be selected
to meet this requirement. For the clipped wings of aspect ratioc 3, a
sweep angle between 3%0° and 40° is indicated. It is important to note
that for either wing series, the wings that would be expected to give
the smallest longitudinal changes in center of pressure would experience

appreciable inward changes in center of pressure at a Mach number of 0.9,
WY Dodiag
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even at the relatively low 1ift coefficient of 0.6. Such inward dis-
placements are associated with tip stalling and a reduction in the effec-
tive span of the trailing vortex sheet. This may cause erratic changes
in downwash as well as buffeting and erratic changes in the lateral sta-
bility derivatives.

Wings of intermediate sweep.- The charts of figures 11 and 12 are
of limited use for general design purposes in that they deal with only’
two specific series of wings; also, the test Reynolds number was only

1.0 X 106. It should be of interest to inspect the stability character-
istics of two wings tested at higher Reynolds number but having aspect
ratios and sweep angles such that small changes in center of pressure
would be expected. The results are given in figure 13. Both wings are
of aspect ratio 3. One wing, having 37° sweep and a taper ratio of 0.2,
conforms closely to the conditions for minimum change in center of pres-
sure indicated by figure 12. The other wing, because of its smaller
sweep angle, would be expected to experience some increase in stability
at high 1ift. Results for both wings show some Jjogs in the pitching-
moment curves, particularly at Mach numbers near 0.9. In general, how-
ever, the nonlinearities are smaller than those indicated for most of
the wings discussed previously, and the major trends are about as would
be expected from the preceding charts.

CONCLUDING REMARKS

In summary, this paper has treated three approaches to the problem
of wing selection. The first involves use of modifications or "fixes"
to correct the basic instability of wings with relatively large sweep
angles. Such modifications, if carefully tailored to the wing belng
considered, may provide marked improvements in both stability and per-
formance at the lower subsonic Mach numbers; however, in general, there
is no assurance that the modifications will be sufficiently effective,
particularly at Mach numbers near 0.9. The other two approaches involve
use of composite wings — particularly the M-type plan form — or wings of
intermediate sweep. These latter methods provide a more positive means
of dealing with the stability problem. The methods considered do not
necessarily provide alleviation of flow separation at high 1ift, and
therefore problems involving buffeting, erratic downwash, and erratic
lateral-stability derivatives may exist even though the static longi-
tudinal stability of the wing-fuselage combination is apparently good.
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AERODYNAMIC CHARACTERISTICS OF LOW-ASPECT-RATIO WINGS
AT HIGH SUPERSONIC MACH NUMBERS
By Edward F. Ulmann and Mitchel H. Bertram

Langley Aeronautical Laboratory

This paper presents some recently obtained data on the aerodynamic
characteristics of low-aspect-ratio wings at supersonic Mach numbers
of 4.0k and 6.9 and discusses some new methods of predicting the 1lift
and drag of such wings. Data on lifting wings in the Mach number range
above 2.5 are not plentiful and most of the available data may be found
in references 1 to 8.

The plan forms, airfoil section, and thickness ratios of the wings
tested are given in figures 1 and 2. The wings shown in figure 1 all
have double-wedge airfoil sections, with constant thickness ratios over
the wing span. The wings of figure 2 are all of the same family, having
hexsgonal airfoil sections with constant thickness outboard to the
56-percent-semispan station and double-wedge sections with maximum
thickness at the 69.2-percent-chord station from there to the wing tips.
Exceptions to this are the two delta wings which have rounded leading
edges and the clipped delta wings. The wings were selected to extend
the Mach number range of data on wings previously tested and to inves-
tigate the effects of changes in the aspect ratio of delta wings, changes
in wing plan form, and changes in airfoil section and thickness. The
models tested at Mach number 6.9 in the Langley ll-inch hypersonic tun-
nel were sting-mounted, and 1lift and drag data were obtained. The models
tested at Mach number 4.04 in the Langley 9- by 9-inch Mach number 4 blow-
down jet were tested as semispan models extending out into the stream
from a boundary-layer bypass plate; lift, drag, pitching moment, and
wing-root bending moment were measured.

The aerodynamic characteristics of the double-wedge section delta
wings will be considered first. A summary of the lift-curve slopes at
zero angle of attack for the double-wedge section wings of this investi-
gation is presented in figure 3, together with some data on delta wings
of the same section from the Langley 9-inch supersonic tunnel at Mach
numbers 1.62, 1.93, and 2.40. The ordinate in figure 3, the ratio of
the delta-wing lift-curve slope to the linear-theory two-dimensional
lift-curve slope, and abscissa, the ratio of the tangent of the semi-
apex angle of the wing to the tangent of the free-stream Mach angle,
are basic parameters obtained from the linear theory of delta wings
(refs. 9 and 10). Tangent ratios less than 1 represent wings with
subsonic leading edges, whereas at tangent ratios greater than 1 the
wing leading edges are nominally supersonic, but may be actually
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subsonic because of shock detachment due to wing thickness. The shaded
region in figure 3 includes points obtained in various other facilities
throughout the country from tests of delta wings with thickness ratios
equal to or less than 3 percent at Mach numbers from 1.2 to 2.4 (refs. 11
to 16). 1In the past, the analysis of delta-wing data for Mach numbers
below 2.5, plotted to the variables of figure 3, has led to several con-
clusions: first, that delta wings having the same section and the same
tangent ratio have lift ratios which are relatively independent of Mach
number; and, second, that the linear theory gives a fairly accurate
prediction of the lift of thin delta wings at low values of the tangent
ratio, but overestimates the 1ift at tangent ratios from about 0.7 to 1.5.
As wing thickness ratios increased, the lift-curve slopes were found to
become increasingly less than the linear-theory values. The only theo-
retical methods which take leading-edge shock detachment into account,
and thus might be expected to give better predictions for the 1lift of
delta wings in the shock-detached region, are methods using conical
characteristics solutions, such as that of Maslen (ref. 17). These
nonlinear methods are very laborious and simpler methods are desirable.
The data from the tests of double-wedge section delta wings at Mach
numbers 4.04 and 6.9 (fig. 3) indicate that these linear-theory param-
eters are not adequate for correlating higher Mach number data, since
the high Mach number tests generally gave higher 1ift ratios than the
low Mach number tests. In the region of attached leading-edge shocks,
it was found that the lift-curve slopes were very close to the shock-
expansion two-dimensional values for the wing airfoil sections.
Accordingly, the data were plotted (fig. 4) as the ratio of the experi-
mental lift-curve slope to the two-dimensional shock-expansion lift-
curve slope for the streamwise airfoil section of the wing. In general,
1ift ratios close to 1 were obtained at high values of the tangent ratio,
indicating that the two-dimensional shock-expansion theory gives good
predictions of lift-curve slopes of delta wings when the leading-edge
shock is attached.

At values of the tangent ratio close to those for shock detachment,
the experimental 1lift ratios dropped abruptly below 1, as was noted at
the lower Mach numbers by Love (ref. 18). Some simple method of pre-
dicting the variation of 1ift ratio in this region is desirable. Since
the predictions of the linear theory are the same as those of the char-
acteristics theory for wings of zero thickness, it was assumed that the
1ift of these finite-thickness wings in the shock-detached region varies
in a manner similar to linear-theory prediction for the zero-thickness
wing. The similarity constant was determined by the shock-detachment
value of the tangent ratio for each wing. Using these constants, curves
were drawn from the shock-detachment points to predict the wing lifts,
as shown in figure L. This modification to the linear theory predicts
the experimental results with a meximum error of 5 percent for the five
Mach numbers shown in figure 4. When extended to the prediction of
lift-curve slopes of arrow- and diamond-plan-form wings tested at Mach
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number L4.04 by modifying the results of Puckett and Stewart's theory
(ref. 19), given in chart form in reference 20, the method gave predic-
tions within 7 percent of the experimental values for one arrow wing
with a single-wedge section and one diamond-plan~form wing with a
hexagonal section.

The previous figures have presented data on lift-curve slopes at
zero angle of attack. Figures 5 and 6 present typical lift curves for
double-wedge-section delta wings at Mach numbers 4.0k and 6.9. At both
Mach numbers the curves are essentially linear at low angles of attack.
Nonlinearities are evident at angles of attack above approximately 6°,
especially at Mach number 6.9. An estimate of the 1lift of the wing
having a 30° semiapex angle at Mach number 6.9 at 10° angle of attack
would be 20 percent low if based on the lift-curve slope at 0° angle
of attack. The experimental data for the wings of figures 5 and 6 follow
very closely the predictions of the shock-expansion two-dimensional theory
for the streamwise airfoil sections of the wings at both Mach numbers, as
long as the leading-edge shock is attached. When the angle of attack
becomes so large that the leading-edge shock detaches, the experimental
values begin to fall below the shock-expansion theory. This is especially
noticeable at Mach number 6.9, where an abrupt change in the slope of the
1ift curves occurs at the angles of attack at which leading-edge shock
detachment is predicted theoretically. At Mach number 4.0k, the data
for the 5-percent-thick wing, which has an attached leading-edge shock,
agree very well with the shock-expansion theory, whereas the experi-
mental 1ift coefficients for the much blunter 8-percent-thick wing,
which has a detached shock at zero angle of attack, fall below the theo-
retical values. The shock-expansion theory gives predictions of the
1ifts of the double-wedge wings tested within about 2 percent of the
experimental value at Mach number 4.0k and within 5 percent at Mach
number 6.9, as long as the angle of attack is below that for leading-
edge shock detachment.

The next section of this paper discusses methods of predicting and
correlating the drag of low-aspect-ratio delta wings. The prediction of
drag results involves, of course, three factors: predictions of friction
drag, minimum pressure drag, and drag due to lift. In order to make a
theoretical prediction of friction drag, predictions of the type of
boundary layer and the location of boundary-layer transition must be
mede. Satisfactory theoretical methods of predicting boundary-layer
transition on wirgs are not available at present, but the transition
point, the nature of the boundary layer, and the value of the friction-
drag coefficient can often be determined by experimental means in wind
tunnels or in free flight. For example, an experimental value of the
friction-drag coefficient at Mach number L .04 was obtained by plotting
the drag coefficients of wings having the same plan form and section
against the square of the wing-thickness ratio and making a straight-line
extrapolation through the experimental points to the zero-thickness
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ordinate. A value of 0.0036 was obtained. Furthermore, the boundary-
layer-transition lines on these same wings were determined by fluorescent-
lacquer tests and, by using this information and by assuming no variation
of CDf with wing thickness ratio, estimates of the friction-drag coef-

ficients of the wings were made using Van Driest's value of laminar skin-
friction-drag coefficient (ref. 21), corrected for differences in stream
static temperature (ref. 22), and the Frankl and Voishel extended value

of the turbulent skin-friction-drag coefficient (ref. 23). An estimated
value of 0.0033 was obtained by this method, which compares favorably with
the experimental value of 0.00%6. The experimentally determined value of
the skin-friction drag coefficient was used to obtain the minimum pressure-
drag coefficients at Mach number 4.0k used in the following discussion.
Theoretically determined friction-drag coefficients were used at Mach
number 6.9.

The next component of wing drag which will be considered is the
minimum pressure drag. The linear theory for delta wings as derived by
Puckett (ref. 24) indicates that all delta wings with double-wedge air-
foil sections having a given maximum-thickness location and the same

2 -
CDPmin " !

(t/C)2

the ordinate of figures 7 and 8, for all thickness ratios and Mach num-
bers. Thus, the linear theory for each family of delta wings investi-
gated appears as single curves in figures 7 and 8. The predictions of
linear theory are rather poor for the wings shown in fiigure T7; however,
all the experimental data for the wings with maximum thickness at 50 per-

value of the tangent ratio will have the same value of ,

cent chord, wings 2%, 5, and 8 percent thick, tested at Mach numbers

from 1.62 to 6.9, fall very nearly on one curve, showing that these
parameters successfully correlate experimental data for this family of
wings. This result is found only for wings with sections that are sym-
metrical sbout the midchord point, since the higher order effects are
small for such wings. TFor other wing sections with maximum thicknesses
ahead of or behind the 50-percent-chord point, the higher order terms
become important and the theory indicates Mach number effects in the
shock-attached region which cannot be correlated by these parameters.

This point is illustrated by the results obtained from the wings
with maximum thickness at 18 percent chord presented in figure 8. The
predictions of the linear theory are poor for these blunt wings at low
values of the tangent ratio due to the transonic nature of the flow
over the wings; however, the lower Mach number data correlate well,
since the second-order effects for this wing section are small at these
Mach numbers. The data at the higher Mach numbers, the three experi-
mental points obtained at Mach number 6.9 and the experimental value

R
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obtained at Mach number 4.0k, indicate that the high Mach number data

do not correlate with the lower Mach number data at tangent ratios close
to and beyond the shock-attachment value. The trend of the data at each
Mach number indicates that the pressure drags become constant at values
close to those predicted by shock-expansion theory for the wing section
at each test Mach number. This same trend was clearly evident in fig-
ure 7 for the symmetrical double-wedge wings. Thus, it can be seen
that, with the aid of shock-expansion two-dimensional theory, satisfac-
tory predictions of the pressure drags of double-wedge delta wings can
probably be made throughout the supersonic Mach number range up to 6.9.
(Some of the data of figures 7 and 8 were presented in figure 11 of
reference 5. The discussion of the pressure-drag data in reference 5
and the second conclusion of that reference are correct with reference
to the wings with maximum thickness at 50 percent chord but apply only
for Mach numbers from 1.62 to 2.4 for the wings with meximum thickness
at 18 percent chord.)

If the skin-~friction drag and the minimum pressure drag of a wing
have been determined, the variation of the drag due to lift must be
known if any estimates of lift-drag ratios are to be made. For all the
wings of this investigation it was found that the drag due to 1lift was
equal to the normal force times the sine of the angle of attack. This
has also been found to be the case for a large number of low-aspect-
ratio wings tested at lower supersonic Mach numbers in the Ames 6- by
6-foot supersonic tunnel (ref. 16).

Some characteristics of the family of wings shown in figure 2, which
have hexagonal sections and were tested at Mach number 4.04, are now con-

sidered and the experimental results will be compared with the predictions

of the modified theory. The delta and the diamond-plan-form wings have
constant-thickness sections out to 56 percent of the semispan and double-
wedge sections from there to the wing tip. The tapered wing was made by
cutting the tip from the delta wing at 56 percent of the semispan. Two
of the wings were tested with both wedge leading edges and NACA 0003-63
leading-edge sections.

Wings with rounded leading edges are of interest at high Mach numbers,

since rounded leading edges have better heat-conducting properties than
sharp leading edges and thus will be more likely to keep their strength
at the high temperatures which will be encountered at high supersonic
Mach numbers. Figure 9 shows the effects on the lift and drag of two
delta wings at Mach number 4.04 of replacing the wedge-leading-edge sec-
tions by NACA 0003-63 leading-edge sections. The shock was attached to
the wedge leading edge of the wing having the 30° semiapex angle and
was detached from the wedge leading edge of the wing having the 10° semi-
apex angle. The change from sharp to rounded leading edge resulted in
a 50 percent increase in the minimum drag of the 30° wing, which is
about a 90-percent increase in the pressure drag. This result has also
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been found at lower supersonic Mach numbers. The maximum lift-drag
ratio was decreased 20 percent from 6 to 4.9 by rounding the leading
edge of the wing.

The data for the lower-aspect-ratio wing, which has a subsonic
leading edge, indicate that rounding the leading edge of this wing may
have also caused an increase in drag. This is contrary to lower Mach
number experience (for example, see ref. 25) and must be investigated
further.

The methods discussed previously gave predictions of the lift of
the sharp-leading-edge wings within 5% percent of the experimental

values and predictions of pressure drag of the same wings within about

10 percent of the experimental values. The methods of predicting deltas

wing lift and pressure drag which have been proposed here are, of course,

not applicable to wings with rounded nose sections. Therefore, pressure
distributions over the two wings having NACA 0003-63 nose sections were
estimated by the hypersonic approximation or Newtonian method (ref. 26),
combined with a Prandtl-Meyer expansion over the lee surfaces of the

wings and empirical values of base pressure. Drag coefficients were

obtained by this method that were within 5 percent of the estimated “
experimental pressure drags. Using the modified method and the

Newtonian method, the drag increments for these wings due to rounding

the leading edges were predicted within 25 percent. It should be pointed

out that the friction drag of the wings with the rounded leading edge *
is not known with the same accuracy as that of the sharp-leading-edge

wings, so that the estimates of total drag may not be as accurate as

the calculations indicate. The drag due to 1ift of these wings was

found to be equal to the normal force times the sine of the angle of

attack, as was the case for the double-wedge-section wings.

At Mach number L4.04 the locations of the wing-panel centers of pres-
sure were determined experimentally. The chordwise location of the centers
of pressure ranged from about 1.5 percent of the root chord downstream to
5 percent of the root chord upstream of the center of area of the wing
panel. The spanwise location of the centers of pressure of the semispan
models ranged from 2.5 to 5 percent of the semispan outboard of the cen-
ter of area of the wing panel.

These methods of predicting wing lift and drag should give improved
predictions of wing-body characteristics when used with wing-body-
interaction methods such as the method of Nielsen and Kaattari (ref. 27).
Figure 10 presents an example of some improvements in wing-body predic-
tions obtained by the use of the more accurate values of wing lift
obtained from the modified theory. The data are for four delta wing- ~
body combinations for which the Mach lines, starting from the wing-body
juncture, lie inside the wing leading edge, but which are actually
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operating with detached shocks due to wing thickness. Three of the con-
figurations were tested at Mach number 1.93 (ref. 28) and one at a Mach
number 4.0k (ref. 4). The ordinate of figure 10 is the experimental
value of the lift produced by the wing when in combination with the
body. The abscissa is the theoretical value of the same quantity. The
open points show the relatively poor predictions obtained by the use of
the simple-linear-theory 1lift coefficients. The solid points show the
improved predictions obtained by the use of the modified-theory wing-
1ift coefficients. The good prediction by the linear theory at Mach
pumber 4.04 is fortuitous, since it is the result of the compensating
effects, and such agreement should not be expected for other configura-
tions at high Mach numbers.

To summarize, some simple methods of predicting lifts and pressure
drags of thin delta wings at supersonic Mach numbers up to 6.9 have been
presented. These methods are mainly modifications to the linear theory
based on the physical realities of the flow, including shock detachment.
Tests of & considersble number of low-aspect-ratio wings at Mach num-
bers 1.6 to 6.9 have indicated that these methods accurately predict the
wing 1ift and pressure drags. The effects of rounding the leading edge
of two delta wings at Mach number 4.0k were predicted satisfactorily by
the use of the modified theory and the hypersonic approximation.
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BOUNDARY -LAYER CONTROL ON SWEPT WINGS
By Woodrow L. Cook

Ames Aeronautical Laboratory

This paper presents a discussion of recent results that have been
obtained on the use of area-suction type of boundary-layer control for
the purpose of increasing 1ift on wings during low-speed f1ight. The
1ift increments obtainable and the air-flow and power requirements for
this type of boundary-layer control are compared with those associated
with boundary-layer control applied by the blowing Or sucking of air

The meximum 1ift of an airfoil section 1is normally limited by the
occurrence of air-flow separation due to a pressure rise too great for
the boundary-layer air to penetrate without the aid of some form of
boundary-layer control. In figure 1 the upper part illustrates the
usual location on an airfoil section of these pressure peaks and the
consequent pressure rises. In all three cases, boundary-layer control
applied in the region shown by the dots permits, as indicated by the
dashed curves, the attaimment of grester pressure peaks without air-flow
separation. The curves in the 1ower part of the figure illustrate the
type of 1ift gains attainable with boundary-layer control applied at the
three positions. For the left-hand and center cases an increase in angle
of attack is required to realize the 1ift gains; whereas, for the third
case, only an increase in flap deflection is necessary.

Comparison of two-dimensional section data (refs. 1 to 3) obtained
with boundary-layer control applied through slots and through a porous
area at the leading edge indicates that area-suction boundary-layer con-
trol requires much less power than boundary-layer control applied through
slots. Therefore, for swept wings efforts have been concentrated on
studies of area-suction type of boundary-layer control. The main portion
of the results to date have been obtained from tests in the Ames 40- by
80-foot tunnel (refs. & to 7). Some work on suction through a porous
1eading edge has also been done at the Langley Laboratory (ref. 8). Tests
have been made of North American F-86 wing panels with area suction applied
to the wing leading edge, to the nose flap, and to the trailing-edge flaps.
As a result, the major part of this discussion deals with the use of area
guction as a means of boundary-layer control although same comparisons of
power requirements of various methods is made subsequently.

The primary analytical work on area suction for high 1lift was due
to Thwaites of England (ref. 9). He made a study of the problem of
controlling separation of air flow from the wing leading edge. The
method of applying Thwaites' analysis to determine the required extent
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of area suction is 1llustrated in figure o, Shown here are two pressure
distributions, one, the solid Curve, on a section With no boundary-layer
control at an angle of attack Just prior to air-flow Separation on the -
section and the other, shown by the dashedq curve, the Pressure distripy.-
tion at the desired 1ift coefficient, The shaded area gt the leading
edge which is shown to an enlarged scale in the inset indicates the
chordwise extent of the section over which areg Suction must be applied,
This chordwise extent of suction is determinegd analytically by assuming

Thus, ares suction need only be applied over the chorgd length between

the desired peak pressure of -30 and the point where the pressure recovery
is equal to the maximum value attainable on the section without boundary-
layer control, This reasoning has been verified in Several cages by exper-
iment angd, although three-dimensiona] effects modify the results to some
degree, the method appears to be sound. Application of area suction to

the leading—edge flap or trailing-edge flap ig accomplished by using the
Same method, In each case, the Position of application ig in the region

of pressure rise directly following the pressure peak.

control have been made. However, because of the limiteq landing attitudes
of current ang Proposed airplanes, and because boundary-layer control

Showm in figure 5 are 1ift curves Obtained on the F_8¢ (ref. 7) for
three flap conditions. The lowest curve isg for the standarg F-86 slotted
flap deflected 580; the next highest is for & plain flap deflected 650;
and the highest ig for the 650 flap with areg Suction applied. The
increase in lift shown means that at an assumed landing attitude of 100

Further, it ig evident that, on this design, little would be gaineg by
achieving large increases in maximum 1ift because the maximum ground angle
of the F-86 is about 14°,  For many of the airplane designs now under

horizontal lines in the right-hand plot. It is apparent from these
curves that greg suction succeedsg in its Purpose of eliminating air-flow
separation angd attaining near-theoretical values of 1lift. The general
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shape of the curves on the right indicate that the flow separation is

eliminated very abruptly as a particular value of flow coefficient

® is reached. The curves also indicate that the value of flow coefficient
required increases with flap deflection and that higher values of flow
coefficient produce little increase in lift. Not capable of being shown
here, but an important fact to note, is that no measurable hysteresis
was found; regardless of whether suction was being increased or decreased,
a nearly unique value of 1ift increment was measured for each value of
flow coefficient.

Such 1lift gains have been known to be obtainable from several types
of boundary-layer control for some time. One reason they have not been
used is that the air-flow-quantity and pumping requirements were large.
The use of the area-suction type of boundary-layer control considerably
reduces both of these quantities. Figure 5 illustrates this point. The
comparison of flow-quantity requirements is presented in figure 5(a) and
the comparison of horsepower requirements is shown in figure 5(b) for
three types of boundary-layer control applied for a particular level-
flight condition for the F-86 airplane at 125 mph. The curves for the
flaps with suction and blowing of air through slots were obtained by

- applying German two-dimensional results (refs. 11 and 12) to the
F-86 partial-span flap. It is obvious that area-suction boundary-layer
control shown by the curves at the left of each figure has greatly reduced
the power and flow requirements.

In order to study flight characteristics of an airplane with this
type of boundary-layer control, an installation in the F-86 airplane for
flight test is now in progress. Figure 6 shows a schematic diagram of
the installation. The duct for removing the air shown by the shaded
area in the upper figure is placed in the flap itself and has an area
of approximately 20 square inches. The suction pump shown in true rela-
tive size to the components of the airplane in the lower figure has a
diameter of 8 inches and is 10 inches in length. For these tests the
turbine-driven pump will require less than one-half of 1 percent of the
main-engine-compressor air for operation, which means a thrust loss of
less than 1 percent. This thrust loss is relatively unimportant during
landing and is sufficiently small to enable the suction flap to be used
for normal or catapult take-offs.

A1l discussion to this point has been based on experimental data
obtained on the F-86 wing panels tested in the Ames L40- by 80-foot tunnel.
The question arises as to how these data can be generalized to wings of
other plan forms. In establishing a method, the basic concepts of simple
sweep theory have been used. The three main steps of the approximate
procedure are illustrated in figure 7. The first step involves estima-
tion of the maximum flap lifts attainable. For this purpose, it can be
assumed that the maximum flap deflection for which linear effectiveness
can be maintained by boundary-layer control is 65°. Based on this
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assumption, the flap 1ift increment can be calculsted for any wing-flap
arrangement by DeYoung's method of NACA Technical Note 2278 (ref. 10). The
second step, to determine the flow quantity of air that must be removed,
can be accomplished by estimation from values of the flow coefficients
required for the F-86 wing panels. In the previous figures the flow
coefficient CQ was based on the total wing area and the free-stream

velocity. For the purpose of application to other wing plan forms and
flap spans, the reference area used is that illustrated by the shaded
area in the center figure and the reference velocity is the component of
the free-stream velocity normal to the flap hinge line as shown. The
values of flow coefficient CQ' for the F-86 based on these references

are shown in the figure. These values of flow coefficients can be con-
verted to flow quantities for any wing plan form and flap span by the
relationship shown in the figure. The third step requires estimation

of the pumping pressure. The pressure-coefficient distribution over the
wing and flap are computed by two-dimensional theory and corrected for
the effect of sweep of the flap hinge line by simple sweep theory.
Adding the pressure losses due to flow through the porous surface and the
ducts, which were negligible for the F-86 wing panels, to the maximum
pressure over the flap will give the total pumping pressure. Combining
this pressure with the flow quantity will give an approximation of the
required power. A fuller discussion of the procedure outlined in this
figure 1s given in the report on the area-suction flap (ref. 7).

The acceptability of this method can be indicated to a certain
degree by recent results obtained with area suction applied to the flap
on a delta wing of aspect ratio 2. The suction requirements and the
increment of flap 1ift obtained for this wing which is of greatly dif-
ferent plan form than the F-86 wings were within 10 percent of the esti-
mated values.

Although the main emphasis in this paper has been on the use of area
suction for boundary-lasyer control, some additional information on the use of
suction and blowing slots is available in references 13 to 15.

In summary, first, it has been demonstrated that area-suction type
of boundary-layer control will enable realization of the maximum theo-
retical values of 1lift for flap deflections up to 65°. Second, it has
been demonstrated that application of boundary-layer control by means of
area suction will result in lowering the flow requirements and power
requirements to values far below those necessary for any other form of
boundary-layer control. Third, a method has been outlined which enables
use of the data obtained on the F-86 wing panels with wings of different
plan form and flap span.
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INCLINED BODIES AT HIGH SUPERSONIC SPEEDS
By Edward W. Perkins and David H. Dennis

Ames Aeronautical Laboratory
INTRODUCTION

The purpose of this paper is to review the results of recent research
on the aerodynamic characteristics of inclined bodies. For the most part
current work includes investigation of the details of the cross-force
distribution on bodies of revolution at high angles of attack, measure-
ment of the forces and moments for a wide variety of body shapes at hyper-
sonic speeds, and determination of the applicability of presently available
theoretical methods for predicting these characteristics. Experimental
data used in the following discussion have been obtained from various
facilities of the three NACA laboratories.

CROSS-FORCE DISTRIBUTION

It has long been evident that viscosity plays an important role in
determining the characteristics of the flow about inclined bodies. In
particular, the nonlinearities of the force characteristics of inclined
bodies are attributed principally to viscous effects. A practical method
of estimating the effects of viscosity on the force characteristics was
suggested by Allen (ref. 1). Comparisons of the measured forces and
moments for a large number of inclined bodies with those predicted by this
metnod show that the 1ift and the drag due to lift are adequately pre-
dicted but that the center of pressure is, in general, approximately
1 body diameter downstream of the predicted position (ref. 2). A tenta-
tive explanation of this discrepancy has been proposed, in which it was
indicated that, although it was assumed that the viscous effects acted
uniformly along the length of the body, in reality the development of
the cross flow with distance slong the body should be much the same as
the development with time of the two-dimensional flow about a circular
cylinder impulsively set in motion from rest. Hence, the longitudinal
distribution of cross-flow drag coefficient would not be constant, as
assumed, but should resemble the variation with time of the drag of the
impulsively started circular cylinder. In order to test this hypothesis
the normal-force distributions for the body shown in figure 1 have been
determined. The data are for a model consisting of a fineness-ratio-3
ogival nose tangent to a cylindrical afterbody 6 diameters long and have
been plotted as longitudinal distributions of the local normal-force
coefficient per radian for easy comparison with the distribution
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calculated with Tsien's linearized theory (ref. 3). "It is apparent that,
even at as low an angle of attack as 50, the experimental distribution
differs appreciably from that predicted by linearized theory. Assuming
that the differences between the theoretical and experimental values of
the local normal-force coefficients may be attributed to the effects of
viscosity, these differences may be used to evaluate the longitudinal
distributions of the cross-flow drag coefficient. Examination of the
data in the region near the apex of the model shows that, although the
local normal-force coefficient is greater than the value given by poten-
tial theory, it is a linear function of the angle of attack for an
appreciable angle range indicating, therefore, that the lack of agree-
ment results primarily from failure of the potential theory in this
region and that viscous effects are negligible. A comparison may then
be made, as in figure 2, between the distribution of cross-flow drag
coefficient along the inclined body and the variation with time (or as
plotted with distance traveled in diameters) of the drag coefficient of

& circular cylinder impulsively set in motion from rest. For the impul-
sively started cylinder, the cross force starts at zero, rises to a value
almost twice the steady-state value, and then, at some time later, depend-
ent on the test conditions, drops to the steady-state value. Similarly,
for the inclined body, the cross-force coefficient starts near zero at
the apex, rises with distance along the body to a peak value on the
cylindrical afterbody, and then decreases, approaching a constant value
far downstream on the cylindrical afterbody. Thus, as anticipated, the
distribution of additional loading attributable to viscous effects differs
from that assumed by Allen for calculation of the over-all forces and
moments. In spite of this, the total additional cross force predicted
by the approximate method is very nearly equal to the measured values.
However, because of the differences between the assumed distribution and
the true distribution, the actual center of pressure is downstream of the
calculated position.

It may be noted (fig. 2) that the cross-flow drag coefficient for
10° angle of attack does not rise to as large a maximum value as that for
the higher angles of attack and appears to approach a lower value near
the base of the body. This lower value of the cross-flow drag coefficient
results from the effects of boundary-layer transition. Although the cross-
flow Reynolds number was less than the critical value for a cylinder in
two-dimensional flow (approx. 250,000) the length Reynolds number was
sufficiently high, so that, within the particular wind tunnel in which
these measurements were made, boundary-layer transition occurred near the
point of tangency of the nose with the afterbody even at zero angle of
attack. It is evident, therefore, that in this instance the principle
of cross-flow and axial-flow independence is not applicable, and the
cross-flow characteristics are not those associated with the cross-flow
Reynolds number.

G -
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UNSTEADY WAKE FLOW

The formation of vortices in the wake of inelined bodies and the
subsequent asymmetry and unsteadiness at large angles of attack have been
shown by Mead and Gowen (refs. 4 and 5) to result in undesirable body-
tail interference effects. For missiles which must operate at large
angles of attack, the asymmetric and unsteady nature of this flow will
promote unexpected and erratic rolling, as well as undesirable forces
and moments in yaw. It has been found that the angle of attack at which
the vortex flow becomes asymmetric and that at which it becomes unsteady
are largely dependent upon the nose fineness ratio. The results of the
tests of a series of cones of various apex angles to determine the angles
of attack at which the vortex flow first becomes unsteady are shown in
figure 3. The boundary curve for the conical noses represents the lowest
angles of attack at which unsteadiness in the wake was observed for the
various fineness ratio cones. From the results for the cones alone it
is apparent that the lowest angle of attack at which unsteady flow was
observed increases with decreasing nose fineness ratio. Body shapes
other than conical were also tested to determine the effect of nose pro-
file. For nose shapes which are relatively blunter than cones it was
found that the angle of attack at which the vortex wake became unsteady
was greater than that of the cone of the same fineness ratio. This is
shown in figure 3 by the typical results plotted for the parabolic-arc
nose and the ogival nose. For nose shapes which are less blunt than
cones (for example, a cusped nose which has a smaller apex angle than the
cone, of the same fineness ratio) the angle of attack at which the vortex
flow became unsteady was approximately the same as that of the cone. It
is apparent, therefore, that insofar as it may be desirable to avoid the
unsteady flow at large angles of attack the lower fineness ratio or blunter
nose shapes appear desirable.

COMPARISON OF THEORY AND EXPERIMENT

Up to this point detailed flow characteristics resulting from
viscous effects at relatively low supersonic Mach numbers have been con-
sidered. Although similar studies of the flow about bodies at high Mach
numbers have not been made, there are now available sufficient experi-
mental data for the over-all forces and moments to permit an assessment
of the applicability of the available methods for predicting these char-
acteristics. The two simple methods which can be used by the designer
are the Newtonian or impact theory (ref. 6) and the method proposed by
Allen (ref. 1). Because of the nature of the simplifying assumptions
involved in the derivation of the methods, each would be expected to be
most applicable for a certain range of flow conditions - Newtonian theory
for very high velocity flow (M —>w), and Allen's method for
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aerodynamically slender bodies at large angles of attack. For the
potential contribution to the cross force, the use of slender-body theory
in conjunction with Allen's method of estimating the viscous effects has
proved adequate for high-fineness-ratio bodies at low Mach numbers. How-
ever, for such combinations of Mach number and fineness ratio that the
body under consideration cannot be considered aerodynamically slender, it
is known that the potential contribution to the cross force must be cal-
culated by a more accurate method. One such method is the so-called
"hybrid theory" suggested by Van Dyke (ref. 7). A typical example of

the improvement in the prediction of lift and drag characteristics
resulting from the use of Van Dyke's theory is shown by the data of fig-
ure 4. The experimental 1ift and the drag characteristics at M = 3.0

of a fineness-ratio-5 cone in combination with a cylindrical afterbody

5 diameters in length are compared with the theoretical characteristics
calculated with Allen's method. The difference in the two theoretical
curves results from the different values used for the potential-flow
contribution. It is evident that the use of Van Dyke's theory rather
than slender-body theory for the potential-flow contribution results in
considerable improvement in the prediction of both the 1ift and the drag.
It should be noted that the difference between the drag curves is due in
part to the fact that the two theories predict different directions for
the resultant force due to potential flow. As shown by Ward (ref. 8),

the slender-body theory requires that the resultant force be directed mid-
way between the normals to the free-stream direction and to the body axis,
whereas the force calculated with Van Dyke's theory is assumed to act in a
direction normal to the body axis. Within the assumptions of Allen's
method of estimating the forces (e.g., cos a = 1), this difference does
not affect the theoretical 1lift curves.

Although the use of Van Dyke's theory extends the Mach number range
for which valid predictions of the forces can be made, the theory would
not be expected to provide accurate results for arbitrarily high Mach
numbers. A study of Van Dyke's second-order axial-flow solution (ref. 9)
which, combined with the first-order cross-flow solution, constitutes the
hybrid theory, has shown that, if the combination of Mach number and nose
fineness ratio is such that the hypersonic similarity parameter is in
excess of unity, the error resulting from the use of the second-order
solution is large. Similarly, comparisons of the experimental initial
1ift-curve slopes with those predicted with Van Dyke's hybrid theory for
a large number of cone-cylinder combinations at Mach numbers between 3
and 7 show that, for values of the similerity parameter of unity and
greater, the errors in the theoretical initial lift-curve slopes become
very large. This is illustrated by the data in figure 5 where typical
comparisons of the theoretical and experimental initial lift-curve slopes
for a series of cone-cylinder combinations are made. Sketches of the
models and the Mach numbers of the tests are shown in the first two
columns. A measure of the relative aserodynamic slenderness of the bodies
is indicated by the values of the similarity parameter in the third column.
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The larger the value of the parameter the less the aerodynamic slender-
ness. The results are divided into three groups, cones alone, cone-
cylinder combinations of constant over-all fineness ratio but varying nose
fineness ratios, and cone-cylinders with relatively short cylindrical
afterbodies. These data are typical of results obtained for a large num-
ber of tests and serve to illustrate several points of interest. For the
cones alone, Van Dyke's theory yields reasonably accurate values of the
initial lift-curve slopes even for the least slender configuration. For
the second series of models, those of constant over-all fineness ratio,
the theory tends to overestimate the initial lift-curve slope by increas-
ingly larger amounts as the relative aerodynamic slenderness of the noses
decreases. Consideration of the results for these two series of bodies,
that is, the good agreement of the theory with experiment for the conical
noses alone and the poor agreement at the higher Mach numbers for the same
cones with cylindrical afterbodies, shows that the theory overestimsates
the 1lift carry-over onto the cylindrical afterbody for the nonslender
bodies. The overestimation is particularly serious for the models with
short cylindrical afterbodies as shown by comparison of the theoretical
values with the experimental results for the last two bodies. For these
cases the theory overestimates the initial lift-curve slopes by approxi=-
mately 18 percent. It is evident then that, for values of the slenderness
parameter of less than 1, Van Dyke's theory ylelds reasonably accurate
results for the initial lift-curve slopes, whereas, for bodies with aero-
dynamically nonslender noses, the values predicted by the theory are too
large. Hence, for a value of the slenderness parameter of 1, the combi-

nation of Van Dyke's theory for the potential-flow contribution with Allen's

estimate of the viscous effects yields values of 1ift and drag due to 1lift
which are too large throughout the angle-of-attack range. This typical
result is illustrated in figure 6 by comparison of the experimental
results for a cone-cylinder body of revolution with the predicted char-
acteristics. Also shown for comparison are the 1lift and the drag pre-
dicted with impact theory. For this high Mach number the impact theory
predicts the drag very well and is only slightly low for the 1lift.

The variations of lift and drag due to lift are very close to those
predicted by impact theory as shown by the data presented in figure T for
a Mach number of 6.86. (All data at this Mach number were obtained from
unpublished experiments in the Langley ll-inch hypersonic tunnel by
Herbert W. Ridyard.) Also shown for comparison are the 1lift and the drag
due to lift predicted with Allen's method in which the slender-body value
of 2 has been used for the potential-flow contribution. The fact that
such excellent agreement with the experimental 1lift characteristics is
obtained appears fortuitous, since at this high Mach number the body
cannot be considered aerodynamically slender. However, additional
experimental deta at M = 6.86 for this same conical nose in combina-
tion with various lengths of cylindrical afterbody are essentially in
as good agreement with this theory as shown here.’

_:‘,
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From the foregoing observations it is apparent that for the inter-
mediate range of aerodynamic slenderness, that is, for values of the
similarity parameter near 1, neither of the simple theories is adequate.
At present, the shock-expansion method as developed by Eggers and Savin
(ref. 10) for nonlifting bodies is being extended to inclined bodies to
provide a relatively simple means of predicting aerodynamic characteris-
tics in this intermediate range.

MAXTMUM LIFT-DRAG RATIOS

In addition to the aerodynamic characteristics so far discussed,
the lifting efficiency of bodies may often be of importance. The
efficiency, or lift-drag ratio, of bodies at high supersonic speeds is
being investigated experimentally with particular regard to the effects
of variations of body geometry on maximum lift-drag ratios.

In analyzing the effects on lift-drag ratio of changing body geometry,
consideration must be given to factors other than simply the aerodynamic
forces. For example, considerations such as that of the usable volume
and that of aerodynamic heating may rule out the use of a body shape
which is aerodynamically the most efficient. According to the Newtonian
concept, a flat plate of zero thickness has the highest lift-drag ratio.
However, from the standpoint of usable volume and aerodynamic heating
the flat plate is perhaps the least desirable body shape.

These two considerations, usable volume and aerodynamic heating,
suggest a parameter which may be used in conjunction with lift-drag ratio
for assessing the relative desirability of various body shapes. Accord-
ingly, the ratio of the volume of a body to the product of its surface
area and its length has been selected. Surface area is used simply as
an indication of the aerodynamic heating since the heat absorbed will be
approximately proportional to the body surface area. This measure of
heat input does not, of course, account for localized heating, the magni-
tude of which is determined, in general, by the details of a particular
body shape. Body length has been included to make the parameter dimen-
sionless and therefore restricts the comparisons to bodies of the same
length. This ratio might also be termed a measure of the structural
efficiency of a body shape since a high ratio of volume to surface area
corresponds roughly to a high ratio of carrying capacity to structural
weight. It is evident then that large values of the parameter, as well
as high lift-drag ratios, are desirable for lifting bodies.

The effects on maximum forebody lift-drag ratios of four systematic
variations of body shape are shown in figure 8. The values of the lift-
drag ratios are based upon the forebody drag only and hence do not include
any base drag. The test Mach number range in which these data were
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obtained was from 3 to 5. It has been found experimentally that, for
approximately constant Reynolds numbers, Mach number variations in this
range have relatively little effect on maximum forebody lift-drag ratios.
Large Reynolds number variations, on the other hand, would alter (L/D)max
because of the corresponding large changes in skin-friction drag. Plotted
in the upper left-hand side of figure 8 are the results for conical bodies
of varying fineness ratio. It is apparent that increases in the nose fine-
ness ratio result in increases in the maximum lift-drag ratios. This is
accompanied, however, by decreases in the volume-to-surface-area ratios.
Similarly, the addition of various-length cylindrical afterbodies to a
fineness-ratio-5 conical nose as shown at the bottom left-hand side also
results in an increase in maximum forebody lift-drag ratio with a loss in
the volume-to-area ratio.

At the upper right of the figure is shown the effect of varying the
nose profile shape of a body. It is evident that there is little effect
on the maximum lift-drag ratio. It is interesting to note, however, that
the body having the nose shape for minimum drag at zero 1lift at high
supersonic speeds retains its low drag advantage at angle of attack and
has the highest maximum 1lift-drag ratio of this group.

The results presented in the plot in the lower right of the figure
show that the maximum forebody lift-drag ratio is increased with a
relatively small decrease in volume-to-surface-area ratio by increasing
the nose fineness ratio of cone-cylinder bodies of given over-all length
and diameter. For bodies of revolution this latter method of increasing
the (L/D)max may be said to be the most effective.

It has been suggested that body shapes other than bodies of revolu-
tion might be employed advantageously as lifting bodies at high supersonic
speeds. Accordingly, experimental investigations of the aerodynamic char-
acteristics of various body shapes at high Mach numbers have recently been
conducted at both the Langley and Ames Laboratories. Figure 9 shows the
maximum forebody lift-drag ratios obtained at M = 6.86 for various flat-
bottom body shapes of constant length. Because base-pressure-drag data
were unavailable for three of the bodies shown, it was necessary to
estimate the magnitude of the base pressure drag. A reasonable estimate
of the base drag was found to be approximately 7 percent of the total drag
at (L/D)max' The data points for which this estimate was made are indi-
cated by the flagged symbols. The cone-cylinder body of revolution is
included for comparative purposes. These data show again that, in general,
as body shapes are altered to obtain higher forebody lift-drag ratios, the
ratio of volume to surface area for the shapes decreases. An exception
to this trend is noted in the result for body C of this group. This wide
body is related to body E in that it was obtained by simply slicing model E
along the vertical plane of symmetry and inserting a rectangular center
section. This particular alteration in body shape results in increases in
both the maximum forebody lift-drag ratio and the volume parameter. The
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extent to which further such alteration of shape might continue to be
advantageous is unknown at present.

Figure 10 shows, in summary, the results just presented, as well as
additional data from various other sources (refs. 11, 12, 13, and 14).
These data points represent maximum forebody lift-drag ratios at Mach
numbers from approximately 2.5 to 7 for a relatively wide range of
Reynolds numbers. The abscissa of this figure is the ratio of the volume
parameter of the particular bodies to that of a sphere which has the
maximum possible value of V/S. At 1 on the horizontal scale is the
sphere which has zero lift-drag ratio. At the other extreme, O on the
horizontal scale, is the maximum lift-drag ratio of a flat plate. For
the conditions imposed the theoretical (L/D)p., of the flat plate is 6.
These data show the general trend of the variation of maximum forebody
lift-drag ratio with the volume-to-surface-area ratio for a wide range
of Mach numbers and Reynolds numbers. The data points repeated from
figures 8 and 9 are injicated by closed symbols and show the effective-
ness of the systematic changes in body shape that have been considered
relative to the general trend indicated by the curve. It should be
noted that, in general, over-all body fineness ratios decrease as the
volume parameter increases; that is, bodies represented by points on
the left-hand side of the figure are of relatively large fineness ratio

(10 or greater) and those farthest to the right are of small fineness
ratio (3).

As stated previously, it is desired that efficient lifting bodies
have both a large maximum forebody lift-drag ratio and a large value of
the volume-to-area ratio. It is apparent, however, that at high super-
sonic Mach numbers for a wide range of body shapes the two requirements
are, in general, not compatible and therefore compromises are necessary.
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SOME CONSIDERATIONS CONCERNING INLETS AND DUCTED BODIES
AT MACH NWMBERS FROM 0.8 T0 2.0
By Richard I. Sears

Langley Aeronautical Laboratory

The study of air-inlet design is essentially a study of thrust and
drag. With an adequately sized inlet, the thrust available is propor-
tional to the total pressure the inlet can provide. Many data have been
presented in the past concerning the pressure recoveries attainable at
supersonic Mach numbers with various types of inlets. Some information
on this subject is presented in this and the following paper.

Much less data relative to the drag of bodies having air inlets and
internal-flow systems are available. The drag characteristics of non-
ducted bodies of revolution as affected by various shape parameters have
been fairly well established and a considerable amount of experimental
data is published. Incorporation in a body of a turbojet engine and
its assocliated inlets and ducting can cause a major departure in geometry
from the more idealized body of revolution.

This paper presents some drag information from systematic tests of
nose inlets and from isolated tests of scoop and wing root inlets.

Figure 1 shows configurations tested by means of rocket techniques
to evaluate effects of cowling profile on the drag of normal-shock nose
inlets. Five different cowl shapes were tested, each with identical
afterbody shape, and are shown in figure 1. All cowls were of fineness
ratio 3 and the inlet area was 24 percent of the body frontal area.
Over-all model fineness ratio was 8. The top cowl is of the NACA l-series
family; the second is defined by a parabolic arc with its vertex at the
maximum diameter. The next three are conical with beveled, blunt, and
sharp lips, respectively.

Figure 2 shows the measured external drag coefficient CD (based

on body frontal area) of the complete models, at the left as a function
of M for -2 =1 and at the right as a function of n/1/mo for M= 1.3.
1

For maximum flow rate at Mach numbers up to about 1.1, all cowl shapes
have about the same CD, but the curves spread apart at higher M, the

l-series cowl having the greatest CD and the cone with sharp lips the

least. The other cowls fell in between and in the same order as shown
in figure 1. The solid line gives the drag of the nonducted, pointed
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body, derived by extending the lines of the parabolic cowling as shown
at the top of figure 1. The drag of the models with conical cowls are -
significently lower than that of the pointed body because of the air .
admitted. -

At M > 1.35, the value of Cp for the body with blunt-1lip conical

cowl is about 0.0k less than that for the l-series cowl. Since both the
l-series cowl and the blunt-1lip conical cowl had identical profiles in
the region of the inlet 1lip, it is apparent that the lower drag of this
conical cowl 1s associated with its lesser fullness of profile farther
back than the region of the 1lips.

The curves of figure 2 show that at M = 1.3 all cowls except the

l-series have about the same value of CD at L =~0.8. Thus, whereas

the sharp lip configuration had least drag at maximum flow rate, the
beveled and blunt-1ip conical cowls gave less increase in CD as air

was spilled. Actuwally, the increase in C for the sharp-lip conical
’ D

cowl is Just about equal to the additive drag calculated from momentum
considerations. The other inlets all benefit to some extent from leading-
edge suction, the increment in CD associated with spilling air being

less than the computed additive drag. The fact that blunt lips can be

tolerated on conical cowls without large drag penalties is encouraging -
because they may be necessary structurally and for operation at take-otf

and at angles of attack.

The effect of cowl shape on the drag of conical-shock nose-inlet
models in the transonic and supersonic range has been recently ootained
from rocket tests. The configurations tested are shown in figure 3.
The models hed afterbodies and fins similar to those of figure 1. The
cowls were of fineness ratio 3 and the inlet ares was 24 percent of the
vody frontal area. The cowls had external lip angles of 12° and 17°
faired into conical and parabolic cowl shapes as shown. The cone posi-
tion was varied as indicated by the values of ®; at the right of

figure 3.

The data obtained for these models are given in figure 4. The
internal flow for each model was the maximum that the inlet would pass
and is given by the upper curves, one for each cone position. The designa-
tlon for each drag curve specifies first, the cowl shape, parabolic or
conical; second, the external lip angle of the cowl; and lastly, the cone
position ansle.

Inspection of the drag curves shows that changes in lip angle and
cone position result in small changes in the drag in the direction to be
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expected. However, that shown for changes in cone position borders on

the accuracy of the tests. The effects of cowl shape are more pronounced-.
The conical-cowl models had lower drag than did the parabolic-cowl nodels;
this result is consistant with the results shown in figure 2 for the nornal-
shock nose-inlet models.

Let us now examine some aspects of the pressure-recovery probleni.
The total pressure recovery at supersonic Mach numbers of nose inlets,
with and without external compression, are fairly well known for operatic.
at an angle of attack of 00. Tests have indicated that at higher angles
of attack the pressure recovery decreases rapidly.

Figure 5 shows some results from exploratory tests of a swept inlet
expected to have better recovery at high angles of attack than a normal-
shock inlet. The latter is also shown for corparison. The swept inlet
was made frem a circular pipe by cutting it obliquely at 45° to the axis
and beveling the lips on the outside. Total-pressure recoveries were
measured at M = 1.42 without any diffusion and at M = 1.84 with some
diffusion. The portion of the inlet and duct ahead of the rake station
is shown in the sketches. Positive angles of attack are taken as indi-
cated by the arrows. The normal-shock inlet, tested only at M = 1.k2,
had rounded inner lips and some diffusion.

The models were tested with a choking nozzle at the duct exit, which
simulates constant-engine-inlet Mach nunber operation. The mass-flow ratio
therefore varied with angle of attack, it being proportional to the pres-
sure recovery. The upper set of curves show the values of mass-flow ratio
obtained, and the corresponding pressure recoveries are shown in the lower
set of curves.

It appears, from these data, that use of a swept nose inlet providec
reasonably good recoveries at positive angles of attack as high as 20°
to 30° at the expense of low flow rates and poor recoveries at negative
angles of attack. Other published data (ref. 1) show that a swept nose
inlet with a vertical-wedge compression surface maintains a nearly con-
stant recovery of about 0.85 for angles of attack from O° to 10° at
M = 1.9. The drag characteristics of the swept inlet have not been
measured.

Fairly extensive data are available on the pressure recoveries
attainable with nose inlets, and these will not be discussed further
here. However, in many cases it is not practical to use nose inlets.
Many different types of scoop inlets have been tested with widely dif-
fering results dependent, to a large extent, on the treatment of the
boundary layer shead of the inlet.

Figure 6 is intended to give a brief perspective of the relative
standing of various types of scoops with regard to total pressure recovery.
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The data presented are the maximum average total pressure after diffusion

at about an angle of attack of 0° and for mass-flow ratios above 0.75. *
It is assumed that for a scoop to be considered for use it must have good -
recovery, at least for these operating conditions. The symbols without =

flags represent wind-tunnel-data test points and the symbols with flags
represent the end points of curves defined by rocket data. The open
symbols represent scoops with sone type of boundary-layer renoval systemn,
whereas the solid points indicate scoops with no boundary-layer removal
system. Detailed results for many of these scoops are reported in ref-
erences 2 to 11. ©Scoop inlets are of several types as indicated in the
lower left corner of figure 6 and by the sketches shown.

The data presented are sample data for each type of scoop, but the
maximum recoveries shown are believed quite representative of those that
have been obtained for each type. Problems of matching are treated in a
subsequent paper by John L. Allen ard are not considered here.

Inspection of these data indicates that the recoveries obtained at
supersonic speeds can be either good or bad depending on the scoop con-
figuration used and on the treatment of the boundary layer. Best recov-
eries have been obtained with scoops located just under the nose of the
body and with external-compression-type scoops having complete boundary-
layer removal. At M < 1.4 and m/mO > 0.75, the nose scoop apparently

needs no boundary-layer removal and i..s good recovery at positive angles

of attack (refs. 4, 5, and 9). The following paper treats the external -
co: pression scoop in more detail. Annular or semiannular scoops which

enclose an appreciable part of the body circumference give low recoveries

and pulsations at reduced flow rates (refs. 2, 3, and 7). The submerged

inlet suffers also from boundary-layer shock interaction aggravated by
superstream Mach numbers ahead of the inlet, caused by the curving ramp

floor inherent in the design (ref. 8).

Whereas the pressure recovery of scoop inlets can be rather easily
compared, the drag characteristics cannot be except in special cases
where several scoop arrangements are tested for a particular airplane.
Such systematic tests are rare. The installation of the power plant,
ducting, and scoop inlet largely determine the fuselage lines which, of
course, govern the drag. Although drag data for scoop configurations

ire very neager, it 1s possible to report the results from several isolated
investigations.

Figure 7 shows about all the fuselage models having tceop inlets for
which drag data are available. Above the sketch of each configuration,
the curve of area distribution normal to the longitudinal axis is shown
in order to define the geometry better. The solid line represents areas ]
corresponding to the physical outline of the model and the dashed 1line
represents deduction of the entering free-stream tube area, a procedure
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which recent tests have shown to result in an equivalent nonducted body
having the same drag. All the diagrams are shown to the same scale.

For the upper three models, only the forward portion ot the fuselage
was tested. Models B, C, and G and the forward half of model E are models
of actual aircraft. The models on the left are research configurations.

Drag curves as a function of Mach number are given for some of these
configurations in figures 8 and 9 and a comparison of the drag results
is given in figure 10. Because these configurations are not related in
any manner except that all models had scoop inlets, it is convenient to
plot their drag as a function of effective body fineness ratio. This
value is taken as the length divided by the diameter of a circle of area
equal to the maximum frontal area.

The data are shown at the top of figure 10 for the fuselage nose
configurations, A, B, and C, and at the bottom of figure 10, for the
complete fuselage models. The two solid lines, shown for reference pur-
poses, give the drag of parabolic bodies of revolution without internal
air flow. The solid line on the top of figure 10 was computed for
parabolic-nose shapes from second-order theory with an allowance for skin
friction included. The curve on the bottom of figure 10 was obtained trom
rocket tests of parabolic bodies of revolution. If the drag shown by
these curves at high fineness ratio is taken as that for a good parabolic
body of revolution, then the scale at the right gives the ratio of drag
to that of a good body.

Many of the models have nearly twice the drag of good bodies and
almost all have appreciably more drag than parabolic bodies of the same
fineness ratio.

For model E (ref. 7), the area curve shows a forward location for
the maximum area station which results in a low nose fineness ratio.
Data presented in the paper by Robert L. Nelson and William E. Stoney, Jr.,
indicated that the increase in drag for model E over that shown in figure 10
by the solid line for a parabolic body of the same over-all fineness ratio
and in figure 8 can be just about accounted for on the basis of difference
in nose fineness ratio. Thus, although, as will be shown in a subsequent
paper by Lowell E. Hasel, forwardly located scoops are favorable from
boundary-layer considerations, they can cause high drag if they result in
a low effective nose fineness ratio.

The forwardly located underslung scoop of model D was added to a
parabolic body of revolution without increasing or changing the location
of the maximum frontal area. Thus, the nose fineness ratio was not changed
and, as indicated by point D on the lower part of figure 10 and by figure 8,
“he drag of the ducted model was, within the experimental accuracy, the
same as that of the body without scoop. Although the scoop of model D had
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an area only 8 percent of the body frontal area, tests in the Langley
8-foot transonic tunnel (ref. 9) of a similar scoop of area twice as

large relative to the fuselage also indicated negligible drag increment,

at least to M = 1.1, the limit of the test. The underslung nose SCoop,
therefore, looks good from drag as well as Pressure-recovery considerations.

Although the effective fineness ratio (as defined) is fairly large
for model C, dragwise it acted like a nose of much lower fineness ratio
(ref. 11). The distribution of area in this case was important.

Fuselage drag usually accounts for the greater portion of airplane
zero 1ift drag. Therefore, it is obviously important to make the drag
of fuselages, with scoop inlets and associated bumps for ducting and
engine housing, approach the drag of good bodies of revolution. It is
recognized that greater research effort is needed to indicate ways of
achieving this effect.

Another important class of inlets is the wing root inlet. Data
published in reference 12 show that a wing-root inlet could be added to
an 8-percent-thick swept wing with very little increase in drag at Mach
numbers less than 1.4, the limit of the tests. Figure 11 presents data
to M = 2 which lead to similar conclusions for a somewhat ditferent
wing-root-inlet arrangement.

The basic wing was swept 47° on the quarter-chord line and was
5.5 percent thick. Inboard of the one~third semispan station the wing
was split and the lower portion dropped to form the root inlet as shown
in the sketch. The modified wing root housed two semiburied turbojet
engines on each side as well as the inlet. The upper curve gives the
mass-flow ratios at which the inlet was operated. The lower two curves
give the measured external drag coefficients of the wing. These values
are based on exposed-wing plan-form area. The solid points indicate
data for the wing with inlet and engine installation and the open symbols
are for the unaltered basic wing. These drag coefticients were obtained
from tests of the configuration with and without the wing. Wing-fuselage
interference drag is thus included in values given in figure 11. The data
are given for the zero-1ift condition only.

Comparison otf' the two drag curves indicates that addition of this
root inlet increased the wing drag coefficient by about 10 percent at
supersonic speeds. Inasmuch as the wing frontal area was increased
20 percent by the inlet, this result means that the drag per unit frontal
area of the wing with inlet and engine installation was only 92 percent
of that of the basic wing. This effect is, of course, caused by the
Tact that the wing was admitting air. However, the reduction in drag per
unit frontal area for this wing root inlet and engine configuration is in
marked contrast to the increases in drag per unit frontal area shown pre-
viously for fuselage configurations having scoop inlets.
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- Although adequate pressure-recovery data are not available for this
- inlet configuration, figure 12 shows recoveries measured in the Langley
b transonic blowdown tunnel for another wing root inlet. Adding this

elliptically shaped root inlet to the basic swept wing-fuselage configura-
tion caused increments of drag coefficient of about the same magnitude as
those shown in figure 11.

The inlet lips were round and staggered as shown in the sketch.
Tests were made with and without a boundary-layer bleed. The basic fuse-
lage lines Jjust ahead of the inlet were altered to permit instaliation
of the boundary-layer bleed scoop. The boundary-layer duct exited normal
to the wing on the lower surface just back of the inlet.

The three sets of curves show the effects of Mach number, angle ors
attack, and mass-flow ratio on the average pressure recovery measured
alter diffusion, for operation with and without the boundary-layer bleed.

Analysis of the data shown in figure 12 and in figure 11 shows swept-
wing root inlets to be potentially low drag configurations and, without
external-compression devices, to be potentially capable of giving normal-
shock recoveries over a fairly large angle-of-attack range. The need
for further development to provide a workable boundary-layer bleed system
is indicated.

In conclusion, this paper has attempted to point out some of the large
differences that can exist at supersonic speeds in the pressure recovery
and drag of good and not-so-good iniet and engine installation arrange-
ments. Best pressure-recovery results have been obtained with scoop inlets
located close under the nose and, for farther rearward locations, with
external compression inlets having complete boundary-layer removal. Best
drag results have been obtained with conical nose inlets, with scoop inlets
located close to the nose and causing little or no increase in frontal area,
and with a wing-root-inlet buried-engine configuration. More work is needed
to define the minimum drag arrangements of scoop configurations wherein
the engine installation causes large increases in frontal area of a basically
good fuselage. At present, available tests have shown such configurations
to be of high drag relative to those previously mentioned.
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THE PERFORMANCE OF CONICAL SUPERSONIC SCOOP INLETS
ON CIRCULAR FUSELAGES
By Lowell E. Hasel

Langley Aeronautical Laboratory

Supersonic-scoop-inlet research has, for the most part, been con-
ducted either with the inlet on a flat plate at 0C angle of attack
(refs. 1 and 2, e.g.) or with the inlet at a fixed position on a fuselage
(ref. 3, e.g.). Such angle-of-attack data as are available (refs. 3,
L, and unpublished data) are not complete enough to enable a detailed
evaluation to be made of scoop-inlet characteristics at angles of attack.

The Langley Aeronautical Laboratory and the Lewis Flight Propulsion
Laboratory are concurrently investigating the angle-of-attack character-
istics of scoop inlets (refs. 5, 6, and unpublished data obtained at the
Langley Laboratory) using the models shown in figures 1 and 2. Through-
out the remainder of the discussion these configurations will be designated
as models A and B, respectively. The inlets on both models are of the
conical type, having 25° half-angle cones, and are designed for a Mach
number of approximately 2. The inlet on model A has a capture area of
about 25 percent of the fuselage frontal area. Model B utilizes two
completely independent inlet and diffuser systems. Each inlet is similar
to the one illustrated in figure 2. The total capture area of the twin
inlet installation is about 22 percent of the fuselage frontal area. On
both models the splitter plate separating the inlet from the boundary-
layer bleed is swept back from the tip of the central body to the lip of
the inlet. The boundary layer is removed by means of a suction bleed on
model A; whereas on model B a 16° included-angle wedge diverter is used
to displace the boundary layer around the sides of the inlet. The tip
of the wedge is located at the same axial position as the tip of the
central body. Provisions are incorporated in both configurations for
varying the bleed height. On model A the meximum bleed height 1is twice
that illustrated in figure 1. The fuselage forebody fineness ratios of
model A are 4.0 and 6.5. The nose section is an ogive of fineness ratio 3.5.
The forebody of configuration B has a fineness ratio of 7.5 and corresponds
to the RM-10 forebody shape.

Before discussing the test results, a brief review will be given of
those features of the flow about bodies of revolution (ref. 7) at angles
of attack which influence scoop performance.

At angles of attack the boundary layer flows from the windward to
the leeward side of the fuselage, figure 3, thus reducing the thickness
on the bottom and increasing the thickness on top. As the angle of attack
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increases the boundary layer separates and creates a stable vortex pattern
similar to that known to exist under certain conditions behind circular
cylinders. The angle of attack at which the vortices are first evident at -
the inlet varies with axial position of the inlet on the fuselage and the
Reynolds number. A typical effect of the vortex formation is to thin the
boundary layer over a small portion of the top of the fuselage. It is

probable that on fuselages which are bodies of revolution a portion of

these vortices will enter an inlet located on the top section of the fuse-
lage. If the angle of attack becomes very large, the vortex flow will

become unstable. The latter condition may be expected to produce very
unsatisfactory engine operation.

The forebody also has a significant effect, especially at angles of
attack, on the local Mach number distribution at the inlet. High local
Mach numbers and large cross-flow angles are created near the side of the
fuselage; while on the bottom the local Mach number decreases.

The boundary-layer conditions which existed a short distance ahead
of the inlets of models A and B at M = 2.0 are illustrated in figure L,
The boundary-layer thickness expressed in terms of the boundary-layer
thickness at O° angle of attack is presented as a function of fuselage
position. These data were obtained without the inlet installed on the
fuselage. Transition wires were used on the two shorter forebodies to
insure a turbulent boundary layer at the inlet, since this is the condi-
tion most likely to occur in flight. On the long forebody natural
transition occurred upstream of the inlet. On the top section of the
fuselages the increase of boundary-layer thickness at both angles of
attack is smallest on the short forebody. (For reasons of clarity the
boundary-layer data obtained on the long body at 10° have been omitted
from fig. 4. The boundary-layer growth on this forebody at an angle of
sttack of 10° was greater than on the short forebody at 12°.) At 6° the
vortex formation is evident only on the long forebody. At 120 a vortex
has formed on the medium-length forebody but none is evident on the short
forebody. On the bottom of the fuselages the boundary-layer thickness
decreases considerably at angles of attack. It is interesting to note
that the vortex thins the boundary layer over only a relatively small
portion of the top of the fuselage, and that this region of thin boundary
layer appears to be too narrow to be utilized by typical inlets such as
the one on configuration A.

Figure 5 presents a typical set of data obtained at M = 2.0 from
the configuration having the short forebody, showing the effect on pres-
sure recovery of circumferential location of the inlet. Maximum pressure
recoveries are presented as a function of fuselage position and angle of
attack. The bleed-height ratio, h/aazoo of 1.25, chosen for this figure
represents the ratio of the boundary-layer bleed height to the boundary-
layer thickness at O° angle of attack. Preliminary examination of the
data has indicated that the bleed system was removing all of the air
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which could enter its capture area. The maximum pressure recovery is
adversely affected by angle of attack if the inlet is located anywhere
in the region extending from the top to the side of the fuselage. These
losses are caused either by the thickening of the boundary layer, high
local Mach number and accompanying large cross-flow angles, or a com-
bination of the two effects. On the bottom of the fuselage the pressure
recovery increases with angle of attack because of the decrease in local
Mach number ahead of the inlet.

The effect of bleed height on scoop performance is illustrated in
figure 6 which presents the maximum pressure recoveries as a function
of bleed-height ratio for three angles of attack and for three inlet
positions. At O° the pressure recovery continues to increase when the
bleed-height ratio exceeds 1. This is possibly due to the fact that,
as the bleed height increases, the average Mach number of the air
entering the inlet decreases slightly. When the inlet is on top of the
fuselage, the pressure recovery at 6° continues to increase until the
bleed-height ratio is about equal to the maximum boundary-layer thickness
ratio. At 12° the pressure recovery appears to become constant at a
bleed-height ratio near 2 although the maximum boundary-layer thickness
ratic is about 3.7. At the side position, increasing the bleed-height
ratio has less beneficial effect on the pressure recoveries at angles of
attack since the losses are primarily caused by high local Mach numbers
and large cross-flow angles. At the bottom position the bleed height
has only a small effect on the pressure recovery of the inlet.

These pressure-recovery characteristics (figs. 5 and 6) at angles
of attack may be expected to change to some extent with forebody length.
The variations will be greatest at the top inlet position because of the
differences in the rate of boundary-layer thickening (fig. 4) and because
of the vortex formation which may exist at an inlet mounted farther to
the rear on a fuselage.

The effect of forebody length on pressure recovery is jllustrated
in figure 7. The pressure recoveries, expressed in terms of the 0°
recovery, are presented as a function of angle of attack for the top
and bottom inlet positions. The bleed-height ratio is 1.25. The effect
of the more rapid thickening of the boundary layer on the top of the
two longer forebodies is most evident at moderate angles where the
decrease in pressure recovery of these configurations is appreciably
more than for the short body configuration. At the higher angles of
attack an abrupt and favorable change in the scoop characteristics on
the longer forebody occurs, probably because of the effect of the vor-
tices generated on this forebody. On the bottom of the fuselages, the
effect of the forebody length is smeller. The reasons for the consistent
variation of pressure recovery with forebody length have been investi-
gated to some extent but no conclusions have as yet been reached.
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If the forebody is long enough to produce a vortex flow ahead of
the inlet, the variation of the pressure-recovery characteristics with
bleed-height ratio will be somewhat different from those previously
discussed. These differences may be noted in figure 8 which presents -
the recovery characteristics of an inlet mounted on top of the long
forebody. On the left side of the figure the pressure recovery is pre-
sented as a function of the bleed-height ratio for several angles of
attack. On the right side the distribution of the ratio of pitot pres-
sure to free-stream-total pressure on the fuselage just ahead of the
inlet is shown for 0° and 10°. The free-stream value of this ratio is
0.72 at M = 2.0. The boundary-layer surveys indicated that the vortex
formed on this forebody at the inlet station at about 4°. The action
of the vortices is most evident when none of the boundary layer is removed
from the inlet. At this condition the pressure recovery decreases as the
angle of attack increases to 3°. Further increases of the angle of attack
to 6° and 10° result in large increases in the pressure recovery. The
pitot-pressure contours indicate that at 10° a relatively large amount of
the vortex enters the inlet. It is thought that the primary effect of
the vortex is to prevent separation of the boundary layer-inside the
inlet and thus increase the pressure recovery. As the bleed height
increases, the pressure recoveries at the lower angles increase and the
effect of the vortex becomes much less apparent.

Model B, which is the long forebody configuration (fig. 2), has also
been tested at Mach numbers of 1.5 and 1.8. In general, the Mach number
had little effect on the over-all pressure-recovery characteristics of
the inlets. As the Mach number decreased the changes 1n pressure recovery -
with angle of attack also decreased.

It is obvious that the pressure-recovery characteristics of inlets
operating on top of a fuselage can be improved if the boundary-layer
thickness can be decreased. Several possible solutions to this problem
exist in addition to methods such as minimizing fuselage angle of attack
and keeping the inlet as far forward as is consistent with low-drag
considerations. The use of fuselages having noncircular cross-sectional
shapes should be investigated. On fuselages of circular cross section,
methods of producing a larger region of thin boundary layer should also
be studied. If the transverse distance between the vortices can be
increased and the vortices induced to form at smaller angles of attack,
some benefit may result. This latter scheme has been briefly tried on
configuration A by the use of axial and diagonal vortex-generator strips.

To date, the desired increase in pressure recovery has not been obtained.

Figure 9 illustrates the drag characteristics of the top and bottom
inlet positions. The external drag at a mass-flow ratio of about 0.9 is

presented on the left side of the figure as a function of bleed-height d
ratio for angles of attack of 0° and 6°. At 6° the drag of the bottom
inlet is higher than the drag of the top inlet. Since this difference

S )
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in drag tends to counteract the pressure-recovery advantage of the
bottom position the optimum location of the inlet should be determined
on the basis of net thrust so that the effect of drag, as well as pres-
sure recovery, may be considered. The maximum values of net thrust for
a typical turbojet engine, expressed in terms of the net thrust at 0°
are presented on the right side of the figure as a function of bleed-
height ratio. 1In calculating the net thrust the assumption was made
that the drag associated with the removal of the boundary-layer air

was equal to one-half its kinetic energy. This assumption concerning
the drag of the boundary-layer removal system is not critical to the
net-thrust comparison because the bleed mass-flow ratios were sbout the
same for the two inlet positions. It appears on the basis of net-thrust
ratio that the top and bottom inlet positions are comparable for this
particular configuration and angle of attack. It should be mentioned
that this figure is based on preliminary data and may be subject to
some changes after analysis of the data is complete. Nevertheless, it
is important to note the compensating effects of drag and pressure-
recovery characteristics which may exist for the top and bottom inlet
positions.

The pressure recoveries of scoop inlets at a given bleed-height
ratio may be affected by the characteristics of the boundary-layer
removal system. A series of practical removal systems have been inves-
tigated at the Lewis Laboratory by mounting half-inlets on flat plates.
These configurations and the results (refs. 2 and 8) are presented in
figures 10 and 11. On the suction-bleed configurations the boundary-
layer air was removed by means of an internal duct system while on the
three diverter systems the boundary-layer air was displaced around the
sides of the inlet. The suction-bleed configurations differ only in
the leading-edge shape of the splitter plate separating the inlet from
the boundary-layer removal system. The diverter configurations employ
a blunt edge, a 68° included-angle wedge, and the central body to dis-
place the boundary-layer air. The effect of bleed-height ratio on the
pressure-recovery characteristics of these configurations is illustrated
in figure 11 for a Mach number of 1.88 and 0° angle of attack. The
characteristics of the two suction-bleed configurations are comparable
and are slightly superior to the blunt diverter. Both the 68° wedge and
central-body diverter systems require a considerably larger bleed-height
ratio than the other systems to obtain a corresponding inlet pressure
recovery. It should be mentioned that a normal shock must exist ahead
of the 68° wedge diverter. Since the tip of the wedge is at the same
location as the tip of the central body this normal shock can affect
the inlet flow. On another configuration the wedge was moved rearward
20 percent of the distance between the tip of the central bedy and the
cowl lip. The pressure-recovery characteristics of this configuration
were comparable with those of the suction bleed. Configuration B uti-
lized a 16° wedge diverter with the tip of the wedge located at the tip
of the central body. No adverse effects on inlet pressure recovery were
noted. At a Mach number of 2.93 the characteristics of these systems,

relative to each other, are not“different.
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The pressure drag of the wedge-diverter systems, neglecting the
wedge base drag, has been investigated by Plercy and Johnson and is
illustrated in figure 12. These data were obtained from a simplified
configuration which consisted of a wedge diverter mounted between two
flat plates to simulate the fuselage and inlet floor surfaces. Static
pressures were measured on the wedge leading edges to determine the
wedge pressure drag as a function of bleed-height ratio, wedge apex
angle, Mach number, and axial location of wedge with respect to the top
flat plate. The typical set of data presented in figure 12 was obtained
at a bleed-height ratio of 1.0, and is based on the wedge frontal area.
The pressure drag increases as the wedge apex angle 6 increases and is
highest for the curved diverter. The maximum value of the drag for these
configurations is relatively small, however, when referenced to the
frontal area of a typical inlet-fuselage configuration. The exact effect
of Mach number is not known since data are available for only two Mach

numbers. This effect, however, appears to be small. It should be mentioned

that a consideration of the skin friction of the wedges will decrease the
drag differences between the various configurations. The effects of the
boundary-layer flow over the rear portion of an actual configuration may
also alter the comparison to some extent.

The flat-plate inlets (fig. 10) which have efficient boundary-layer
removal systems are essentially operating at free-stream conditions when
the bleed-height ratio exceeds 1.0. Therefore, a comparison of the
recoveries of these inlets and of practical scoop installations on a
fuselage, such as A and B represent, is of interest to evaluate the
recovery penalties which are associated with the fuselage installations.
Such a comparison is made in figure 135 which presents, for an angle of
attack of 0°, the maximum pressure recoveries of the flat-plate- and
fuselage-mounted inlets as a function of the bleed-height ratio. Since
the flat-plate data were obtained at M = 1.88 an estimate of the
recovery of this inlet at M = 2 has been made. The best recovery
obtained from the fuselage configurations is about 4 percent less than
the recovery of the flat-plate inlet. Between one-fourth and one-half
of this loss is due to the fuselage nose shock and the fact that the
local inlet Mach number is higher than the free-stream Mach number. The
cause of the remainder of the loss is not fully understood at present.
There are some indications that the nonuniform velocity distribution at
the inlet may be causing some of the additional loss. The difference

which exists between the recoveries of the two shorter body configurations

is considered to be due to slightly different local Mach numbers existing
ahead of the inlet.

In conclusion, it appears that on circular fuselages the best pres-
sure recoveries at angles of attack are obtained when a scoop inlet is
located on the bottom of the fuselage. If the inlet must be placed on
top, it should, in general, be located as far forward as is consistent
with low-drag considerations. Location of a top inlet farther to the

*
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rear on a fuselage where it may be affected by the vortex flow will have
a8 beneficial effect on the pressure recovery only if the boundary-layer
bleed-height ratio is small and the angle of attack is large. The net
thrust characteristics of top and bottom inlet installations may be com-
parable because of the compensating effects of the drag and pressure-
recovery characteristics. Filnally, it appears possible to design rela-
tively simple and effiecient boundary-layer removal systems which remove
the low-energy air by diverting it around the sides of the inlet.
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RECENT RESULTS ON INLET INSTABILITY
By Carl F. Schueller

Lewis Flight Propulsion Laboratory

Supersonic diffusers generally exhibit steady pressure-recovery air-
flow characteristics in the supercritical or constant air-flow region.
However, rapid flow pulsations accompanied by inlet shock oscillations
are often encountered as the mass flow of alr is decreased below its
maximum vaelue, that is, into the region commonly referred to as subcriti-
cal operation. These large fluctuations in pressure and air flow result
in numerous adverse and often catastrophic consequences.

This phenomenon of buzz was first recognized but not explained by
Oswatisch. In the intervening years many inlets having various amounts
of stability have been reported and a few of them are indicated in fig-
ure 1. The minimum stable mass-flow ratio corresponding to any one of
these points represents the lowest air flow obtained just prior to buzz
on fixed-~eometry conical center-body inlets operating without burning.
Of the inlets surveyed those incorporating excessive drag or pressure-
recovery penalties in order to obtain stability have been deleted. Admit-
tedly not all the existing literature has been examined and, therefore,
isolated investigations having greater stable subcritical ranges than
indicated here may exist. In general, however, this figure is believed to
be representative of the current status and shows that the stable range
decreases significantly with increasing Mach number. This decrease is
due not only to the lack of experimental data but also to the presence
of more adverse pressure gradients and curvatures in the high Mach number
inlet designs. Even at the lower Mach numbers the minimum stable mass-
flow ratios reported by different investigators vary from no suberiti-
cal operation, that is, a mass-flow ratio of 1.0, to fairly respectable
values at the lower Mach numbers. Such a wide variation in stable range
emphasized that which most inlet investigators will readily admit, namely
that inlet buzz is a very complex problem. This complexity results from
the many sources of buzz exciting force available in a supersonic dif-
fuser. As a result this paper will concentrate on a discussion of the
known buzz exciting forces and the techniques utilized to counteract
them. Before proceeding further, however, the existing theories which
have been proposed to explain the mechanism of buzz will be reviewed
briefly in order to provide a better insight into the buzz problem.

It has been recognized for many years that a compressor discharging
into a relatively large volume having a fixed orifice will surge during
that portion of its operation when the pressure increases with increasing
air flow, that is, when the slope 1s positive. The supersonic diffuser
was considered to be analogous to a compressor system in reference 1 and
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it was concluded that a diffuser which had a positive-slope charscter=-
istic would buzz. A slightly different approach which led to the same
conclusion was used in reference 2.

Since a complete cycle of buzz will result in the diffuser air
being alternately accelerated and decelerated, the asuthors of reference 3
visualized a portion of the diffuser air column to be a plug resonating
against the diffuser discharge volume in a manner crudely analogous to
a Helmholz resonator. The resulting calculations indicated that, if the
positive-slope characteristic were of a sufficient magnitude, the dif-
fuser would buzz with a frequency which depended on its geometry. At
least qualitative agreement with experiment was obtained for the models
considered.

Sti11 another viewpoint on the mechanism of buzz was presented in
reference 4. By means of detalled measurements and calculations it has
been established that longitudinally traveling expansion and compression
waves are present in the diffuser during the buzz cycle. The traveling-
wave argument leads to an accurate prediction by theory of the experi-
mentally determined variation of pressure with time in the diffuser.

The complex nature of the mechanism of buzz is apparent even in this
simplified discussion. However, since an exciting force is required to
initiate the buzz cycle for any of these theories, the known buzz exciting
forces are discussed next.

It was shown in reference 5 that buzz may result from the slip line
crossing the inlet 1lip. This slip line (see fig. 2) separates two fila-
ments of air which have the same statlc pressure but different velocities
and total pressures. If no other exciting force 1s assumed to be present,
the inlet will be stable when the slip line is outside the cowl such as
in figure 1(a). As the air flow is reduced by decreasing the exit area
the slip line crosses the inlet (see fig. 1(b)) and two filaments of air
having different velocities enter. If it is assumed that there is no
mixing and the static pressure remains constant across the slip line,
then the simultaneous diffusion of the two streams of different total
pressure will require that the outer filament occupy an undue proportion
of the passage. This causes the main flow portion near the center body
to accelerate from a design Mach number of 0.2 to 0.6. As a result, com-
pression waves travel forward and expansion waves rearward (fig. 2(b)).
Based on the work of reference 4, an hypothesis may be that these trav-
eling waves promote the pulsing as follows: the forward traveling com-
pression wave forces the inlet shock to the position shown in figure 2(c).
In the meantime the expansion waves reflect from the exit as expansion
waves and travel forward decreasing the pressure. Finally the shock is
sucked inside to the supercritical condition shown in figure 2(d). This
causes the inlet to operate at increased mass flow. The exit area can-
not pass all of this air, however, because of the reduced total pressure
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behind the normal shock. The ensuing accumlation of air flow generates
compression waves which increase the diffuser discharge pressure and
drives the shock towards the inlet to the condition shown in figure 2(a).
Since the exit area cannot pass all the air flow corresponding to this
shock configuration, the terminal shock continues forward to the position
shown in figure 2(b) and the exciting force is repeated to start another
buzzing cycle.

Another triggering mechanism which acts like the slip line just dis-
cussed is flow separation. This can occur on the inside of the cowl 1lip,
in the subsonic diffuser, or on the center body as shown in figure 3. 1In
this case, separation occurs because of shock-wave—boundary-layer inter -
action. Again, if we assume no mixing, the low-energy air in the separa-cd
region occupies most of the passage, causing the outer filament to accel-
erate. Because of the inertia effects traveling waves are again gener-
ated and the shock is moved forward. As it moves forward the cone-surface-
friction shearing stress increases and the tendency to separate decreases.
The disappearance or reattachment of the separated flow permits the air
flow to increase and the normal shock, as shown in figure 3(b), moves to
the position shown in figure 3(a) and the separation reappears, starting
another buzz cycle. From this, the conclusion can be drawn that there
are at least two potential exciting forces, namely entrance of the slip
line or boundary-layer separation.

The discussion is now restricted to the known techniques for avoiding
or absorbing these exciting forces before they trigger buzz. One tech-
nigue available to the designer is the addition of a constant-area section
in the diffuser throat. This technique was proposed in reference 6 and
applied by reference 7 to stabilize the normal shock in convergent-
divergent diffusers. It has been applied to center-body type diffusers
with varying degrees of success in references 5, 8, and 9. Such a tech-
nique could provide a mixing length to damp out the exciting force due to
elther the slip line or boundary-layer separation.

The model investigated in reference 5 had an extremely long section
of very low divergence which increased the minimum stable mass-flow
ratio approximately 16 percent at M = 1.9 but at the expense of a
significant decrease in pressure recovery. References 8 and 9, on the
other hand, indicated both adverse and beneficial effects of constant-
area sections. Therefore, to define better the effect of diffuser area
variation on stability in the presence of either the slip-line or
boundary-layer exciting force, and to define better,the length of stabi-
lizing section required, a limited but systematic study of the effect of
diffuser area variation on inlet stability has been conducted in the
Lewis 8- by 6-foot supersonic tunnel and is reported in reference 10.
Figure 4 presents some pertinent dirmensions of the model used in this
study. The variation of the ratio of local diffuser flow area to dif-
fuser discharge area with axial distance per hydraulic diameter is also
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included. Hydraulic diameter is defined in the ususl manner, that 1s,

four times the inlet annular area divided by the wetted perimeter, and -
for spike-type inlets this reduces to the cowl diameter minus the center- .
body diameter at the cowl lip station. The solid line represents the -

inlet having the longest stabilizing length and it has a nearly constant-
area section for 3.5 hydraulic diameters after which 1t gradually expands.
Although not apparent in this figure an area increase of 1 percent per
hydraulic diameter was included in the first 3.5 dlameters of length to
approximately compensate for the boundary-layer growth. The dashed-line
curve represents the other extreme, that is, no stabllizing section, but
a continuous increase in area corresponding to a 6° conical diffuser.
Intermediate stabilizing sections of 1 and 2 hydraulic dilameters were
also investigated. It should be noted that all of the diffusers were
faired to a common area in approxomately 9 hydraulic diameters of length.

The effect of these diffuser-area variations on the inlet stability
is shown in figure 5 where the variation of minimum stable mass-flow ratio
with diffuser stabilizing length 1s presented. The 6° diffuser, zero
stabilizing length, has practically no stable range; however, modification
of this inlet to incorporate stabilizing sections having a length greater
than 2 hydraulic diameters increases the stable range to a mass-flow
ratio of 0.55 for the diffuser having a stabilizing section 3.5 hydraulic
diameters in length even though the slip-line criterion 1s violated.

This d1d not decrease the critical pressure recovery from the value of
0.85 obtailned with the 60 diffuser. Recent results on a model about one-
half the size of this one and operating at about one-third the Reynolds
number showed even larger gains in stable range due to a stabilizing
gsection of 3.1 hydraulic dilameters. It would thus appear that adequate
stable ranges can be attained up to a Mach number of 2.0. A word of
caution is necessary, however, since the difference between an unsuccessful
and a successful stabilizing section appears to be associated with slight
differences in design detail as shown in figure 6. The solid line repre-
sents the area variation of the 3.5 hydraulic diffuser on an enlarged
scale. The dashed line represents a local area change of 4 percent

occurring in the first 3 hydraulic diameters or L% cowl diameters in

length. The lowest curve represents a 10-percent change in area which
corresponds to 0.1 inch in a cowl radius of 2.7 inches. Unfortunately,
these area changes also involve a slight change in the shoulder radius
of the center body and a shift in axial location of the center-body
shoulder, either of which may be affecting the results. In any case,
these local changes adversely affect the stable range as may be noted

by the change in minimum stable mass-flow ratio from 0.55 to 0.84+. From
the diffuser-area variations investigated, 1t may be concluded that a
properly designed stabilizing section of 5.5 hydraulic diameters in
length will provide stable air-flow regulation at a Mach number of 2.0 of
and an angle of attack of Q°.

3 ® e
-
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The effect on inlet stability characteristics of operating at angles
of attack other than 0° is shown in figure 7 for the 6° and the
3.5-hydraulic-diameter diffusers. The 6° diffuser has practically no
stable subcritical operation for the range of angles of attack investi-
gated. The 3.5 hydraulic diameter diffuser on the other hand maintains
good stability up to about 3° after which it rapidly deteriorates. This
abrupt decrease in stable range. probsbly indicates that the mixing length
provided becomes inadequate for the increased separation on the leeward
side of the center body.

Since the models discussed so far could be subjected to the exciting
force due to separatlon or the exciting force due to the slip line or
both, it was declded to vary the cowl position parameter 81, over a wide

enough range to avold the slip-line criterion for some conditions. Refer-
ence 5 has shown that the triggering force due to the slip line can be
avoided by posltioning the oblique shock ahead of the inlet. The resulting
calculated minimm stable mass-flow ratios are as indicated by the dashed
Iine in figure 8. Another way to avoid the triggering force due to the
slip line, at the expense of pressure recovery, is to move the oblique
shock inside the inlet. This had no beneficial effect on the 6° diffuser
for the range investigated. Since the slip line is too far inside the
cowling to trigger the buzz, particularly for cowling position parameters
greater than 44°, another exciting force such as separation must be present
For the 3.5-hydraulic-diameter diffuser the stable range 1s progressively
increased as the oblique shock is moved inside, and in all cases the
instability, when it finally occurred, was due to center-body separation
without a slip line. This indicates that flow separation may be the more
predaminant of the two exciting forces considered here. Therefore, the
various techniques which have been propcsed to alleviate center-body
separation will be briefly reviewed.

First of all, scoops can be installed on the center body to remove
the separated flow before it enters the inlet. Also, the boundary layer
can be removed ahead of the terminal shock, which results in a new bound-
ary layer of higher friction shearing stress that is capable of withstanding
a higher pressure rise without separation. Such systems are of practical
application for relatively small decreases in air flow. It is also often
proposed that the boundary-layer separation be avoided by increasing the
cone angle in order to decrease the cone-surface Mach number. This
increase in cone angle decreases the pressure rise across the terminal
shock and alleviates the tendency to separate. Unfortunately, the recom-
mended limiting cone-surface Mach numbers vary from 1.15 to 1.55. The
reason for such a wide variation is believed to be associated with feed-
tack in the boundary layer and is indicated qualitatively in figure 9.
Both of these models have 50° cones and are operating at a Mach number of
2.0 and the same Reynolds number. The region of separated flow is much
more extensive on model a than model b. Also model a is just out of
pulsing. Apparently, the significant difference is that model a has a
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rather abrupt but small change in area in the first 2 hydraulic diam-
eters of length as measured from the cowl lip, whereas model b 1s the
3.5-hydraulic-diameter diffuser. It is belleved that the resulting
adverse pressure gradient causes pressure feedback in the boundary layer
and increases the separation for model a. Thus although a separation
criterion may be used to predict the occurrence of separation in the
absence of an adverse pressure gradient, application of this criterion

to the prediction of whether the separation will Increase or reattach

in diffusers will require a modification which includes any local adverse

pressure gradients.

s

The previous discussion has shown that the stable range of splke-
type inlets 1s very sensitive to diffuser-area variation. TFor example,
at & Mach number of 2.0 the stable range was increased from a mass-flow
ratio of 0.92 for a 6° diffuser to 0.55 for a diffuser incorporating a
stabilizing section of 3.5 hydraulic diameters in length. Furthermore,
the stability characteristics appear to be very sensitive, in the cases
investigated, to relatively small but rapid area changes at the diffuser

entrance.

- )
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INLET-ENGINE MATCHING METHODS
By John L. Allen

Lewis Flight Propulsion Laboratory

Inlet-engine matching is essentially a problem of relating the
inlet air-flow characteristics to those of the engine so that the net
propulsive thrust of the inlet-engine combination can be evaluated. A
brief review of the matching problem is presented in figure 1 for con-
stant engine rotational speed at an altitude of 35,000 feet and for a
range of flight Mach numbers. Both inlet and engine characteristics
are presented in terms of corrected rate of weight flow of air evalu-
ated at the diffuser exit or compressor inlet. Since the engine
regulates the air entering the inlet, the inlet will operate along the
engine line. When a fixed-geometry inlet is just large enough for effi-
cient operation at the high-speed condition, as shown by the intersection
of the curves at My = 2.0, the engine requires more weight flow than the

inlet can efficiently provide as flight speed is reduced; this condition
is indicated by the spread between the solid line and lower dashed line.
Consequently, the engine will force the inlet to operate in the super-
critical region. Throughout the flight region below design Mach number
this condition results in total-pressure losses, although the drag
remains at & minimum. Accordingly, the net propulsive thrust is reduced.

A fixed-geometry inlet which is large enough to provide efficiently
the weight flow demanded by the engine at a subsonic Mach number, as
shown by the curve intersection at My = 0.85, has an efficient inlet

capacity at higher Mach numbers much greater than that required by the
engine. The distance between the solid line and the upper dashed line
represents an excess of inlet capacity that must be spilled behind a
bow shock with the attendant high additive drag at supersonic speeds;
however, the pressure recovery remains reasonably high. Again, the net
propulsive thrust of the unit is reduced.

Previous conferences and analytical and experimental studies in
several reports have shown that the efficient inlet-performance line
can be shifted to approach the engine curve by varying the geometry of
the inlet. These methods primarily consist of varying the angle or
projection of the compression surface. More complete discussions of
the matching problem can be found in references 1 and 2.

In order to provide the designer with a greater degree of freedom
in solving inlet-engine matching problems, two additional methods have
recently been investigated by the National Advisory Committee for
Aeronautics. These methods, which literally amount to putting holes
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in the diffuser to let in needed weight flow or to let out excess weight
flow, are shown schematically in figure 2. The inlet geometry is fixed
in each case and the auxiliary inlet or outlet can be located to the
rear of the inlet entrance.

Normal-shock-type inlets are shown in figure 2(a) since present
auxiliary-inlet data are confined to flight Mach numbers of 1.5 and
below. The function of the auxiliary inlet is to supplement the crit-
ical weight flow furnished by the undersized main inlet at below-design
speeds, as was indicated in figure 1. Thus, at the high-speed point,
the auxiliary inlet would be closed and, as flight speed is reduced,
the auxiliary inlet would be opened so that the normal shock would
remain at the lip and supercritical pressure losses would be avoided.

The purpose of the internal auxiliary flap is to equalize the
static pressure where the two flows merge so that the mixing of the
main and auxiliary flows will not result in large total-pressure losses.
Furthermore, if the propulsive thrust is to be increased, the drag added
by the auxiliary inlet must not be too large.

The function of the auxiliary outlet or bypass (see fig. 2(b)) is
to discharge weight flow in excess of engine requirements and thus avoid
bow-shock additive drag penalties. The bypass is simply a scoop or
nozzle located in the diffuser forward of the engine. The size of the
bypass would be increased as flight speed is increased so that the
normal shock remains at the cowl 1ip. Again, improvements in net
propulsive thrust will depend on the drag due to bypassing as compared
with bow-shock drag as well as pressure-recovery losses.

The remainder of this paper is concerned with an evaluation of
experimental results of these auxiliary systems.

Small-scale investigations of the auxiliary inlet are presented
in references 3 and 4. Recent preliminary data obtained in the Ames
6- by 6-foot supersonic tunnel for a nose inlet with and without a
fixed-area auxiliary inlet are presented in figure 3. The auxiliary-
inlet area was 11.7 percent of the main inlet area and the external-
drag coefficient is based on maximum fuselage cross-sectional area.

Total-pressure-recovery losses were on the order of 1 to 3 percent
because of mixing losses and boundary layer admitted by the auxiliary
inlet. This loss was highest at supersonic speeds, probably because
of shock—boundary-layer interaction. The external drag was increased,
because of the auxiliary inlet, throughout the Mach number range. 1In
order to illustrate the application of these data to the problem of
inlet-engine matching, the data have been replotted and are presented
in figure 4 for flight Mach numbers of 0.70 and 1.5.




JA "l.

.o bl .

R B N S S L

: . :. . : . :.: .o. oo. : ® e oss oo
CONFIDENTIAL 3

The fixed-geometry data, indicated by the solid line, are for sub-
critical and supercritical flow. The circular symbol corresponds to
critical flow for the main inlet and the triangular symbol represents
the main inlet plus the 1l.7-percent auxiliary inlet at critical flow.
A linear interpolation corresponding to variable auxiliary inlet area
has been assumed as shown by the dashed line. Incremental drag is the
drag increase from the critical value because of bow-shock spillage
for subcritical flow and because of the auxiliary inlet for weight
flows greater than critical.

In the subcritical region, the pressure recoveries are higher than
those at critical flow and the incremental drag curve has a low slope
indicating appreciable cowl recovery for the cowl profile represented
by these data. This effect was discussed in a previous paper by
Richard I. Sears.

At a flight Mach number of 1.5, the highest thrust minus drag was
obtained in the subcritical region where pressure recovery could be
traded for incremental drag up to the point indicated by the engine
match line. Accordingly, the inlet size was selected at this condi-
tion of peak thrust minus drag where the inlet area is about 6 percent
greater than that needed for matching at critical flow.

At a subsonic Mach number of 0.7, this optimum high-speed design
is too small and supercritical pressure losses occur as shown by the
engine match line; however, the drag remains at a minimm. Using the
auxiliary inlet increases the pressure recovery from about 0.89 to
0.94 for a drag increase of about 0.02.

Evaluation of these results is presented in figure 5 in the form
of effective thrust ratio which is defined as the thrust at the oper-
ating pressure recovery minus the spillage drag or auxiliary-inlet
drag, as the case may be, divided by the ideal thrust at 100-percent
pressure recovery. A fixed-geometry inlet sized for a subsonic Mach
number is shown in addition to the high-speed design with and without
an auxiliary inlet.

The fixed-geometry inlet, sized for optimum thrust minus drag at
a flight Mach number of 1.5, operated in the subcritical region down to
a Mach number of about 1.2, and, at lower speeds, supercritical opera-
tion occurred and resulted in low effective thrust ratios. Using the
variable-area auxiliary inlet to avoid supercritical operation resulted
in higher effective thrust ratios at below-design speed as indicated by
the dashed line. At a flight Mach number of 0.70, the effective thrust
ratio of the fixed-geometry inlet was increased 8 percent by means of
the auxiliary inlet. However, if the size of the inlet is increased to
provide optimum thrust minus drag at a subsonic Mach number of 0.8,
slightly higher effective thrust ratios are obtained up to a flight
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Mach number of 1.2; at higher Mach numbers, the effective thrust ratios
are only slightly less. The inlet area for this case is about 17 per-
cent larger than that for the high-speed design; the effect of this
area increase on incremental drag is included in the thrust parameter;
however, any increase in basic body drag is not included.

Thus, for the particular engine characteristic and constant-altitude
flight plan considered herein at Mach numbers up to 1.5, the auxiliary
inlet does not appear necessary. At flight Mach numbers higher than 1.5
or for other engine characteristics and flight plans such as a tactical
mission requiring high Mach number operation over a range of altitudes,
the auxiliary inlet may offer higher performance. The auxiliary inlet
would also be useful for improving existing hardware, for instance, an
inlet that is too small or for growth situations where an engine having
a larger weight-flow capacity is to be instslled in an existing airframe.

At flight Mach numbers higher than 1.5, the spillage required for
a subsonic inlet sizing increases as discussed previously. Also, at
these higher speeds, sharp cowl lips are generally necessary to avoid
drag penalties. Thus, auxiliary-inlet performance for higher Mach num-
ber designs may be more competitive, although this effect has not been
experimentally demonstrated up to the present time. The auxiliary inlet
may well require a compression surface and control or removal of the
boundary layer so that its performance will approximste more nearly that
of the main inlet.

The bypass system can be used for the oversized inlet that required
large spillage at the high-speed point in order to attain efficient sub-
sonic operation. Data, which were obtained from references 5, 6, and 7
with an axially symmetric spike-type inlet with and without a bypass
system, are presented in figure 6 for flight Mach numbers of 1.6, 1.8,
and 2.0. The inlet had a relatively sharp cowl and the compression sur-
face tip projection was selected so that the conical shock would meet the
lip at My = 2.0. The bypass-data points were obtained by using one and
then two fixed-area bypasses having a nearly axial discharge angle. The
dashed line through the symbols represents a variable-area bypass system
that maintains critical inlet flow as diffuser-exit weight flow is

reduced. Spillage-drag coefficient is the increase in drag as weight flow

is decreased. For the fixed-geometry inlet, the spillage drag increases
appreciably as weight flow is reduced. However, spillage-drag coeffi-
cients for the bypass inlet were only one-fifth to one~fourth of those
for equivalent bow-shock spillage for the fixed-geometry inlet, and
diffuser total-pressure recoveries were not significantly changed. The
engine match lines indicate progressively greater spillage requirements
as flight Mach number is increased. Interpretation of these data in
terms of effective thrust ratio is shown in figure 7 for an altitude

of 35,000 feet and an inlet sized at a flight Mach number of 0.85. A
reference curve corresponding to an inlet of variable size or area
operating at critical pressure recovery without drag is also shown and,
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as such, represents the best performance attainable with this particular
fixed-angle compression surface and diffuser. Over the range of flight
Mach numbers, the effective thrust ratios for the bypass inlet were con-
sistently higher than those for the fixed-geometry inlet. If the per-
formance at a flight Mach number of 2.0 where the excess weight flow is
about 20 percent of that captured by the inlet is considered, the effec-
tive thrust of the bypass is 10 percent greater than that of the fixed-
geometry inlet and 98 percent of that attainable with critical pressure
recovery and zero drag. At a flight Mach number of 1.6, the required
spillage is smaller and, hence, the effective thrust ratios attained for
both the bypass and fixed-geometry inlets are comparable.

For this reason the bypass would probably not be needed at Mach
numbers where the required spillage is small and the drag due to
bypassing or bow-shock spillage becomes small compared to net thrust.

In conclusion, it has been shown experimentally that it is possible
to mix the auxiliary and main inlet flows with rather small pressure-
recovery losses at flight Mach numbers up to 1.5. Thus, the performance
of an undersized fixed-geometry inlet that experiences supercritical
operation at below-design speeds can be improved by means of an auxiliary
inlet. However, for the engine characteristics and flight plan considered
herein, a fixed-geometry inlet sized at a subsonic Mach number had effec-
tive thrust ratios comparable to those obtainable by using an auxiliary
inlet in conjunction with an inlet sized at a high Mach number. Other
filight plans and engine characteristics may indicate beneficial applica-
tion of the auxiliary inlet. Application of the auxiliary inlet at
flight Mach numbers greater than 1.5 in conjunction with inlets having
efficient compression surfaces remains to be demonstrated.

For the oversized inlet, it was shown that discharging weight flow
in excess of engine requirements by means of a bypass resulted in effec-
tive thrust ratios as much as 10 percent greater than those of a fixed-
geometry inlet since the drag due to bypassing was only one-fifth to
one-fourth of bow-shock spillage drag. Thus, two additional methods have
been demonstrated that aid in solving inlet-engine matching problems.
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For the unpublished auxiliary-inlet data, the following pertinent

area ratios are piven:

Maximum fuselage cross-sectional ares 6.0

Minimum inlet area

Mlnlmum inlet area _ 0.685
Diffuser-exit area

The engine characteristics given in figure 1 are used throughout
the paper. However, the relation of absolute values of engine corrected

weight flow to those of subsequent figures is

wye /s
(Wﬁ/ S)fig. 1

=1.116
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RECENT DATA ON DIFFUSER DESIGN
By John R. Henry

Langley Aeronautical Laboratory
INTRODUCTION

In the past a number of successful correlations of performance data
and comprehensive collections of design data for subsonic diffusers have
been accomplished for the general case of favorable boundary-layer veloc-
ity distribution or shape factor at the diffuser inlet (see refs. 1 and 2).
One of the more critical subsonic diffuser problems existing in the air-
craft industry today, however, is the design and performance of subsonic
diffusers preceded by supersonic diffusers or inlets. For these cases
the boundary layer at the start of subsonic diffusion has been subjected
to considerable pressure rise through shocks and no longer has a favorabdle
velocity distribution or shape factor. Design and performance information

corresponding to these conditions has not reached a satisfactory state of
development.

In the first section of this paper the problem of subsonic diffusion
downstream from supersonic inlets will be investigated briefly by examining
a breakdown of the measured over-all pressure losses to determine the losses
attributable to the subsonic diffuser.

SUBSONIC DIFFUSION AFTER SHOCK

Supersonic Inlet Pressure Recovery

In order to obtain an idea of the order of magnitude of the problem
of subsonic diffusion downstream from a supersonic inlet the literature
was surveyed and a number of representative total-pressure-recovery data
from references 3 to 11 were selected for study. These data are illustrated
in figure 1 for the spike-type inlet. For simplicity the selections were
limited to the case of a single angle spike with no internal contraction
and with the normal shock approximately at the minimum area section. The
plotted points represent, for a number of different geometries, the meas-
ured total-pressure rec¢overy to the exit of the subsonic diffuser expressed
as a function of free-stream Mach number. The curves represent the calcu-~
lated total-pressure recovery through the shock system for several values
of spike half-angle. The difference in pressure recovery between any
point and the appropriate shock curve represents approximately the loss
chargeable to the subsonic diffusion. It is apparent that in many cases
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the subsonic loss is of the same order as the shock loss, which empha-
sizes the importance of the subsonic diffusion problem.

The data shown in figure 1 cause one to speculate as to how such
high losses can be generated in subsonic flow. A reasonable explanation
appears to be that the boundary layer, in negotiating the pressure rise
through the normal shock, is drained of dynamic energy to the extent that
a state of flow separation or incipient separation exists at the start of
subgonic diffusion. These phenomena in the past have been referred to as
shock-boundary-layer interaction effects. 1In order to study these effects
in more detail, one must reduce the measured over-all subsonic loss values
to a loss chargeable entirely to the interaction effect. A necessary step
is to predict what the subsonic loss would have been if the flow had been
free from shock effects.

Basic Data Loss Estimate

Subsonic diffuser M of 0.2 loss correlation.- The first step in
obtaining the basic data loss estimate, a value which does not include
shock effects on the boundary layer, was to obtain the loss coefficient .
which each diffuser geometry would have had at an inlet Mach number of 0.2.
The loss correlation curves of figure 2, which are based on data from refer- .
ences 12 to 18, were used for this purpose. The loss factor K, which is the
ratio of the conventional total-pressure-loss coefficient to the calculated
loss coefficient for a sudden expansion of the same area ratio, is presented
as a function of the diffuser expansion angle 26. The use of the factor K .
eliminates the need for a separate curve for each area ratio in the angle
range of 9° or higher. Older correlations of this type ignored the effect
of inlet boundary layer but recent investigations have indicated that a
curve exists for each value of the ratio of inlet-boundary-layer displace-
ment thickness to inlet radius. Note that increasing the relative boundary-
layer thickness up to a value of 0.04O produces significant increases in
the loss factor and that further increases in thickness have little effect
on K.

For expansion angles of 9® or less friction losses become appreciable
and the K factor is no longer independent of area ratio. TFor this reason,
calculated values of friction K have been plotted for angles from 1° to 9°.

The plotted points represent an annular diffuser correlation which is
based on the cobservation that the annular diffuser loss is greater than an
equivalent conical diffuser by the amount of the extra friction loss of the
annular diffuser. The points as plotted are measured values reduced by the
amount of the extra calculated friction loss and good agreement with the v
conieal correlation is obtained.
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Effect of inlet Mach number on loss.- In order to obtain a fair
estimate of the loss that each diffuser geometry would have had if the
flow had not been influenced by shock effects, it was necessary to correct
the loss from the low Mach number correlation of figure 2 to values corre-
sponding to the test Mach number at the start of subsonic diffusion.
Increasing the diffuser inlet Mach number is known to have a detrimental
effect on performance for subsonic diffusers which do not have appreciable
friction loss. Most of this depreciation is believed due to increased
values of Reynolds number based on boundary-layer thickness; however, the
increased values of nondimensional pressure gradient must also be respon-
sible for some decreases in performance. A number of investigations
described in references 13 to 17 have furnished data evaluating this
effect for both conical and annular diffusers over a range of inlet-
boundary-~layer thicknesses. The results of these investigations are
given in figure 3 which presents the ratio of the loss coefficient at a
particular inlet Mach number to that for a Mach number of 0.2 as a func-
tion of diffuser expansion angle. Each curve corresponds to a particular
Mach number. Results are given for a thin and a thicker inlet boundary
layer. It is evident that the loss coefficient may be approximately
doubled in some cases through increases in the inlet Mach number. Annular
diffuser data up to an expansion angle of 12° have shown little or no
effect due to inlet Mach number. By the use of these inlet Mach number
correction data in conjunction with the low-speed loss deta of figure 2
accurate loss estimates can be made for diffusers where shock effects
are absent.

Subsonic Loss Due to Shock Effect

Returning to the analysis of the performance of subsonic diffusers
operating downstream from supersonic inlets, three inlet designs were
investigated: the spike type, the converging-diverging type, and the
normal-shock type. With the shock pattern known it was possible to calcu-
late the Mach number just downstream from the normal shock. The Mach num-
ber in conjunction with the subsonic diffuser geometry provided enough
information to predict, in the manner just described, the loss which the
diffuser would have had in the absence of shock interaction effects. This
basic data loss was then subtracted from the measured over-all subsonic
loss to obtain the shock-boundary-layer interaction loss coefficients
shown in figure 4. The total-pressure loss due to shock-boundary-layer
interaction divided by the total pressure at station 1 is expressed as a
function of Mach number at station 1.

It was reasoned that station 1, which is located at a position Just
upstream from the normal shock, should be used as a reference station for
the total pressure and Mach number because these variables determine the
strength of the normal shock which in turn should determine the effect of
the shock on the boundary layer. This reasoning is supported by the
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manner in which the data for several relatively high angle subsonic dif-
fusers, the circle points, with various supersonic inlet designs fall
on a single curve.

At a given pre-shock Mach number the losses for the three inlet con-
figurations for comparable subsonic diffusers should vary according to
the differences in the boundary-layer development upstream from the normal
shock. This view is supported by the data because the spike inlet, which
had the largest amount of wetted surface exposed to the supersonic flow
and therefore the greatest opportunity for boundary-layer thickness
development prior to the normal shock, had the highest interaction losses.

For the curve shown for the spike inlets the losses reach values on
the order of 10 times the "basic" subsonic diffusion loss. One would
expect extensive separation under these conditions. This view 1is supported
by the fact that the maximum losses are on the order of one dynamic pres-
sure at the start of subsonic diffusion.

The square symbols in each case identify subsonic diffusers of expan-
sion angles of 50 or less, which produced relatively low losses. This
result suggests that an expansion angle as low as 50 has a favorable effect

- on the poor boundary-layer velocity distribution or shape factor delivered
by the normal shock, or in the case of shock-induced separation, the low
angle permits early reattachment.

The effect of a 5° expansion angle on boundary-layer development
downstream from a shock is illustrated by figure 5. The model used to
obtain these data was a converging-diverging inlet; surveys of the flow
were made at several cross sections of the 5° diffuser for several loca-
tions of the normal shock. The data are presented here in terms of
boundary-layer shape factor, defined as the ratio of boundary-layer dis-
placement to momentum thickness. Increasing values of shape factor indi-~
cate increasing distortion of the boundary-layer velocity distribution
and high values of shape factor correspond to separated flow. It has
been observed that flow separation does not occur for shape factors below
a value of 1.8 whereas separation almost always exists at values above 2.6.

Shape factor is presented as a function of the ratio of the dis-
tance X, measured from the normal-shock location, to the diffuser diam-
eter at the shock location. Three curves, which correspond to three
different positions of the normal shock, are given with the Mach number
just upstream from the shock indicated in each case. The value of the
shape factor delivered to the normal shock differed in each of the three
cases due to changes, with normal-shock position, of the flow character-
istics between the throat and the normal shock. The normal shock caused
a large increase in the shape factor in the Mach number of 1.52 case
indicating local separation; then the 5° expansion angle reduced these
high shape factors to favorable values within the range below 1.8

»
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resulting in attached flow and reasonable velocity distributions. A
number of investigations of boundary-layer development in higher expan-
sion angle diffusers have indicated progressively increasing values of
shape factor in the x direction, a characteristic which would have
produced extensive separation in the Mach number of 1.%35 and 1.52 cases.
These results all support the conclusions relative to the 50 diffuser
performance indicated in figure 4.

Much additional research work is necessary to obtain a complete
understanding of subsonic diffusion preceded by supersonic flow; how-
ever, on the basis of the preliminary analysis presented, certain limited
conclusions can be formed. To avoid subsonic diffuser losses on the
same order as the shock losses, at least the initial section of the sub-
sonic diffuser should have an expansion angle no greater than 5°. This
indicates a long diffuser or else the use of boundary-layer control.

Many of the usual boundary-layer control types do not appear attractive
for this application, especially if any degree of stream blockage is
involved. If post-shock separation is present, any form of control down-
stream from the shock will be inefficient. Pending the development of
new control concepts, the most obvious solution appears to be to elimi-
nate all boundary layer in the region just upstream from the normal shock
by scoops, bleeds, or wall suction.

DIFFUSERS WITH FLOW CONTROL

The second part of the paper will be devoted to another problem,
that of obtaining satisfactory performance from short diffusers for use
where space requirements are severe. The designs required fall in the
range of expansion angles from 15° to 45°; stable operation and uniform
exit distributions are paramount requirements. It is obvious that such
operating conditions cannot be met without flow control.

Forms of flow control under investigation are removal of low-energy
boundary-layer air by suction, energization of the boundary layer by
injection, accelerated boundary-layer momentum transfer by use of vortex
generators, and flow control through use of turning vanes and splitters.

An investigation pertaining to the effectiveness of various types
of flow controls as applied to annular diffusers suitable for turbojet
afterburners is now in progress at the National Advisory Committee for
Aeronautics. These data have been reported in part in references 19
to 22. The more important configurations tested are sketched in figure 6.
The same cylindrical outer body was used in all cases while the design of
the inner body was modified. With vortex generators mounted near the
inlet station, three different lengths of inner body were tested pro-
ducing equivalent cone angles of 150, 240, and 310. A suction-control



configuration consisting of two rows of drilled holes on the inner body
has been evaluated. Boundary-layer control consisting of injecting high-
energy air parallel and adjacent to the wall through a circular slot
between the cowl and center plug was also investigated. It was found
that the injection air could not prevent separated flow over a large
portion of the cowl surface, necessitating the installation of the cylin-
drical turning vane as illustrated on the sketch. Injection model per-
formance referred to hereafter will refer to the complete model including
the vane.

Note that two downstream measuring stations, stations 2 and 3, are
indicated on each sketch. Station 2 always corresponds approximately to
the end of the inner body and permits performance comparisons for several
over-all diffuser lengths or equivalent expansion angles. Station 3 1is
a common tailpipe station for all the models and is located at a position
corresponding to the end of the 15° diffuser inner body. Measurements at
this station permit performance comparisons for several inner-body lengths
with the same over-all diffuser length.

The inlet conditions correspond to fully developed boundary layer
filling the annulus, inlet Mach numbers up to 0.5, and angles of flow
rotation from O° to 21°. These conditions appeared for a general inves-
tigation to be as representative as possible from a study of surveys of
typical turbine discharge conditions.

Static-Pressure-Coefficient Performance

Static-pressure-rise performance on these two bases with the vari-
ous types of control is presented in figure 7. The static pressure rise,
of course, is an indication of the reduction in mean velocity between
the inlet station and a particular downstream station. It is presented
here in terms of the mean inlet dynamic pressure. For the diffuser exit
or station 2 measurements, the independent variable is expansion angle.
For the station 3 measurements, for which the over-all length or expan-
sion angle is constant, the independent variable of center-body length
in terms of the outer-body diameter was chosen. The curves apply to
vortex-generator control, and a no-control curve is given for reference
purposes. The circle symbols represent the suction model performance,
and the square symbol represents the injection model.

The vortex-generator control provided substantial increases in per-
formance for all cases. The station 2 measurements indicate, however,
that as the expansion angle increased, or the diffuser was shortened,
the performance fell off appreciably. If the over-all length of the
diffuser was held constant, station 3 measurements, shortening of the
center body produced little change in performance. This result is pre-
sumably due to the rapid adjustment of the radial velocity distribution
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in the free mixing region between stations 2 and 3 for the shorter center
body cases. The conclusion is reached that the added weight and struc-
ture of the longer center bodies may be saved with little sacrifice to
performance. ‘

The circle points indicate that suction control is much more effec-
tive than vortex generators. Suction control has the disadvantage of
requiring more auxiliary equipment and some thrust penalties if the suc-
tion air is wasted.

The injection control, as indicated by the square symbol, provides
equivalent performance to the vortex generators. The injection would
also require auxiliary equipment. It has an advantage over the suction
in that there is no waste of air involved; however, it is unlikely that
the injection air would have been subjected to the combustion process.

Exit-Velocity Distributions

Uniform velocity distribution at the afterburner inlet and flow
stability are considered prime requisites for this application. A gen-
eral statement concerning the somewhat intangible quality of flow sta-
bility can be made as follows: Manometer and tuft surveys indicated
that control measures which provided significant improvements in the
performance also produced more stable flow. Typical radial velocity
distributions with and without control for all the control systems are
given in figure 8 for both stations 2 and 3. At station 2 vortex gener-
ators produced improvements in the distributions but did not eliminate
separation for the 240 and 31° diffusers. The suction model, which pro-
duced superior static-pressure coefficients, also produced superior
velocity distributions by maintaining attached flow for the full length.

At the tailpipe station, station 3, with vortex-generator control
the velocity distribution improves appreciably with shortening of the
center body, which also is consistent with the observed statiec-pressure-
rise performance. Possible flow instabilities assoclated with flow
separation in the 24° and 310 diffusers could probably be eliminated by
cutting off the end of the center body just upstream from the separation
point. This type of design is sometimes employed when pilot flame devices
are located on the end of the center body.

The suction and injection data at station 3 indicate good distribu-
tion, as would be expected. It is believed that appreciably better injec-
tion performance is to be had with a model conforming to the contour of
the 31° center-body design, which permits attached flow on the center
body for an appreciable axial distance. Also better injection performance
could have been obtained by realining the injection direction to elimi-
nate the peak velocities near the center line as indicated at station 3.
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The investigations to date have resulted in obtaining good perform-
ance from a diffuser which has a length over maximum diameter ratio of
about 1/2, as compared to a previously accepted value of more than 1.0.
This result has been accomplished under the unfavorable conditions of a
maximum thickness of boundary layer at the inlet and all the area expan-
sion taken on the inner wall. The investigation is not complete; how-
ever, tests of still shorter diffusers indicate that the length-diameter
ratio of 1/2 cannot be significantly reduced without excessive penalties
to performance
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JET EFFECTS ON THE FLOW OVER AFTERBODIES
IN A SUPERSONIC STREAM
By Edger M. Cortright, Jr., and Fred D. Kochendorfer

Iewls Flight Propulsion laboratory

INTRODUCTION

Increased attention is currently being directed to the problem of
afterbody aerodynamics. This is a logical result of the fact that
afterbody drag frequently represents an apprecisble portion of the
total body drag of aircraft and missiles. In the case of engine-in-
fuselage and nacelle configurations, the problem of predicting the flow
field over afterbodies or boattails is complicated by interference
effects from the propulsive jet which issues from the base of the body.
This jet disturbs a flow which is already contaminated by heavy boundary
layer and which is subject to wing and tail interference effects. In
addition, the flow is attempting to negotiate the adverse pressure gra-
dient usually present over at least the rearmost portions of the boat-
tail. Clearly, the problem is a complex one. S

In the present paper an attempt will be made to summarize some of
the results of current research on the problem of jet effects. Emphasis
will be placed on providing a clear definition of the various phases of
the problem, as well as on presenting some of the important concepts and
parameters which contribute to their understanding. Previous research
on the subject of jet effects on external aerodynamics may be found in .
references 1 to 7.

SYMBOLS
Ap area of annular blunt base
Ay maximum cross-sectional area of body
p—po
Cp boattail pressure coefficient, ————
90
p -po
CPA pressure coefficient at rearmost boattail station, 3
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base pressure coefficient, EE___JQ .

Q.o -

base pressure coefficient referenced to rearmost boattail

Pp - P
station, l——A
a4y
D
drag coefficient,
%%
Dp
annular base drag coefficient for case of base bleed, —
q
0A

drag force

annular base drag force

diameter of base
maximum body diameter

diameter of nozzle exit
diameter of throat of convergent-divergent nozzle

total pressure

total pressure of base-bleed air

Mach number

mass flow of base-bleed air

mass flow of jet

mass flow of secondary ejector air
Reynolds number based on body length

static pressure

A ”
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PR critical pressure-rise coefficient

5; mean critical pressure-rise coefficient

q dynamic pressure, 7pM2/2

R gas constant

Tg total temperature of base-bleed air

Tj total temperature of jet sair

Tg total temperature of secondary ejector air

Vg velocity of base-bleed air at exit

Vo veloclty of free-stream air

b4 axial distance upstream of base

B angle at rearmost station on boattail, deg

o) thickness of boundary layer at point where the velocity
equals 0.99 times the local stream velocity

€ angle of nozzle at the exit station

Vi ratio of specific heats

v angle that edge of jet stream makes with body axis immediately
after leaving nozzle

¥ angle that external stream makes with body axis immediately
after separating from end of boattail

Subscripts:‘

0 measured in free stream

A measured at rearmost boattail station with no jet flow

B measured in semidead air region of blunt base

J Jet conditions measured in plane of nozzle exit
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APPARATUS

Consider first some of the experimental techniques which have been
used to gather the data for this paper; in figure 1 are shown four of
the models used to measure jet effects on the flow over afterbodies.

The first model (upper left) utilized a half-sting with splitter-plate
arrangement wherein the unheated jet air was reversed in direction
within the body and discharged through half an afterbody. The two small
strut-mounted models (lower), which provide most of the data presented
herein, differed from each other in that one utilized an oxygen-alcohol
rocket engine for a gas supply while the other utilized unheated air.
Support interference effects are larger for this system. The most
recently utilized is the large-scale strut-mounted model for the lewis
8- by 6-foot supersonic tunnel (upper right). This model has a gasoline
combustor which makes possible jet temperatures from atmospheric to
2,500° R. Forces and pressures on the nozzle and body may be independ-
ently measured.

DISCUSSION

Parameters and nomenclature.- Before the results of this research
are considered, it is necessary to define some of the geometric and
flow parameters inherent in the problem. A typical conical afterbody
is depicted in the upper portion of figure 2. Both the jet and external
flow are from left to right. Important geometric parameters are the
boattail angle or contour and the diameters of the body, the base, and
the nozzle exit. The most frequent parameter involving diameters is
the ratio of the base diameter to the nozzle exit diameter Dy /Dy, which

indicates the size of the blunt annulus. The pressures of interest
include the free-stream pressure Pg» the boattail pressures p, the

pressure just'ahead of the base Pp> the base pressure Pys and the jet

static pressure Py In addition, the jet total pressure H and total

J
temperature Tj; are of importance.

Now consider some of the nozzle configurations which may be
installed within the afterbody shell and which discharge various types
of jet streams through the exit opening in the base. The simplest of
these is the convergent nozzle, which will be retained in the analysis
for reference purposes even at the higher Mach numbers where convergent-
divergent or ejector nozzles would be required to yield maximum thrust
potential. The convergent-divergent nozzle will have an increasing
ratio of exit diameter to throat diameter DN/DT as the design pressure
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ratio increases. The nozzle exit angle € 1is not necessarily zero for
this nozzle or for the other nozzles. With the ejector nozzle the ratio
of exit diameter to throat diameter DS/DP also increases as the design

pressure ratio increases., In addition, however, a supply of secondary
air is provided to cushion the expansion of the primery stream and thus
provide more nearly isentropic flow. Lastly, the case in which air is
discharged into the blunt annular base in order to realize the drag
reducing effects of base bleed is considered briefly.

Jet effects on boattail pressures.- Consider first the question of
Jet effects on boattail pressures shown qualitatively in figure 3 for
the case of supersonic flight. The basic physical phenomena are illus-
trated in the lower portion of the figure, which depicts the effects of
the jet from a convergent nozzle on the flow over a 5.60 conical boat-
tail. The jet, which is at a higher-than-ambient static pressure at
the exit, expands on leaving the nozzle and thus deflects the external
stream. If the flow were inviscid, a shock wave would originate pre-
cisely at the point of meeting of the internal and external streams and
a pressure discontinuity would exist. The presence of the body boundary
layer with its low-energy subsonic region precludes the possibility of
a discontinuous rise in pressure with the result that the required pres-
sure rise begins ahead of the shock wave, where the boundary layer
thickens and originates compression waves. If the deflection is suffi-
clently great and the shock wave sufficiently strong for the particular
state of the boundary layer, the flow will be separated from the boat-
tail inasmuch as the low-energy regions of the boundary layer will be
unable to negotiate the required bressure rise. Translation of these
simple concepts into quantitative form is most difficult with the result
that there is no current method to predict the magnitude of jet effects
on boattall pressures. It may be rossible, however, to predict approxi-
mately the onset of separation by use of the critical-pressure-rise-
coefficient concept of Donaldson and lange (ref. 8) about which more
will be said subsequently. Plotted above the sketch of the boattail in
figure 3 are the experimental pressure distributions for various values
of the jet static-pressure ratio Py/Pye For large amounts of over-

bressure, appreciable thrust is seen to exist over the rearmost portions
of the boatteil.

Modifying factors. - Many factors influence the exact nature of jet
effects on boattail pressures. Some of these factors are illustrated
in figure 4. The jet effect will be decreased by reducing the over-
pressure at the exit either by reducing the Jet total pressure or by
adding an expansion section to the nozzle. Also, the presence of an
annular base can partially or entirely shield the boattail from Jjet
Interference, depending on the size of the annulus. This occurs inas-
much as the internal and external streams separate from the body and
meet downstream of the base. The jet then influences the base pressure
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and will usually not influence the boattail pressure until the base
pressure has risen sufficiently far above the rearmost pressure on the
boattail. The jet effect may be increased by the use of a large boat-
tail angle which both increases the strength of the trailing shock wave
and increases the adverse pressure gradient over the boattail, thus
meking it more susceptible to flow separation. ILastly, the use of large
nozzle exit angles may result in a relative increase in the trailing-
shock strength and, hence, an increased jet effect.

With angle of attack or yaw at supersonic speeds, the jet effect
is asymmetrical and causes a destabilizing shift in the body center of
pressure, in addition to influencing nearby control surfaces. Angle-of-
attack effects are beyond the scope of this paper, however.

Jet effects on boattail drag.- Some jet effects on boattail pres-
sure drags at a free-stream Mach number near 2 are presented in figure 5
to illustrate the qualitative considerations just discussed. Consider
the variation with boattail shape of the drag-reducing effect of a jet
from a convergent nozzle. In the case of the three conical boattails
of base-to-body-diameter ratio of 0.5 (broken lines), the drag with no
jet increases considerably as the boattail angle increases. The Jet
interference also increases, however, so that all three experience a
pressure-drag reduction approaching 25 percent at a jet total-pressure
ratio of 14. The highly sloping (B = 16° at rearmost station) parabolic
afterbody experiences a much greater jet interference so that &t the
higher pressure ratios the drag 1is reduced to 40 percent and is the same
as that of a more gently sloping boattail. Drag data for the parabolic
body were obtained from force measurements in the 8- by 6-foot tunnel,
whereas the conical boattail drags were obtained from the integration of
pressure distributions on small-scale models (ref. 5). Certain irregu-
larities in the force data have been faired out that may actually have

occurred because of the possibility of abrupt separation on the
boattail,

It may be noted that the larger drag reductions in the case of the
parabolic afterbody were obtained despite the presence of a slightly
larger annulus than was present on the sharp-edged conical boattails,
although annular pressure forces are not included in these drag data.
Actually, a small annulus corresponding to this base-to-nozzle-diameter
ratio of 1.11 appears to afford little shielding of the boattaill even
in the case of the low-angle boattails. However, with a larger annulus

of g% = 1.41, the boattail drag for the three conical boattails was

virtually invariant with jet pressure ratio.

The second portion of this figure illustrates the fact that an
increased nozzle exit angle increases the favorable jet interference

-




effects both for the convergent and the convergent-divergent nozzle.

The nozzle exit angle was increased 12° in the case of the convergent
nozzle, resulting in the indicated downward displacement of the drag
curve. In the case of the convergent-divergent nozzle ¢ was increased
18° with the same effect. Tt may be noted that no appreciable drag
reductions result from the convergent-divergent nozzles until the

nozzle design total-pressure ratio is exceeded.

Critical pressure-rise coefficient.- Attention is now directed to
the pressures which act on annular blunt bases. Before looking at the
details of the problem, it is instructive to consider in figure 6 the
concept of critical pressure rise, which was mentioned briefly in regard
to the trailing shock wave separating the flow on a boattail. Consider
the case of a forward-facing step in the presence of a boundary layer.
The detached bow wave which would normally exist ahead of the step in
supersonic inviscid flow creates a pressure rise which is too great for
the boundary layer and causes it to separate. Donaldson and lange
(ref. 8) originally proposed that a critical pressure-rise coefficient

Pp - Py | i 1
Pp = 4 is proportional to (Reynolds number) 5 for turbulent

1

boundary layers for any given Mach number. Additional experimental
evidence reported by Love (ref. 9) indicates that the effect of Reynolds
number for turbulent boundary layers is negligible. Iove has also shown
that the experimentally determined critical pressure rise for a blunt
step is in approximate agreement with that of a two-dimensional airfoil,
if defined as indicated under the sketch, and that this pressure-rise
coefficient varies with Mach number. If the blunt step is rearward
facing, data derived from Beastall and Eggink (ref. 10) indicate Py

to be invariant with Mach number at a value of approximately 0.36.
Thus, certain differences exist which require investigation.

If a section of a blunt annulus is considered, it is immediately
apparent that the flow is similar but more complex. In this case the
two streams which separate from the surface of the nozzle and body are
generally inclined at different angles and are at different levels of
pressure, temperature, and Mach number. In addition, the state of the
boundary layers is markedly different in the two streams. As a first
step, however, it is possible to define a mean pressure-rise coefficient

?E which is the average of pressure-rise coefficients based on the

internal and external streams. Unfortunately, the reduction of base,
body, and nozzle pressures to yield a value of Pp requires a knowledge

of the external and internal stream curvatures after separation since
a two-dimensional solution of this flow field is markedly inadequate.

Most of the values of PR presented herein were obtained with the use
of schlieren photographs to determine jet curvature as well as with the



use of a few existent characteristic solutions for the external flow.
As a result, they must be considered as only a crude first effort
pending more accurate theoretical treatment. This will require the
determination by characteristics of a great many overpressure jet shapes "
and, although they are less significant, the free streamlines of some

separated external flows.

The important fact to observe in figure 6 is not the somewhat
irregular behavior of the individual variations, which may be largely
scatter, but rather that most of the values for the convergent nozzles

at both Mach numbers fall between a ?E of 0.3 and 0O.4. This is in

the range to be expected from the experiments with steps and w1ngs
Although the data are presented only for conical boattails of 5. 6
values of B from 0° to 11° also yield values of PR in this range.

In the case of the convergent-divergent nozzles designed for a pres-
sure ratio of 10.5, only the case of the small ammulus is presented.
This is done since sufficient information to correct the data for three-
dimensional effects was not available; a two-dimensional solution,

which may not be far in error for a small annulus, was thus utilized.
Again, the critical pressure-rise coefficient varies only slightly over
a wide range of pressure ratios, but the values are below those obtained
with a convergent nozzle; & satisfactory explanation for the discrepancy

in values is not known at this time. Attempted correlation of EE and
the two terms of §§ with the basic variation of Pr with Mach number -

for a step as presented by Iove (ref. 9) has been inconclusive. In
general, it can be concluded that the concept of mean critical pressure-
rise coefficient is & unifying one but one which requires additional
study.

Jet effects on base pressure.- Consider now in figure 7 the actual
behavior of annular base pressure for a variety of nozzle and boattail

geometries and for a wide range of operating pressuresl Base pressure
coefficient is plotted as a function of jet static-pressure ratio for

5. 6° conical boattails at a Mach number of 1. 9, Initial base pressure
coefficients for no Jet flow are indicated on the ordinate. The clarity
of this figure is enhanced if the Jet effect with single base-to-nozzle-
diameter ratio is first studied. TFor the case of a convergent nozzle
with DB/DN of 1.11, a slight amount of jet flow produces an appre-
ciable increase in base pressure; further increases in jet pressure and

thus Jet flow result in the jet stream tending to aspirate the annulus
to a lower pressure. However, as the jet pressure is increased still

lThese data, as well as a considerable portion of the data to
follow, were obtained in unpublished experiments at the lewis laboratory
by E. Baughman, F. Kochendorfer, and M. Rousso.
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further, the jet expands more and increases the strength of the trailing
shock wave at its juncture with the external stream. The wake pressure
thus increases and the existence of a critical pressure-rise coefficient
forces the base pressure to increase also, as indicated by the data. As
the base diameter becomes larger relative to nozzle exit diameter, the
expanding jet flow curves increasingly toward the axis before meeting
the external flow. Thus, in order to maintain a nearly constant value

of fg, & larger initial expansion angle corresponding to a lower base

pressure coefficient must exist for the given jet pressure ratio; this
is seen to be the case. The portions of these curves corresponding to
a very low jet total pressures are not included except in the single
1llustrative case.

Compressed into the lower end of the pressure-ratio range are the
variations of base pressure coefficient with a convergent-divergent
nozzle having an expansion ratio corresponding to a design total-
pressure ratio of 10.5. A nozzle of this type has a design static-
pressure ratio of 1 and requires & total-pressure ratio of 21 to operate
at a static-pressure ratio of 2. It can be seen that the variations are
essentially parallel to the corresponding variations with convergent
nozzles (if the portions of the convergent-nozzle curves which turn in
the positive direction at low pressure ratios are neglected) but are
displaced slightly in the positive direction. A single variation
obtained with an ejector nozzle designed for the same pressure ratio is
included and is seen to fall somewhat higher than might be expected from
the other data. It is believed that there is a logical reason for this,
however. The secondary weight flow, which was 4 percent of the primary

(-———fﬁi——-= O.Ch), created a layer of relatively low-energy air around
By Ts /Ty

the primary jet stream which would be expected to lower the critical
pressure-rise coefficient and thus increase the base pressure.

For a practical comparison of the effects of jets from a convergent
and convergent-divergent nozzle, consider the case of a jet total-
pressure ratio of 10.5 corresponding to a turbojet engine at a Mach num-
ber of 1.9. The convergent nozzle with its static-pressure ratio near
5.5 generally increases the base pressure over its no-flow value except
for extremely large annuli and may generate appreciably positive base
pressures. The convergent-divergent nozzle (¢ = 0), however, with its
Jjet static-pressure ratio of 1 decreases the base pressures below the
no-flow values with the resulting tendency to create relatively large
base drags. An additional point of interest in this figure is the fact
that replacing the idealized blunt base with a h5° bevel, such as might
occur with an iris or clamshell nozzle, did not greatly alter the basic
variation of base pressure with jet pressure. The same result was found
true with a convergent-divergent nozzle.
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This entire family of pressure variations for the convergent
nozzle could be crudely reproduced theoretically starting with only a

value of Pp = 0.35, with the possible exception of the %’-; = 1.11

variation. An indication of the apprcximate order of accuracy is given

Dy

p.
by the fact that for the case of ——= = 1.4 and —J =4 & variation of
Po
0.04 in EE' results in a variation of 0.0k in base pressure coefficient.

It should again be cautioned, however, that a more accurate analysis of
this approach is required.

Effect of stream Mach number.- The effect of stream Mach number on
these characteristic curves is shown in figure 8, in which the data at
a Mach number of 1.9 are reproduced, in part, for reference. At the
left are shown data obtained at a Mach number of 0.9 and at the right
are shown data obtained at a Mach number of 3.1; the same boattails and
nozzles were used throughout.

In order to obtain the data at a Mach number of 0.9, the afterbodies
were mounted on the end of a pipe which extended through the tunnel bell-
mouth into the cylindrical test section (unpublished research by R. Salmi
of the Lewis laboratory). With no jet flow the base pressure was found
to vary considerably with boattail shape. As the extent of boattailing
increased, corresponding to lower values of Dp/Dy and smaller bases,

the external stream was diffused further prior to separation at the
base; hence, the base pressure increased. Boattail angle also had an
appreciable effect, but treatment of this parameter at subsonic speeds
is beyond the scope of this paper. The action of the jet bears a cer-
tain similarity to that observed at supersonic speeds. With a small
annulus the expanding jet tends to impede the flow near the annulus with
a resultant increase in pressure. Since subsonic flow will tolerate no
abrupt changes, these increases in base pressure are also indicative of
increases in pressures on the boattail. For large base annuli, the jet
turns axlally before meeting the external flow in this pressure-ratio
range and, rather than decelerating the flow, pumps the base and boat-
tall pressures to lower values; higher jet pressure ratios, however,
reverse the direction of the curves as at supersonic speeds. Comparison
of the curves with those obtained at a Mach number of 1.9 in the same
pressure-ratio range shows the general resemblance at the two Mach num-

bers as well as the larger spread in base pressure coefficients existing
at the high subsonic speeds.

At a Mach number of 3.1, the effect of increased Mach number in
reducing the total spread of this family of curves is again seen; the
Jet effect on base pressure coefficient is appreciably reduced. The
correlation of the effect of convergent and convergent-divergent nozzles
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is even more striking at this Mach number where, for the same jet
static-pressure ratio, the base pressure is nearly the same with either
nozzle type (if the very low Pressure-ratio range of the convergent
nozzle is again neglected). In addition, for the case of a diameter
ratio DB/DN of 1.k, convergent-divergent nozzles designed for pres-

sure ratios from 10.5 to 50 yielded essentially the same base-pressure
variation. Again, the no-flow values of base pressure are indicated on
the ordinate but are unlabeled since they follow the same order as the
curves with flow. Tt can again be seen that, with the range of annulus
size likely to be encountered (DB/DN < l.h), the convergent nozzle

usually produces base thrusts at values of jet static-pressure ratio
corresponding to the various flight Mach numbers. With the same annulus
sizes the convergent-divergent nozzles generally produce base drag at
supersonic speeds.

Effect of boattail geometry.- The base pressure coefficients which
have been presented so far have been obtained with a specific family of
afterbodies. Changes in afterbody geometry do not alter the basic trends,
provided the flow remains unseparated over the boattail, but they do
change somewhat the pressure level of the family of characteristic
curves. For two convergent nozzles the effect of changing conical boat-
tail angles is shown in figure 9. The data were obtained with & jet
total-pressure ratio of 8, but the analysis applies to other pressure
ratios as well. Two forms of base pressure coefficient, the conventional
CPB and also CﬁB are utilized. The base pressure coefficient C%B’

originally used by Chapman (ref. 11) for bodies of revolution, essen-
tially references the base pressure to conditions just shead of the base
and is thus a measure of the change in pressure from the end of the boat-
tail to the base. Adding CﬁB to the pressure coefficient just upstream

of the base yields CPB approximately.

As the boattail angle increases, the expansive turning at the base
decreases and may even turn to compression; the value of CﬁB thus

increases in the positive direction. However, with a fixed base diam-
eter the pressure ahead of the base generally decreases, resulting in
only a moderate variation in the conventional base pressure coefficient
with boattail angle in this case. The solid lines are predicted vari-
ations which were obtained from the data for B = 5.6° and from assump-
tions similar to those of reference 5 which have had limited success in
estimating the effects of boattail shape on base pressure with no Jet at
supersonic speeds. The flow separation angle V¥ is caelculated from the
initial data and is then assumed to remain invariant with boattail shape
for the particular jet pressure ratioc and value of DB/DN' Combining

the resulting values of CﬁB with values of CPA predicted for inviscid

L
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flow by reference 12 yielded the indicated variation of CPB; agreement

with experiment is not always this good, however, and the method breaks

down if the flow separates ahead of the base.

In order to illustrate

this assumption further, if the boattall angle is held constant and the

nozzle scaled up to yield a shorter boattail while maintaining the fixed

value of DB/DN, the following condition would be predicted to result:
The pressure ahead of the base would decrease without a change in the

value of Ci
e PB

below the value obtained with the longer boattail.

The successful

and would thus lower the base pressure coefficient CP

application of this simple estimate in some cases may fortuitously result

from the possiblity that a fixed value of V¥ 1is not greatly at variance

with a fixed value of mean critical pressure-rise coefficient ?ﬁ.

following teble presents values of CPA for the afterbodies considered

The

herein to permit conversion of CPB to CﬁB for use with other after-

body shapes:
Values of CP for -
A
® | g Dp Dg Dg Dy
— =267 | —==2.0 | ==1.67T| —=1.4 | ==1.11
Dy Dy Dy Dy Dy
My = 1.9
3 0
5.6 0.018 -0.035 -0.01 0 0.03%
7 -0.005
11 -0.049
My = 3.1
5.6 -0.016 -0.04 -0.027 -0.022

Effect of nozzle exit angle.- It was shown in the case of jet

effects on boattail pressure that increasing the nozzle exit angle
increases the strength of the trailing shock and, hence, the interfer-
From a consideration of PR the same result with an

ence effect.

annular base may be expected.

two afterbodies at My = 1.6.

cated.

In figure 10 the effect of nozzle exit
angle on base pressure is shown for the case of three nozzle angles in
Pertinent geometric parameters are indi-

The data, which were obtained by Carlos A. deMoraes at the

o
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langley laboratory with solid propellant rocket gases, clearly indicate
that increased nozzle exit angles increase the annular base pressure.

Effect of jet temperature.- The consideration of rocket gases gives
rise to the problem of the applicability of data obtained with unheated
Jet fluids. This problem is considered in figure 11. In the left-hand
portion of the figure, data were obtained with a fixed model geometry
with unheated air, unheated CO,, and the products of combustion of an

oxygen-alecohol rocket used for jet fluids. The use of COp with a 7

(ratio of specific heats) of 1.3 produced a moderate upward shift in

the curve. The rocket gases produced a much larger increase in the base
pressures. In the right-hand portion of the figure, data are presented
which were obtalned with the large-scale model in the 8- by 6-foot tunnel
with unheated and heated air. The effect of heating the air to 2,500° R
was to raise the curve slightly. Thus, it can be seen that the use of
data obtained with unheated air is conservative in that the values of
base pressure are too low.

Analysis of the temperature effect is complicated by variations
in v, Tj, and R, which affect the jet shape and mixing and, hence,

the value of pressure-rise coefficient 5; expected across the trailing

shock. The results of a simple empirically derived calculation to esti-
mate the temperature effects by consideration of the 7y of the jet are
presented, however. The assumption was made that the jet total pres-
sures which will produce the same base pressure for various values of Y
and any given nozzle-afterbody combination are those which yield the
same value of jet exit angle v. With this assumption it is possible

to correct the data at y = 1.4 +to other values of y as indicated by
the dashed lines. As can be seen, this correction appears adequate for
correlating the air and CO, data from the small-scale experiments, as

well as the hot- and cold-air data from the 8- by 6-foot tunnel; in addi-
tion, the correction correlates boattail pressure drags for the latter
model. The good agreement is perhaps fortuitous since the data obtained
with a rocket are not predicted with even the lowest possible value

of 7. Several considerations in the rocket tests, such as the unknown
temperature and velocity distributions at the nozzle exit, the possi-
bility of burning downstream of the nozzle exit, and the appearance of

an unburned layer of liquid alcohol flowing over portions of the

internal nozzle surface make conclusions difficult, however. Additional
research is obviously required.

Effect of Reynolds number.- Another question which arises in con-
sidering the validity of smell-scale unheated jet effects is the influ-
ence of Reynolds number, which has been investigated briefly as indi-
cated in figure 12. The effective Reynolds number of a turbulent
boundary layer was varied in three ways and the influence on jet effects
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determined. In the first case, Reynolds number Np was varied by

running similar models in the Iewis 18- by 18-inch supersonic tunnel
(M = 1.9) and in the 8- by 6-foot supersonic tunnel (M = 2) at values s

of Ny of 5.5 X 106 and 35 X 106, respectively. The Jjet effects on

base pressure were nearly the same. Also, at a Mach number of 1.9 and
a low Reynolds number, the thickness of the boundary layer ahead of the

base was increased 3% times by artificial transition (ref. 5) with only

a small increase in base pressure. Lastly, at a Mach number of 3.1,
the Reynolds number was appreciably increased by a change in tunnel
pressure with only a slight decrease in base pressure. It might thus
be concluded that, as in the case of plain bodles of revolution,
Reynolds number has only & small effect on base pressure provided the
boundary layer is turbulent ahead of the base. This result is com-
patible with the fact that critical pressure-rise coefficient is rela-
tively independent of Reynolds number for turbulent boundary layers.

Annular base bleed.- It is now of interest to consider in fig-
ure 13 the case in which a blunt annulus is present and it is desired
to reduce the drag by discharging air from the annulus as proposed in

reference 12 (also see ref. 14). Since blunt bases with convergent- .
divergent nozzles exhibit the most drag, it would be desireble to study
such a case; however, because of model limitations it was necessary to -
simulate this case with a convergent nozzle at low pressure ratio. The
base drag coefficient (based on annular base area) with bleed flow may .
be expressed as the sum of three terms: (1) that due to base pressure,
(2) that due to exit velocity, and (3) that due to inlet momentum (con- .

sidered herein as free-stream momentum with oy = mp). The sum of

terms (1) and (2) is the exit total momentum. This quantity drops
rapidly from a positive to a negative drag (thrust) as the bleed total
pressure increases. As shown in the right-hand portion of the figure,
the bleed weight flow also increases. If the bleed air is charged with
the full free-stream momentum ((1) + (2) + (3)), there is only an ini-
tially small reduction in drag and then an increase which levels out
with large weight flows. Thus, as in the case of plain bodies of revolu-
tion, if air is to be taken aboard for the express purpose of reducing
base drag, it should not come from a free-stream inlet but rather from

a low-energy source. For example, the data indicate that a bleed flow
parameter of 1.7 percent of the jet flow could be obtained by venting

the annulus to ambient static pressure. If the induced flow came pri-
marily from the low-energy region of the boundery layer with negligible
momentum charge, the base drag would be eliminated. In cases in which
the air must be taken aboard for air conditioning or tail-pipe cooling,
the inlet momentum charge to the aircraft cannot be avoided and it
appears that a blunt annulus, if present, is a good place to discharge A

the air.
4. -
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Base-burning schemes such as those suggested in references 15
and 16 may be very effective in reducing base drag but are more difficult
to apply to aircraft.

Total afterbody drag.- Many of the important parameters influencing
Jet effects on base pressure have now been considered. Figure 14 is
presented to illustrate both the utility of the data and the fact that
annular base pressure may influence the choice of afterbody designs.
Afterbody drag coefficient including jet interference effects is pre-~
sented as a function of the ratio of base diameter to nozzle exit diam-
eter for both convergent and convergent-divergent nozzles with the same
throat arees and with.axial exit flow. The curves are predicted with
the aid of the data contained herein as well as from the results of ref-
erences 5 and 12. Only the case of a small boattail angle is considered
at a Mach number of 1.9 with & jet total-pressure ratio of 10. In the
case of the convergent nozzle, the total afterbody drag decreases
slightly as the base diameter is increased because of positive pres-
sures (thrust) on the annulus. Furthermore, & relatively large base
annulus may be utilized without incurring any drag penalty at this Mach
number. In the case of the convergent-divergent nozzle designed for a
pressure ratio of 10, however, the drag is indicated to increase immedi-
ately as an annulus is added. It is thus desirable to keep the size of
the base annulus to & minimum in order to avoid costly drag penalties.

CONCLUDING REMARKS

In conclusion, it may be said that sufficient investigations of the
problem of jet effects on boattail and base pressures have been conducted
to clarify many of the important parameters. With the use of existing
data and some of the concepts presented herein, it appears possible to
estimate to a crude order of accuracy the drags of many afterbody-nozzle
combinations. Thus, although the results may not serve to provide pre-
cise drag calculations, they can serve as a guide to good-afterbody-
design practice. Finally, while answering some questions, these studies
have served to point out additional problems which are in need of
investigation.
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By Maxime A. Faget and Carlos A. de Moraes

Langley Aeronautical Laboratory

It has been shown that a jet issuing from the rearward end of a
body at supersonic speeds can have considerable effects on the pressures
acting on the base annulus and in certain cases on the boattail. The
induced forces produced by the Jjet on surfaces downstream of the Jjet exit
can also be expected to be of major importance. Until recently, tlis prob-
lem has been avoided by designers because there was little information on
these jet effects and because satisfactory aircraft configurations were
obtainable without placing any surfaces in the vicinity of the jet blast.
More recently, it has become desirable to have the jet exit in such a
position that large surfaces are in the vicinity of the jet blast. An
example may be an engine location well forward in the fuselage or a
nacelle installation in which the Jjet exit is ahead of the wing trailing
edge. In addition, there are configurations where a rear fuselage loca-
tion is chosen, but a large portion of the fuselage extends beyond the
Jet exit for better fairing or other reasons. An example of this is a
model of a delta-wing aircraft configuration recently tested by Langley
Pilotless Aircraft Research Division and shown in figure 1. For this
model, a specially modified solid-fuel rocket was used to simulate the
characteristics of a turbojet exhaust.

Jet-effect results were obtained at Mach number 1.5. The effect of
the Jjet was to induce negative pressures on the area behind the exit.
A plot of the pressure coefficient on this area is shown. This negative
pressure, of course, tended to pitch the nose of the model down.

In this case, there is little or no free-stream flow between the Jjet
and the adjacent surface. The overexpansion of the jet causes the nega-
tive pressures on the surface. A more important case is where the jet
boundary is not isolated from the externmal flow, and the interference of
the jet on the external flow predominates in the aerodynamic effects pro-
duced. OSome idea of this type of jet effect upon the surrounding flow
field may be obtained from figures 2 to k.

Figure 2 shows schlierens taken in the Langley 8-foot transonic tun-
nel and at M = 1.1. The jet stagnation temperature was 1000° F. This
temperature was achieved by the combustion of ethylene and air. The
model has a sonic exit and the pressure ratios (Hj;po) shown are 2, 4,

and 5.5. At the lowest pressure ratio, the Jet emerges with little or
no disturbance upon the free stream. At higher pressure ratiocs, shocks
are generated in the external flow. These shocks are caused by the
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1hf¥{ai expansion of the jet and by the bulges produced in the jet bound-
further downstream resulting from the Mach diamonds in the jet.

Figure 3 shows shadowgraphs taken at the preflight jet of the Langley
Pilotless Aircraft Research Station at Wallops Island, Va., and are at a
free-stream Mach number of 2.02. A sonic helium jet was used. Pressure
ratios (Hj/po) shown are 3, 5, and 7. Two shocks in the free stream which

originate at the jet can be seen. These shocks are caused by the original
expansion bulge and the bulge caused by the first diamond. It should be
noted that the second shock moves rearward as the pressure ratio is
increased.

Figure L4 shows schlierens taken in a 9-inch blowdown jet at the
Langley laboratory. These schlierens are for Mach number 3 and use a
sonic, unheated air jet. The model is at an angle of attack of 8°.
Pressure ratios (Hj/py) shown are 11.4, 22.7, and 38.0. It can be seen

that the shock wave in the external flow caused by the initial expansion
of the Jjet starts well forward on the lee side of the boattail because
of the separated boundary layer.

In order to study the effect of a Jet on adjacent surfaces in the
external flow, an investigation using the preflight Jjet of the Langley
Pilotless Aircraft Research Station at Wallops Island, Va., has been ini-
tiated. Preliminary results from this investigation are presented in
this paper.

In this investigation, made at M = 2.02, a model simulating a turbo-
Jet nacelle was mounted in the vicinity of a flat surface simulating a
wing as shown in figures 5 and 6. The nacelle was tested in the four
vertical positions shown. These were 0.9%, 1.45, 2.39, and 3.40 jet diam-
eters below the wing surface. Static pressures were measured on the wing
surface at the various positions shown. The measured pressures were used
to determine the forces induced on the wing. The tests were conducted at
approximately sea-level free-stream conditions.

In these tests it was desired to simulate the jet of an afterburning
turbojet with a sonic exit. Since it was impractical to use hot gases in
these tests, simulation of a turbojet exhaust was attempted by using light
gases which would have high sonic velocities.

In order to determine whether it was necessary to duplicate the jet
veloclty of the turbojet, tests were made with three gases at ambient tem-
perature for the jet. These were air, helium, and a mixture of 58 per-
cent CO2 and 42 percent Ho. Properties of these gases and the resulting

Jet properties are given in the following table. This comparison is made
for a sonic exit area of 5 square feet and a gross thrust of 15,500
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at 35,000 feet. The properties of a typical afterburning {urbOJeé°are-
also listed for comparison.

Condition Air He 58% COp + 42% H, [Turbojet
Y 1.4 1.66 1.4 1.26
R (gas constant) 533 367 342 537
Stagnation temperature, ©R| 520 520 520 3400
Mass flow, 1b/sec 320 130 126 125
Total pressure, 1b/sq ft | 2840 | 2770 2840 2880
Static pressure, lb/sq ft | 1500 1343 1500 1593
Velocity, ft/sec 1020 | 2760 2590 2520
Density, slugs/cu ft 0.00202 |0.00029 0.00030 0.00031

Figure 7 gives a comparison of the jet effect of the three artifi-
cial jets on the row of static pressures which were measured directly in
line with the jet axis. This comparison was made with the nacelle in
the highest position, that is, with the exit located 0.93 diameters below
the wing surface.

The important differences in the three gases were in 7 (which
would set the shape of the jet boundary if there were no mixing) and the
jet-velocity-to-free-stream-velocity ratio (which will determine the
amount of decay of the Jjet boundary due to mixing). The Jjet velocity
for He and the Hp-COp, mixture was approximately 20 percent greater

than the free-stream velocity, whereas the jet velocity for air was less
than half the free-stream velocity.

In figure 7, the pressure coefficients produced by the jet for a

H
jet pressure ratio of 8(?1 = 8) is plotted against the downstream dis-
o]
tance from the exit in jet diameters. Two pressure peaks, produced by
two shock waves in the free stream by the disturbance of the Jet are
shown. The upstream shock originates at the jet exit and is generated
by the initial expansion of the jet gases. The farther downstream shock
wave 1s generated by the second expansion of the Jet as it forms its

first diamond.
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** ".When the three curves are compared, it will be noticed that, whereas .
there are slight differences between the profiles produced by the light .
gas Jjets, the profile produced with the air jet is noticeably different .

in the region of the second shock. In view of the differences in the
properties of these gases, some differences in these pressure profiles
should not be unexpected.

Although the H2-CO2 mixture is thought to duplicate more closely

the turbojet gas, the remainder of the tests were conducted with helium
since both these gases essentially produced the same results. By using
helium, which is a pure gas, standardization of the Jjet properties was
assured.

In figure 8 are shown the results from tests with the nacelle
located in four vertical positions. These results are for a pressure

H.
ratio <§i of 8 with a helium jet. Pressure coefficients on the wing
ol

directly above the nacelle are agaln plotted against the distance down-
stream from the exit in exit diameters. Two curves are shown corre-
sponding to the power-on and power-off condition. The difference in
these curves will thus be an indication of the pressures induced by the

Jet flow. It should be noted that, as the nacelle is moved downward away -
from the wing, the pressure peaks move rearward and decrease slightly.

However, the general pattern remains essentially unchanged. These pres- -
sures induced on the wing can therefore be attributed to shocks produced

in the external flow by the shape of the jet boundary. This conclusion -

has been substantiated by the examination of shadowgraph pictures.

Figure 9 shows the pressure profiles measured to the side, as well
as directly above the exit, when the nacelle was tested in position B.
It should be noted that pressure peaks diminish only slightly and move
rearward for the outboard positions. This result is in agreement with
the expected location and strength of the shock waves generated by the
jet in the external flow.

It might be expected that these disturbances on the wing could be
somewhat alleviated by directing the jet axis away from the wing. This
effect was investigated by making a test with the nozzle axis deflected
10° down. The results from this test are shown in figure 10. It should
be noted that in order to obtain this deflection the nacelle center line
was abruptly turned 10° two exit diameters ahead of the exit. Thus,
although these results are for the exit in position B, the nacelle itself
is in a higher position than the undeflected exit nacelle location. When
comparison of the flow field for the 10° deflected exit and the unde- g
flected exit is made, it can be seen that no apparent alleviation from the
strength of the shock waves has been obtained. The first pressure peak
for the deflected jet is not only farther forward but is stronger. Study

- %
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of shadowgraph pictures reveals that in this case the shock originates
slightly ashead of the exit where the flow appears to separate on the
upper surface of the boattail. The fact that the nacelle for the
deflected case has been bent and is located in a higher position proba-
bly accounts for this difference as well as for some other differences
in the flow fields shown. For instance, in the case of the deflected
Jet, lower pressures ahead of the first peak are shown.

In these tests only a limited area of the wing surface was surveyed,
as can be seen by looking at the orifice locations again (fig. 11).
Qualitative results, however, can be obtained for the induced 1ift and
center of pressure for that area in the region of the pressure orifices.
Figure 12 shows the results obtained for the undeflected jet tested in
the four vertical positions. The lower curve shows the induced 1ift
(that is, integrated 1ift from pressure coefficients with power-on minus
the 1ift from pressure coefficients with power-off) divided by the gross

H,
thrust of the jet plotted against jet pressure ratio (ﬁg). The upper
o

curve shows center-of-pressure locations for the induced lifting force.
The center of pressure is located as the number of jet diameters down-
stream of the jet exit. It can be seen that induced 1lift equal to the
gross thrust was encountered at low Jet pressure ratios. The lift-to-
thrust ratio decreases with increase in jet pressure ratio. There appears
to be no definite trend in the lift-to-thrust ratio for the different
vertical nacelle locations. This result can be attributed to the limited
surface area for which the pressures were integrated. Probably, if the
integration of the induced 1lift were made over a sufficiently large area,
there would be no noticeable difference in 1ift in going from one location
to the next. The center of the induced pressure is shown to be farthest
rearward for the lowest nacelle position, the intermediate nacelle posi-
tions having intermediate center-of-pressure locations.

It has been shown that considerable forces can be induced on nearby
surfaces by a jet issuing in a supersonic free stream. The underexpanded
Jet expands abruptly at the exit and acts as a strong disturbance from
which shock waves are generated. Additional disturbances are produced
downstream by the Mach diamonds in the jet. Since deflecting the jet
does not appear to lessen the strength of the shocks, the only way that
induced aerodyarmmic forces from an underexpanded jet can be completely
avolded is not to have aerodynamlc surfaces within the shock field of
the jet. At Mach number 1 this condition would mean that the jet exit
would have to be at the rear of the aircraft. However, it has been shown
that these jet effects are beneficial to the extent that an underslung
nacelle exit will provide additional induced 1ift. The effect of the
Jjet disturbance on the dra ¢ =2t to be investigated. However, since
the underexpanded jet acts like a strong source, it appears likely that
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.eonelderable drag reduction might be obtained if the Jet exit is prop-
erly located with respect to the changes in cross-sectional areas
defined by the "area rule."
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THE EFFECTS OF OPERATING PFROPELLERS ON AIRPLANE
STABILITY AND PERFORMANCE
By Robert M. Crane

Ames Aeronautical Laboratory

The use of turbine-propeller powerplants for high-performance air-
planes, especlally those designed for long-range operations at high
subsonic speeds, has been suggested by many design studies made by the
NACA and by other agencies. One deterrent to the development of such
airplanes has been the imperfect knowledge of the effects of propeller
operation on the low-speed stability and control and on the high-speed
performance. Whlle these power effects have had to be contended with
in the past in the design of propeller-driven alrplanes, there has been
a hesitancy to apply the results of our past research to the case where
the engine powers are greater by a factor of about 5 and the propeller
disk loadings are increased by a factor of as much as 8. In order to
achieve the high-speed performance desired of such airplanes, wing sweep
is indicated and little if any knowledge has been available of the effect
of a propeller slipstream on the flow over a swept wing at either high or
low speeds.

It 1s the purpose of this paper to summarize some of the results
obtained from NACA studies of the effects of propeller operation at
large engine powers on the aerodynamlc characteristics of a single-
engine and of a multiengine swept-wing alrplane including data at Mach
numbers up to 0.90. The case of a twin-engine tractor installation on
a straight-wing airplane has recently been reported in reference 1.
Analysis of the wind-tunnel data for the cases of the swept-wing con-
figurations is not yet complete, but certain trends are indicated which
are felt to be of general interest.

The half-span powered model of a four-engine swept-wing airplane
arrangement which was tested in the Ames 12-foot pressure wind tunnel
is shown in figure 1. The wing has 40° of sweep and an aspect ratio
of 10. The nacelles are located at 25 and 50 percent of the semispan
and house electric motors driving single-rotation supersonic propellers.
If the model is assumed to be 1/12 scale, the wing area is 2000 square
feet, the propeller diameter is 14 feet, and the power conditions simu-
lated at high Mach numbers are as large as 5000 horsepower per engine
at an altitude of 40,000 feet or 20,000 horsepower per engine at sea
level. A complete description of the model and the results of tests
without operating propellers will be found in references 2, 3, L,

and 5.
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In the following discussion of this airplane arrangement, the
propeller thrust coefficient and the amount of engine power simulated
are based on the measured thrust and efficiency of the propeller in-
stalled on an isolated nacelle and operating at the same propeller
blade angle, advance ratio, Mach number, Reynolds number, and angle of
attack as on the complete powered model. The propeller characteristics
and the measured upwash at the propeller planes have been reported in
references 6 and 7.

The effect of propeller operation on the static longitudinal
stability at high Mach numbers can be seen from figure 2. On the left
of the figure is the tail incidence required for trim as a function of
Mach number and on the right is the tail incidence for trim as a func-
tion of normal acceleration at a Mach number of 0.80. Comparison is
made between the condition of propellers operating at the power required
for level flight at an altitude of 40,000 feet and the condition of
propellers removed. Operation of the propellers is destabilizing as
evidenced by the reduced variation of tail incidence with both Mach
number and normal acceleration. These effects of propeller operation
on longitudinal stability are small at these high speeds and the low-
speed data must be examined to assess this particular factor.

Before the low-speed power effects on stability are discussed,
however, there is another possible effect of propeller operation at
high Mach numbers which should be examined. This is the effect of the
propeller slipstream on the drag of the wing-nacelle-fuselage combi-
nation both as it affects the total drag and the Mach number for drag
divergence. Since the velocity in the slipstream is higher than the
free-stream velocity, some decrease might be expected in drag-divergence
Mach number due to operating propellers. Figure 3 shows the variation
with Mach number, at a lift coefficient of 0.40, of the increment in
drag coefficient above its value at a Mach number of 0.70 for several
different values of propeller thrust coefficient and with propellers
removed. At a Mach number of 0.80, a T, of 0.03 corresponds to

5000 horsepower per engine at 40,000 feet. The Mach number for drag
divergence was little affected by operation of the propellers; but, at
supercritical Mach numbers, the drag rise with increasing Mach number
was reduced a considerable amount with increase in propeller thrust
coefficient. This reduction is due, in part, to the fact that operating
the propellers at a thrust coefficient as large as 0.03 increases the
wing lift-curve slope about 10 percent. The same lift coefficient can
thus be obtained at a lower angle of attack which tends to reduce the
shock-induced separation on the outer portions of the wing for this
airplane configuration.

Consider now the low-speed data on this same model. Figure 4 shows
the variation of pitching-moment coefficient with 1ift coefficient for
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the model with propellers removed and for two different power con&iggbﬂgz
power required for level flight and 10,000 horsepower per engine. Lines
of constant angle of attack are shown on the figure to indicate the large
gains in lift-curve slope accompanying operation of the propeller. With
the propellers absorbing 10,000 horsepower per engine, the negative slope
of the pitching-moment curve has decreased a considerable amount compared
with that for propellers off, indicating a decrease in the static longi-
tudinal stability due to propeller operation and a corresponding decrease
in the variation of stick position with airspeed. This condition of con-
stant power corresponds to the case of a wave-off or balked landing and
the power effects are much more destabilizing than for trimmed flight at
a constant airspeed. For example, at any constant value of thrust, the
decrease in stability due to propeller operation is only 25-percent of
the decrease observed with full power.

The effects of propeller operation on longitudinal stability can be
divided into four individual components which we can then study sepa-
rately. These four components are the pitching moment due to propeller
thrust, the pitching moment due to propeller normal force, the pitching
moment due to slipstream on the wing, and that due to slipstream on the
horizontal tail. Special consideration will be given to the condition
of 10,000 horsepower per engine, since from the standpoint of longitudinal
stability and control it is more eritical than the condition of constant
thrust. Some of the data shown in the subsequent figures are actual
experimental data but a large part of the data is calculated from the
measured power effects for the single airplane arrangement which was
investigated. The scale to which the pitching moments are plotted in
figures 5, 6, 7, and 8 has been expanded to show more clearly the indi-
vidual power effects.

The pitching moment contributed by the propeller thrust is shown
in figure 5. It is obvious that this moment contribution is proportional
to the vertical distance from the thrust axis to the airplane center of
gravity. This effect is shown for the three airplane arrangements noted
in the figure. Since at a 1ift coefficient of 1.6 the propellers are
producing over 50,000 pounds of thrust, this pitching moment increment
can become quite large and destabilizing if the thrust axis is very far
below the airplane center of gravity. The advantage of a high wing
design in this respect is obvious.

The pitching-moment contribution due to propeller normsl force is
shown in figure 6. The magnitude of the propeller normal force is a
function of the size and shape of the propeller and the propeller loading
or thrust coefficient. Iittle control is possible over the magnitude of
the normal force but the moment it rroduces can be controlled by changing
the longitudinal distance from the propeller disks to the airplane center
of gravity as shown in the figure. For the original model, propeller
normal force was very destabilizing as indicated by the large positive
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the span as shown by the other two airplane arrangements reduces this
destabilizing moment to less than half its original value. Instead of
moving the powerplants outward, the same effect can be achieved by
moving the propellers closer to the wing leading edge.

The moment contribution due to propeller slipstream on the wing is
shown in figure 7 for the original powerplant arrangement and for two
alternate locations of the nacelles. The high disk loadings associated
with the large power of the turboprop engine and the small diameter of
the supersonic propeller make for extremely high dynamic pressures in
the slipstream at low forward speeds. The incremental wing 1lift due to
slipstream is thus quite large and, if the center of pressure of this
1ift increment is shead of the center of gravity, a destabilizing
pitching moment will result. This was the case for the original con-
figuration with nacelles at 25 and 50 percent of the semispan. Moving
the powerplants farther from the plane of symmetry permits this desta-
bilizing moment to be reduced or made stabilizing as shown by the other
two airplane arrangements in the figure.

The fourth moment contribution to be considered is the effect of
the propeller slipstream on the flow at the horizontal tail. This
effect may be stabilizing or destabilizing depending on the location of
the tail with respect to the slipstream and the amount of 1lift being
carried by the tail. The effect of vertical height of the horizontal
tail for the model configuration under discussion is shown in figure 8.
Tt would be expected that this slipstream contribution would depend to
some extent on the mode of rotation of the propellers. Because the tests
were made on a reflection-plane model, the conditions simulated are the
same as if the airplane had right-hand propellers on the right wing and
left-hand propellers on the left wing. Attempts to calculate this tail
contribution and the effects of slipstream rotation on it have not been
too successful. If the powerplants are moved further out along the span
to reduce the destabilizing moments due to propeller normal force and
slipstream on the wing, it may be that the slipstream will pass outboard
of the horizontal tail and thus have little effect on its contribution
to the airplane stability.

The effect of propeller operation on the longitudinal character-
istics of the model with the flaps deflected is shown in figure 9. The
flaps extended from the fuselage to the inner side of the outboard
nacelle. As can be seen, the effects of propeller operation were
extremely large and destabilizing. Also note the large increment in
1ift due to operation of the propeller. The largest single destabilizing
contribution due to the propeller with the flaps deflected is that due to
the slipstream on the wing and on the tail. Removing the portion of flap
between the inner nacelle and the fuselage, as shown In figure 10, and
adding a2 small-span flap outboard of the outer nacelle greatly reduces
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the instability. For this case, the reduction in stability resulting®
from application of 10,000 horsepower per engine is about the same as
for the original model with the flaps retracted. As was the case with
flaps retracted, moving the powerplants outward will further reduce
the destabilizing effect of power and in the extreme case a stabilizing
effect can be obtained.

Reviewing the case of a four-engine, swept-wing tractor configu-
ration it appears that power effects on longitudinal stability can be
minimized by maintaining a high wing design, placing the powerplants
fairly well out along the span, and keeping the propeller disk as close
to the wing leading edge as propeller stress considerations will allow.
An area-increasing or high-lift-producing flap so immersed in the slip-
stream that the center of pressure of its 1lift is ahead of the center of
gravity should be avoided. A fairly small tail span in conjunction with
an outboard nacelle location can be used to advantage to minimize the
effect of the slipstream on the tail contribution to stability.

So far only the effects of power on the longitudinal characteristics
have been discussed. The lateral disposition of nacelles indicated as
desirable from the standpoint of longitudinal stability and control will
make more critical the lateral and directional control following power
failure. Additional study of this problem is required before the best
airplane arrangement can be selected.

In addition to the study of the multiengine airplane configuration
made at the Ames ILaboratory, a similar investigation of a model of a
single-engine tractor airplane has been made at low speed in the Langley
300 MPH 7- by 10-foot tunnel. The wing had 40° of sweepback and an
aspect ratio of 3.5. A three-blade, single-rotation supersonic propeller
was used and the power simulated on the model corresponds to 7000 horse-
power on the airplane at sea level. The effects of power on the longi-
tudinal characteristics are shown in figure 11. Note here that the com-
parison is for a condition of constant power with a condition of zero
propeller thrust instead of with the propeller removed as in the previous
figures. A large part of the propeller normal force is present at zero
thrust so that the stability change will be somewhat less than if the
propellers-off condition had been selected as a reference. As can be
seen from the data in figure 11, operation of the propeller decreased
the static margin but resulted in acceptable longitudinal stability
characteristics. The large increase in 1ift due to operation of the
propeller is noted in the figure.

This model was also tested with a horizontal tail mounted lower on
the vertical tail as indicated by the dotted line on the airplaene side
view in figure 11. For this configuration, the model with the flaps
retracted became longitudinally unstable for either power condition or
with propeller off at a 1lift coefficient of about 0.80 and with the



6 . QNE'J:DEN'QIAL

fla;nywbéfle ted became neutrally stable at a 1lift coefficient of

about 1.0. In general the power-on longitudinal stability was largely
dependent on the power-off characteristics of the model. ILeading-edge
chord extensions, slats, and wing fences which improved the power-off
characteristics showed comparable improvements with the propeller
operating.

The effects of operating propellers on the lateral and directional
characteristics of an airplane of this type with a single-rotation
propeller are particularly severe. This result is due primarily to the
large amount of power being absorbed and not to the fact that it is a
swept-wing airplane. TFor the subject model, full aileron deflection
of +18° and rudder deflection of -25° were not sufficient to balance
the airplane in the take-off condition with full power.

Both of these deficiencies were in large part a result of using a
single-rotation propeller. Because of the rotation in the slipstream,
flow separation at the higher angles of attack was accelerated on the
left wing behind the up-going propeller blade and was delayed on the
right wing behind the down-going blade. This effect resulted in a large
asymmetry of the separated flow and consequently a large rolling moment.
Differential deflection of the wing flaps was found to provide an
extremely powerful lateral control for the take-off condition and, in
conjunction with the ailerons, was capable of balancing the alrplane
laterally at take-off up to angles of attack of about 15°. As the angle
of attack was increased above 15 with take-off power, the roll-off
became violent and uncontrollable. Extension of partial-span leading-
edge slats increased the angle of attack at which lateral control could
be maintained to slightly over 19

The inability of the rudder to balance the airplane directionally
was largely a result of the flow angularity at the vertical tail brought
about by slipstream rotation. A small triangular retractable fin behind
the canopy, set at an angle of 10° to counteract the slipstream rotation,
was found to be extremely effective in reducing the sidewash at the
vertical tail, With the addition of this device and a moderate increase
of rudder area, the airplane could be balanced directionally at take-off

with sufficient excess rudder power to control the ailrplane in steady
sideslips.

In summary, it appears that high powered turbopropeller powerplants
can be mounted as tractor installations on swept-wing airplane without
severe aerodynamic compromises. Compared to a turbojet airplane, the
size of the vertical tail and rudder may have to be increased and the
lateral control provided by conventional ailerons may have to be augmented
in order to provide for control following power failure of a multiengine
design or to provide control at take-off for a single-engine design with
a single-rotation propeller. As a result of the theoretical work and the
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wind tunnel investigations now being made by the NACA of propeller-
povered models, methods of computing the propeller effects are being
studied and evaluated for power conditions representative of modern
turboprop engines. These investigations are being extended to high sub-
sonic Mach numbers and the airplane configurations under consideration
are capable of flight at these high Mach numbers. In studies made to
date, stability and control problems have been found to be greater only
in degree from those previously encountered on conventional propeller-
driven airplanes.
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SOME FREE-FLIGHT 1MEASUREMENTS OF TURBULENT SKIN FRICTION
AND HEAT TRANSFER AT HIGH SUPERSONIC SPEEDS
By Alvin Seiff, Simon C. Sommer, and Barbara J. Short

Ames Aeronautical Laboratory

Turbulent skin friction has always been of interest to aircraft
designers because of the large drag term which it represents. This
remains true at high supersonic speeds, particularly for thin wings and
slender bodies. However, there is another very important reason for
interest in turbulent skin friction at high supersonic speeds, namely,
the direct relation between skin-friction coefficient and heat-transfer
coefficient which was first proposed by Osbourne Reynolds.

For these reasons, a large amount of experimental work has been
done in recent years to define the variation of turbulent-skin-friction
coefficient with Mach number. Some of the more recent data (refs. 1, 2,
and 5), obtained by direct measurement of the skin-friction force, are
shown in figure 1, where the ratio of skin-friction coefficient to the
corresponding incompressible value is plotted against Mach number in the
conventional manner. Several of the theories, including the original
estimate of Von Kérmén, agree reasonably well with the data but, as
pointed out by Chapman, do not provide a sound basis for extending the
data precisely beyond a Mach number of 4.5.

It should be emphasized that all these data were obtained at or near
zero heat transfer, a condition that is not apt to occur in free flight
at high supersonic speeds. The effect of large rates of heat transfer
on these results is, therefore, a question of great practical importance.
As the heat transfer is varied, a marked change in the boundary-layer
temperature and density profiles occurs. The variation in skin friction
with Mach number at zero heat transfer is primarily due to variation in
the temperature and density profiles so it might well be expected that
the skin friction will also vary with heat transfer.

Some theoretical estimates have been made of this effect. Of the
theorists represented in the first figure, only Van Driest (ref. 4) has
estimated the effect of heat transfer. However, Monaghan (ref. 5) has
extended Cope's theory to include heat transfer and Clemmow (ref. 6) has
applied the Von Kdrmdn mixing length expression used by Wilson to the
heat-transfer case. Also, Von Kdrman's original method of estimating
the Mach number effect (ref. 7), namely evaluating the density and vis-
cosity in the incompressible-skin-friction formula at the wall tempera-
ture, can be readily applied to estimate the effect of heat transfer as
can that of Tucker (ref. 8) who used the mean of wall temperature and
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free-stream temperature for evaluating density and viscosity. TFigure 2
shows these five estimates of the effect of heat transfer on skin friction
at Mach numbers of 3.9 and 7.25. The ratlo of skin-friction coefficient
to the corresponding incompressible coefficient 1s plotted against the
difference between recovery temperature T, and wall temperature Ty

divided by the temperature at the edge of the boundary layer Tl’ a

parameter which is proportional to the heat-transfer rate.

There are several interesting things about these curves. First, all
of the theories predict that the skin friction increases with increasing
heat-transfer rate. But, they disagree as to how much, the rises ranging
from just over 20 percent to more than 100 percent. Also, three of these
estimates show, for the heat-transfer condition corresponding to equal
wall temperature and free-stream temperature, no reduction in skin-friction
coefficient with increasing Mach number.

The experiments which are the subject of this paper were conducted
then for two reasons: to measure the turbulent skin friction under a
condition of large heat transfer and to extend the Mach number range for
which skin-friction data are avallable. The data were obtained in free
£light using gun-launched, spin-stabilized models of the type shown in
figure 3. The models were thin-walled tubes, flown with thelr axes

parallel to the stream, with diameters of about l% inches and wall thick-

nesses of 0.03 inch. The leading edges were symmetrically beveled with
a half-angle of 10°0. Figure 4 1s a shadowgraph picture of a test model
in free flight at a Mach number of 3.9. The shock patterns associated
with the inside and outside flows can be seen, as well as the annular
wake and the Mach waves produced by the turbulent boundary layer.

Tests were conducted at a Mach number of 3.9 by firing through still
air at 1 atmosphere pressure and at a Mach number of 7.25 by firing
upstream through a Mach number 2 air stream. The surface temperature
rise during flight was estimated theoretically, assuming conservatively
that the heat transfer occurred at the maximum initial rate. Temperature
gradients within the model were accounted for. It was found that the
temperature rise in the 1/100-second duration of the flight was 35° F.
Thus, the wall-to-free-stream-temperature ratios were found to be 1.06
and 1.82 for the tests at M = 3.9 and 7.25, respectively. The calcu-
lated turbulent recovery temperatures at the two Mach numbers were 2000° R
and 4000° R, indicating the large rates of heat transfer which occurred.

The test procedure was as follows. A test model and a tare model
were fired under the same test conditions and their drag coefficients
were computed from deceleration data. The difference in drag is, except
for small correction terms, a measure of the skin friction of the aft
part of the test model. Thus the tare model takes care of some of the




%0 ees e @ . oo .oc : :oo : :oo :..
CONWT::AL: : : .o e © 68 o o% @ 05
s o o . . see . e e 0 . e o @
8® see 56 €06 ® 6 e o o ° ® ®see oo

drag terms which are not susceptible to accurate calculation, including
the drag of the boundary-layer trip, that of the laminar flow over the
wedge and trip, and the base drag. Corrections were applied for the
differences in base drag (using the data obtained by Chapman) and for
the small differences in model geometry that inevitably occur. In this
connection, an interesting point is that the leading-edge thickness,
although always less than 0.001 inch, had to be measured very carefully,
since differences of 0.0001 inch caused appreciable scatter at M = T7.25.

The matter of the boundary-layer trip was treated with great care
in an effort to avold artificial thickening of the turbulent boundary
layer at the trip. Trip strength was varied until the least disturbance
which caused turbulence to occur on or near the trailing edge of the
roughened region was found. Transition was then assumed to occur at the
trailing edge of the trip and the turbulent origin was estimated from
theoretical conslderations of the relative rates of growth of laminar
and turbulent boundary layers. These considerations were then applied
to the determination of the Reynolds number limits required in computing
the incompressible skin friction. The KArmdn-Schoenherr equation was
used throughout in computing the incompressible friction.

The results of these experiments are shown in figure 5. The test

point at M = 3.9 was obtained at a Reynolds number of 5 X 106 and is
the mean of 12 results which had a root-mean-square deviation of 1.3 per-
cent from the mean. At M = 7.25, tests were conducted at a Reynolds

number of 5 X 106, and the mean of 12 results obtained is the upper of
two test polnts shown. Because of the reduced ratio of skin friction to
total drag, a large scatter occurred, with values of the friction drag
ranging from 0.3 to 0.4 of the total dreg. Therefore, as a check, addi-

tional tests at a Reynolds number of 7.5 X 106 were run, and the mean of
the six results then obtained agreed closer than was expected with the
point at a Reynolds number of 5 X 106, as shown by the two test points
in the figure.

At M = 3.9, the present data lie 37 percent above the no-heat-
transfer data. When plotted against heat-transfer rate as in figure 6,
the data do not agree consistently with any of the theories. In -addition
to the test points shown for M = 3.9, an additional value of Cf/Cfi

atl an intermediaste heat-transfer condition can be obtained from the data
of figure 5 by interpolation, since the curve for Tw/Tl =1.8 must

cross the zero-heat-transfer curve at M = 2.1. The interpolated value
at M= 3.9 was used to define the shape of the dashed experimental
curve which turns out to be qualitatively similar to that predicted by
some of the theories.
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Turning now to the question of turbulent heat transfer, it is well
to start with some mention of Reynolds analogy, which has been the most
powerful theoretical tool avallable in this field. This analogy states
that the heat-transfer coefficient, when nondimensionalized with respect
to the heat capacity, density, and veloclty of the stream to form the
Stanton number, is equal to one-half the skin-friction coefficient.
Recent theoretical work by Rubesin (ref. 9) and others suggests that the
ratio of Stanton number to skin-friction coefficient may be closer to 0.6
than one-half, but that this ratio is relatively unaffected by Mach num-
ber and Reynolds number. Within the limits of accuracy of this theory,
the experimental skin-friction curves of figure 5 also represent the
rate of fall of heat-transfer coefficient with increasing Mach number.
But, it is very important to compare this prediction with experimental
data. In the remainder of this paper, some free-flight experiments
dealing with this question will be described, after which a collection
of the aveilable data will be shown.

In the aforementioned experiments, slender, fin-stabilized bodies
of revolution of fineness ratio 30 were gun launched through still air
at 1 atmosphere pressure at a Mach number of 3.2. The approximate
temperature conditions of the flight were as follows: wall temperature,
5400 R; turbulent recovery temperature, 1500° R; and T, /Ty = 1.02. The

boundary layers were tripped by sand blasting the model tips and a flash
interferometer picture was taken of the model in flight. One of the
pictures obtained is shown as figure T. The fringe shift in the boundary
layer was about 0.6 of the fringe space and was carefully read by dif-
ferent observers with an accuracy of about 0.03 fringe. Refraction
errors which plague two-dimensional boundary-layer interferometry were
carefully calculated and found to be negligible because of the short

path length in the disturbed flow. It was found that adjacent fringes
did not give identical fringe shift data, but that the differences
between fringes could be repeated within the scatter of measurement by
different observers. These differences from fringe to fringe are believed
due to spatial variations in the density distribution of the turbulent
boundary layer. The fringe data were reduced to density distribution
assuming axial symmetry, and the density data were converted to tempera-
ture data assuming uniform static pressure in the boundary layer. The
data so obtained are shown at the left in figure 8. The large scatter

is partly due to real differences between the fringes and partly due to
errors in reading the fringes. The filled-in points were reduced from
fringe measurements of a second observer and can be used as a measure of
the scatter due to reading. The mean of the experimental data is plotted
at the right and compared with the theory of Van Driest and with the
Crocco equation relating temperature profile to velocity profile as
applied to s l/9th power velocity profile. An interesting feature of
these profiles is that the cold wall holds the air temperature ratio
below 1.4 whereas the recovery temperature ratio is 2.8. The recovery

-
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temperature is not a good index of the maximum air temperature in the
presence of a cold wall.

Very near the wall, the temperature ratio drops sharply to the wall
value, 1.02. A suggestion of this reversal appears in the interferograms,
but it is not detailed enough to permit measurements. The extent along
y of this sharp temperature rise can be estimated from the heat-transfer
coefficient, which gives the slope of the temperature profile at the wall

as 1.2 x 100 °F/inch, at which rate the temperature would rise from the
wall value to meet the curve at y/& = 0.002.

The temperature profile data can be used to estimate the average-
heat-transfer coefficient by means of an energy-balance calculation
analogous to the momentum-loss method of measuring skin friction. In
this calculation, the kinetic energy lost by the model through the action
of the skin-friction force is examined. Part of this energy appears as
increased thermal and kinetic energy of the boundary-layer air, and the
remainder appears as heat in the body. In evaluating the increased
energy of the boundary layer, a velocity profile 1s required. To this

end, it was assumed that a law of the form u/fuj = (y/s)l/ % would hold
and n was evaluated from the skin-friction and density-profile data in
a momentum-loss integral. Values of n of 8.2 and 8.4 were calculated.
Thus, it was possible to compute all of the energy terms and obtain the
rate of heat input to the body. The results of this calculation are
shown in figure 9, where the variation of Stanton number with Mach num-
ber is plotted. The experimental skin-friction curves presented earlier
are replotted here and compared with collected heat-transfer data. The
present data are represented by the two diamond points at a Mach number
of 3.2 and should, if Reynolds analogy hulds, compare with the upper
curve. The wind-tunnel data of Pappass and Rubesin (ref. 10) and that of
Fallis (ref. 11), being obtained near zero heat transfer, should compare
with the lower curve. The measurements of Fischer and Norris (ref. 12)
were made in free flight on the nose cone of a V-2 rocket. The tempera-
ture ratios were between 1.2 and 1.4 so the data should fall between the
curves but closer to the upper one. The same 1s true of the data of
Chauvin and deMoraes, obtained from free-flight tests of an NACA RM-10.
(See ref. 13.) The data of Monaghan and Cooke (ref. 14) were obtained
under hot-wall conditions, with the wall temperature well above the
boundary-layer recovery temperature. They would therefore be expected
to fall below the zero-heat-transfer curve. Within the limited framework
of available data, it appears that there is a correlation between skin-
friction and heat-transfer coefficients, both following the same trends
with changing wall temperature.

It should be pointed out that the data shown here were modified
from those originally given in three cases, namely, the experiments pre-
sented in references 11, 12, and 13. The principal modification was the
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measurement of Reynolds number from the turbulent origin rather than the
leading edge or nose. Determination of the transition point is one of
the most uncertain factors in some of the experiments. An additional
modification was required in the case of the V-2 experiments to correct
the data from cone to flat plate using the theoretical correction of

Van Driest.

In summary, theory and the present experiments indicate that a
significant increase in turbulent-skin-friction coefficient occurs as
the heat transfer is increased from zero toward values which may occur
in free flight. Furthermore, the limited data now available indicate
the correctness of Reynolds analogy as a means of estimating turbulent
heat transfer.
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FACTORS AFFECTING TRANSITION AT SUPERSONIC SPEEDS
By K. R. Czarnecki and Archibald R. Sinclair

Langley Aeronautical Laboratory

With the advent of flight at supersonic speeds there has been renewal
of interest in the subject of boundary-layer transition. Whereas experi-
ence has shown that extensive runs of laminar flow cannot be obtained under
practical field operating conditions at subsonic speeds, both theory and
practical considerations indicate a more favorable outlook at supersonic
speeds. For example, it has been demonstrated that longer runs of laminar
flow can be obtained by cooling the boundary layer and that the cooling
can be obtained by taking advantage of the natural heat capacity of a
missile, at least in the initial phases of the flight. Also, since the
missile is intended to make but a single flight, the construction and
maintenance of a smooth surface is simplified. Further, such large reduc-
tions in drag and aerodynamic-heating rate are possible with laminar flow
that reexamination of the problem of transition is imperative. This paper
surveys the availlable material to summarize what 1is known to date about
boundary-layer transition at supersonic speeds.

The bulk of our current information on supersonic transition comes
from wind tunnels. As in subsonic tunnels, the transition results obtained
are critically dependent on the quality of the airstream. It is necessary,
therefore, in any analysis of tunnel transition data to first ascertain
whether the results are unduly affected by wind-tunnel disturbances.
Indications have been found that supersonic transition data are affected
by local shocks and angularity of the tunnel airstream as well as by
turbulence level. Because it is difficult to eveluate the quality of
supersonic tunnel flows by direct measurement of these factors, the NACA
is conducting comparative transition tests with zero heat transfer on a
particular body shape, a 10° cone, in many of its supersonic facilities.

In figure 1 are shown some of the results obtained to date. The Reynolds
number of transition Ry Dbased on distance from the nose, is plotted

against M and also against R ver foot. Both abscissas are used here
simply to define the test conditions and not to indicate that they are
significant parameters affecting transition.

This figure is presented only to show the wide range of transition
Reynolds numbers obtained in different tunnels under comparable test
conditions and hence the wide variation in the quality of the airstreams
in these wind tunnels. Some of the facilities have sufficiently small
disturbances to permit extensive laminar flows, for example, the Langley
9-inch and 4-foot supersonic tunnels.
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In the remeinder of this paper the bulk of the tunnel data used are
from these two tunnels having the high transition Reynolds numbers. In
addition, transition data from model flight tests in still air at the
U.S. Naval Ordnance Laboratory and at the Ames Aeronautical Laboratory
are used.

The effect of Mach number on transition on smooth bodies at super-
sonic speeds is considered in figure 2. The data presented at the lower
Mach numbers, M = 5 or less, are for zero or essentially zero heat trans-
fer. The data at the higher Mach numbers include some boundary-layer
cooling. The peint at M = 0 1s the transition Reynolds number for a
flat plate at low speeds for a wind-tunnel turbulence level of less than
0.1 percent (ref. 1). For the lower Mach number tests, Ry generally

corresponds to transition at the model base, hence there are no changes
in pressure gradient to be considered. The arrow at M = 5.8 (data
from ref. 2), incidentally, indicates that the exact value of Ry 1is

not known but is greater than the value plotted.

In general, the results in figure 2 for M 1less than 5 indicate a
decrease in Ry with increasing Mach number except for the cone-cylinder

when M 1is less than 2. It may be remarked here that the rate of decrease
in transition Reynolds number with increase in Mach number may be affected
somewhat by changes in tunnel-flow characteristics that occur with changes
in test section Mach number. From these data one might expect to obtain
very little laminar flow at higher Mach numbers and this was the picture
until recently. Recent hypersonic wind-tunnel results, however, show the
relatively high values of R, indicated by the points for M = 6 and 7.

These relatively high values of Ry are believed to be due partly to

favorable heat-transfer effects which may usually be expected at hypersonic
speeds and partly to favorable shock-——boundary-layer interactions at the
nose of the models which result in a favorable local pressure gradient
(ref. 3). The important conclusion that can be drawn is that values of

Rt of the same order of magnitude as those obtained at low supersonic

speeds can be obtained in practical cases at hypersonic speeds.

Figure 3 shows the effect of surface pressure gradient on smooth
bodies at a Mach number of 1.61. The sketches in the upper part of the
figure indicate the types of bodies tested and their pressure distribu-
tions. The curves in the lower part of the figure are a plot of the
measured skin friction based on wetted-surface area. At the point where
the experimental skin-friction curve leaves the theoretical laminar curve,
transition has appeared at the base of the body and is beginning to move
forward.
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The results indicate that the parabolic body with a moderately favor-
able pressure gradient over the length of the body had the largest value

of Rg, about 11 X 106. The cone-cylinder with the least amount of favor-

able pressure gradient showed the lowest value, about 2.75 X 106. From
these results, it is apparent that pressure gradient has a strong effect
on transition at the lower supersonic Mach numbers just as at subsonic
speeds. In order to obtain high values of Rt’ it is apparently desirable

to maintain a favorable pressure gradient where the boundary layer is

most susceptible to instability - in these tests a favorable pressure
gradient toward the rear of the body. Regions to the left of the curves
indicate either a theoretically stable or experimentally laminar boundary
layer. At higher test Reynolds numbers, when transition has moved forward
on the bodies, both the ogive-cylinder and cone-cylinder show larger runs
of laminar flow than the parabolic body because of the more favorable
pressure gradients on the ogive or at the cone shoulder.

Some additional results showing the effects of pressure gradient
are presented in figure 4. In this case the pressure gradient was altered
by changing the shape of the body progressively from that shown at the
upper left to that at the upper right. The transition results are plotted
against the ratio of base area to maximum cross-sectional area, which is
a rough ipdex of the increase in length of favorable pressure gradient.
It may be noted that increasing the run of favorable pressure gradient
resulted in a reduction in the rate of falling pressure. Transition in
these tests always occurred at the base.

The results indicate a large increase in Rt with Increase in length

of favorable pressure gradient at both Mach numbers investigated. The
reverse in the curves at the lowest area ratio is due to laminar separa-
tion at the model base. The reason for the discontinuity in the Mach
number 1.93 curve near Abasq/Amax = 0.7 1s not known.

An analysis of the data from which the curves of figures 3 and 4
were obtained and of other results available at supersonic speeds shows
a tendency for the favorable effects of a falling pressure to decrease
as the boundary layer becomes thin as near the nose of a body or at very
high test Reynolds numbers. In addition, theoretical calculations by
lees (ref. 4) and by Weil (ref. 5) predict a decrease in the effects of
pressure gradient as M 1is increased; although, as yet, there is no
reliable experimental verification.

The possibility of a large stabilizing effect due to cooling of the
laminar boundary layer at supersonic speeds in the case of the Tollmien-
Schlichting type of boundary-layer instability was predicted theoretically
in the well-known work of Lees in 1947 (ref. 6). Recent studies, partic-
ularly those in the Langley 4- by 4-foot supersonic pressure tumnnel
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(refs. 7 and 8) and in flight (ref. 9), have confirmed the existence of
this effect. In figure 5, the chart on the right compares the theoretical
effect of heat transfer on the stability of the boundary layer on a flat
plate (ref. 10) with the experimental effect of heat transfer on transi-
tion on the RM-10 parabolic body. The parameter Rt is plotted against

Tv/fw, the ratio of wall temperature to free-stream temperature. At a

value of this ratio of 1.05 theory indicates that the boundary layer will
be stable for all Reynolds numbers. The trends of the curves are in good
agreement. A part of the displacement between curves occurs because of

the comparison between two- and three-dimensional bodies, a part because

of the additional length of surface required for the disturbance in the
boundary layer to amplify sufficiently to break down the laminar flow,

and another part because of the favorable pressure gradient on the body.
The highest wvalue of Rt obtained in the tunnel tests was about 28.5 X 106

(ref. 8). The highest value of Rt measured to date with cooling is

about 90 X lO6 and was obtained at White Sands Proving Ground in flight
on the conical nose of a V-2 rocket (ref. 9). Thus, if transition can
be limited to the apparently Tollmien-Schlichting type, boundary-layer
cooling will be of great aid in obtaining long runs of laminar flow.

In the chart on the left the experimental results for the parabolic
body have been replotted against Am/Tstag’ an index of the amount of

heating or cooling relative to the stagnation temperature. 1In addition
are shown some results typical of the earlier experiments in other wind
tunnels in which low adiabatic transition Reynolds numbers were obtained.

An analysis of the results shows that when the transition Reynolds
number for zero heat transfer is low, the effects of heat transfer are
small, and, when Rt for the adiabatic case is high, the effects of heat

transfer are large. The low effectiveness of heat transfer on transition
in the earlier tests is usually derived from the fact that transition

is generally influenced by surface roughness, boundary-layer separation
due to adverse pressure gradients, or tunnel éffects. These types of
transition do not appear to be strongly influenced by heat transfer.

Because of its importance, the next type of transition to be studied
is that due to surface roughness. In figure 6 is presented a plot of
R Rtk o’ the ratio of Reynolds number of transition with single-element

surface roughness to Reynolds number of transition for a smooth body,
against the parameter %/é*k’ the ratio of roughness height to boundary-

layer displacement thickness at the roughness. The solid line is the
low-speed correlation obtained by Dryden (ref. 1) on the basis of transi-
tion data for Reynolds numbers less than 2 X 106. For this case, the
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results show that for a roughness-~height ratio of less than 0.1 single-
element surface roughness has no effect on transition. Results for bodies
having values of Rt greater than 2 x 106 do not extend to sufficlently

low values of %/é*k to establish the validity of this conclusion for
cases with longer runs of laminar flow.

Only one approximate point is available for plotting for the super-
sonic speeds. This point indicates a somewhat higher value of roughness
ratio required to effect transition than in the subsonic case, but the
point may be within the range of scatter obtained in the subsonic correla-
tion. A somewhat larger amount of data is available for comparison with
subsonic results if the Reynolds number for transition itself is plotted
agalnst roughness ratio as is indicated by the chart on the left in fig-
ure 7. The three data points for the parabolic body at M = 1.61 appear
to fall within the same range as the low-speed airfoil data for similar
single-element roughness. The steep rise in Rt as the roughness ratio

is reduced in the supersonic case compares closely to the trends obtained
at high Reynolds numbers of transition subsonically.

In the chart on the right is presented a plot of Riy against the

parameter 5 k for distributed surface roughness on an ogive-cylinder
R=106

body. When the roughness is distributed over an area it is not clear

what value of boundary-layer thickness should be used as an index of the

roughness effegt; hence, an arbitrary value of boundary-layer thickness,

5 for R = 10Y, was chosen for this chart. The tests were made with

a wall-to-free-stream temperature ratio of about 1.04, thus indicating

that the tests were within the region for infinite Tollmien-Schlichting

boundary-layer stability for a flat plate. The results show trends sim-

ilar to those determined for single-element roughness. Other preliminary

data indicate that, for equivalent roughness heights, transition will occur

at lower Reynolds numbers for distributed roughness than for single-element

roughness when the leading edges of the roughnesses are at the same location.

An investigation of effects of heat transfer on transition due to
roughness was made on the parabolic body at M = 1.61 (refs. 7 and 8)
but few of the data were susceptible to the present type of analysis.
A study of the trends, however, shows that the effect of heat transfer
on the critical roughness parameter may be small. In particular, how-
ever, the results showed that whenever transition was significantly
affected by surface roughness or, for that matter, by any other type of
finite disturbance, then boundary-layer cooling was ineffective in
extending the length of the laminar run.

If the results that have been presented on surface roughness are
interpreted to mean that the Mach number effects on the correlations
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are small, then for constant Reynolds number the allowable roughness
height before transition is effected should increase with Mach number
because of the growth of boundary-layer thickness with Mach number.
At M =5 +the allowable roughness should be increased by 2.5 and at
M = 10 by a factor of 6 (fig. 8, left plot).

In addition, as the altitude is increased or the pressure decreased,
the molecular mean free path becomes relatively large compared to the
protuberance height and continuum flow will not exist and the effects of
surface roughness may conceivably disappear. Calculations indicate that
for all cases where surface roughness effects could be detected the rough-
ness was considerably greater than 100 times the length of the molecular
mean free path (fig. 8, right plot). The calculations also show that,
even on the basis of this criterion, the allowable surface roughness will
be greater than 200 microinches at 100,000 feet and 7000 microinches, or
0.007 inch, at 200,000 feet altitude. The shaded area in figure 8 indi-
cates the usual range of maximum surface roughness encountered on wind-
tunnel and flight-test models.

Up to now all data that have been presented have been for bodies
only and for zero angle of attack. Airplanes and missiles, however,
usually have wings and fly at some angle of attack. There are insuf-
ficient data on wing transition to present any type of correlation; hence,
this phase will not be discussed. TFigure 9, however, has been prepared
to show the effect of o on Rt for two bodies, each at a different

Mach number. The tests of the parabolic body were made in a wind tunnel
without heat transfer and transition was obtained from force tests and
boundary-layer surveys. The results thus correspond to transition at the
base of the body. The tests of the slender ogive-cylinder were made in
the Ames free-flight tunnel and include a large amount of cooling. In
this case transition was obtained by means of shadowgraph studies and

is shown for the upper surface only since this is the more critical
surface. The latter tests were also limited to a Reynolds number of

11 x 106.

Both sets of data, which include differences in Mach number and
heat-transfer conditions, indicate similar trends: a decrease in R;

as a 1is increased. TFor the parabolic body, a change in o from O°
to 2° reduces Ry by 60 percent. Both curves are not too well defined

for a 1less than lo, but the trends appear to indicate that transition
will be sensitive to a even at very low angles.

In conclusion, first, boundary-layer transition should be of the
Tollmien-Schlichting type if favorable effects of pressure gradient and
heat transfer are to be realized. Maximum transition Reynolds numbers
of about 28 x 100 in wind-tunnel tests of a parabolic body and 90 x 10
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in flight tests of a cone have been obtained with boundary-layer cooling.
The effects of surface roughness at supersonic speeds appear similar to
those at subsonic speeds, and the allowable-roughness-height parameters
are of about the same magnitude as at subsonic speeds. Hence, to avoid
transition due to roughness, the roughness size should be limited to
about 1/10 the boundary-layer displacement thickness. Finally, for the
longest possible runs of laminar flow, the body should be closely alined
with the flow.
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COMMENTS PERTAINING TO THE PREDICTION OF SHOCK-INDUCED
BOUNDARY-LAYFR SEPARATION
By Roy H. Lange

Langley Aeronautical Laboratory

INTRODUCTORY REMARKS

One of the fundamental problems that appears in the investigation
of supersonic flow over a surface is that of the phenomena associated
with the interaction of shock waves and boundary layers. The problem
of whether a given shock wave will cause boundary  layer separation is
one which occurs in all cases where a pressure increase is to be obtained
as a result of the retardation of the flow. Such problems occur, for
example, in the flow in supersonic diffusers and air inlets and in the
flow at the rear of airfoils and bodies. Shock-induced boundary-layer
separation generally results in poor aerodynamic efficiency in the for-
mer case and in undesirable airfoil characteristics in the latter case
and, therefore, this problem is of considerable practical significance.
The purpose of this paper is to discuss the status of information rela-
tive to the prediction of shock-induced boundary-layer separation. In
order to study the fundamental features of the problem, the discussion
is concerned principally with data obtained on flat plates in two-
dimensional flow.

Prandtl has discussed separation of the incompressible boundary
layer under the influence of a positive pressure gradient (refs. 1
and 2). The approximate methods such as those of Von Xdrmén, Pohlhausen,
and Buri for predicting separation were derived on the assumption that
the boundary layer has time to adjust itself to a prescribed pressure
distribution. The Von Karmdn-Polhausen approximation for a laminar
boundary layer is:

e}

£18

= KRt (1)

Q3

and Buri's approximation for a turbulent boundary layer is:

5 2 1/4
—ax _ KQRS_

41

(2)
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where ‘
s} boundary-layer thickness )
%ﬁ streamwise pressure gradient

q free-stream dynamic pressure

Kl’K2 empirical constants

Ry Reynolds number based on distance B

Experience with the use of these approximations has shown that the occur-
rence of separation depends chiefly upon the pressure gradient dp/dx,

and that the turbulent boundary layer can withstand a much greater pres-
sure increase before separation than can a laminar boundary layer. When
the influence of a shock wave on a boundary layer is considered, it is
evident that, if the infinite free-stream pressure gradient which the -
-shock wave represents could extend all the way to the wall, then separa-
tion would certainly result; however, as shown in the sketch of figure 1,
it is known that the pressure difference across the shock is spread out

in the lower levels of the boundary layer. (See refs. 3 to 7.) The work
of Liepmann and Ackeret has shown that the amount of spread of the pres-
sure rise at the wall depends upon the state of the boundary layer, that
is, whether the boundary layer is laminar or turbulent (refs. 3 and 6).
Thus, the pressure gradient appearing at the wall boundary is fixed by

the physical properties of the boundary layer and by the strength of the
shock wave. It seems logical to assume, then, that the occurrence of
separation in this case depends prircipally upon the pressure rise pp, - py

through the shock wave. It was further anticipated that as the pressure
rise across the shock was decreased there would be one shock strength
below which no separation of the boundary layer would occur. This con-
cept was advanced by Beastall and Eggink (ref. 8) and, later, & simpli-
fied dimensional analysis presented in reference 9 indicated that the
critical pressure rise across the shock Ap/ql which just causes separa-

tion of the boundary layer should be proportional to the local skin-
friction coefficient, cp. These approximations are extended to the

case for flat plates in terms of the Reynolds number based on x. Thus,
for a laminar boundary layer,

g x cp & Rﬁ—l c;cRx"l/2

9

(3)
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and for a turbulent boundary layer
-1/4 -1
é—ic:CfocRa / o:Rx /5 (1#)

It should be emphasized that the relationships given in equations (1) to (&)
are only approximations. For incompressible flow more refined methods have
been developed (refs. 10 to 13); however, the applications of these methods
for predicting separation have met with only limited success. A collec-
tion of the available data for supersonic flow (ref. 9) appeared to bear
out the predictions shown by equations (3) and (4) at the time they were
first derived; however, since that time, more experimental data have come
to light, especially for the turbulent boundary layer, which show that

the problem must be reexamined. The discussion of these data forms the
subject of this paper which now follows for both laminar and turbulent
boundary layers.

LAMINAR BOUNDARY LAYER

The available data for shock-induced separation for laminar boundary
layers on flat plates are given in figure 2, where the critical pressure
rise /Ap across the shock divided by the free-stream dynamic pressure Q

is plotted against Reynolds number on logarithmic scales. The Reynolds
number is based on the distance from the leading edge of the plate to

the point of intersection of the shock wave and the boundary layer. The
sources of these data are given at the top of the figure. (See refs. 3,
6, 8, 14, 15, and 16.) It can be seen that the available data are rather
limited in scope and, therefore, are not conclusive; however, there are
some trends in the data which should be mentioned. For example, at free-
stream Mach numbers M; of 1.93, 2.00, 2.05, and 2.48 the Reynolds num-

ber effect on the critical pressure coefficient appears to follow the
inverse square root of the Reynolds nuber as denoted by the dashed lines
on the figure. Except for the data at Mach numbers of 1.40 and 1.44, the
critical pressure coefficient also decreases with increasing Mach number.
These trends of Reynolds number and Mach number agree with the predic-
tions of equation (3); however, the magnitude of the Mach number effect
shown, especially between Mach numbers of 1 and 2, is much greater than
that which would be predicted by reference 9. Recent data obtained at
the Ames Laboratory in the separated region ahead of a forward-facing
step show an increase in Ap/q; with increase in Reynolds number; thus

the configuration appears to have a large effect on laminar separation.
Stewartson (ref. 17) has made a detailed analysis of the interaction



process which leads to the inference that the dimensionless pressure rise

required to produce laminar separation would be proportional to Rx—2/5.

Also shown in figure 2 is a curve which traces the criterion of separa-
tion advanced by Pabst (ref. 18) in a recent Argentine paper; however,
this criterion cannot account for the Mach number effect and does not
correlate with any of the experimental data shown.

TURBULENT BOUNDARY LAYER

Tnvestigations of shock—boundary-layer interaction for the turbu-
lent boundary lasyer have shown that a given shock wave may or may not
separate the boundary layer.. Data are now available from a number of
sources in which turbulent boundary-layer separation has been investi-
gated by three methods: (1) the forward-facing-step technique, (2) the
wedge technique, and (3) the incident-shock technique.

In order to remove all doubt as to whether the turbulent boundary
layer has been separated, several investigators have forced separation
by means of a forward-facing step mounted on a flat plate (see refs. 8,
9, 19, and 20). Typical data for this type of configuration are given
in figure 3 which shows the pressure distribution along the surface and
(to the same scale) a sketch of the flow field in the interaction region
as determined from shadowgraphs. These data were obtained in a blowdown
jet of the lLangley gas dynamics laboratory at a Mach number of 3.03. The
flow diagram at the top of the figure shows that a wedge-shaped separa-
tion region is formed ahead of the step and is bounded on its upstream
edge by the shock wave. The direction of the circulatory flow within
the separated region is shown by the arrows.

The pressure coefficients on the plate first reach a maximum value,
noted herein as the first peak, at a point about halfway between the
location of the shock wave and the location of the step. This distance
is roughly the equivalent of 8 boundary-layer thicknesses or 1353 momentum
thicknesses, on the assumption of a l/?-power velocity distribution in
the boundary layer just ahead of the shock. The pressures then dip
slightly behind the first peak and subsequently rise sharply, showing
the large influence of the circulatory flow. Also pertinent to the dis-
cussion of the flow in the separated region are the pressure coefficients
measured along the front vertical face of the step given in figure b,

The three isolated points at a Reynolds number of b x 106 were obtained
at M; = 1.86 (ref. 21), and the data for Reynolds numbers ranging from

12 X 106 to 32 X 106 were obtained at My = 3.03. The pressure orifices
were located at the base of the step and at two other vertical locations

AR -
-
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above the surface of the plate as denoted by z/h. The data at Ml = 3.03%

show no significant Reynolds number effect on the pressure coefficients.
The results show that there is one stagnation point at the foot of the
step and one near the top of the step, and calculations based on the data
at M) = 35.05 and utilizing the incompressible Bernoulli equation show

that the velocity downward along the vertical face is about 1/4 the free-
stream velocity; whereas the velocity along the plate in a direction
opposite to the main flow is about 1/3 the free-stream velocity. Thus
the separated region cannot be treated as a dead-air space as is commonly
assumed. The results at both Mach numbers also show that a considerable
error would result if the pressures on the front face of the step were
assumed to be the same as that obtained on the plate surface ahead of

the step in the separated region. The first peak pressure coefficients
obtained ahead of the step are shown by the dashed lines at both Mach
numbers for comparative purposes in this case. This result may be
changed when the step height is very large compared to . It is clear
then, from the results given in figures % and 4, that the first peak
pressure coefficient is obtained as a result of the mutusl effects of

the shock on the boundary layer and of the circulatory flow in the sepa-
rated region and should not be interpreted as the value of the pressure
rise across the minimum strength of shock wave which just causes separa-
tion of the boundary layer.

A summery of the available data obtained from the use of the step
technique for forcing boundary-layer separation is given in figure 5
which shows Ap/ql taken at the first peak plotted against Reynolds num-

ber on a logarithmic scale. The Reynolds number is based on the distance
from the leading edge of the plate to the point of intersection of the shock
wave with the boundary layer. All the data were obtained from pressure
distributions (see refs. 8, 14, 20, 22, and 23), and the sources are

given at the top of the figure. The Mach number range of the data is

from 1.55 shown by the long string of points at the top of the data to

3.65 shown by the lowest data points. The pressure distribution data

at M; = 3.05 given by the circles are new data which have not been

published. The data given in reference 9 (TN 2770) for M; = 3.03
represented by the dashed line which varies as Ry-1/5 were obtained

by measuring shock angles close to the point of intersection of the
shock wave and the boundary layer, where, as shown previously, the pres-
sures on the plate are changing rapidly; therefore this method for
obtaining pressure coefficients is too crude and the data should be
ignored. It is apparent from the mass of data that, except for the

data at Mach numbers of 1.86 and 2.418, the Reynolds number effect on

the value of (ég- is very slight. On the basis that there is

q)
1 1st peak
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no Reynolds number effect, figure 6 has been prepared to show the decrease

Lp

in — with increasgse in free-stream Mach number for Mach num-

q)
1 1st peak

bers between 1.55 and 3.65. All the data from the previous figure have
been included in this plot, and the vertical lines connecting some of

the symbols show the extent of the Reynolds number effect cbtained.
Included on this plot is the empirical relationship derived by Beastall
and Eggink from a curve which best fit their data for both forward-
facing steps and backward-facing steps (refs. 8 and 24). This approxi-
mation is independent of both Reynolds number and Mach number and, there-
fore, does not correlate well with the available experimental data for
forward-facing steps.

The second technique for producing turbulent boundary-layer separa-
tion is the use of wedges of different angles mounted on flat plates,
and a limited amount of data is available. (See refs. 20 and 25.) This
configuration is analogous to the deflection of a flap or a control sur-
face. Typlcal data obtained at a Mach number of %.03 are given in fig-
ure 7 which shows the pressure distribution along the plate and on the
wedge and above it a sketch of the flow phenomena as determined by shadow-
graphs. A double scale is given along the abscissa of the pressure dis-
tribution - one which gives x 1in inches measured from the leading edge
of the wedge and one which gives a measure of the boundary-layer thick-
ness, x/&. As shown in the flow picture, the separation in the corner
produced by this particular wedge angle results in a weak shock wave,
which projects ahead of the main shock, and an inflection point is obtained
in the pressure distribution on the surface. Downstream of this point
the pressure coefficient continues to rise and levels off at a value
somewhat less than that calculated from oblique-shock theory for this
wedge angle in the absence of a boundary layer. In general, the limited
available data at a given Mach number show that, for wedge angles greater
than a certain value, the pressure distribution has an inflection point
similar to that shown in figure 7; moreover, the value of Ap/ql meas-

ured at the inflection point remains almost constant with further increases
in wedge angle. The data at M; = 5.05 also show that the value of Ap/ql

obtained at the inflection point is essentially constant for Reynolds num-

bers ranging from 12 X 106 to 32 X 106. Results are available from tests
utilizing the third technique in which shock waves of varying strength
are made to impinge upon the boundary layer on a flat plate. (See

refs. 16 and 26.) 1In these tests inflection points are obtained in the
pressure distributions along the plate surface somewhat similar to those
in the wedge tests, and these inflection points are also associated with
local separation of the turbulent boundary layer. The tests of Gadd and
Holder at a Mach number of 2 show no significant effect of Reynolds num-
ber on the value of Ap/ql obtained at the inflection point for Reynolds
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numbers ranging from about 0.8 X 10° to 10 x 106, Tn figure 8 Lp/ag

is plotted against Mach number, where the inflection-point pressure
coefficients obtained in the wedge tests are given by the open symbols
and the inflection-point pressure coefficients obtained by the incident-
shock technique are given by the solid symbols. Also shown on this fig-
ure is the curve representing the data obtained by the forward-facing-
step technique. The data given on this figure, therefore, constitute
all information available at present on turbulent boundary-layer separa-
tion. The spread in /Ap/q; obtained at M; = 1.80 in the wedge tests

represents a Reynolds number effect, although, as mentioned previously,
no such Reynolds number effect was obtained at My = 3.05. The spread

in Ap/ql at My = 2 1in the incident-shock tests represents the maxi-

mum scatter in the data. Although the available data are rather limited
in scope, the results show that the inflection-point pressure coefficients
obtained from both techniques generally have the same range of values
with increasing Mach number and that on the average these values are

about 20 percent lower than those obtained using the step technique.

The application of these data for predicting separation should, there-
fore, be limited to these particular configurations, at least for the
present. For example, the data from the incident-shock technique repre-
sent conditions of local separation of the flow and, because the experi-
ments are performed on flat plates, the flow reattaches downstream of the
separation point. This reattachment may be changed somewhat for condi-
tions where a back pressure exists - for example, for conditions near the
trailing edge of an airfoil. Also, flight data for a wing in transonic
flow indicate that the Ap/ql for separation is predicted more accurately

by the step data if extrapolated to the lower supersonic Mach numbers
obtained in the flight tests (ref. 27). These data are useful, then, in
providing a first approximation to the pressure coefficient for which
separation is likely to be encountered.

CONCLUDING REMARKS

In conclusion, the present status of information relative to the
prediction of shock-induced boundary-layer separation indicates that,
although no universal value of pressure-rise coefficient which causes
incipient separation of the boundary layer has been found, there is a
fairly narrow band of pressure coefficients from which predictions of
turbulent separation can be made with an accuracy probably sufficient
for engineering purposes. On the basis of these results the following
tentative conclusions are given:

1. The data obtained with forward-facing steps, wedges, and inci-
dent shock waves indicate that there is a dependency of the pressure
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coefficient for separation on Reynolds number for the laminar boundary
layer but little, if any, dependency on Reynolds number for the turbu-
lent boundary layer. There is a dependency of this pressure coefficient
on Mach number for both laminar and turbulent boundary layers.

2. For the particular case of the spoiler, the available data
obtained by the forward-facing-step technique permit calculations of
the loading on the surface ahead of the spoiler, the pressure on the
front face of the spoiler, and the separation point ahead of the spoiler
for a Mach number range of from 1.55 to 3,65 for the turbulent boundary
layer.

3. For application to supersonic diffusers or scoop inlets, the
available data from incident-shock-wave tests provide a first approxi-
mation to the minimum strength of shock which will separate the turbu-
lent boundary layer for Mach numbers between 2 and 3.

4. From the data available from the wedge tests, a first approxi-
mation to the pressure coefficient for which separation becomes apprecia-
ble as a result of flap deflection can be made for a surface with a turou-
lent boundary layer for Mach numbers between 1.75 and 3.03.

5. Caution should be exercised in attempting to predict the separa-
tion or loading on configurations which differ considerably from those
for which experimental data are available. For example, fair success
has been obtained in predicting base pressure coefficients by the use
of the forward-facing-step data, but reasons for this success are not
at present fully understood.
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A STUDY OF THE MOTION AND AFRODYNAMIC HEATING
OF MISSILES ENTERING THE EARTH'S ATMOSPHERE
AT HIGH SUPERSONIC SPEEDS
By H. Julian Allen

Ames Aeronautical Laboratory

In the design of long-range rocket missiles one of the most diffi-
cult phases of flight with which the designer must cope is the re-entry
into the atmosphere. 1In the re-entry the rapidly increasing density
with decreasing altitude can promote large drag forces which, in turn,
can cause serious deceleration loads within the structure. More impor-~
tant, the air temperature in the boundary layer can reach values in the
tens of thousands of degrees and this, combined with the high surface
shear, will promote very great heat transfer to the surface.

The designer should know, then, what control he has over the mis-
sile characteristics which will permit a reduction of the problems
associated with the motion and, particularly, the aerodynamic heating.
The motion and heating of missiles, of course, has been given consider-
able attention by all designers of high-speed, long-range rockets, but
these analyses have been made for individual designs and so have not
been too instructive in giving an over-all view of the problems. In
this paper, which is a condensation of reference 1, we shall discuss a
generalized analytical approach, purposely simplified so that the sali-
ent features of the problems will be made clear in order that success-
ful solutions of the problems will suggest themselves.
<

Consider first, the motion of a ballistic missile entering the
atmosphere shown in figure 1. The equations of motion expressing the
deceleration in vertical and horizontal directions are, respectively,

2 p2
Y _ g A e
dat2 2m

2 PVZC
d X = v DA [el0}:]
at? om

6

where

P air density




SUHETH I o

v velocity

0 flight-path angle to horizontal

Cp drag coefficient

A reference area for drag evaluation
m mass
t time

X,y horizontal and vertical distances from impact point (0,0)

Analytical solutions of these equations would be extremely difficult
since the density is a function of altitude, while the drag coefficient,
the velocity, and the flight-path angle are functions of both x and y.
However, the greatest stumbling block in solution of these equations
results from the presence of the gravity term, -g. For very high speed
missiles it would be expected that the gravity term would be small and
might be neglected in the range of altitude in which the deceleration
and heating are intense.

To investigate this possibility, consider the descent of a l-foot-
diameter solid iron ball entering the atmosphere vertically at 10,000
feet per second. It is known that for spheres the drag coefficient is
essentially constant and equal to unity. In figure 2, the solid curves
show the velocity and deceleration as a function of altitude as obtained
by step-by-step integration of the motion equation which includes the
gravity term. The dashed curves represent a similar solution neglecting
the gravity term. The close agreement shows that at the high flight
speeds considered here, the gravity term may be ignored without too
serious error. When this gravity term is neglected, the flight-path
angle, 6, becomes constant and equal to the entrance angle, 6z. That is,
the trajectory is a straight line so that the drag coefficient, air den-
sity, and velocity may be expressed as functions of x or y,.and analyti-
cal solution of the equations of motion becomes feasible.

As a second step in obtaining analytical solutions, it is necessary
to express the density-altitude relation in analytic form. In figure 3
is shown a logarithmic plot of the NACA standard atmosphere variation
of density with altitude indicated by the solid line. The dashed line
represents an approximation to the density-altitude relation using the
exponential type of variation, P = Doe'By with P, set at 0.0034 slug
per cubic foot and B set at (1/22,000) feet ™ . 1In figure L, the solid
curve shows the deceleration calculated by the step-by-step method, neg-
lecting the gravity-acceleration term, for the vertically descending
solid iron ball previously considered. The dashed curve shows the
deceleration obtained from an analytical solution, neglecting gravity

N
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acceleration, using the exponential expression for the density as a
function of altitude. It is clear that such an exponential density
relation gives satisfactory results when the constants are so chosen as
to give a good "fit" in the altitude range for which the deceleration
is large.

If it is assumed in the equations of motion that the gravity term
is negligible and that the exponential density relation is applicable,
it can be shown that for a missile with constant drag coefficient enter-
ing the atmosphere with the velocity Vg at the flight-path angle 6g,
the velocity at any altitude y is

CppoA
_ Dot -y

V = Vge 2fm sin 6

and the corresponding deceleration is

CpPoA
—_——
dv/dt CpP.AVES m sin
_ / = D 0A E e-By e B GE
g 2mg

-By

The maximum deceleration can, then, be shown to be

_ ( dv/dat\ _ BVg® sin Og
g A 2ge

which occurs when the velocity is

Ve = e MEHE T 0.61 v

and the altitude is

1 CpP
8 Bm sin O

A strange feature of this solution is that the maximum deceleration is
independent of the physical characteristics of the body (that is, the
weight, size, and drag coefficient of the missile). It is a function
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only of the entrance speed and the entrance angle. Moreover, this maxi-
mum deceleration occurs at 61 percent of the entrance speed, again
regardless of the physical characteristics. On the other hand, the
altitude at which the maximum deceleration occurs is independent of the
entrance velocity but is a function of the body characteristics and of
the flight-path angle. As a demonstration of these points, let us con-
sider three solid iron balls, having diameters of 1/10 foot, 1 foot,
and 10 feet, entering the atmosphere at a speed of 20,000 feet per
second at a 450 flight-path angle. In figure 5 are shown the decele-
rations of these three spheres. There are several important points to
note here. Not only is the maximum deceleration the same for each
missile, but the deceleration curves are identical except for the fact
that they are shifted vertically, the smallest sphere reaching its
maximum deceleration at the highest altitude. The 10-foot sphere
happens to be of just such weight as to reach its maximum flight decel~
eration just above sea level., Any larger sphere would, of course,
reach its maximum flight deceleration at sea level and that decele-
ration would be less than that shown here, Nevertheless, it should be
noted that the sphere sizes shown in this figure represent a tremendous
variation in weight, from 1/4% pound for the smallest to 250,000 pounds
for the largest. Hence it should be clear that for missiles of usual
weight, this maximum deceleration will be reached in the descent except
in the cases for which the drag coefficient is exceptionally low.

It was noted previously that the solutions given are applicable
only where the drag coefficient is constant, and one might expect that
such a solution would not be a satisfactory one except for very blunt
bodies, such as the spheres considered here. It can readily be shown,
however, that this is not the case. In figure 6 is shown the deceler-
ation and velocity for a 409 conical missile having a base area of 10
square feet and a weight of 5,000 pounds. The entrance velocity 1is
10,000 feet per second and the entry flight path is 30°. The constant
drag coefficient assumed in this analysis is that corresponding to con-
ditions at the altitude for maximum deceleration. In figure T are
shown the total and frictional drag coefficients calculated at each
altitude for the Mach and Reynolds number corresponding to this alti-
tude-velocity relation. It is seen that in spite of the large changes
in Mach number and Reynolds number, the drag characteristics are nearly
constant in the altitude range where deceleration is large. This near
constancy results from the fact that while the effect of decreasing
Mach number with altitude is to increase the drag coefficients, the
effect of increasing Reynolds number with altitude is to decrease the
drag coefficients, and these effects are very nearly compensating.

In figures 8 and 9 are shown similar results for a migsile identi-
cal to the one just described except that the cone angle is 10°. Again
we see that the frictional and total drag coefficients are nearly con-
stant in the altitude range where the deceleration is large. 1In the
heating analysis to follow, the assumption of constant frictional drag

-,
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coefficient is permissible then, since, as will be seen later, the heat-
ing rate is proportional to the deceleration.

Let us next consider the far more serious problems resulting from
aerodynamic heating.. For high-speed ballistic rockets, the heat. input
is very great, and, hence, a means of cooling must be provided to pre-
vent destruction of the essential elements of the missile. It is a
characteristic of rockets that for every pound of material which is
carried to "burn out," many pounds of fuel are required in the booster
to obtain the flight range. Hence, it is clear that the amount of
material which is added to protect the warhead from overheating must be
minimized to keep the take-off weight to a practicable value. Thus,
the first heating problem of interest concerns the total heat input
since this input determines the coolant weight. We will confine this
discussion to a comparison of the heat input of a missile of one shape
with that of another to determine what shape characteristics reduce the
heating. Hence, we will be interested in relative rather than absolute
heating so that the analysis will be simplified by the following
assumptions:

First, we will consider only convective heating, that is, we ignore
radiation to or from the body. Ignoring the radiation from the air to
the body is certainly permissible at the lower speeds, say of the order
of 10,000 feet a second, although it may become inadmissible as the speed
is increased, say to the escape speed. Radiation from the missile will
certainly occur but since for any given missile design the surface will
be allowed to get as hot as structurally permissible, the radiation from
two designs considered will be very nearly the same and, hence, because
our interests are relative rather than absolute, the assumption is satis-
factory. The second assumption which is made is that imperfect gas
characteristic effects are ignored - in particular, dissociation. This
is again done on the basis that relative rather than absolute values are
of interest since for a given entrance speed the dissociation of the air
will be roughly comparable for two designs. The third assumption which
is made is that there is no interaction between shock waves and the
boundary layer. Such an assumption is a good one at the lower speeds but
the work of Lees and Probstein (ref. 2) and Li and Nagamatsu (ref. 3)
would indicate that at very high speeds serious effects of such inter-
action can occur. Fourth, it is assumed that Reynolds analogy holds. A
recent examination of the effect of compressibility on the adequacy of
the Reynolds analogy by Rubesin (ref. 4) has indicated that the analogy
is a satisfactory assumption, at least in the speed ranges of the interest
of this paper, say the order of 10,000 feet per second. Finally, it will
be assumed that the Prandtl number is unity. This assumption is Justified,
again on the basis that relative rather than absolute values are of
interest.

The heat-transfer equation which must be solved is
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Here H 1is the heat transfer per square foot of surface at any local
point on the surface of the missile and its change with time or with
altitude can be expressed as the product of the local heat-transfer
coefficient, h, and the difference between the recovery temperature and
the wall temperature, Ty - Tyw. The heat-transfer coefficient

h ~ Cf'Dch

is proportional to the velocity, density, specific heat, and the equiv-
alent frictional drag coefficient, Cg', which is, in turn, proportional
to the frictional drag coefficient. As noted earlier, we will assume
the frictional .drag coefficient to be constant.

As regards the temperature difference
(Ty - Ty) = T+—M2T-

an important simplification which can be made at very high speeds is
that the recovery temperature due to high Mach number is so large that
the temperature, T - Ty, can be assumed to be negligible by comperi-
son to 7 MET so that the temperature difference can be expressed as

71 e o V2
(Tr - Ty) = 5= W0 = o

If we now substitute the velocity and density as determined from the
motion analysis into the heating equation, the equation can be inte-
grated to give the total heat input which is

CpPoA
' _—
Q=1 Ce %)mVEe [l-e fm sin O }
T \cpA
*
Here, the factor Q 1is the total heat input over the wetted area §S.
Let us consider now the case of a missile which is relatively heavy. -
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By this, we mean that in the exponent CDDOA/Bm sin 6, the denominator
is very large compared to the numerator. In this case the bracket term
can be expanded in series and, if we retain only the first term, we
find the total heat input is approximately

o Cr'SPoVE®
4g sin 6

This equation indicates that the least heating will occur for the rela-
tively heavy missile when the frictional drag is a minimum. This is

the usual expectation. On the other hand, if we have a relatively

light missile, that is, one for which the numerator of the above exponent
is large with respect to the denominator, then it can be shown that the
total heat input is approximately

Ce'S
* 12 (ZE22
C=5WE \zom

For this case we see a very interesting result that the heating will be
decreased by increasing the total drag, provided the frictional drag
does not increase proportionately as rapidly. This may at first seem
somewhat perplexing but we note that making the drag coefficient in the
exponential relation large or the mass small is equivalent to making
the terminal speed very low with respect to the entrance speed. This

means that all the kinetic energy, % mVg®, must be converted to thermal

energy - that is, to heating both the atmosphere and the missile.

By making CpA large compared to Cf'S the maximum amount of heat is
delivered to the atmosphere and hence the missile is heated the least.
Thus, it appears that the optimum solution as regards the total heat
input depends upon the missile drag coefficient. To look into this
matter further let us consider the heating of conical-shaped missiles
entering the atmosphere at 10,000 feet a second at a 30° flight-path
angle. For each of these missiles a constant base area of 10 square
feet will be assumed. In figure 10 is shown the total heat input, as a
function of cone angle, for missiles of 1000, 5000, and 10,000 pounds
weight and, as a matter of interest, a hypothetical missile of
infinite weight. We note, here, that the minimum which occurs for the
small cone angles is that corresponding to a minimum value of Ce'S,
while the low heating for the large cone angles is a result of making
Cr'S/CDA a minimum. The minimum which we see here for the small cone
angle is not very pronounced since at the lower speeds the equivalent
frictional drag coefficient does not change rapidly with cone angle,
but, as is shown in figure 11, as the speed 1s increased this minimum

:
-
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is more accentuated and the advantage of the large cone angles less
apparent. Nevertheless, in general, it has been found that giving the
missile a high drag coefficient is nearly always the best for the most
usual weights of interest.

Let us now turn to another heating problem of serious importance.
As pointed out previously the time rate of heat input can be great for
thege high-speed missiles. Many missiles are designed to absorb the
heat within the solid surface of the missile shell or to transmit it
through the shell to a coolant. For these missiles an excessively
large time rate of heat input may promote such large thermal stresses
as to cause spalling of the surface (and therefore result in a loss of
heat absorbent material) or even structural failure. The time rate of
heat input is also important for sweat-cooled missiles since it will

determine the required surface porosity and the liquid coolant pumping
rate.

The designer is interested in the maximum time rate of heat input
to an average surface element - since this is proportional to the aver-
age thermal shell stress and, therefore, determines the structural
strength of the missile as a whole - and the maximum time rate of heat
input at the surface elements of maximum heating - since this deter-
mines the local strength at these "hot spots.”

Consider, first, the maximum time rate of heat transfer to an aver-
age surface element. Analysis has shown that in this casge, it is bet-
ter to make either the frictional drag coefficient a minimum or the
ratio of the frictional drag coefficient to the total drag per unit
dynamic pressure a minimum. In figure 12 it is seen that, considering
the same conical missiles as before at an entrance speed of 10,000 feet
per second, small-cone-angle and large-cone-angle missiles have the
least maximum time rate of heat input for an average surface element.

Consider, next, the maximum time rate of heating at hot spots. The
local surface elements for which the heat-transfer rates are greatest
in practically every case will be those which first meet the air, for
then the boundary-layer thickness is least and, hence, the shear is
greatest. For the missile body this element is the nose and it should
be noted at the outset that truly pointed bodies should be avoided, for
at the point the heat-transfer rate is tremendously high while the
point itself has no capacity for absorbing heat. Therefore, let us con-
sider only the case of a rounded-nose missile with a nose radius, o,
and discuss the heating at the stagnation point. For such a body, the
bow shock wave is detached and is a normal shock on the stagnation
stream line. Thus, the high supersonic speed is converted to a low sub-
sonic speed flow after the shock. Accordingly, we may determine the
heating at the stagnation point by use of a low-speed analysis such as
that given by Sibulkin (ref. 5). The results of this analysis show that
the maximum heat-transfer rate is inversely proportional to the square
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root of the nose radius which indicates that the largest possible nose
radius should be employed. Let us now alter each of the conical mis-
siles previously considered to have a hemispherical nose of small but
arbitrary radius, o. In figure 13 is shown the product of the square
root of the nose radius times the maximum heat-transfer rate at the
stagnation point as a function of the cone angle. Here we see that the
minimum local heating is obtained by using the largest possible cone
angle; that is, the missile having the highest drag per unit dynamic
pressure is always the optimm as regards the heating at hot spots.

We should also note, in addition, that we have not considered wings or
wing-like tail surfaces for these missiles. It is the general experi-
ence of designers that stabilizer surfaces or wings should not be used
for these very high-speed missiles since such surfaces are almost
impossible to cool.

Now let us look back from the designer's point of view on the
results which have been obtained. First, from the results of the
motion analysis we have seen that for long-range ballistic rockets of
usual weights the maximum deceleration, except for missiles having
unusually low drag shapes, is constant and independent of the shape.
Thus, shapes having very high drag coefficients are not inferior to
those of more usual design. Second, as far as total heat input is con-
cerned, the missiles having the least ratio of frictional to total drag
are generally the optimum. These are, of course, high-drag-coefficient
shapes. Third, as regards the maximum time rate of heat input to an
average surface element, either the very low drag or the very high drag
shapes are best, but, fourth, as regards the local heating rate at hot
spots, local heating is always decreased by increasing the drag coefficient.

One shape, then, which would appear to have considerable promise is
a sphere for it has the following advantages: It is a very high drag
shape and its frictional drag is only a few percent of its total drag.
It has a maximum volume for its surface area; its continuously curved
surface is inherently stiff and strong. The large stagnation point
radius significantly assists in reducing the maximum thermal stress in
the shell. Aerodynamic forces are not sensitive to attitude and, hence,
there is no problem of stabilization. Because of this insensitivity to
attitude, the sphere may be purposely rotated in a random manner to
subject all surface elements to about the same amount of heating and
thereby approach uniform shell heating. On the other hand, a spherical
missile may be unacceptable since it will have a low terminal speed and,
hence, may permit effective countermeasures. Also, the lower average
speed of descent will increase the wind-drift error at the target.

These possible disadvantages of very high drag shapes might be
alleviated by using variable geometry arrangements. To illustrate such
an arrangement, consider the missile shown in figure 14. Here it is
assumed that the warhead is contained within the high-fineness-ratio
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forebody and that the afterbody is an extensible skirt acting as an air
brake which is flared to large angles, and therefore high drag, when
the missile enters the atmosphere. As the air density increases with
decreasing altitude, the skirt flare is decreased so as to keep the
missile from decelerating to too small a terminal speed. The examples
considered are, of course, only to demonstrate some of the means avail-
able to the designer to diminish some of the aerodynamic heating prob-
lems for such high-speed missiles.
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PROBLEMS AND INITIAL EXPERIMENTS ON HEAT TRANSFER
AT HYPERSONIC SPEEDS
By A. J. Eggers, Jr., and A. C. Charters, Jr.

Ames Aeronautical Laboratory

The significance of aerodynamic heating in hypersonic flight is per-
haps best demonstrated by the fact that solution of the heating problem
may in large part dictate the choices of aircraft structure and power-
plant. The preceding paper by H. Julian Allen on missiles penetrating
the earth's atmosphere provides substantial evidence to this effect.
Moreover, it points out that there are many gaps in the existing knowledge
of hypersonic heat transfer. One of the foremost of these gaps concerns
the behavior of air at the high temperatures encountered in hypersonic
flight. It is this matter with which the present paper is chiefly con-
cerned, and, following a brief review of the subject, it is undertaken
to describe a novel apparatus and the results of initial experiments
aimed at determining hypersonic heat transfer to objects under ccnditions
of pressure and, especially, temperature actually found in the atmosphere.
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First, it is instructive to obtain some idea of the magnitude of the
boundary-layer temperatures in hypersonic flight. Figure 1 shows the maxi-
mum temperature in the laminar boundary layer on a flat plate as a function
of Mach number assuming an insulated wall and assuming a wall temperature
equal to an ambient temperature of 500° R. These results were cotained
from the calculations of Van Driest for a constant Prandtl number of 0.75
and neglecting effects of dissociation and other phenomena which may occur
at the higher temperatures (see ref. 1). Ordinarily the wall temperature
of a missile would not be expected to fall below ambient temperature;
hence it is concluded that air in the hypersonic boundary layer is heated
to temperatures in the thousands of degrees. In this light it is not
surprising that heat is transferred very rapidly to a hypersonic missile
with any reasonably low surface temperature.

The heat-transfer process is complicated, however, by the fact that
basic physical properties of air such as the specific heats, viscosity,
and thermal conductivity may be profoundly altered, especially if appre-
ciable dissociation occurs at these high temperatures. Considerable
uncertalnty exists at present as to the extent of these alterations. For
example, the variations with temperature of the specific heat at a pres-
sure of 1 atmosphere are shown in figure 2. The upper boundary is for the
case of dissociation equilibrium and was obtained by using the enthalpy
calculations of Krieger and White (see ref. 2). The lower boundary is for
the case of no dissociation. If the kinetics of dissociation were well-
understood, an estimate of the specific heat could be made for a particular
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flow, and it would probably lie somewhere between these two curves. The
kinetics of the rate process are not well-understood, however; thus it
must be concluded that at the higher temperatures, the specific heat may
be in doubt, even in order of magnitude. Knowledge of thermal conductivity
and viscosity at the high temperatures encountered in the hypersonic bound-
ary layer is also limited. As a result, different predictions of heat
transfer can be obtained. This point is illustrated in figure 3 which
shows, for a cool sphere, the ratio of stagnation-point heat-transfer rate
for dissociation equilibrium to that for no dissociation, both rates being
calculated by the incompressible-flow method of Sibulkin (ref. 3) in com-
bination with the results of Hansen (ref. 4). It is predicted that, as

the Mach number increases above 5 in air of 500° R static temperature, the
ratio increases and reaches a value of about 2.5 at a Mach number of 15.
Recent studies at the Langley and Ames Laboratories indicate that the
effects of dissociation may be more compensating if variations in fluid
properties are considered, with the result that the over-all increase in
heat transfer, due to dissociation, may not be as large as shown in

figure 3.1 In any case, however, the flow process is not well-understood.

In view of the magnitude of the heat-transfer problem in hypersonic
flight, it seems fair to conclude from these considerations that experi-
ments must be conducted which will explore aerodynamic heating on a prop-
erly scaled model. Attention is given next, therefore, to experimental
methods of obtaining a "hot" hypersonic air stream.

The continuous-flow wind tunnel appears to be unsuited for thils pur-
pose because of the extreme difficulties of heating and cooling the air
andyof preventing structural failure. Rather, then, some more novel type
of 'equipment appears to be required.

In this connection, the shock tube is an attractive apparatus,
especially when employed after the method of Hertzberg (see ref. 7). As
is well-known, however, this apparatus tends to assume very large propor-
tions if rumning times in excess of milliseconds are desired. Longer
running times are, of course, desirable from the standpoint of making
heat-transfer measurements.

With these points in mind, a search was made for a rapid compression
process which would create a reservoir of air at high pressure and,
especially, at high temperature. For this purpose, irreversible adiabatic
compression deserves attention, since it can, by means of shock waves,

1 Moore (ref. 5) and Crown (ref. 6) have found in their analyses
of the flat-plate case that here also there is noteworthy compensation
of dissociation effects. The degree of compensation is open to question,
however, inasmuch as both of these analyses appear to be in some error
(see ref. 4).
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produce a large temperature rise with a large pressure rise. In fact,

the more inefficient or irreversible the compression process, the larger
the temperature and the larger the final volume of the compressed air.

This characteristic is desired because the large temperature coupled with
high pressure suggests that with the aid of a nozzle a hypersonic air
stream can be generated having the same free-stream temperature and pres-
sure as are encountered in the atmosphere. Furthermore, with the rela-
tively large volume of the compressed air, it is suggested that this stream
can be made of substantial duration, thereby facilitating heat-transfer
measurements.

In order to investigate these possibilities, an apparatus, com-
pressing alr in the irreversible adiabatic manner and then exhausting
it through a hypersonic nozzle, has been developed at the Ames Labora-
tory. This apparatus is termed a hypersonic gun tunnel and is shown
schematically in figure 4. 1In the upper part of this figure is shown the
gun tunnel as it appears before firing. The nozzle extends laterally
from the gun tube and is isoclated from the interior of the barrel by a
valve. Air on both sides of this valve is fixed at a pressure of 10
atmospheres and at ambient temperature. The compressor piston is of
light weight and is located in the position normslly occupied by the pro-
Jectile for the gun. When the gun is fired, this piston is accelerated
rapidly to high velocity and sends out strong shock waves which compress
and heat the air in the gun barrel. These waves strike the valve piston
covering the nozzle and set it into motion toward the muzzle end of the
gun, forcing the air between this piston and the muzzle out through the
port. Because of the strong damping in the compression process, the
system returns to equilibrium very rapldly, requiring only several hun-
dredths of a second. The equilibrium configuration is shown in the lower
portion of this figure. The powder is now in the gaseous state and the
trapped alr has been compressed to a pressure of about 300 atmospheres.
Assuming conservatively an irreversible adiabatic process with the working
pressure equal to the final pressure, the final air temperature would be
estimated to be about 5,000° R. Inasmuch as the nozzle is now open, this
alr passes out through the nozzle and forms a hypersonic stream about the
model - the steam duration is of the order of 1 second. At the same time,
the powder gases are allowed to leak out of the gun barrel at a slower
rate through the exhaust port at the breech end of the barrel.

A heavy-wall 20-mm smooth-bore gun was employed in the test apparatus
which is shown in figures 5 and 6. Figure 5 is a photograph of the complete
assembly; the gun mounted on an I-beam fastened to the wall of the test
chamber can be seen stretching diagonally across the center of the picture
with its breech at the right and muzzle at the left. The nozzle extends
vertically down from the muzzle to the vacuum tank. The vacuum tank and
pump can be seen placed on the floor of the test chamber to the left of’
the gun installation. Figure 6 is an enlargement of the nozzle unit and
shows the windows of the working section and the outline of the principal
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schlieren objective mirror attached to the wall behind the working sec-
tion. The compressor piston was a l/2—caliber nylon cylinder and the
valve piston was a 3-caliber nylon cylinder. The nozzle air passage was
conical in shape and had a throat diameter of 0.021 inch, a length of

6 inches, and a test-section diameter of 1 inch. Models were located at
the exit of the nozzle and were sting supported from below.

Initial experiments included firings with the hypersonic nozzle and
nozzle valve removed from the barrel. Several schlieren photographs of
the flow from the muzzle port are shown in figures 7(a) and 7(b). One
millisecond after firing the gun, a long tongue of incandescent gas can
be seen extending approximately 1 foot to the right from tl.e muzzle port.
Two milliseconds after firing, the incandescence has disappeared and the
Jet seems almost to be errupting. Six milliseconds after firing, the
flow has steadied down considerably, although there 1s observed a second
surge of incandescent gas, somewhat smaller in extent than the first.

There 1s some indication that these surges occur each time a strong shock

or series of shocks collides with the muzzle cap. In any case, after
about 50 milliseconds have elapsed, flow from the muzzle port takes on
the familiar steady character with more or less equally spaced shock sys-
tems. From this time on, until all the air has been exhausted from the
gun, there 1s no apparent change in the flow from the muzzle port. This
was the first experimental evidence that the duration of the nonsteady
compression process would be short compared to the l-second duration of
flow from the hypersonic nozzle. Also, these experiments confirmed the
need for the nozzle valve to protect the nozzle and test models from the
initial surges of extremely high-temperature, high-pressure air.

Preliminary calibration of the nozzle was undertaken in the following

manner: Pitot and static pressures were measured with conventional tubes
connected to variable-capacitance gages. Using these two stream proper-
ties and the fact that pitot pressure is essentlally twice the dynamic
pressure in a hypersonic stream, the Mach number was found to be approx-
imately 6.7. It is necessary to know at least one other property of the
stream in order to fix the state of the gas with reasonable certainty.
Therefore a direct measurement of stream veloclty was made. For this
purpose a spark discharge was created near the exit of the nozzle. The
resulting pressure disturbance was photographed as it passed through the
test section. The velocity of the center of the disturbance was deter-
mined from measurements of the distance traveled by the center and the
time of travel. This velocity closely approximates the stream velocity
and was found to be about 8,200 ft/sec.

The stream veloclty and the dynamic pressure determine the stream
ensity, and the stream temperature can be computed from the stream den-
sity and the static pressure, provided the gas constant is known. The
magnitude of the gas constant depends of course not only on the air tem-
perature, but also on how nearly the air, in expanding out through the
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nozzle, has achleved a state of thermal equilibrium, especially as regards
dissociation. It 1s belleved that dissociation is negligible, except in
the disturbed flow about models in the present tests. This opinion is
held because the stagnation pressures appear to be too large by conserva-
tive estimate to permit appreciable dissociation in the reservoir. It was
tentatively assumed, therefore, that the usual value for the gas constant
applied, and this value was used to calculate the stream static tempera-
ture. A temperature of 670 R was obtained, which value is low enough to
support the initial assumption regarding the gas constant. It should be
noted that this temperature 1s, as desired, equal to those ordinarily
encountered in the earth's atmosphere. Also, an effective stagnation tem-
perature of about ©,700° R is indicated by these results, which is not out
of line with the estlmated value of 5,000° R.

Several measurements were made of each of the stream properties just
discussed, and it was found that they varied by less than 10 percent from
one run to another. It was therefore undertaken to make preliminary meas-
urements of heat transfer in this stream. In particular, measurements of
the temperature rise at the stagnation point of a hemisphere and of the
temperature rise of a cylinder were made. Results of measurements for the
hemisphere are shown in figure 8. Results of measurements for the cylinder
are shown in figure 9. The hemisphere was a copper shell of 0.2-inch diam-
eter with a 0.0l-inch thick wall. The shell was one leg of a thermocouple.
The other leg was a constantan wire attached to the inside of the shell at
the stagnation point. The test conditions are as indicated, the equiva-
lent pressure altitude being about 115,000 feet. A schlieren photograph
of flow about the model 1s also shown in figure 8. In addition to exper-
imental data, the temperature-rise rates calculated by the method of
Sibulkin are shown for the cases of equilibrium dissociation and no dis-
sociation (see refs. 2, 3, and 4). These calculated rates bracket the
experimental rate initially, being 6,300° R per second for no dissociation
and 15,000° R per second for dissociation equilibrium - the corresponding

heat-transfer rates are 280 Btu/%tz—sec and 660 Btu/ft°-sec, respectively.
These results suggest that in the present tests the time of passage through
the bow wave and past the stagnation point was too short for the air to
achieve thermal equilibrium.

Considering now the cylinder tests, the model in this case was an
iron-constantan cylinder 0.04O inch in diameter. The thermocouple joint
of the two materials was located on the nozzle center line. The initial
temperature-risé rate of the cylinder is about 2,500° R per second and the

corresponding heat-transfer rate is 110 Btu/%te-sec. This rate is sub-
stantially lower than that measured at the stagnation point of the hemi-
sphere, which result is attributable in good part to the very high heat-
transfer rates at the stagnation point. This matter was discussed in
the previous pgper by H. Julian Allen.
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In analyzing the hemisphere and cylinder data, only the initial heat-

transfer rates have been considered and, in fact, the experimental data *
for only the first 0.1 second of flow have been presented. It is observed .
that even in this short period of time the measured temperature-rise rates .

have decreased significantly. This result is attributed primarily to
transfer of heat through the models, away from the locations at which tem-
peratures were measured, and is not thought to be indicative of a large
reduction in the rate of heat transfer Into the models.

In summary, it is pointed out that existing information on the behav-
ior of air at the high temperatures encountered in hypersonic flight is
both meager and in some cases conflicting. This situation seriously limits
knowledge of hypersonic heat transfer. An apparatus termed the hypersonic
gun tunnel has therefore been developed with the specific purpose of pro-
viding data on hypersonic heat transfer to objects under conditions of
pressure and, especially, temperature found in the atmosphere. Results
have Leen presented which indicate that the apparatus is a workable device
for producing a "hot" hypersonic air stream. Finally, preliminary heat-
transfer data have been obtained for a cylinder and at the stagnation
point of a hemisphere immersed in this stream.
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EXPT.ORATORY TESTS OF THE ALLEVIATION OF AERODYNAMIC
HEATING BY WATER TRANSPIRATION COOLING
AT MACH NUMEER 2

By William J. O'Sullivan, Jr., Leo T. Chauvin,
and Charles B. Rumsey

Langley Aeronautical Laboratory

In the last few years the phenomenon of aerodynamic heating in
supersonic flight has been investigated, correlated with theory, and its
destructive effects upon aircraft structures recognized and demonstrated
(for example, refs. 1 to 4). Gas and liquid transpiration cooling have
been proposed and are being investigated as a means of cooling turbojets,
rocket motors, and their nozzles (for example, refs. 5 to 7). This paper
deals with recent exploratory tests (ref. 8) of water transpiration
cooling as a means of alleviating aerodynamic heating of aireraft struc-
tures at supersonic speeds.

Shown schematically in figure 1 is a conical model of 8° total apex
angle equipped with transpiration cooling and installed in a free-air
Jjet. The cooling water entered through the base of the model and emerged
through the porous band. Means were provided for measuring the tempera-
ture of the entering water and its mass rate of flow. Twenty-eight
thermocouples were installed in the skin of the model back of the porous
band to measure skin temperatures. The length of the model from apex to
rearmost thermocouple was 10.6 inches. The air jet had a Mach number of
2.05 and approximately sea-level temperature and static pressure for a
hot day.

CHAUVIN

Tests were first made without water to measure the dry recovery
factors and heat-transfer coefficients on the cone.

In figure 2 the measured recovery factors plotted against distance
along the cone back of the porous band are shown as circled points. For
comparison, the theoretical recovery factors for a laminar and a turbulent
boundary layer, based on the Prandtl number just outside the boundary
layer (refs. 9 and lO), are shown as solid curves. The measured recovery
factors are in close agreement with the theoretical turbulent value.
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The measured heat-transfer coefficients are presented in figure 3
in terms of dimensionless parameters for comparison with theory. The
ordinate is the Nusselt number, which contains the heat-transfer coef-
ficient, cdivided by the cube root of the Prandtl number. The abscissa
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is the Reynolds number. These dimensionless parameters are based upon -
conditions just outside the boundary layer and distance from the apex .
of the cone. The thermal ratio is the skin temperature Ty divided by °

the temperature just outside the boundary layer Ty. Experimental points
are shown for thermal ratios of 1.48, 1.52, and 1.56. For comparison,

Van Driest's theoretical curve for a thermal ratio of 1.52 (ref. 11) is
drawn through the experimental points. The theoretical curves for thermal
ratios of 1.48 and 1.56 would lie, respectively, upon the upper and lower
edges of the curve shown. Also shown is the experimental flat-plate
laminar-boundary-layer curve (ref. 12) corrected to a cone by the theory
of Mangler (ref. 13). The heat-transfer measurements agree with the
recovery-factor measurements in indicating a turbulent boundary layer.

In figure 4 the steady skin temperature maintained with 52° F cooling
water at a mass-flow rate of 0.0l pound of water per second is plotted
against position along the model back of the porous band. The entire
model skin back of the porous band was uniformly cooled to about 125° F,
and cooling extended an unknown distance beyond the end of the model.
For comparison the skin temperature of 500° F that would have existed
without cooling as determined from the dry tests is shown. The temper- )
ature difference is 375° F.

The temperature contours measured when the cooling-water flow rate
was reduced to the point where uniform cooling did not occur over the
entire length of the model are shown in figure 5 upon a development of
the model's surface. The skin temperature was held to between 115° F .
and 125° F back to nearly the third band of thermocouples and thereafter
rose rapidly, except for a cool strip, toward the temperature of 498° F
which would have been the skin temperature without cooling. The cool
strip may be due to slight angle of attack of the model. The cooling
water entered the model at 50° F at a mass-flow rate of 0.0025 pound per
second. If the cool strip is disregarded and only the uniformly cooled
area forward of the 125° F contour is considered, the water expenditure
rate is 2.72 pounds or 0.33 gallon per minute per square foct of cooled
surface. An ideal water Jjacket attached to the under surface of the

skin would require about four times as much water to produce the same skin
temperature.

An attempt has been made to calculate the skin temperature produced
by water-transpiration cooling. The process was visualized as one of
evaporation of the water from the model surface into the bottom of the
boundary layer producing saturation of the lowermost layer of air. The
cooling is thus assumed analogous to the cooling of the wet bulb of the
familiar wet and dry bulb sling psychrometer uscd for the measurement Al

of humidity. Accordingly, the cooled-skin temperature can be conven-
iently calculated by use of a variation of the sling psychrometer chart

N -
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shown in figure 6. The ordinate is temperature and the abscissa is the
absolute humidity or pounds of water contained in 1 pound of air. Drawn
across the graph is the saturation curve for the particular total air
pressure upon the surface of the conical model, which was approximately
1 atmosphere. The air at the surface of the model is considered to be
initially at the dry adiabatic wall temperature and therefore is practi-
cally dry. Evaporation of water is assumed to take place into the air
until saturation occurs. The air temperature is thereby lowered, but
the enthalpy or total heat content must remain constant. In reading

the chart, start with the dry-air adisbatic wall temperature, proceed
along a curve of constant enthalpy until the saturation curve is reached,
and there read the temperature of the air-water vapor mixture adjacent
to the water film on the model. Under steady cooling, this temperature
must also be the temperature of the water film and hence the skin tempera-
ture. When the dry adiabatic wall temperature of 500° F employed in the
tests is used, the calculated skin temperature is found to be 124° F;
this value agrees almost exactly with the measured skin temperature.

These exploratory tests show that water-transpiration cooling
produces large reductions in equilibrium skin temperature at Mach number 2
at high Reynolds numbers. These tests show that on an 8° cone in axially
symmetric flow the cooling is nearly uniform for a considerable distance
downstream of the point of water release; therefore, the entire cooled
surface need not be porous, and heavy and expensive double-wall construc-
tion associated with a continuous porous skin may not be required. The
physical process of the cooling phencmenon has been visuaslized as that
of evaporation, and the degree of cooling so calculated was found to
agree with experiment. Although one is tempted to proceed to the pre-
diction of the skin temperature under transpiration cooling at other
Mach numbers, altitudes, and with other cooling liquids, it is considered
that further tests should be performed before confidence could be placed
in such predictions.
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MODEL EXPERIMENTS OF BOMB RELEASES AT SUPERSONIC SPEEDS
By Robert W. Rainey

Langley Aeronautical Laboratory
INTRODUCTION

A recent problem of major concern with regard to supersonic bomber-
type aircraft is the attainment of successful release and breakaway
characteristics of bombs or stores. For the release and breakaway to
be successful, certain essential performance requirements must be met
which concern both the aircraft and the bomb or store. Insofar as the
aircraft is concerned, the bomb must not strike or endanger the air-
craft or its equipment; with regard to the bomb, it not only must clear
the aircraft but, because of possible instrumentation within the bomb,
1t must also avoid rapid accelerations and decelerations and, conse-
quently, appreciable angles of pitch and yaw. It becomes apparent that
the interference factors which might cause the bomb to diverge from a
near-level attitude during release and breakaway must be minimized.

In an effort to shed some light on this release problem, drop tests
have been made in the langley 9-inch supersonic tunnel at a Mach number
of 1.62 of four bamb shapes released from several fuselage bomb-bay con-
figurations and from several pylons beneath a swept wing. These tests
were primarily of an exploratory nature to determine what first-order
detrimental interference effects are involved. In these tests the break-
away characteristics and initial trajectories were observed and recorded.
Approximately 230 drop tests have been made to date.

MODEL CONFIGURATIONS

As shown in figure 1, the four bomb configurations consisted of
a 1/30-sca1e model of the 500-pound Douglas Aircraft Co. store shape
having a fineness ratio of about 8.6, the same body shape but with
enlarged and modified tail fins, and two models having fineness ratios
of 5 and 7 which were equipped with the same enlarged fins. The fore-
bodies and afterbodies of each of the two latter configurations consisted
of circular arcs of revolution joined tangentially at 40 percent of the
body length. The actual body length of all models was gbout the same and

was approximately 3% inches.

In figure 2 are presented five of the fuselage—bomb-bay configu-
rations, and their designations, from which bomb-drop tests were made.
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The fuselage was mounted from the tunnel side wall beneath a wing having
a rectangular plan form and wedge leading and trailing edges. The bombs
were held in place in a 45° roll attitude by a spring-loaded wire and '
were released mechanically in a manner which did not disturb the bomb; -
at the same time the drop was photographed with a high-speed motion-

picture camera which took approximately 1000 frames per second.

In figure 3 is presented a typical bomb-wing-pylon installation.
The wing was mounted on the tunnel side wall and was an untapered,
300 swept wing having an NACA 65-009 airfoil section normal to the
leading edge. The majority of the drop tests to determine the effects
of variation in simulated altitude and chordwise and vertical location
of the bomb installation were made from the 80-percent-semispan station.
Here again the bombs were released manually, and their release character-
istics were recorded by a high-speed motion-picture camera.

SIMILARITY RELATION

Because the Mach number had to be duplicated and because of the *
limitations of tunnel operation and tunnel size, complete simulation of
prototype conditions is impossible and simulation is restricted to -

dynamic pressure and bomb mass. Therefore, the ratio of the drag to the
gravitational force is simulated:

( Drag ) _ ( Drag > *
Gravity force prototype Gravity force model

This means that the path of the model center of gravity essentially
duplicates the path of the prototype center of gravity.

This drag-—gravitational-force ratio reduces to the form:

2 2

wl5 w15

prototype model

where Cp in the drag coefficient, q 1is the dynamic pressure, 1 1is

a representative length, and w is the average bomb density. TFor these

tests, Cp was assumed equal to Cp 3 therefore,
prototype model o

() - (@)
Wi/prototype  \¥!/model
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For these tests the prototype was assumed to be a 500-pound Douglas
Aireraft Co. store which establishes Zprototype and wprototype which

is given in the following table along with the average bamb densities
for three other bambs:

Average bomb
Bomb density, w,
1b/cu ft
500-1b Douglas Aircraft Co. store 91
500-1b General-purpose M-43 151
1,000-1b General-purpose M-Lh 158
10,000-1b Standard 131

Altitudes were assumed to vary from about sea level to about 40,000 feet
which established Yprototype* Limitations in tunnel size determined

lnode1s and, in order to fulfill the similarity relation, Logel
divided by wp.ge.1 had to be of small magnitude. Therefore, the tunnel

was operated at low stagnation pressures, and the models were constructed
of lead. Variations in prototype altitude were simulated through vari-
ations in tunnel stagnation pressure and, consequently, tunnel dynamic
pressure. For a given simulated altitude, the tunnel dynamic pressure
was the same for all models, and the shape of the trajectory at one
simulated altitude might be essentially the same as that for the same
bomb configuration with a different density and at a different altitude.

The inadequacy of the unavoidably low Reynolds numbers of the tests
1s recognized; however, as shown in figure 4 which presents results from
reference 1, the bomb configurations are stable about their centers of
gravity in the upper Reynolds number range of these drop tests. Schlieren
photographs also presented in reference 1 indicated that, in the upper
limit of the Reynolds number range of these drop tests, the flow separated
at the maximum diameters of the models; therefore, center-of-pressure
shifts, if any, would be expected to be small at lower Reynolds numbers.
Further, there are no forward center-of-pressure shifts as & result of

increasing the Reynolds number to 10 X 106, and rearward shifts are small,
with the possible exclusion of the Douglas Aircraft Co. store. The
Reynolds number inadequacy can, therefore, be discarded as having any
overshadowing effect in the drop tests. Attention is drawn to the large
shift in center of pressure which results from enlarging and modifying
the fins on the Douglas Aircraft Co. store shape.

As previously stated, it was assumed that the prototype drag coef-
ficient is the same as the model drag coefficient in the similarity
relation; however, as also presented in reference 1, the model drag
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coefficients were considerably lower than the prototype drag coef-
ficients, and this would show up as an increase in simulated altitude.

Because the moment-of-inertia requirements for simulation are not
met, the model attitude is representative of prototype attitude in level
or near-level drops only; however, it is emphasized that the purpose of
these tests is to achieve level or near-level drops. In order to assess
the release characteristics of these bomb drops, the film records have
been plotted in the form of trajectory diagrams to show the attitude and
position of the bombs every 1/120 second. As a matter of convenience in
presenting the results, each release has been classified as good,
marginal, or unacceptable. It should be remenmbered that, because moment
of inertia is not simulated, these classifications primarily specify the
relative severity of the interference effects upon the bomb. An example
of each of the three classifications is presented in figure 5. These
releases were made from the fuselage with the conventional box-type bomb
bay.

A release classified as good always cleared the aircraft end mein-
tained a near-level attitude. Such model releases should be applicable
to the prototype conditions because moment-of-inertia simulation is not
required for the near-level drops. All other releases involved changes
in attitude; therefore, the extent to which these releases simulate the
prototype conditions is doubtful. It is possible to separate these
remaining releases into two catagories; one, classified as marginal, in
which only moderate interference effects appear evident and the model

bomb did not undergo extreme changes in attitude and cleared the fuselage

in good fashion, and, two, classified as unacceptable, in which large
interference effects appear evident and the model bomb undergoes large
changes in attitude and also might endanger the fuselage. The bound-
aries of these two catagories are arbitrary and subject to individual
interpretation.

RESULTS AND DISCUSSION

Bomb Releases From Fuselage

In analyzing the bomb releases made from the conventional box-type
bomb bay (see table I and fig. 6), it was found that the nose-down
tendency, shown in figure 5, could te lessened through an increase in
body size or a decrease in fin size. Tuft studies of the flow within
the bomb bay indicated that a strong counterclockwise circulation of
flow was present similar to that noted previously during a subsonic
bomb~drop investigation in the Langley 300 MPH 7- by 10-foot tunnel and
reported in reference 2. Apparently the increase in body size, accom-
plished by a reduction in fineness ratio, restricted and weakened this
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flow circulation, thereby reducing the nose-down attitude of the bomb
during release. Iikewise, the smeller fins on the Douglas Aircraft Co.
store resulted in a smaller increment of interference 1lift at the tail
and lessened the nose-down pitching-moment increment. Increases in
simulated altitude generally improved the release characteristics, and
good releases were obtained with the Douglas Aircraft Co. store and the
bomb of fineness ratio 5 at a simulated altitude of 40,000 feet only.

Efforts to lessen the nose-down tendency during the release phases
of the Douglas Aircraft Co. store at lower altitudes included the instal-
lation of solid and perforated spoilers at the front of the bomb bay,
setting the fuselage at positive and negative angle of attack of 4° and
setting the bomb at a positive angle of incidence of 4° with the fuselage
at o° angle of attack. Improvement of the release characteristics was
obtained only in the case of the fuselage at a negative angle of attack
of 4°, and good releases were obtained at simulated altitudes of 30,000
and 40,000 feet. It was also found that the installation of three baffles
across the interior of the bomb bay would alter the flow within the bomb
bay sufficiently to obtain good drops with all bombs over a relatively
wide range of simulated altitudes.

Removal of the forward and rearward inner portions of the fuselage
modified the box-type bomb bay into a complete channel (see fig. 2).
This alleviated the aforementioned flow circulation and removed most of
the nose-down tendency; the small nose-down tendency which remained was
probably due to the flow blockage and pressure increase between the top
of the channel and the forward portions of the bombs (see fig. 6).
Changes in bomb configurations or simulated altitude had little effect
upon the releases, all of which were marginal or good (see table I).

The bomb releases from the semiexternal bomb bay showed strong
nose-up tendencies, and the only good releases obtained were with the
bombs of fineness ratio 8.6 at 30,000 feet (see teble I and fig. 7). It
is believed that the bomb cavity deflected the flow downward onto the
afterportions of the bomb during the initial release phases and caused
the nose-up tendency. Suspending the bomb on struts 0.2 bomb length
below the fuselage (see the semiexternal bomb bay with struts in figs. 2
and 7) did not remove the bomb far enough from the cavity to improve the
release characteristics. However, removing the cavity, as in the case
of the external bomb bay, did alleviate the situation, and good drops
were obtained over a relatively wide range of altitudes for the large-
finned bombs. In using these three latter bomb bays, increases in static
margin of the bomb or simulated altitude were beneficial to the release
characteristics (see table I).
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Bomb Releases From Wing Pylons

The majority of the wing-pylon releases, as shown in figure 3, were
made from the 80-percent-semispan station using a short-chord pylon at
20,000 and 30,000 feet simulated altitudes. The Douglas Aircraft Co.
store was not used in these tests. DBecause the flow beneath the wing
impinged on the forward portions of the bombs, unacceptable nose-down
tendencies were evident for all bombs released from position I (see
fig. 8), and the fins gouged into the lower wing surface. Shifting the
bombs to position IT or IIT did not relieve the condition appreciably;
however, at position IV the nose-down tendency was replaced by nose-up
tendencies for the bombs of fineness ratio 5 and 7 resulting in marginal

releases., Good releases were obtained with the bomb of fineness ratio 8.6.

A summary of the wing-pylon releases is presented in table IT. In an
effort to alleviate the fin gouging noted during the releases of the
bombs at position I, the trailing edge of the pylon was extended to the
rear of the bomb so that during the nose-down portion of the release, the
rotation would take place about the rear of the bomb. This pylon is
designated the long-chord pylon in figure 8. This scheme was effective
in eliminating the fin gouging of all bombs; and, in the case of the
bombs of fineness ratio 7 and 8.6, the release characteristics were mar-
ginal at all simulated altitudes as compared to unacceptsble for the
short-chord-pylon releases.

Two additional releases were made from the 4O-percent-semispan sta-
tion using the bomb of fineness ratlio 7 at position III. No changes in
the release characteristics were evident as & result of moving the bomb-
release station inboard.

CONCLUSIONS

As a result of these bomb-drop tests at a Mach number of 1.62, the
following conclusions are indicated:

1. The effects of increasing altitude were, in most cases, bene-

ficial to the release characteristics of a bomb; these effects were never
detrimental.

2. In making releases from an internal box-type bomb bay of the
type common to subsonic bombers, it appears beneficial to reduce the
flow circulation within the bomb bay by reducing the clearance around
the bomb or by using baffles.

3. In general, the release characteristics of bomb drops from the
complete channel, the external bomb bay, and the box-type bomb bay with

baffles were superior throughout a wide range of altitudes to the releases

from the other bomb bays.
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L, In making releases from semiexternal or external mounts below
the fuselage and from pylons beneath the wing, an increase in static
margin improves the release characteristics.

5. The bomb position which results in the best releases from the
wing-pylon mount appears to be very close to that which gives the least

drag rise due to the addition of a similar bomb-pylon installation as
indicated in reference 3.
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TABLE T.- SUMMARY CHART OF RELEASES FROM FUSELAGES
¥Release characteristics at
i d itud -
Bomb simulated altitudes of Bomb motion
Bomb-bay .
confi ations fineness for M and U
gur ratio 10,000 |20, 000 |30, 000{40,000 |classifications
ft ft ft ft
5 M M G
Conventional T u U M
box type 8.6 U U U Nosed down
8.6 (p.A.C.)| U U M G
Conventional >
box + T M G Slight nose-up,
X Lype 8.6 G G then nose-down
5 M M M
Complete T M M M Nosed down
channel 8.6 M M G slightly
8.6 (D.A.C.)| M M M
5 U U
Semiexternal 876 g bG/I Nosed up
8.6 (D.A.C.)| U G
5 U U 4]
Semiexternal T M M M Nosed up
with struts 8.6 M M G
8.6 (D.A.C.)| U G
5 M M G
External 1 G G G Nosed u
8.6 G G G P
8.6 (D.A.C.)| U M G
*C- = Good. 'W
M = Marginal.
U = Unacceptable.




TABLE II.- SUMMARY CHART OF WING-PYLON RELEASES

8Release characteristics at
Bomb Bomb simulated altitudes of - Bomb motion
9?, fineness for M and U
position ratio 20,000 30,000 classifications
ft ft
SHORT-PYLON RESULTS
5 U U
I 7 U U Nosed down
8.6 U U
5 U U .
IT T U U Nosed down
8.6 M M
5 U U
I11 T U U Nosed down
8.6 U U
p) U M
Iv T U M Nosed up
8.6 bg G
LONG-PYLON RESULTS
5 U U
I T Dy M Nosed down
8.6 by M
~_NACA
8G = Good s
M = Marginal
U = Unacceptable.

bRelease characteristics were marginal at 10,000 feet.




L ] [
(X XX X

SRS R I I
. .o. oe :.: ..: ..0 .‘: o.:
CONFIDENTTAL ® .
BOMB CONFIGURATIONS TESTED Ry
FIN SPAN: -
< ecg S 20! oy

FINENESS RATIO, 8.6
DOUGLAS AIRCRAFT CO. STORE

23 Ouax
] MAXIMUM DIAMETER,
FINENESS RATIO, 8.6 e 205 LENGTH
- CENTER OF GRAVITY,
< @cg =% 191Dmax Cg, AT APPROX.45%
Y LENGTH

FINENESS RATIO, 7.0

ﬁ
@

“_NACA

FINENESS RATIO, 5.0

Figure 1 *

BOMB-BAY CONFIGURATIONS

WIND-TUNNEL
SIDE WALL
N . - .
===
b—J CONVENTIONAL BOX TYPE
BOMB LENGTH 3
- - oo T ==

COMPLETE CHANNEL

E— —

SEMIEXTERNAL

SEMIEXTERNAL WITH STRUTS

EXTERNAL

Figure 2




LI}

NOSE

WIND-TUNNEL SIDE WALL
PYLON AT 40%-SEMISPAN STATION
NACA 65-009

PYLON AT 80%-SEMISPAN
STATION (MAJORITY OF
DROP TESTS)

777,

>
SWAY-BRACE
Figure 3

CENTER-OF-PRESSURE POSITION OF BOMBS AT @=0°

o]
-£<: ~— REYNOLDS NUMBER RANGE OF THESE TESTS
4 _é—TYPICAL CENTER-OF -GRAVITY LOCATION {0451)
B
\
PY/SEAN X
\L \ AN
1ol FR=50 FR.=70 FR:=86 FR=86(D.AC)
L 1 I 1 1 1 L 1 1 1 J
2 4 6 8 10x108
REYNOLDS NUMBER
Pigure 4




‘
*
(XX X ¥

12

- - - - - A J L J o0® e
. . e o o o o o e o o
g . L4 * o [ ° ee o o
e e L] (XX . . o o o
. o ®e @ o see oo o0e e

CONFIDENTIAL
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CONSIDERATIONS AFFECTING HYDRO-SKI ATRPLANE DESIGN
By Kenneth L. Wadlin

Langley Aeronautical Laboratory

Several methods of basing and operating airplanes become possible
when the airplanes are equipped with hydro-skis. This paper, however,
will be concerned only with the fully water-based hydro-ski airplane
that starts at rest in the water and makes the complete teke-off and
landing run on the water. An airplane of this type is shown in figure 1.
Before discussing the hydrodynamic performance of this type of airplane,
it may be well to consider how the application of hydro-skis affects
supersonic configurations. Such details as the location of the wing,
tail, air intakes, and jet exhaust must be examined with reference to
the peculiarities of water operation.

The airplane shown in figure 1 was derived from the D-558-I1 research
airplane. The location of the air intakes of the D-558-II on the under
side of the fuselage is an example of how water operation influences the
aerodynamic configuration. This location is obviously not suitable for
the water-based hydro-ski airplane since the intakes would be submerged
when the airplane is at rest and at low speeds. The air intakes were,
therefore, moved to the upper portion of the fuselage. Also, the jet
and rocket exhausts were inverted to keep the jet exhaust as high as
possible. Tests have shown that air intakes in this position can be
kept clear of water by the use of small strips placed along the fuselage
center line below the intakes and extending forward to the nose.

For airplanes of this type, portions of the aerodynamic surfaces
may be wetted or even be under water at rest and at low speeds and be
subjected to hydrodynamic loads. The dynamic pressure of the water at
these low speeds, however, is of the same order as the dynamic pressure
of the air at supersonic speeds. For example, the dynamic pressure of
the water at 45 fps is comparable to that encountered in the air at a
Mach number of 1.2. Hydro-skis normally raise most of the airplane clear
of the water at speeds under 45 fps; therefore, airplanes that operate
at supersonic airspeeds will, because of aerodynamic requirements, nor-
mally be designed to a strength of the order of that necessary for the
water loads encountered by aerodynamic surfaces.

In considering the take-off performance of the hydro-ski airplane,
water resistance is generally one of the first problems to arise. A
typical water-resistance curve for a hydro-ski airplane is presented in
figure 2. As the water speed is increased, the resistance rises rapidly
to a peak value or "hump." This rapid rise occurs when the fuselage is
carrying most of the load. The hump occurs in the speed range where
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the skis are emerging from the submerged to the planing condition. As

the speed increases further, the hydrodynamic load is transferred entirely *
to the skis and the resistance decreases because of inherent decreases in
load and angle of attack. Also included in this figure are the resistance
of the fuselage alone and of the planing skls alone when the fuselage and
the skis are operating under the same load conditions. These two com-
ponents are the primary sources of the hydrodynamic resistance. However,
for a hydro-ski airplane when the load 1s divided between the fuselage and
the skis, other factors, such as the hydrodynamic resistance of the sup-
porting struts and wetted portions of the wing, spray, and interference
effects, influence the total hydrodynamic resistance. These factors
result in the over-all resistance differing from the dashed-line curves
shown for the two principal components.

The resistance of the fuselage rises rapidly and indefinitely with
speed while the planing resistance of the skis decreases as the speed is
increased and becomes zero, of course, when the skls leave the water at
take-off. If the fuselage were not lifted clear of the water, the resist-
ance would continue to rise and the airplane would not take off. It is
necessary, therefore, for the skis to ralse the fuselage clear of the
water before the take-off resistance of the airplane exceeds the availa- »
ble thrust. The characteristics of the skis selected must be such that
the intersection of the separate resistance curves for the fuselage and
the skis occurs at an acceptable value of resistance.

The remainder of this paper summarizes hydrodynamic investigations
by the National Advisory Committee for Aeronautics of fuselages, hydro-
skis, and struts and how the results of these investigations may be
used to assist in the design of hydro-ski airplanes. Investigations on
complete configurations are reported in references 1 to 11. The scope
of the available NACA information is shown in figures 3 and k. Data
have been obtained for three streamline bodies of revolution having
fineness ratios of 6, 9, and 12, for a body having a fineness ratio of 9
but modified to increase the longitudinal curvature, and for a fuselage
having a fineness ratio of 9 with the aft end modified to accomodate a
jet exhaust (refs. 12 to 15).

At speeds where the skis are submerged, the struts supporting the
skis contribute to the total resistance. The resistance of the struts
at preemergence speeds, which are generally below the inception of cavita-
tion, is estimated to be less than 5 percent of the total hydrodynamic
resistance. Surface-piercing strute at zero yaw have been investigated
at speeds up to 80 fps at several depths of immersion, with zero rake
and raked 30° forward and aft (ref. 16). NACA 66-series airfoil sec-
tions of 12 and 21 percent thickness were used.

The range of ski shapes covered is shown in figure 4. The plan
forms for which planing data have been obtained include rectangular and

o h
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triangular forms, and rectangular forms with triangular aft ends. The
triangular aft ends have been found to be of interest because of their
improved stability and lower landing loads as compared with rectangular
aft ends. The cross sections include curved-bottom shapes, flat and
V-bottom shapes with several dead-rise angles and flared and vertical
chines (refs. 17 to 22). Planing data have been obtained for a flat
ski with taxying wheels of several sizes and cross sections located at
a variety of positions with respect to the ski (refs. 23 and 24). In
addition, data have been obtained in the submerged condition for flat
plates having length-beam ratios of 8, 4, and 1.

From fuselage data (refs. 12 to 15), it is possible to determine
the maximum speed which a fuselage can attain before exceeding a speci-
fied value of resistance. Figure 5 presents such data as a plot of the
lift-resistance ratio of several fuselages against the Froude number.
The Froude number is the speed divided by the square root of the product
of the gravitational constant and the wetted length. Tt is usually the
governing parameter when, as in the case of the fuselage, wave-making
resistance is predominant. When plotted in this manner, the data for
each fuselage at various speeds and loads fall along a single curve.
From these curves the speed at which the fuselage must clear the water
to attain a given lift-resistance ratio can be estimated.

Since in the low-speed range the hydrodynamic 1ift supports nearly
all the weight of the airplane and since the resistance cannot exceed
the thrust available for take-off, the minimm allowable lift-resistance
ratio is determined by the ratio of weight to thrust of the airplane.
The thrust of recent high-speed airplanes has been such that the required
lift-resistance ratio falls between 2.5 and 4. In this range of 1lift-
resistance ratios, fuselages in general would have to be lifted clear
of the water at a Froude number of approximately 1.3, which corresponds
to a speed of 45 fps if the fuselage is 40 feet long, or 65 fps if
80 feet long. A hydro-ski that will 1ift the fuselage from the water
at this speed can be selected by using data similar to that given in
figures 6 and 7.

Figure 6 presents the variation of hydrodynamic 1ift coefficient
with angle of attack (where the 1ift coefficient is based on the wetted
area) for a flat ski, a curved-bottom ski suitable for flush retraction
into a streamline fuselage, and for a curved ski with vertical chine
strips equal to 10 percent of the beam. The data shown are for a wetted
length-beam ratio of 4. These 1ift curves are nonlinear as for low-
aspect-ratio airfoils. The convex ski has lower 1lift at all angles of
attack than the flat-bottom ski. The addition of vertical chines to
the curved-bottom ski, however, increases the 1ift to values larger than
for the flat ski.
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Figure 7 presents the variation of lift-resistance ratio with 1lift
coefficient for the same three skis. The flat-bottom ski and the convex-
bottom ski have approximately the same maximum lift-resistance ratio,
whereas the convex-bottom skl with the vertical chines has a lower maxi-
mum. These maximum lift-resistance ratios occur at low 1lift coefficients.
For ease of retraction and for limiting landing loads, hydro-skis are
preferably small and must, therefore, operate at high 1ift coefficients
in the critical region of ski emergence. At the higher 1ift coefficients,
the lift-resistance ratio of the curved-bottom ski is considerably lower
than that for the flat-bottom ski. The addition of the vertical chine
strips, however, increases the lift-resistance ratio to a value higher
than that of the flat-bottom ski. In the higher range of 1ift coeffi-
cients, the lift-resistance ratio is primarily determined by the resist-
ance due to 1lift, and the ski with the greatest 1ift for a given angle
of attack will generally also have the highest lift-resistance ratio as
gshown in figures 6 and 7.

The planing data were obtained at relatively low speeds in the
towing tanks and the question of theilr validity at the high speeds
involved in the take-off and landing of present high-speed airplanes
is an obvious question. In view of this condition, the NACA has been
investigating methods of obtaining data at higher speeds. A small blow-
down water jet has been employed for an exploratory investigation. Tests
of small planing surfaces at speeds up to 200 fps have been made in this
jet. Figure 8 shows a schematic diagram of the apparatus. A high-
pressure alr supply is used to force water from a tank through a nozzle.
The nozzle has an elliptical profile and produces a rectangular stream
% inches wide and 5/h inch deep. The model is supported in the stream
by a strain-gage balance that measures 1lift, resistance, and trimming
moment which are recorded on an oscillograph simultaneously with the
pressure at the nozzle. A limited quantity of high-pressure air is
admitted to the water tank. As water is forced out of the tank, the
speed of the jet stream decreases because of the decreasing pressure of
the expanding air. In this way data are obtained at speeds from 200 fps
down to sbout 7O fps in a single run.

Figure 9 presents some of the 1ift data obtained with this apparatus
and corresponding data obtained at lower speeds in Langley tank no. 1.
The data in both cases are for a rectangular flat plate having a wetted
length-beam ratio of 4. An experimentally determined boundary-correction
factor has been applied to the data obtained in the jet, no correction
being required for the towing tank data. The data shown by the untagged
points were obtained in the jet; the tagged points are towing tank data.
The upsweep at low speeds is due to buoyancy effects which decrease
rapidly with speed and are not a consideration at the speeds in question.
Except for a slight upsweep at the highest speeds, which is believed to
be at least in part due to the boundary conditions imposed by the method
of testing, there is no appreciable variation in 1ift coefficient with

speed. The data that have been obtained ui to the present time are
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somewhat limited and have not as yet been completely analyzed; however,
indications are that there is no significant effect of speed on the 1ift
of prismatic planing surfaces, and the trends indicated by data obtained
at towing tank speeds can be expected to hold at the higher speeds encoun-
tered during landing and take-off of full-scale airplanes. For complex
surfaces, however, where negative pressures may be present, this effect

is not necessarily the case.

The considerations so far have been concerned with meeting the take-off
requirements; however, the required ski size is also influenced by the
landing-load requirements. The beam of the ski and the flight-path angle
at a given landing speed are the primary factors influencing the landing
load on the ski. Figure 10 shows the theoretical variation of landing
load factor with ski beam for a 20,000 pound airplane equipped with twin
flat-bottom rectangular skis (ref. 25). The variation for flight-path
angles of 30 and 6° are presented. It can be seen that for a given
flight-path angle the load factor increases with increasing beam. There-
fore, the beam of the ski to meet a specified load factor is limited.

The trend of decreasing load factor with decreasing beam points out the
structural advantage of the hydro-ski with its relatively narrow beam

as compared with that of a typical flying-boat hull. Although figure 10
is 1imited to rectangular skis, similar theoretical information for skis
with triangular aft ends is also available in references 26 and 27.
Since triangular skis present smaller wetted beams during the initial
phases of a landing, they will have correspondingly lower loads as indi-
cated in figure 10.

If the size of ski required for take-off is not compatible with
the landing load requirements, other load-alleviating features such as
variable area or varisble dead rise may be used. Shock absorbers may
also be used to reduce the load factor, and thereby allow more freedom
in the selection of ski proportions that will meet both take-off and
landing requirements.

The forces on the submerged hydro-ski or on its supporting struts
do not generally have a major effect on the selection of the ski size.
Force data on struts and submerged skis are, however, useful in determining
design loads when the ski is submerged. They are also useful in calcu-
lations to assess the relative hydrodynamic performance of different
configurations. Submerged ski data indicate # basic stability problem
encountered in the transition from the submerged to the planing condi-
tion. This condition is illustrated in figure 11 where the 1ift of a
flat rectangular ski is plotted against the distance of the leading edge
of the ski from the water surface measured in ski length, that is, z/1
where 1 1is the ski length and 2z is the distance of the leading edge
from the water surface. For the submerged condition, 2z is taken as
positive and indicates the draft of the ski leading edge; for the planing
condition, 2z 1is negative and indicates the vertical distance that the
ski protrudes above the water.
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Figure 11 shows that, for a fixed angle of attack, as the ski

approaches the water surface, the 1lift drops rapidly to a planing 1lift °
that is only about one-half the 1lift obtained in the deeply submerged <
condition. This decrease in 1ift will cause the ski to resubmerge when -

it breaks the water surface and rise again when the flow is reestablished.
The ski will oscillate between planing and deep submergence. One obvi-
ous way to avoid such an oscillatlion is to increase the angle of attack
sufficiently to obtain planing 1lift equal to the submerged lift. Fortu-
nately, ski-airplane configurations that have been considered have usually
provided an inherent increase in skl angle of attack because of rotation
of the airplane about the aft end of the fuselage as the ski lifts itself
toward the water surface. Configurations that do not provide an inherent
increase in angle of attack with ski emergence may still merit considera-
tion if means for manual control of angle of attack by the pilot can be
provided.

In summarizing, it may be stated that, although the many interrelated
variables involved preclude the complete design of a hydro-ski airplane
without tank tests of models of complete configurations, sufficient data
are available to make some first approximations that will assist in pre-
liminary design and to establish trends that minimize the number of tests .
required to arrive at a final design.
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SOME DESIGN CONSIDERATIONS PERTINENT TO THE ROUGH-AIR
BEHAVIOR OF AIRPIANES AT LOW ALTITUDE
By Philip Donely and Clarence L. Gillis

Langley Aeronautical Laboratory
INTRODUCTION

There are certain types of military operations that will require
flights of 1 or 2 hours duration at altitudes of 1,000 feet or less at
high subsonic speeds, speeds that must be maintained. Rough air is
encountered about 30 to 40 percent of the time at low altitudes, and
the National Advisory Committee for Aeronautics in a study found that
turbulence is of importance not only for structural strength but also
in regard to the precision of flight and also in regard to the crew's
efficiency and well-being. The study indicated that even moderately
rough air would be troublesome and the problems of flight precision and
crew reactions can be considered as new problems that may modify the
design of the airplane.

It is the purpose of this discussion to examine some of the design
variables that have a bearing on the problem. After treating the ques-
tion of what happens to an airplane and the conditions that appear
desirable, the direct effects of turbulence will be considered followed
by a discussion of the influence of some variables affecting the motions
of the airplane.

SYMBOLS
W weight, 1b
v forward speed, fps
U gust velocity, fps

dCr,/da slope of 1lift curve, per radian

A sweep angle, deg
S wing area, sq ft
p air density, slugs/cu ft
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An accelergtion increment, g .
c wing mean aerodynamic chord, ft , -
o wing mean geometric chord, ft i
A aspect ratio
AB pitch-angle increment

. dcy,
Mg mass ratio, ZW/LgE;TSc’
f frequency, cps
9 frequency, radians/ft
o4 power density, (ft/sec)2 ft
L scale of turbulence, ft .
T1/2 time to damp to half-amplitude, sec
Cl/lO cycles to damp to 1/10 amplitude )
jo] period, sec )

dCp/dC, slope of pitching-moment curve

RESULTS AND DISCUSSION

Airplane reactions of concern as to the precision of flight and
crew's reactions are illustrated in figure 1 by these short samples of
acceleration and direction records from flight at a Mach number of only
0.60 at an altitude of 1,500 feet. Although this flight is in moderate
to severe rough air, the acceleration record indicates that the crew
was being continually jolted. The heading record is of interest in that
while the crew was being jolted, the airplane developed a yawing oscilla-
tion with a period of about 3 seconds with an amplitude of il.Bo, an
oscillation not present in smooth air. This amplitude would correspond
to a miss distance of 22 feet at a 1,000-foot range or 22 mils. Similar
behavior has been noted for other airplanes, as for example the X-5 with
the wings swept 59°.

‘¢

The feelings of the crew will depend on both the acceleration
intensity and the fregquency. Figure 2 is another example of the jolting
that can be experienced. This acceleration record is a l2-second section

from a 2-minute flight (21 miles) at l,500_§éet with an F-86 airplane T
%+
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flying at M = 0.85. The complete run shows accelerations up to 1.5g
while this particular section shows small rapid oscillations at about
3 or 4 per second with peaks of about 0.2g. While the pilot had made
many runs at Mach numbers of O.4% and 0.8, he noted that this run of

2 minutes was about his limit. He felt that, at this speed and alti-
tude, the degree-of concentration and effort required to control the
airplane was so great as to jeopardize the safety of the airplane if
such flights were continued.

The decision as to how much the reactions of the airplane should
be reduced is a difficult one since it is subjective and little factual
information is available. From the short runs made with the F-86 air-
plane, it appears that moderate rough air results in a ride that is near
the safety limit. For flights of 1 or 2 hours in rough air, a sub-
stantial reduction in the acceleration level would appear to be required;
perhaps, a reduction to about 30 percent of the level shown. McFarland
in his book on human factors in air transport design (see ref. 1) indi-
cates that the work of Reihe and Meister showed that although accelerations
of £0.2g at 3 to 5 cps would be dangerous, a level of 0.0kg at these
frequencies would be merely disagreeable. This is a reduction to 20 per-
cent of the level shown on the F-86 records and assumes that a disagree-
able ride would be tolerable. In regard to airplane motions, a devia-
tion of 5 mils is considered satisfactory; thus, the motions of the B-U45
airplane at 22 mils would have to be decreased to about 25 percent of
that value to be useful under the conditions specified for this mission.
Since all considerations indicate a reduction to about 20 or 30 percent,
the acceleration record for the F-86 airplane will be used as a standard,
and a reduction by a factor 3 in acceleration or to 30 percent will be
the criterion of satisfactory behavior for moderately rough air used
herein.

The factors that are pertinent for obtaining the desired reduction
are indicated in the following relationship:

UV aCy /da  oV2 aCr /da
Anzp “/ + L7 ;)

2 W/s 2 W/s ()

The acceleration can be considered as composed of two effects: the direct
effect of the gust consisting of such quantities as airspeed, air density,
lift-curve slope, and wing loading which determine the magnitude of the
disturbance of the airplane and the indirect effects due to -the resulting
airplane motions which are represented by the pitch angle A8. Since the
speed, air density, and gust velocity are specified in this problem, the
major elements at the disposal of the designer are changes in lift-curve
slope, wing loading, and the disturbed airplane motions.
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What can be accomplished by working on the 1ift-curve slope and
wing loading will be taken up first. The remainder of the discussion
will be concerned with the second term representing the influence of
airplane motion. The indirect effects of various factors such as, sweep,
static margin, lack of a tail surface, and artificial damping will be
touched on.

Direct Effects

Three methods of obtaining a low lift-curve slope are to reduce the
aspect ratio, sweep the wing, or introduce flexibility particularly for a
sweptback wing. The effect of aspect ratio and sweep are used in combi-
nation many times. Gust-tunnel investigations, references 2 and 3, have
indicated the effectiveness of both quantities and figure 3 shows that
these investigations are borne out by flight experience. Figure 3 indi-
cates that, if an unswept-wing airplane encountered a given value of
acceleration, then the ordinate represents the acceleration that a swept -

wing airplane would experience in the same rough air with equal frequency.

To obtain the line of circle test points labeled 35°, an F-80 and an F-86
airplane were flown side by side in the same rough air at a Mach number
of about 0.6. In this case, the F-80 with about the same wing loading
and aspect ratio as the F-86 was used as the reference, and the accelera-
tion increments for equal frequency of occurrence were plotted. The
square test points labeled 59° were obtained from go-and-return flights
of the X-5 airplane in rough air at a Mach number of about O0.7. Alter-
nate runs with the wings swept 20° and 59° were made. The X-5 data for
20° sweep corrected slightly to O° were the reference conditions to
obtain the square test points. The solid lines represent the relation
between accelerations for the airplanes if the lift-curve slope is
assumed to be the only factor. As can be noted, the agreement is fairly
good.

Figure 3 indicates that reducing the lift-curve slope through the
use of sweep is quite effective. Since the F-86 acceleration record is

the basis for the reduction desired, it can be seen that, if the wings were

swept to 60° by rotation, the acceleration could be reduced from say 0.6g
to about O.kg, 30 percent or about half the desired reduction. If this
same 30-percent reduction were to be obtained by reducing aspect ratio,
the aspect ratio would have to be decreased say from 6.0 to 2.0. Unless
extreme values of sweep or aspect ratio are utilized, it does not appear
practical to obtain the reduction to 30 percent in this way. As a matter
of fact, the relation given indicates that for aspect ratio below about
1.5 the effect of sweep is not significant.

Flexibility utilizing washout under load is the third way of
obtaining low lift-curve slopes. About the only experimental evidence
is contained in reference 4. This gust-tunnel investigation of a 45°
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sweptback wing, hinged at the root, showed that a 21-percent reduction
in acceleration could be obtained if the airplane did not pitch. The
wing deflection corresponded to 20 inches per g at the tip of a wing
with a span of 100 feet. Unfortunately these tests also indicated that
adverse pitch due to forward movement of the aerodynamic center as the
wings deflected canceled half the gain. It is apparent, therefore,
that while the introduction of flexibility can be of benefit the net
gain may depend on the induced airplane motions to a high degree and
these motions may require careful consideration. So far no full-scale
experimental results are available to assess this phase of the problem.

The effect of wing loading on accelerations due to a gust are well-
known, reference 2, but for convenience are shown in figure 4 for wings
of various sweep. OSimple calculations for a single gust encounter have
been made for a 20-fps gust (about the maximum experienced by the F-86)
and a flight speed of 1,000 fps. Values of the acceleration increment
for wing loadings from 50 to 300 lb/sq £t are shown for sweeps of 0°,
500, and 60°. A delta wing of 60° would follow the 60° line quite
closely. The curves indicate that for the wings shown, the wing loading
for an unswept-wing airplane would have to be increased from 50 to about
200 1b/sq ft to reduce the acceleration to 30 percent. If a shift is
made from an unswept wing to one swept 60°, the wing loading would have
to be increased to only 100 lb/sq ft to achieve the reduction.

Indirect Effects

What can be done by modifying the second term of equation (l),
which represents in principle the effect of airplane motion, is not so
obvious. The subject of airplane motions is complex but the magnitude
of changes in acceleration have been studied since the equation indi-
cates this term may increase or decrease the acceleration. . Since con-
tinuous rough air is being dealt with, generalized harmonic analysis for
random disturbances, references 5 and 6, has been utilized in the sub-
sequent studies.

The remainder of the discussion deals with possible benefits of
modifying the stability of stable well-damped airplanes, the influence
of adverse moments due to sweep on the benefits just indicated, compari-
son of tailed and tailless configurations, and the use of artificial
damping for poorly damped motions. Although it was found that most
factors were not significant in the problem under consideration, the
study of configuration and artificial damping indicated that some
adverse effects could be eliminated or reduced.

Input spectrum.- For the analyses of the effects of modifying the
stability of well-damped airplanes and the effect of adverse moments due
to sweep, the input spectrum shown in figure 5 was used. The curve of

-
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power density ®; as a function of frequency is based primarily on air-
speed fluctuation data obtained on an L-5 airplane operating in moderately
rough air at an altitude of 400 feet. These data which are in agreement
with other samples were used to arrive at a fitted curve for isotropic
turbulence. The curve shown in figure 5 is for a scale length L of

300 feet.

For the study of tailed and tailless configurations and artificial
damping, spectra were for a lower level of turbulence. Since the basic
investigation involved experimental studies with rocket models, it was
more convenient to utilize the associated analyses. Since in this study
relative effects on models are being assessed, the actual intensity is
not significant.

Unswept -wing airplanes.- Figure 6 and table I give the characteris-
tics of the ailrplane family used to study changes in dynamic stability
obtained by varying the moment-curve slope de/dCL and the mass ratio
pg. The moment-curve slope de/dCL was varied from -0.03 to -0.08 and
the mass ratio was varied from 10 to 200. The airplanes had a weight of
100,000 pounds and were geometrically similar with a flight speed of
1,118 fps. Figure 6 indicates that the heavily loaded airplane had a
short period from 5.6 to 3.1 seconds, damping to half-amplitude in
0.9 seconds, whereas the lightly loaded airplane has an infinite short
period and is heavily damped. ©Some of these airplanes represent extreme
variations.

The response transforms were obtained by computing the step function
according to methods of reference 7 and then transforming the results to
the frequency plane. Although flight at high Mach number is assumed,
two-dimensional incompressible unsteady-lift functions and low-speed 1lift-
curve slopes were used. This was done since the available evidence,
reference 8 and other studies, is very inconclusive as to the proper
functions for gust calculations at high Mach number. Also, the airplanes
were assumed to be rigid; therefore, structural vibrations are not
included in the response calculations.

The response transforms were then multiplied by the input spectrum
of figure 5 to obtain output spectra. As noted in reference 5, the area
under the output spectrum is the mean square acceleration and the square
root of this quantity, the root-mean-square acceleration increment, will
be used as a measure of the airplane behavior.

The results are given in figure 7 as a functicn of wing loading with
de/dCL as the parametric variable. For comparison, the root-mean-
square acceleration increment for the F-86 record of which figure 2 is a
portion was 0.21 so the criterion of reduction used herein would imply
that a satisfactory value would be about 0.07. As previously noted the
direct effect of wing loading seems tc be the dominant factor and the
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influence of stability is small and unimportant for the problem at hand.
It might be noted that at low wing loadings the effect of stability was
negligible, whereas at high wing loadings a reduction in stability tends
to reduce the accelerations slightly. Other studies have shown similar
results; but, it has been found that, depending on the mass ratio and
geometry, the effect of increased stability is sometimes favorable as
indicated in reference 9.

Swept-wing airplanes.- Since the root section of a swept wing
penetrates a gust before the wing tips, an adverse pitching moment is
produced similar to that mentioned earlier for the flexible sweptback
wing. An analysis was made, therefore, to see if this factor might
cancel the direct benefits obtained through reducing the lift-curve
slope. The airplane characteristics are given in figure 8 and table II.
As in the previous case the weight was kept at 100,000 pounds, the mass
ratio was varied from 10 to 200, and the sweep was varied from O° to
60° with the aspect ratio kept unchanged. Strip theory was used to
modify the unsteady-lift functions to account for sweep. The speed was
the same as for the unswept-wing family. The airplanes were assumed to
be neutrally stable (aperiodic), and, as indicated, the time to damp to
half-amplitude varied from 0.12 second to about 0.90 second as the wing
loading increased.

In figure 9, the root-mean-square acceleration increment is again
shown as a function of wing loading. The lowest curve, indicated by the
diamond symbols, indicates the direct effect of 1lift-curve slope. This
curve was obtained by multiplying the root-mean-square acceleration
for 0O° sweep by the ratio of lift-curve slopes for the 60° and 0° sweep
cases. The difference between this curve and the 60° curve with triangle
symbols is used as a measure of the influence of pitch. At low wing
loadings, the three curves coincide indicating that the pitch had
effectively canceled the effect of reduced lift-curve slope. As the
wing loading increases, the influence of pitch is decreased so that most
of the benefit of sweep is realized. At a wing loading of 160 lb/sq,ft,
the adverse pitch increases the acceleration 14 percent. Such adverse
effects indicate increased angular motions of the airplane that might
require modification for gunnery or bombing considerations.

Airplane configuration and artificial damping.- So far all configura-
tions had well-damped motions; but, of considerable concern, are low-
damped airplane motions such as illustrated by the heading record shown
in figure 1. A configuration that may well have low damping in pitch is
one without a horizontal tail. For such configurations, the motions of
the airplanes are significant in their own right and can also lead to
increased accelerations that cancel any benefits of increased wing
loading or reduced lift-curve slope as for the cases just discussed.
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The NACA has initiated exploratory studies of the problem by means
of rocket models and analysis. The results that bear on the specific
mission will now be discussed preceded by a brief comparison of experi- P
ment and calculation to provide a measure of the validity of this and .
the preceding analyses.

Figure 10 gives the configurations tested and their dynamic char-
acteristics. The models consisted of the same forebody and wing but,
as indicated by the dashed lines, in one case the body was extended and
a horizontal tail added. The inset figures for period and cycles to
damp to l/lO amplitude indicate that both models were very stable but
the damping was poor when compared with the criterion of one cycle to
damp to 1/10 amplitude.

The output spectra with the corresponding calculated curves are
shown in figure 11 for M =~ 0.81 while the corresponding values of root-
mean-square acceleration increment are given in figure 12. The dis-
crepancy between calculation and experiment represents the combined
effects of errors in calculating the motion and accounting for the
temporal character of the input spectra during a rocket flight. The
spectra shown represent about the greatest discrepancy found and the
agreement 1s considered fairly good. Figure 12 gives an over-all
picture of the results and indicates that, considering all the experi- -
mental samples, the tailless model gave excellent results (owing in
part to the fact that stability derivatives were available from tests
of similar models) and the calculated values were a little low for the
tailed model. -

For the purpose of this paper, the experiments were not used
directly but analyses with the two configurations adjusted to give the
same natural frequency were made. In addition to the calculation for
the configurations, the effect of adding rate damping to both models
was also analyzed. The damping systems assumed control deflections
proportional to angular velocity and tiie black areas on the models
(fig. 13(b)) indicate that a trailing-edge flap was used for the tailless
model and an all-moving tail for the tailed model. For the tailless
model the flap had a chord of 0.25c and the system would respond to
1k cps. The frequency response of the control system for the tailed
model was the same.

The calculated output spectra, in figure 13, show by comparing the
solid curves that adding a tail reduced the root-mean-square accelera-
tion increment 20 percent. Although this gain is significant it is not as
great as might be expected and does not rule out tailless configurations.
Comparison of the dashed and solid curves, figure 13, indicates that the -
use of artificial damping leads to very significant gains. With damping,
the output spectra are very flat and the root-mean-square acceleration
increments were reduced about 50 percent.

S -




The effect of added damping 1s shown in a different form in fig-
ure 14 where the calculated frequency distributions are plotted for the
four cases as the number of peaks per mile as a function of the accelera-
tion increment. Inspection of figure 14 indicates that the added damping
has increased the number of small acceleration peaks for both models by
increasing the response somewhat at high frequencies. At high accelera-
tion, the benefit of the tail and of the use of artificial damping show
up quite clearly, with the damped tailed model having the lowest acceler-
ation at 10 per mile and the damped tailless model next. It is obvious
from these results that, for low-damped motions, the use of artificial
damping can reduce the accelerations due to airplane motion so that the
direct benefits can be utilized if high wing loading and reduced 1lift-
curve slope lead to such motions. It might be noted that the large gains
are made only for poorly damped configurations as tests of a rate auto-

pilot in a subsonic stable airplane indicated a reduction of only 7 per-
cent, reference 10.

CONCLUDING REMARKS

In conclusion the discussion has indicated that if a reduction in
airplane response in rough air by a factor of 3 is required for high-
subsonic-speed low-altitude flight:

(a) Increasing the wing loading and reducing the lift-curve slope
through sweep, reduced aspect ratio, or increased flexibility will be
the major factors. :

(b) The effect of moderate changes in stability for airplanes with
satisfactory characteristics does not appear significant. For configura-
tions using swept wings and those involving low damping of airplane
motions, adverse angular displacements may cancel the benefits of other
changes but the adverse effects can be significantly reduced by
artificial damping.

It might be noted in closing that solution of the gust problem for
this mission may introduce other serious problems in regard to handling
qualities or increased landing and take-off speeds.

o ose L] L .. ... ... : :Q. : :O. :.
: : :. : * : ® o .. .. : :. : :. :
‘ :.. :.. ... :.. :.: oe e L 4 ® ese oo
CONFIDENTIAL 9



14 o: .: ° o ® o o0 o
SN SN RN A AN
e ess o ::.oo .oo :.: oo: oo. oo:..
10 COfr1bENT 1AL
REFERENCES
1. McFarland, Ross A.: Human Factors in Air Transport Design. McGraw-
Hill Book Co., Inc., 1946.
2. Donely, Philip: Summary of Information Relating to Gust Loads on

10.

Airplanes. NACA Rep. 997, 1950. (Supersedes NACA TN 1976.)

. Pierce, Harold B.: Gust-Tunnel Investigation of a Wing Model With

Semichord Line Swept Back 60°. NACA TN 2204, 1950.

. Reisert, Thomas D.: Gust-Tunnel Investigation of a Flexible-Wing

Model With Semichord Line Swept Back 45°. NACA TN 1959, 1949.

Press, Harry, and Mazelsky, Bernard: A Study of the Application of

Power-Spectral Methods of Generalized Harmonic Analysis to Gust
Loads on Airplanes. NACA TN 2853, 1953.

. Liepmann, H. W.: An Approach to the Buffeting Problem From

Turbulence Considerations. Rep. No. SM-13940, Douglas Aircraft
Co., Inc., Mar. 13, 1951.

. Mazelsky, Bernard, and Diederich, Franklin W.: A Method of Deter-

mining the Effect of Airplane Stability on the Gust Load Factor.
NACA TN 2035, 1950.

. Binckley, E. T., and Funk, Jack: A Flight Investigation of the

Effects of Compressibility on Applied Gust Loads. NACA TN 1937,
1949.

. Funk, Jack, and Binckley, Earle T.: A Flight Investigation of the
Effect of Center-of-Gravity Location on Gust Loads. NACA TN 2575,

1951.

Payne, Chester B.: A Flight Investigation of Some Effects of Auto-

matic Control on Gust Loads. NACA RM L55E14a, 1953.




(XX ol
L
n . n ¢ ¢'0 G0 G0 G0 G0 ¢'o G0 (9o tott ottt a0308I UssMUMO(Q
(XXX RJ 8°0 g'0 8°0 80 8°0 8'0 g0 8°0 8'0 ) .Houn.d.w hoﬁwﬂuﬁwhw TIBY
scsee 0°02 0°le T° 46 0*0c 0°le IS8 (4 0°0c 0°le T°HG R * 33 ‘paoyd
. OTweUApoJoB UBSW TTBY
uouoo Jo a3ps BuipwaT 0% pIOYD
. oTweulpoJar usam FuiM JO
b omuw wﬁﬁwnp swmzpmn aourlsIqg
u ooo ' T¢ g e 0°98 he1g ©°eh 0°'¢g 2°T¢ 0°eH R o] ottt 33 ‘TyBY JO
o o J9quad oTweulpoass oq susTd
¢ o -IT8 JO A3TaBIB JO Joqusd
*.' . WoXJ 9oUBYSTP TEJUOZTJIOH
o 19 LIT 694 49 LTT 69 %9 LTT 694 * * * ¢ 31 bs ‘Bagm TIBY 8S0JDH
29" €29 ¢et 294 ¢e'9 g2t 294 ¢e'9 Getr Tttt s e 0 a1 fpaoyd
d oﬂgvonmm uwaW TTB]
4 Le¢ LG¢ LG ¢ Le¢ Lé ¢ 1G°¢ LG¢ LG¢ LG°¢ tovoc et e e s e ustped 1d
svece ‘adoTs sAIno-4JTT TT8L
. - ® 16T 9L°1 nG¢ 79° 1 1e°e ™y 98°T 0s-2 20°¢ Tttt ror ot 37 ‘Buis JO
. mﬁo 199u20 OTWEUAPOISB 09 auald
d -IT8 JOo A97ABIS JOo Joquad
H mhu_ H WOIJ 20UB}STP TBIUOZTIOH
osofle e G 162 0°091 8°6¢ ¢ 162 0°09T g 6¢ G 162 0°09T g6% * ' 33 bs/q7 ‘Burpeor Juiy
e cHe ce9 21cte cHe ¢29 At cHe G29 216‘e Tt 3bs ‘mogw Bupa ssoxp
nﬁ.u €Tt A g o €Tt g qtr ¢ o¢ €Tt 2-¢t 94 Tttt ottt o+ 37 ‘paogo
= ’ otweulpoase ussm JulpM
& €9°¢ ¢ 4 M4 G9'¢ €9 ¢ €9'¢ G9°¢ G9'¢ Go'¢ cotoror s ustpex aad
‘adoTs 2AINO-1JTT FUTM
¢ T'¢ ¢ 1°¢ 1°¢ 1°¢ ¢ ¢ ¢ * o+t ot ¢ ¢ 0f198a 309dse Buip
gIT T gTT‘T gTI‘T gTT‘T gIT‘T gIT T gII‘T QIT T gIT‘T * v ¢+ sdr ‘£49100TaA paBAIOg
8¢200°0 8¢200°0 8€200°0 8$200°0 8¢200°0 8¢200°0 8¢200°0 8£200°0 8L200°0 ot PH ﬂo\mwsam ‘Ka1suUsp ITY
002°c6¢ | 00S‘BTL | 000°6gg‘c | oo2‘G6s | 00G‘QTL | 000‘688‘2 | o002°C6¢ | 005‘gTL | ooo‘6ggtz | v v v v v e e e 233-8nTs
BTJI9UT JO juswom Buyosid
002 o8 0T 002 0g o1 ooe 08 o1 STttt s s v v v 0T8I SSBR
Top Top Top
80’0~ = GO = =~ €00~ = —
Ty Tap Bop

[at 0oo‘o0T “auBram 88019

SENVIIIV DNIM IJIMSNN J0 SOLISIHETOVHVHD

I 19V

O.Q ¢ 00. ' v 3 ! 4. u.



COMFIDENTTAL

22t

®¢o o ¢00 o o

G0 G0 G0 é¢'o 9] 9¢] G0 G0 G0 st o+ -+t JO3DBJ USBAUMO(Q
8°0 8°0 8°0 80 8°0 80 g°0 g0 g°0 « + + + J0q0BJ KOUSTOTIJS TTEIL
T H¢ ¢ 9% ¢ e6 ¢ ge ¢ ge 6°9L 822 6°0¢ 819 s e e e e s+ o+ g3 ‘pIoyo
oTweuApoJss uedw TIBY}
Jo 989p2 JurpesT 03 pPJIOYD
UHS..QFh@O.Hwﬁ ugom WQHB Jo
o9po BuTrTIBIZ U9aM38q S0UBLSI(
T°¢¢ 0°GH 0°06 g 0¢ g TH L°¢g 962 ¢ 0% ¢°0g s+ s s+ e e+ a7 fTTBY JO
x9quad oTweufpoase 03 suetd
~-IT8 JO K3TABIZ JO I93US80
wWoXJ 90UBLSTP TBIUOCZTJIOH
L] LGt 629 6°¢L 9¢T e T°89 Gt T0S <+ + = 37 bs ‘eoae TT83 50D
:m.m :N.N. M.A:H @Q..: :N.@ ﬂ.ﬂ.ﬂ OM._:: w\:.w Q.NH e o e e e o a s e 13 nU.HOEO
oTwBuUApPOI9® UBSW TTIBL
96 2 9¢ 2 9¢'e T ¢ g1 ¢ T ¢ 9°¢ 9°¢ 9°¢ « o+ e s+ e o - uerpes I3d
¢adors aAINO-3JTT TTBL
G9'e 09°¢ oc°L Lee aere oL*9 L¢te ¢ 2n°9 e s e e+ s - 37 ‘Bula JO
Ioquad otweukpoar o3 suetd
-ITB JO K3TABIZ JO JI93UDD
wWOIJ 20UBISTP TBFUOZTIOH
2 nee T°let g ¢ ¢ ole 8 ont L-9¢ 1" %62 G 66T 6°6¢ < ¢+ + 97 bs/qr ‘JurpeOT FUIM
L2y Lgl Laté¢ 0L¢ 189 wele ong L29 Log‘e « + » + 37 bs ‘meaw Julm SSOID
6°TT 2 91 H'ee 1T T°CT T°0¢ L°0T G HT 6°82 « e e+ s e e+ = a1 ‘proyo
oTweukposos uBaW FUTM
@m.N @m.N @m.N @H.m @H.M w._”.m w.m @.m O.m e s s s s o s s .« UpIpBI xad
‘odoTs sAIMO-3JTT SUTM
0°¢ 0°¢ 0°¢ 0°¢ o 0°¢ 0°¢ 0°¢ 0°¢ « s+ - -+ ¢ 07981 303dse Fury
QTT‘T QIT‘T gITT QTT‘T QIT‘T gIT‘T gIT'T QTT‘T QTTT « « + ¢ sdy ‘A3To0T8A PIRMIOL
§¢200°0 9¢200°0 8¢200°0 8¢200°0 8¢200°0 8¢200°0 §¢200°0 820070 8¢200°0 R 3 3o\mmzam ¢RqTSUSD ITY
008°6¢H 001418 000°192‘¢ 00L‘2g¢ 002 goL 00018 e 009¢¢¢ 000¢¢69 0004652 R L & Sl
BIISUT JO JUSWOW SUTYD3Td
002 08 0T 002 08 0T 00c 08 oT coeotot ottt 0T8I SSBH
009 =V o=V o0 =V

_Ho = Too/%yp  ¢aT 000°00T ‘3uBTem mmopcu

SANVTIJMIV ONIM IdAMS 40 SOIISIYALOVIVHD

IT T19VL




CONFIDENTIAL 13

TIME HISTORIES FOR B-45 AIRPLANE IN ROUGH AIR
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Figure 1

ACCELERATION RECORD FOR F-86 AIRPLANE

IN ROUGH AIR
M®m0.85; ALTITUDE, 1,500 FT
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FLIGHT TEST RESULTS ON SWEPT-WING AIRPLANES
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Figure 3

EFFECT OF SWEEP AND WING LOADING
ON GUST ACCELERATION
U=20 FPS; ALTITUDE, 1,000 FT; V =1000 FPS
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SPECTRUM OF TURBULENCE USED
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AIRPLANE CHARACTERISTICS
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EFFECT OF STABILITY ON GUST ACCELERATIONS
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AIRPLANE GHARACTERISTICS
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EFFECT OF PITCH ON GUST ACCELERATIONS FOR
SWEPT-WING AIRPLANES
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MODEL CHARACTERISTICS
WING
A=6
A=45°
€=9.85 IN.
TAIL
A=4
A=45°
T=6.05 IN.
3r 12
2+ RV
SE'C >~ cl/lO' 8
CYCLES
dF \ é 4
o 8 R 0



CONFIDENTIAL

CALCULATED AND MEASURED POWER SPECTRUMS
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COMPARISON OF MEASURED AND CALCULATED RESULTS
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EFFECT OF CONFIGURATION
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DISTRIBUTION OF ACCELERATION INCREMENTS
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ADDITIONAL INVESTIGATION OF THE HANDLING QUALITIES
OF AIRPLANES AT HIGH SPEEDS

By A. Scott Crossfield, Hubert M. Drake, Jack Fischel,
and Joseph A. Walker

NACA High-Speed Flight Research Station

In a paper by W. C. Williams and A. S. Crossfield (ref. l), some
characteristics of research and tactical airplanes were compared with
the handling-qualities requirements. An evaluation of these charac-
teristics was made with regard to danger, limits to usefulness of the
airplanes, and possible needs for review of the handling-qualities
requirements. A major effort to investigate these characteristics
during the past year and a half has served to clarify some of the
problems and has brought to light additional problems. This paper
is concerned with those characteristics which appear to be of major
importance that were investigated with the research airplanes. The
research airplanes have sweep, wing loading, tail volume, and tail
placement similar to most current and near-future tactical airplanes.
No direct comparison with handling-qualities requirements is attempted
because this paper is restricted to problems which are all in flagrant
violation of the requirements. The troublesome area of major impor-
tance is still the transonic region because airplanes are flying and
being manufactured to fly in this area. It is here that the most
serious problems concerning buffeting, stability and trim changes,
drag changes, and dynamic stability are encountered.

In reference 1 the accelerated flight pitch-up characteristics of
the D-558-1II, the X-4, and the F-86A are described and evaluated. A
number of fixes which wind-tunnel investigations indicated might be
promising have since been tried on the D-558-II. Figure 1 shows the

tvnes of fixes 9++mmpted and the characteristic elevet angle-of-
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attack variations for Mach numbers of 0.7 and 0.87. These fixes apply
only to the wing and none of these changes resulted in tolerable behav-
ior; however, some reduction in divergence rates was noted with full
slats and chord-extensions below a Mach number of 0.80. For a Mach
number of 0.7 with slats fully extended, D and E, the airplane retrimmed
after a typical pitch. The chord-extensions G showed similar trends
but buffeting intensities reached extreme values of 2g total amplitude.
None of the modifications provided measurable improvement between Mach
numbers of 0.8 and 0.95, the upper limit of the tests, and all were
characterized by an abrupt change in stability at the pitch-up. It

has been concluded that with the tail configuration of the D-558-IT

(hy = 69 percent ©) a real cure of the pitch-up is not feasible.
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A word of caution regarding the interpretation of these data is in
order. Above the abrupt change in stability there are unbalanced moments -
and pitching-acceleration contributions, and, therefore, caution should
be taken in static evaluation of data at angles of attack above the change.
A stable slope above the stabllity change may or may not represent a severe
pitch-up. All of these cases are pitch-ups with severity roughly in propor-
tion to the abruptness of the stability change. If pitch-ups are permitted
to develop without corrective control, violent rolling often results.

Although the stability results are somewhat negative, these investi-
gations have had considerable value in determining how to interpret flight
and wind-tunnel data. In earlier investigations the problem was not clearly
understood and, therefore, fixes selected on the basis of wind-tunnel evalu-
ation were tried that would not be tried now. Representation on the basis
of Cy against Cy 1s obscured by the nonlinear character of the higher

portion of the lift-curve slope which changes with the fixes. In addition,
these investigations brought to light that the pitch-up maneuver is of
dynamic character. The type of maneuver used, that is, a slow continuing
rate turn at constant speed, is similar to a tactical maneuver, except
that the rate is low enough to permit static-data evaluation before pitch-

up. The pilot approaches the stability change with a finite amount of .
pitching momentum which is, however, usually less than that in a typical
tactical maneuver. Compiled tactical information indicates that military .

pilots are going to use all of the 1ift capabilities they can handle in
order to line up with the target, regardless of buffeting. Only test
pilots have the fortunate circumstance of being able to concentrate on
approaching difficulties. -

The stability boundaries as influenced by normal-force coefficient
and Mach number for the D-558-II, the X-4, and the F-86A were published
in reference 1. In figure 2 the D-558-II boundary has been extended
into the supersonic region. The character of the pitch-up encountered
below a Mach number of 1.3 is similar to the transonic case with the
added difficulty that the transonic troublesome area is traversed before
recovery can be made at subsonic speeds. At a Mach number of about 1.6,
the rates of pitch or severity tended to diminish to much more control-
lable values. It is suspected that the pitch-up character begins to
change at about 1.3 where the Mach cone angle approaches the leading-
edge sweep angle.

Also shown in figure 2 are the stability boundaries for the X-5
with 60° sweep and the XF-92A. 1In addition, the 1limit of CNA reached in

tests is shown for these airplanes as well as for the X-3. The swept-
and delta-wing airplanes exhibit similar trends of decreasing CNA for

pitch-up with speed. The delta-wing XF-92A exhibited the lowest boundary.
The boundaries of the X-5 at 45° and 20° sweep have not been fully
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explored at the present time but the indications are that the boundaries
for these sweep angles are similar to those for the 60° case shown. The
large amount of unusable normal-force capability above the boundaries
should be noted.

Flight-test results on the relatively thick straight-winged X-1
envelope have been published previously and virtually blanket figure 2
except at extremely high speeds. No static longitudinal difficulties
were encountered. The X-3 with a thin low-aspect-ratio straight wing is
being demonstrated by the Douglas Aircraft Company and thus far has been
maneuvered to normal-force coefficients shown without static longitudinal
difficulty. Notice that a normal-force coefficient of 0.6 has been reached
at a Mach number of 0.93.

Approaching and penetrating the region of stability change with the
XF-92A leaves the pilot with two distinct impressions. The first is the
extreme drag due to lift which sometimes requires a loss of 10,000 feet
in an effort to maintain speed. The other impression is a periodic
behavior indicated in figure 3 which is a time history of a wind-up turn
at constant Mach number to the point of instability. Instability occurred

at lv§ seconds and was followed by a longitudinal oscillation which is

felt to be the result of static divergence between two stable regions.
Little rolling and yawing occurs. Notice that the mean control position
during the oscillation is about that required to penetrate the unstable
regions. In a similar maneuver when the control was reversed rapidly,

the acceleration went from 7%g at the peak of the pitch-up to -A%g.

This 12g change was in 1/2 second and resulted in structural damage. An
additional note may be added here with respect to fixes.

Fences were added to the XF-92A at 60 percent of the semispan from
the leading edge to the flap hinge line. The fence height was equal to
the wing maximum thickness at this span station. The fences, as a first
estimate, were selected from tests of a delta-wing airplane having a
thinner airfoil. Below a Mach number of 0.70, the stability boundary
was raised to nearly maximum normal-force coefficient where pitching
rates were encountered similar to those before but with very small
increases in 1lift. Of interest is a maneuver at a Mach number of 0.6
and below where the airplane retrimmed at 40° angle of attack with full
elevon deflection. It descended nearly vertically with full power losing
speed.

Above a Mach number of 0.80, no apparent improvement resulted from
the fences during the initial divergence. However, the previously
described oscillation appeared in a more erratic form with less amplitude.

Another type of pitch-up requires some discussion of trim and apparent

stability variations with Mach numm
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Transonic longitudinal trim characteristics are discussed in refer-
ence 1 and those of the X-5 and XF-92A have been determined since that
time. These two ailrplanes exhibit the usual trim variations with speed
but to a lesser extent than the airplanes having less sweep.

The longitudinal control effectiveness dBe/dCNA of these airplanes

follows the usual pattern. The apparent reduction in elevator power for
the XF-92A results, however, primarily from increased airplane stability
from Mach numbers of 0.85 to 0.92. Above a Mach number of 0.92, a loss in
flap effectiveness becomes apparent.

The second type of ftatic instability is experienced when decelerating
through this speed range where there are changes in trim and apparent sta-
bility. This condition occurs with all airplane configurations. The
severity of this type of pitch-up is aggravated in low-aspect-ratioc con-
figurations where drag due to 1ift 1s high.

Figure 4 shows an example of an XF-92A maneuver during which, in a
dive at a Mach number of 0.95, the pilot pulled up to the instability
boundary as evidenced at 8 seconds. Then the speed was permitted to

decrease, and from 14 to 19% seconds the control was fixed. However, the

acceleration continued to increase because of trim change and decreased
the apparent stability until the instability boundary was reentered at

about 19% seconds at a Mach number of 0.85. Notice the high response to

corrective control. During another similar maneuver at lower altitude
and lower CNA, acceleration increased from 4Yg to 7g in 4 seconds with

no control motion.

The pilot's attitude toward pitch-up is strongly influenced by the
stick-free stability of the airplane. Stick-free instability contributes
to the violence of the pitch-up. The D-558-I1 was made stick-free stable
for one speed for the slats-out case and the severity of the pitch-up was
only slightly alleviated. Provisions of more tail power for control of
pitch-up, as has been proposed, in turn make it much easier to get into
the unstable region at transonic speeds, and hence the difficulty is not
materially improved.

The pilot's attitude is also strongly influenced by pitching rates.
The current B-47A has a static instability as shown in figure 5 and is
compared with the D-558-1II; however, since divergence rates were of the
order of one-fifth or less than those of fighter-weight airplanes, the
pilot felt it was controllable to a large degree. Pitching rates of the
B-L474A are well below O.1 radian/sec, whereas the research airplanes expe-
rience rates from above 0.3 to nearly 1 radian/sec.
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A further influence on pilot's attitude toward the pitch is colored
by the additional difficulty he may experience after entering the changing
stability region. The amount of additignal g acquired before control of
the airplsne is regained, deteriorating lateral directional stability at
high 1ift, and the accelerated spinning characteristics, all of which
incidentally arise from the same source, tend to cause the pilot to dis-
like approaching the unstable region, especially if he is thinking about
it.

Now, assume that the pilot has traversed the transonic region through
the narrow corridor at low 1lift without much difficulty and he attempts a
maneuver at supersonic speed. Figure 6 illustrates the change in CNA

with Mach number of the D-558-I1 performing a turn at 50,000 feet. The
turn is initiated with adequate power for a Mach number of 1.15 and, after
only 20°© of turn, the airplane enters the unstable, high-buffeting, high-
drag, low-control region. Some of the most violent and uncontrollable
maneuvers recorded have been made when the transonic region was entered
from the high-speed side. Recognize that, at 60,000 feet and above,

CNA for 1 g flight is deep in the troublesome ares.

At the other end of the speed scale the landing problems seem to
reflect the transonic problems of basic wing plan forms. However, these
low-speed longitudinal troubles respond nicely to various fixes like fences
and slats. Also, the XF-92A with 30 lb/sq ft wing loading lands above
140 mph, which is about the speed for landing other research airplanes of
twice or more wing loading. However, this speed falls at about 15 percent
above the speed for maximm 1ift with full elevon deflection, about mini-
mum wave-off speed and close to minimum ground clearance speed. There is,
however, a landing difficulty arising from unique lateral-directional char-
acteristics. Four pilots have described what appears to them to be direc-
tional instability while landing. The airplane literally flies sideways.
This condition has been observed by the pilots and by ground and air 3
observers. No explanation of this behavior has been determined up to the
present time and investigations are continuing. Also, the high dihedral
of the XF-92A requires careful coordination of approach turns because it
overpowers the ailerons at small angles of sideslip.

Another lateral characteristic observed since publication of refer-
ence 1 is that, like other airplanes, the X-5 at 59° sweep has a tran-
sonic wing heaviness. Because the X-5 aileron effectiveness is sustained
through the transonic region, the wing heaviness 1s more easily controlled.

The ailerons present a difficulty with the X-5 because of nonlinearity
of aileron hinge moments with Mach number and 1lift. This difficulty is
manifested in a lightening of the control forces at Mach numbers above
0.92 in straight flight and in aileron "snatch" or overbalance at high
1lift. The ailerons have large sealed internal balances. These changes in

T



hinge moments make it difficult for the pilot to keep from exciting the
transonic lateral oscillation. At high angles of attack, the snatch
required use of a strap to perform precise longitudinal accelerated
maneuvers without severe inadvertent rolling.

Dynasmic lateral-directicnal considerations bring up a note to be
added to reference 1. The sustained longitudinal oscillation of the X-4
at a Mach number of 0.88 was stressed in 1951 and attributed to coupling
with small residual yawing and rolling at related frequency. This effect
has been confirmed analytically by the Ames Aeronautical Laboratory.

This small amplitude oscillation at 1 g disappeared when the airplane
static margin was increased which changed the longitudinal- and lateral-
frequency relations. However, a similar oscillation reappeared at a
Mach number of 0.9% at 2g and above, with a frequency of 2 cps and with
a total amplitude of more than 2g.

This subject brings up another type of coupling experienced on the
X-5. Cross coupling caused by engine gyroscopic moments has sn undesir-
able influence upon X-5 transonic characteristies. Figure T shows the

X-5 response at a Mach number of 0.85 to rudder and elevator pulse inputs.

Gyroscopic moments excite lateral responses to elevator inputs and longi-
tudinal response to rudder inputs. Nose-down maneuvers induce right
sideslip and, conversely, nose-up maneuvers induce left sideslip. Simi-
larly, a right turn induces a nose-down moment and a left turn induces

a nose-up moment. The interaction of these coupled motions results in
oscillatory behavior which is aggravated because the lateral-directional
natural frequency is similar to the longitudinal natural frequency. The
high dihedral contributes further to the lateral-directional oscillation.
This gyroscopic coupling is responsible in part for the unsatisfactory
transonic behavior of the X-5. Both the X-5 and the XF-92A, because of
their very high effective dihedral, are very sensitive to small disturb-
ances which easily excite small erratic motions even though the damping
of both airplanes is high. Although these motions are about three axes,
their origin is in the lateral-directional characteristics.

Adverse contributions of high dihedral to handling qualities have
been mentioned several times. The 59° X-5 and the 60° XF-92A have effec-
tive dihedral of the order of 20°. Perhaps it is important to emphasize
here that this high dihedral effect is felt to be very undesirable.
Dynamic tunnel tests indicate that, for good flying qualities for low-
aspect-ratio configurations, the ratio of CnB/CZB should be about 2 or

more, whereas with the XF-92A the ratio is less than 1/2.

The supersonic lateral dynamic behavior of the D-558-1I1 since being
described in reference 1 has been investigated further. The suggestion
made then that the motions were aggravated by low normal acceleration
has been substantiated further. Flights have been made at several
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constant values of angle of attack with either or both rudder and ailerons
fixed or both controls available to the pilot.

Figure 8 shows a run at an angle of attack of -1° during which, with
use of all controls, the pilot could prevent divergence of the oscillations.
The motion has shown a similar but less divergent nature with power off
as is also illustrated and this case is used to show the observed effect
of angle of attack. In the same speed range as with power on, a pull-up is
started at a Mach number of 1.7 with power off, and the oscillation is
damped rapidly. TFigure 9 shows the variation of the magnitude of the
yawing oscillation with angle of attack for two speeds. The magnitude
varies with speed and power, but the trend with angle of attack is the
same with either power on or power off. It is felt that the influence
of angle of attack results primarily from the change of the inclination
of the principal axis of inertia because only slight changes in lateral
derivatives occur in this angle-of-attack range.

Another lateral-directional problem has been experienced with the
X-5 which exhibits a directional divergence at 1lifts above the longitudinal-
gstability boundary. This directional divergence has led to some startling
maneuvers. Figure 10 is a time history of a push-down—pull-up maneuver
where the longitudinal-stability boundary was penetrated. The airplane
pitched, then diverged in sideslip to about 30° and a violent spin resulted
during which the rolling record went off scale at 3 radians/sec. The air-
plane continued in a horizontal accelerated spin for several seconds before
a conventional spin resulted and recovery was made. A pitch-up will not
serve as a warning for the directional divergence at a higher 1ift but
instead will probably assure its occurring. A directional divergence of
the type experienced by the X-5 is intolerable and dangerous. The D-558-11
has encountered a similar divergence at high lift.

To summarize the preceding comments, the following conclusions are
indicated:

1. In general, the transonic region of heavy buffeting, high drag,
instability, trim effectiveness, stability changes, and dynamic sta-
bility still warrants major attention.

2. Also, in general, the piteh-up, roll-off, and directional diver-
gence have their origin in local changes of spanwise 1ift distribution
at moderate to high 1lifts. With swept-wing airplanes these considera-
tions are manifested with moment changes about all three axes. Wind-
tunnel data indicate these phenomena but flight tests have been necessary
to interpret the wind-tunnel information.

3. The specific problems fall into two categories. The first is the

group of characteristics that are potentially dangerous or in any event
intolerable. These characteristics are presented as follows:
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(a) With fixes which apply only to the wing, no real solution has
been found for the intolerable and dangerous pitch-up behavior of swept- *
wing airplanes of the configurations tested at transonic snd low super-
sonic speeds.

[}

(b) Directional divergence of the type experienced by the X-5
assumes importance equal to that of pitch-up.

(c) The severe roll-off which is related to pitch-up and direc-
tional divergence in its cause is wholly as dangerous and intolerable.
Its addition to the two preceding characteristics compounds the diffi-
culty presented to the pilot.

The second category is concerned with problems which are not partic-
ularly dangerous but still do not approach the minimum handling-qualities
requirements. These problems are presented as follows:

(a) Trim and stability changes of any airplane may become important
when they induce severe pitch-up.

(b) Low-rate pitch-ups characterized by the B-47 reduce the danger -
aspect of an otherwise intolerable behavior.

(c) The sideslipping behavior in straight flight of the XF-92A may
explain its poor landing behavior.

(a) High effective dihedral of severely swept wings adversely
affects handling qualities.

(e) The supersonic lateral motions of the D-558-I1 which decrease

with increased angle of attack apparently are influenced by the change
in inclination of the principal axis of inertia with angle of attack.

REFERENCE
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RELATION BEIWEEN FLIGHT BEHAVIOR AND STALL
PROGRESSION ON SWEPT WINGS
By Steven E. Belsley and Seth B. Anderson

Ames Aeronautical Laboratory
INTRODUCTION

Previous papers have pointed out the existence of erratic moments
on an airplane when large areas of separation exist on the wing due
either to stalling or shock separation. On sweptback wings the areas
of separation begin over the outer part of the wings near the wing
tips and must be controlled if smooth flight is to be accomplished at
high values of 1lift. Although completely satisfactory control of sepa-
ration over the Mach number range has not yet been accomplished, it has
been possible to provide some improvements. It is the purpose of this
paper to point out the degree to which pilots' opinions are affected by
changes in nonlinear variations of aerodynamic parameters.

TEST EQUIPMENT

In figure 1 are shown a number of modifications designed to control
separation which were flight tested on the F-86A airplane. These are
the normal airplane with slats, cambered leading edge, extended leading
edge plus fence, and blunt trailing-edge ailerons. In this paper evalu-
ation of the modifications themselves is not the primary concern - but
rather the effect the modifications have in altering the airplane
behavior as far as the pilot is concerned.

RESULTS AND DISCUSSION

Characteristics at Low Speeds

Pitching-moment characteristics with a sharp break.- The effect of
the shape of the pitching-moment curve will be discussed first. While
the stable break shown in figure 2 by the solid curve is to be desired,
it is possible that an unsteble break (shown by the dashed curve) near
maximum 1ift coefficient can be tolerated, provided the airplane does
not pitch to large attitude. The stable break is for the F-86A with
the slats open while the dashed curve was obtained by replecing the
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slats with a cambered leading edge. These data were obtained from ref-
erence 1. Note that the elevator-angle variation for trim obtained from
flight tests was very similar for both cases. The pilot was aware of

the nose-down behavior of the aircraft at the stall for the slats-open
case; however, for the cambered leading edge, the pilot was not conscious
of a pitch-up. Examination of the time histories indicated that the air-
plane actually did attain a nose-up pitching velocity of 0.2 radians per
second; however, this occurred after Clmax and therefore was accom-

plished by a decrease in normal acceleration. It is believed that the
pilots' insensitivity to the pitch-up associated with this type of
pitching-moment break is primarily due to the absence of any inad-
vertent increase in normal acceleration. This is in contrast to the
results obtained at higher speeds which will be covered later in this
paper.

Rolling-moment characteristics.- For the airplane with the cambered
leading edge, the pilot was aware of a severe roll-off. This prompted
a closer study of the wind-tunnel measured characteristics which would
be indicative of such a roll-off. 1In general, the only guide for antici-
pating this type of stall behavior from wind-tunnel tests has been from
an inspection of the relative sharpness of lift-curve peaks coupled with
tuft studies of stall progression on the wing. A sharp lift-curve peak
is usually indicative of a rapid stall progression and large rolling
moments. With this in mind, note in figure 3 the 1lift curves and rolling
moments near maximum 1ift taken from full-scale wind-tunnel tests for the
normal airplane with slats open and with the cambered leading edge. For
the normal airplane the lift-curve peak is fairly smooth and well-rounded
while for the cambered leading edge the lift-curve peak has a sharp
break. Tt is seen that for the normal slats-open case the rolling
moments through the stall are fairly small; however, for the cambered
leading edge the rolling-moment variation above the stall is of large
magnitude.

Stalls in flight indicated a correlation between the pilot's opinion
of the suitability of the stall and the magnitude of the rolling motions
(ref. 2), in that the objectionable stall was accompanied with large
rolling motions. If these results were able to be interpreted simply
in terms of static wind-tunnel measurements, some insight would be had
into what to look for in the wind tunnel. Considering only gross effects
leads one to believe that the objectionable airplane rolling motions must
be due to the large rolling moments indicated previously. A comparison
of pilots' opinions of the suitability of the stall with the rolling
moments at the stall obtained from static wind-tunnel measurements at
zero sideslip for a number of configurations yielded the results pre-
sented in figure 4 (ref. 3). These magnitudes were not a function of
the asymmetry of the airplane since similar magnitudes of rolling-
moment coefficient were obtained when the airplane was stalled at various
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constant values of sideslip. It is shown that a reasonable correlation
can be achieved, indicating that if the rolling-moment coefficient at
the stall is kept below 0.0l the chance is very good that the stalling
characteristics will be considered satisfactory, while values above 0.03
will be unsatisfactory. The correlation is good enough to be used as a
guide during wind-tunnel tests of a prototype or for comparisons between
various schemes designed to increase the maximum 1lift capabilities of
the aircraft where good stalling characteristics are necessary. It
should be noted that the rolling-moment criteria shown in figure 4 are
limited to the type and size of aircraft tested. In addition these
results were obtained at flight values of Reynolds number.

Pitching-moment characteristics with a graduasl break.- In this
section the gradual break in pitching moment will be covered in contrast
to the sharp pitching-moment break previously discussed. An example of
this type of pitching-moment variation is shown in figure 5 for the
RF-84F at low speeds (ref. 4). Note that the pitching-moment variations
depart from linearity well before maximum lift. For the unmodified air-
plane shown by the solid curve, the pilot was well aware of longitudinal
instability in approaching the stall. Although there was little or no
tendency to roll-off, the stall was considered unsatisfactory because of
the necessity of applying continually increasing down-elevator as the
speed was reduced and the possibility of running out of elevator control
to check any dynamic maneuvers. The elevator angle required for trim for
this condition is also shown in figure 5. These results are for a wings-
level straight-flight stall. This pitching-moment characteristic was
particularly objectionable at higher speeds, such as in an approach turn,
because of the uncontrolled increase in normal acceleration. Addition
of a blunt leading edge over the outboard part of the wing plus a fence
changed the pitching-moment variation to that shown by the dashed curve.
To the pilot this resulted in an improvement over the unmodified air-
plane in the approach to the stall. This is reflected in the variation
of elevator angle with airspeed which indicates an over-all increased
stability in approaching the stall. Although a pitch-up is still evident
with this improvement and would be unacceptable under the Air Force
flying-qualities requirements, it was not considered violent, was easily
controlled by the pilots, and was preceded by adequate warning in the
form of buffet (ref. 5). 1In addition, it is felt that the effectiveness
of the longitudinal control would greatly influence pilot opinion of the
controllability of an airplane with this type of pitching-moment vari-
ation. A very effective control would result in smaller stick movements,
and hence the instability apparent to the pilot would be reduced.
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Characteristics at High Speeds

Normal airplane characteristics.- Going now to higher speeds, the oS
effects of Mach number in modifiying the shape of the pitching-moment
curves for the F-86A aircraft are shown in figure 6. It will be noted
that the pitching-moment variation with Cy goes from a gradual break

at a Mach number of 0.80 to a more abrupt break at a Mach number of
about 0.90. These pitching-moment variations are reflected in the
elevator angle and elevator control-force variation with g, showing
gradual variations for trim at 0.80 Mach number and more abrupt vari-
ations at 0.90 Mach number (ref. 6). At high altitude the pilot felt
that the pitch-up at 0.80 Mach number was rather mild but still objec-
tionable, while at 0.90 Mach number the pitch-up was very abrupt and
considered extremely unsatisfactory. At 35,000 feet the pitch-up may
result in an overshoot of about lg and a positive pitching velocity of
about 0.3 radian per second at 0.80 Mach number and as much as g
overshoot and 0.6 radian per second at 0.90 Mach number. As far as
the pilot is concerned, the pitch-up at high Mach numbers is mainly a
longitudinal disturbance although lateral unsteadiness or roll-off may
precede the piltch-up and be troublesome in precise maneuvers such &as in
a tracking run.

»

Effect of modifications.- Obviously the pitch-up at high Mach num- -
bers is undesirable, and various modifications have been flight tested
in an attempt to eliminate or modify it. Shown in figure 7 are tuft
patterns obtained in flight at 0.82 Mach number. Also shown in figure 7
is the wing-fuselage pitching moment. DNote first, for the normal air- -
plane, the separation starting at midchord, spreading rearward and out-
board with increase in Cy. Note also the pitching-moment changes

accompanying the separation growth. Now Iinspect the right-hand side of
the figure where results are shown for a 15-percent chord-extension

plus an outboard fence. Here it is shown that separation starts at the
midspan position and spreads predominantly inboard with increase in Cy-

The wing-fuselage pitching-moment changes accompanying this separation
spread show a stable variation with increase in CN. Although the pilot

felt that he had improved control at the higher values of 1lift for the
configuration with the extended leading edge, he was not completely
satisfied. The reason for this is reflected in the data presented in
figure 8, which show the total airplane pitching-moment curves and the
elevator and stick-force variations with g for the normal and modified
airplanes. It was found that the pilot objected to the region of neutral
stability which occurred too close to level flight Cy values at high

altitude. TIn summing up the effect of modifications at this lower Mach

number region near 0.80, it is interesting to note that the use of out- k)
board slats also resulted in improved pitching-moment characteristics

while the use of fences alone did not provide any improvement (ref. 7).
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In the Mach number range around 0.90 a different type of separation
pattern was evident from tuft studies taken in flight and are shown in
figure 9. Looking first at the normal airplane it can be observed that
initial separation takes place along the trailing-edge part of the wing
following the severe adverse pressure gradient which fans out from the
Juncture of the fuselage and the wing trailing edge. Note how the
pitching-moment changes are more abrupt - reflecting the large, pre-
dominantly outboard growth of separation. Now on the right-hand side
of the figure note for the leading-edge extension and fence how the
tuft patterns remain substantially similar to the normal airplane, the
pitching moments indicating only a slightly higher Cy value before

the unstable break. This postponement of the pitch-up was noticeable
but not particularly appreciated by the pilot, since the abruptness of
the pitch-up remained unchanged and at high altitude the acceleration
at which the pitch-up occurred was below the structural limit of the
airframe.

Another modification which was particularly effective in the Mach
number range around 0.90 was the addition of a blunt trailing edge to
the ailerons. Although the pilot felt that this was the best modifi-
cation tested on the F-86 airplane in the Mach number range around 0.90,
the reasons for his feelings were not particularly evident from the
data. Shown in figure 10 are the airplane pitching-moment curves and
control variations for the normal airplane and the airplane with the
blunt trailing-edge ailerons. For the blunt trailing-edge configuration
the pilot noted a marked improvement in control at the higher values of
1ift. Tt can be seen that by comparing with the normal airplane, the
departure from linearity in the pitching moment occurs at the same Cy
value and the over-all change in stability is about the same; however,
for the blunt trailing-edge configuration the pitching-moment variation
after the break is less unstable. This suggests that a particularly
bad pitch-up may be mitigated by flying at a more forward center-of-
gravity position, resulting in a stable rotation of the pitching-moment
curves. Another factor appreciated by the pilots for the configuration
with the blunt trailing-edge ailerons was the complete absence of a
roll-off or wing dropping for level flight 1lift values over the extent
of the tests to 1.06 Mach number.

One factor influencing the pilots' opinion of the piteh-up behavior
is the adequacy of the longitudinal control. Considering control by
elevator and all-movable tail, the stick-force variations per g are
shown in figure 11 for 35,000 feet altitude for a given airplane sta-
bility shown by this pitching-moment variation at 0.90 Mach number.

With this reduced variation in stick force offered by the all-movable
tail, the pitch-up was just noticeably apparent to the pilot. However,
even with this apparent improvement in control, the pilot's tracking
ability remained poor in the pitch-up region.
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It should be noted that in this paper, reference has been made
primarily to steady-state conditions and the pilot's reactions thereto.
Since pilot reaction may be affected also by angular accelerations
experienced in the transient, unbalanced phase of a maneuver, appli-
cation of our results to other airplanes should consider not only dif-

ferences in pitching-moment variations but also differences in the ratio

of aerodynamic moments to inertia moments.,

CONCLUSIONS

The results of this paper can be summarized as follows:

1. Unstable low-speed longitudinal-stability changes occurring at
or beyond maximum 1lift were not noticed by the pilot because of a
decreage in normal acceleration accompanying the pitch-up.

2. Satisfactory stalling characteristics are indicated if the
rolling-moment coefficient at stall is less than 0.0l.

3. Although a linear pitching-moment variation to maximum 1ift is
desired by the pilot, an airplane possessing a slow forward neutral
point shift with increase in Cy may be tolerable.

4, At high speeds presence of any pitch-up was considered unde-
sirable; however, improvements were appreciated. Regions of reduced
stability were not as objectionable as long as the airplane was stable
near maximum load factor. The use of a powerful longitudinal control
device such as an all-movable tail reduces apparent instability and
provides improved contrcl in the pitch-up region, but the pilot's
tracking remained poor.

5. Various modifications to change the pitch-up characteristics
are roughly correlated with the separation patterns measured in flight.
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MODIFICATIONS TESTED ON F-86A

| ) |

NORMAL AIRPLANE PARTIAL SPAN LEADING EDGE
WITH SLATS CHORD EXTENSION AND FENCE
FULL SPAN CAMBERED BLUNT TRAILING EDGE
LEADING EDGE AILERONS
e
Figure 1

SHARP PITCHING MOMENT BREAKS

L 1
100 120 140
Vi, mph

\\/CAMBERED
LEADING EDGE
\\\)

_.|2,_
SLATS OPEN
-6}
L 1 1 1 | 1 1 |
4 6 8 1.0 1.2 1.4 .6 1.8
cL
Figure 2

LI W

L]




LIl ]

e

"

f.

confifed, 7§ LT

COMPARISON OF LIFT AND ROLLING MOMENT BREAKS

CAMBERED LEADING EDGE

o N P o @
L S R M —

LIFT COEFFICIENT, C_
®

al S NACA

1 | i L | 1 1

1 i
O 4 8 12 16 20 24 28 0 -02 -04 -06 -08 -I0
ANGLE OF ATTACK, a, deg ROLLING MOMENT COEFE, Cq

Figure 3

WIND TUNNEL ROLL-OFF CRITERION

PILOTS COMMENTS ON STALL

UNSATISFACTORY

UNSATISFACTORY TO MARGINALLY SATISFACTORY
MARGINALLY SATISFACTORY

SATISFACTORY TO MARGINALLY SATISFACTORY
SATISFACTORY

00000

SATISFACTORY

; MARGINAL

UNSATISFACTORY

| ~ Y B A
l 0 oW @ ® o9 ®
L ! 1 i 1 ! ! ! ! J
o .0l .02 03 .04 05 .06 .07 .08 09

MAXIMUM CHANGE IN ROLLING MOMENT COEFFICIENT
AT STALL FROM WIND TUNNEL TESTS

Figure 4




231088 L3 .
oo oo: : : : ...

.04

Cm

s o O TOMNTIAL

GRADUAL PITCHING MOMENT BREAKS

-.04

-.08 L

BLUNT LEAmNG__///)\\

EDGE AND FENCE

Figure 5

MACH NUMBER EFFECTS

M,
40 .80

PULL e
20 ’/ ’_(.85

F, .
eO /%?4;—\\80

PUSH | ¢
20
P W A IO
o | 2 3 4
9

Figure 6

t’,‘

[




[ X 3 ee » o0 : :.. :..
258 cawiipdTag’e § 13c. e Pl §i 3
* e 200 o9 000 © © 0 o0 [ 2N ) ® 0900 ©
SEPARATION PATTERN AFFECTED BY L.E. EXTENSION
M, 0.82

e

7

Coner ﬁw

EXTENDED LEADING EDGE WiTH FENCE

OO
j

C"‘w-'-f

NORMAL AIRPLANE

Figure T

EFFECT OF LEADING EDGE EXTENSION

M, .80
R -8
04 LEADING EDGE
CHORD EXTENSION -4 J 20
uP PULL —-
Cm O ‘——\4\—! 0 e s | Y o) %—#—-"{
3
e -, pPUSH
4 20
DOWN
-04 8
L 1 I 1 1 t | | AN T N N | 1 1 ¢+
o 1 2 3 4 5 6 ot 2 3 4 O I 2 3 4
Cn 9

-

Figure 8




ot 3 pllEgTIa

SEPARATION PATTERN AFFECTED BY L.E. EXTENSION

M, 0.9!

N
NN\

o
3

£

hd

NORMAL AIRPLANE EXTENDED LEADING EDGE

Cm et

WITH FENCE SNACA
Figure 9
EFFECT OF BLUNT TRAILING EDGE
M, .90
-2
04 -8 />~ 40
NORMAL AIRPLANE / _rss
-4 20 2
uP PULLS
0 —+ 80 —t Feo/ ——+
PUSH
{ DOWN,, / 3
" [ 1 L 1 | L
- 04 X 01 2 3 4 0 2 3 4
R R RN SR N A S 9 9
0O + 2 3 4 5|6
et 0
BLUNT TRAILING
EDGE AILERONS
S N
Figure 10

t',.

f




» g

CONFII%F;I%‘I‘%ALE ) IR e’ o

EFFECT OF ALL-MOVING TAIL

M, 0.90
.04
o °F@
~04
0 2 4 6
401 .
PULL

EVATOR
20l ELEVATO
ALL-MOVABLE
TAIL
0 y : f t 1
PUSH /
-20
| I t i 1
o] I 2 3 4 5

XXX X
seoed



S e

oo
. es oo o see M vor 3
ee oee o ©® e o ® . e oo o oo o °
e o oo 2o % LI T . e ®
L X J bl [ ] e o8O
o * oo :.: ee o o O il

>
!

STALL PROGRESSION ON SWEPT WINGS AT LOW AND HIGH SPEEDS

2
i

By Charles W. Harper and Robert M. Crane

HA

Ames Aeronautical Laboratory

STALL PROGRESSION AT LOW SPEEDS

The need for some design procedure which will enable the designer of
swept wings to obtain desired stalling characteristics without recourse
to extensive trial-and-error testing is very apparent. In undertaking
the development of a procedure, the most logical starting point seemed
to be the procedure developed to a useful point by Anderson and others
(e.g., refs. 1 to 3) for the case of the unswept wing. A factor which
has made this procedure especially useful is that span-loading and sec-~
tion characteristics are handled independently. This can be done when
it is assumed that each section operates independently except for the
induced upwash variations across the span. In order to extend the
method to swept wings while maintaining this usefulness, it is necessary
(1) to use an applicable span-loading procedure, (2) to choose that sec-
tion on the swept wing the characteristics of which can best be approxi-
mated from section tests, and (3) to continue to assume independence of
the sections. With regard to the first point, several methods, of varying
degrees of accuracy, are available. With regard to the second point, it
is assumed in this paper that the most appropriate choice, in that the
greatest understanding, and hence control, of the stall will result
therefrom, is to consider the effective section to be that one lying
normal to the quarter-chord line of the wing; this assumption follows
directly from the theory of sweep.

Thus as shown in figure 1, by modifying Anderson's basic method, it
is possible to predict the wing 1lift coefficient and location on the span
at which the first section will stall (refs. 4 and 5), as is done by
Anderson for the straight wing (ref. 1). Also shown in this figure are
the force-test results for this wing. Stall was predicted at a Cp,

of 0.38 and at a span location such that a nose-up pitching moment would
result. The force tests show no effects of stall until about O.5CL and

no evidence of a nose-up moment until sbout O.6GL.

Similar results have been found when applying the method to other
wings in that an increment in 1ift is almost always realized before the
wing-force characteristics show the effect of stall. The magnitude of
this increment is as yet an unpredictable factor but the fact that it
is not much changed for a given wing plan form by modifications to the
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airfoil sections and the fact that it seems to vary regularly with wing
plan-form changes, and so can be empirically accounted for, enables
practical use to be made of the method. For instance, as shown in fig-
ure 2, the predicted effects of adding to the wing Jjust considered a
partial-span nose flap in order to raise the maximum 1ift of the out-
board sections are a slight increase in wing 1ift before stall and a
reduced degree of instability after stall because of the inboard shift
of initial stall. Pitching-moment variations show that both effects
were realized and that the 1ift increment due to the flap was very well
predicted.

In another case, illustrated by figure 3, it was desired to reach
a wing Cy of 1.4 at an angle of attack of 14° before stall was

encountered in the landing condition. Allowing for its conservatism,
empirically determined in this case to be 0.15C;,, the method was used

to choose flaps and leading-edge slats from available two-dimensional
data. Shown in the figure are the predicted (ref. 6) span-load distri-
butions for the Cj at which stalling begins for the modified wing and

also the measured moment characteristics; these measured moment char-
acteristics indicate that the design requirement was met.

The direct approach to the control of swept-wing stall illustrated
by the two cases just shown may prove adequate in many cases, provided
it can be reasoned that there will exist an upper limit to the angle of
attack or lift coefficient reached in normal operation and hence air-
plane characteristics beyond this point are of no interest. Even
accepting this provision, however, it is doubtful whether enough con-
trol of the stall can be realized by section modification alone to make
this approdch sufficient in all cases. This is due to the conflict
between requirements for good low-speed and good high-speed section
characteristics and to the lack of information regarding control of
section stall at high speed where the pitch-up problem is also serious.
Therefore, in many cases it 1s necessary to devise means of controlling
the spread of stall in the lift-coefficient range between the first
appearance of stall or separation and maximum 1ift. Although, in the
case of the unswept wing, Anderson's method (ref. 1) can be used suc-
cessfully to design for a desired stalling progression, the modified
method proposed herein for swept wings fails completely in this regard.
Figure 4 shows why this failure occurs and indicates that wing sweep
introduces a new factor which has a profound effect on section stalling
characteristics. It is clear that the factor of major importance in
producing observed stall progressions on swept wings is the increasing
value of*‘maximum 1ift realizable by sections as they are placed more
inboard (ref. 7). At all stations the maximum 1ift exceeds that meas-
ured for the same section in two-dimensional tests. Similar data have
been obtained for many wings and throughout the subsonic Mach number

range.
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Rather simple reasoning, which can be presented with the aid of
figure 5, indicates a possible source of this effect of sweep although
as yet no proof exists. Consider first the case of the infinite yawed
wing. Assume that the maximum 1ift of any section will be governed by
the stability of the turbulent boundary layer as it flows normal to the
isobars which in this case are exactly parallel to the wing leading
edge. Assume further that the stability of the boundary layer against
an adverse pressure gradient is not materially affected by the shearing
resulting from the spanwise component of the free-stream velocity. This
assumption would imply also that the boundary-layer thickness measured
either parallel to or normal to the isobars would be constant along any
chordwise line, as indicated by arrow length. Under these conditions,
the section maximum 1ift coefficient will be unaffected by the angle of
yaw as long as the reference section is chosen normal to the wing leading
edge and the reference velocity is that component of free-stream velocity
normal to the wing leading edge. Meking this infinite yawed wing semi-
infinite by forming a tip in the downstream portion will not appreciably
alter the conditions just described. However, making it a finite wing
by placing a barrier in the upstream portion will markedly change the
conditions. As the boundary layer is carried away from the downstream
face of the barriers, it can no longer be replaced and hence & thinning
should take place, as indicated by the reduced arrow length. The thinning
should be evident whether boundary-layer thickness is measured parallel
or normal to the isobars. This thinning is, in effect, boundary-layer
control and should increase the maximum 1ift of these sections above
the value reached without the barrier and hence above the value for the
section in the purely two-dimensional case. It is easy to see that some
degree of thinning will be felt along the entire span, being greatest at
the root and least at the tip. This variation in thinning agrees with
the observed variation in section maximum lifts. Thus, despite the fact
that this reasoning ignores many factors, which means that it could be
correct in only the grossest sense, it is believed to outline the major
factor controlling the stall progression of swept wings and has been
extremely useful in guiding the direction of research to control stall
progression. In particular, it emphasizes the fact that, if desirable
stall progression is to be realized, some means of adjusting this
boundary-layer control must be available. Further, in order to satis-
factorily refine the method discussed previously, some quantitative
measure must eventually be made of this effect.

One obvious way to control stall progression is to redistribute
the boundary-layer-control effect so that maximum 1ift coefficients
typical of the root can be realized near the tip and vice versa.
Establishing barriers, such as fences, to the boundary-layer flow would
be expected to do this since just outboard of them the boundary-layer
control should be as large as that of the root while just inboard it
should be as little as that of the tip. Hence, at lift coefficients
above that for initial stall on the ummodified wing, the addition of
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barriers should unstall the area just outboard of them and produce stall
just inboard. The increased loading thus realized outboard plus the -
decreased loading inboard are, of course, the changes which would be
adjusted to produce satisfactory pitching-moment characteristics.

4

Figure 6 shows the measured effect of fences on the distribution
of section lift and wing stall on a low-aspect-ratio swept wing at a
wing 1ift coefficient well above the first appearance of stall. The
resemblance of the measured effect to that propcsed indicates that the
reasoning is sound; the major redistribution of 1ift and stall indicates
that the effect is great. As shown in figure 7, very similar results
with regard to the redistribution of section 1ift have been found on
a high-aspect-ratio wing when fences were installed (ref. 8). Shown
here also is the magnitude of the pitching-moment change which can be
realized from these span-loading changes.

It also has been found that an aerodynamic fence can be effective
in controlling the boundary-layer drain. Such a fence is in the form
of a vortex lying Jjust above the wing surface and rotating so as to
sweep the boundary layer inboard. A vortex of this nature can be
created by a discontinuity at the wing leading edge such as formed by .
s partial-span extended slat. Figure 8 shows the effectiveness of such
a device in shifting the point of initial stall to control the pitching

moment of a U5° swept wing (ref. 9). Note that when the discontinuity .
was moved far inboard, it was unable to overcome the boundary-layer
drain and initial stall appeared at the tip. It has been observed that -

increasing the sweep, which increases the boundary-layer control at the
inboard sections, restricts the effectiveness of such a device closer
to the tip, thus indicating that at some sweep & leading-edge discon-
tinuity and probably also a fence will become incapable of controlling,
to any useful degree, the stall progression.

Some other points in connection with leading-edge extensions are
of interest. Smoothly fairing the discontinuity into the wing leading
edge sharply reduces its effectiveness, as would be expected from the
reduction in vortex strength. Reversing the discontinuity so that a
sudden reduction in chord is encountered when moving toward the tip
entirely cancels the effect of a discontinuity, as would be expected
since in this case the vortex rotates so as to enforce the boundary-
layer drain. This statement does not apply to notches which have an
entirely different geometry. Finally, in comparing the effectiveness
of fences and leading-edge discontinuities, it must be remembered that
these discontinuities are often formed by the inboard end of a device
designed to increase the maximum 1ift of tip sections; in this way two
means of increasing tip section Cp are used, giving greater control

f

over stall than may be realized by either one alone.
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The foregoing discussion has attempted to present, for the low Mach
number case, & brief description of the stalling of swept wings and the
operation of devices used to control this stall. The whole picture is
exceedingly complex, however, and much research with regard to the
effects of plan form, airfoil section, Mach number, and so forth, is
required before a wholly quantitative analysis can be made. To illus-
trate the progress being made in one field, the next section discusses
the effects of Mach number on the stall progression.

EFFECTS OF MACH NUMBER ON STALL PROGRESSION

The basic method, described in the preceding section of this paper,
of calculating the lift coefficient for initial separation on a swept
wing can be applied at supercritical speeds as well as at low Mach num-
bers as long as the shock waves that exist on the wing are due to the
flow over the wing profile and are not a result of the three~dimensional
flow field. This is shown in figure 9 which compares the measured
pitching moments on & 45° swept wing of aspect ratio 5 (ref. 10) with
the 1ift coefficient for separation predicted from section data. At
Mach numbers up to 0.85 the predicted value of 1ift coefficient agrees
well with that at which nonlinearities are evident in the pitching-
moment data.

At transonic Mach numbers, shock waves usually exist which cannot
be correlated with the section characteristics of the wing. The shock
wave emanating from the wing-fuselage juncture and the shock wave
associated with deceleration of the entire three-dimensional flow field
are examples of disturbances of this type. The data shown at a Mach
number of 0.92 are typical of this Mach number range. Areas of separated
flow are evident at lift coefficients above about 0.20 although the value
of 1ift coefficient for separation predicted from section data is
about 0.40. Under these conditions, section data cannot be used to pre-
dict the wing 1ift coefficient at which initial separation will occur,
and recourse must be made to experimental data on the three-dimensional
wing.

A second example of the use of section data at high Mach numbers is
shown in rigure 10. In this case a section modification was made to the
leading edge of a 35° swept wing in an effort to increase the 1ift coef-
ficient for pitch-up (ref. 11). Section data obtained at low speeds had
indicated the large gains possible by increasing the airfoil leading-
edge radius and introducing camber on the forward part of the airfoil.

At higher Mach numbers and a Reynolds number of 2 X 106, the section
date indicated that the leading-edge modification would be ineffective,
the maximum 1ift coefficient of the section with forward camber
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decreasing rapidly as the Mach nunber was increased and actually becoming

less than that of the basic section at a section Mach number of 0.65
corresponding to a wing Mach number of 0.80. That the predicted trend

was correct is evidenced by the experimental data on the swept wing which
show that the section modification did not increase the 1ift coefficient

for pitch-up at the Mach numbers above about 0.80.

This adverse effect of compressibility on the maximum 1ift of the
cambered airfoil appears to be peculiar to airfoils which have their
camber concentrated near the leading edge. When the camber is dis-
tributed over the chord, such as with the a = 1.0, a = 0.8, or even
a = 0.4 mean lines, the 1lift increment due to camber is maintained to
high section Mach numbers.

The data shown in figure 10 emphasize s factor which was pointed
out earlier in this paper. In order to utilize section data for the
prediction of the 1ift coefficient for initial stall on a swept wing,
the section data must be at the Mach number and Reynolds number corre-
sponding to the component of velocity normal to the sweep of the wing.
For example, on the cambered wing shown in this figure, increasing the

Reynolds number at low speeds from 2 X 106 to 11 x 106 increased the
1ift coefficient for pitch-up from 0.80 to 1.2. Similar Reymolds
number effects were evident in the section data. Just how important
the Reynolds number is at the higher Mach numbers has not been firmly
established but there are experimental data on swept wings, especially
those having large thickness-chord ratios or cambered sections, which
show large effects of Reynolds number on the 1ift coefficient for
pitch-up at Mach numbers as high as 0.9%.

The effectiveness of fences asnd of leading~edge discontinuities
in delaying or modifying the pitch~up 1s much diminished at high tran-
sonic Mach numbers. An example is shown in figure 11 which shows the
effect of a fence on the pitching-moment chsracteristics of a wing-
fuselage combination having a 35° swept wing of aspect ratio 4.5
(ref. 12). At Mach numbers less than about 0.82, initial separation
occurred along the leading edge of the wing and the fence was effec-
tive in improving the pitching-moment characteristics of the wing-
fuselage combination. It did this not by delaying separstion on the
wing, but by redistributing the separated regions along the span so
that the initial stalled area and its subsequent growth was such as
to produce a nose-down moment. At Mach numbers of 0.85 and above, tuft
studies showed that flow separation occurred on the outer sections of
the wing behind a line that was approximately normal to the plane of
symmetry. Pressure data are not available but it is believed that the
disturbance causing this separation wes a shock wave emanating from
the wing-fuselage juncture. There was no spanwise flow in the region

of the fence and the force tests showed the fence to be completely inef-

fective as would be deduced from the tuft studies.
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In contrast to this result, figure 12 shows the effect of adding
fences to s cambered 4O° swept wing having an aspect ratio of 10
(ref. 13). 1In this case, both pressure data and tuft studies showed
separation starting from the trailing edge and at the higher Mach num-
bers a shock wave was evident which produced local separation along a
line approximately parallel to the wing leading edge. In this case,
the tuft studies showed spanwise flow in the region of shock-induced
separation and although the fences were not as effective as they were
at a Mach number of 0.25, they still afforded considerable improvement
in the pitching-moment characteristics at Mach numbers of 0.80 and 0.90.

That this is not the usual case can be seen from inspection of data
from the Langley high-speed 7~ by 10-foot tunnel and 16-foot transonic
tunnel (refs. 14 to 17) which show little, if any, effect of fences on
the pitching-moment characteristics of thin 45° swept wings of aspect
ratio 4 at Mach numbers between 0.90 and 0.98. It is believed that
these cases are similar to that shown for the 35° swept wing in which
the shock-induced separation is not associated with the wing section
but rather with the entire three-dimensional flow field.

The effects of a leading-edge chord-extension and of & partial-span
slat on a thin 45° swept wing of aspect ratio 4 and shown in figures 13
and 14 (refs. 17 and 18). Both the slat and the chord-extension tend
to modify the stall progression over the wing by providing an aerodynamic
barrier to spanwise flow. In addition the slat increases the 1lift-
carrying potential of the outer section of the wing. Inspection of the
data reveals that the slat and the leading-edge extension were about
equally effective in delaying the pitch-up at Mach numbers up to 0.85.
However, at Mach numbers between 0.90 and 0.98, the slat lost only part
of its effectiveness while the leading-edge extension was almost com-
pletely ineffective. The data shown at a Mach number of 0.94 are
typical for this range of Mach number. In general, the effectiveness
of leading-edge chord-extensions and slats diminishes at transonic
speeds. As was the case with fences, the leading-edge devices do not
appear to be powerful enough to have much effect on the initial loca-
tion and subsequent growth of separation induced by strong shock waves.
When properly located along the span, however, these devices do main-
tain effectiveness to a higher Mach number than do fences and can afford
some improvement in the pitching-moment characteristics throughout the
entire speed range.

In this paper it has been demonstrated that a fairly successful
method has been developed for predicting and controlling the first
appearance of stall on a swept wing through use of span-loading theories
and section data. The method can be applied at supercritical Mach num-
bers as well as at low speeds providing the shock waves that exist are
due to the flow over the wing profile and are not a result of the



three~-dimensional flow field.
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The lift-coefficient range above the point

of initial stall has been examined and conclusions have been drawn as to
the important factors affecting stall progression in this region.

Several different types

of stall-control devices for swept wings

have been examined and it has been demonstrated that their action is

essentially that of modifying, either by terminating or reinforcing, the
automatic boundary-layer control action which is inherent on a swept wing.
There is a range of transonic Mach numbers on swept wings at which the

1ift coefficient for initial

separation cannot be predicted from section

data. The lower limit of this Mach number range is the Mach number at

which strong shocks from the

wing-fuselage combination predominate over

the section characteristics of the wing in causing separation. The
‘actual value of Mach number at which this condition first exists is a
function of the wing sweep, aspect ratio, thickness-chord ratio, and

the wing-body interference.

In this same Mach number range, wing fences

and leading-edge extensions are almost completely Ilneffective.
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RECENT DESIGN STUDIES DIRECTED TOWARD ELIMINATION OF PITCH-UP
By Joseph Weil and W. H. Gray

Langley Aeronautical Laboratory
INTRODUCTORY REMARKS

A previous paper by Thomas A. Toll has evaluated the status of wing
research relative to the pitch-up problem. Other papers have discussed
the nature of the flow phenomena responsible for pitch-up and presented
flight experience with configurations having pitch-up. The function of
the present paper is to present the results of -recent design studies of

complete configurations expressly directed toward elimination of high-speed
pitch-up.

Before proceeding with the discussion it should be stated that methods
are available from which arbitrary nonlinear aerodynamic characteristics
can readily be converted into calculated time histories of representative
flight maneuvers. (See ref. 1.) Such calculations obviously do not have
the value of flight tests but nevertheless are very useful in serving as
a guide in interpreting wind-tunnel data and in studying the importance
of the various factors affecting the over-all problem.

The application of the calculation method to evaluate the effective-
ness of corrective control for a given pitching-moment shape is illustrated
in figure 1.

The particular pitching-moment curve used had a region of neutral
stability. A ramp stabilizer input was applied at one degree per second.
It was assumed the pilot desired to arrest the motion at a = 8°; however,
because of reaction time delay and control lag it was further assumed that
there was a 0.5-second delay before either the control motion was stopped
or h—degrees-per-second corrective control applied.

An important factor in determining the controllability of an overshoot
is a term proportional to the ratio of the aerodynamic moment to the air-
Plane moment of inertia. For a value of this dynamic response factor of
16 (representative of an airplane primarily loaded along the fuselage and
flying at altitude at transonic speeds), it is evident that corrective
control was instrumental in appreciably reducing the overshoot although
the peak angle reached was still about 5° greater than would have been
attained with a linear pitching-moment curve and therefore undesirable.

For a dynamic response factor of 64 (representative of an airplane
primarily loaded along the wings), the motion builds up so rapidly that
corrective control is completely ipeffective in reducing the overshoot.
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It should be noted that the interpretation of some of the results
to be presented in this paper are based on calculations such as these
where flight experience with configurations having similar character-
istics was not available.

The problem of tail location (from the stability standpoint) is one
of matching the stability contribution of the tail to the wing-fuselage
characteristics. The manner in which the choice of tail location might
be affected by three different types of simplified wing-fuselage pitching-
moment curves 1s shown in figure 2.

With a tail-off curve characterized by a stable break at moderate
angle of attack, location of the tail so that it approaches the wing
wake with reduced tail contribution to stability in the moderate o range
will tend to linearize the stability characteristics of the complete con-
figuration. For a wing-fuselage curve with a mild destabilizing break,
the use of a somewhat lower tail with the tail contribution to stability
shown might be desired. When the wing-fuselage curve indicates a large
unstable change at moderate angle of attack, the only possibility of
securing an acceptable complete configuration lies in the use of a tail

low enough so that its emergence from the wing wake and resulting increased

stability contribution will overcome the tail-off instability.
SCOPE

The scope of the complete configurations to be discussed in this
presentation is shown in figure 3. The configurations studied were con-
ceived as having all-movable tails and the tail lengths varied from 1.2
to 1.4 wing semispans. Stability information showing effects of changes
in tail height is presented for these configurations in subsequent fig-
ures. The Reynolds numbers of the data were generally of the order of

from 3 X 106 to 4 x 106. Most of the investigations were made at high
subsonic Mach numbers, the range in which the most serious pitch-up is
usually encountered.

DISCUSSION

The effect of varying tail height on the pitching-moment character-
istics of an aspect-ratio-3 wing having an unswept 50-percent-chord line
is shown in figure 4. The wing had a taper ratio of 0.2 and a 4-percent-
thick airfoil. Data are presented at a Mach number of 0.80 and 0.90 for
tail heights of O, 32, and 64 percent of the wing semispan above the wing
chord plane extended. A reference center-of-gravity location has been
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chosen for each tail height such that an initial slope g—— = -0.12
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was obtained at M = 0.80. (See table I.) The 1ift curve is shown for
reference purposes.

It is seen that, at M = 0.80, some overshoot would be experienced
at high C; for either of the two higher tails. Although the highest

tail shows an abrupt instability, it is not thought that this instability
would seriously limit the usefulness of the airplane because the pitch-up
tendency is preceded by a pronounced stable break in the moment curve
which would serve as a warning to the pilot and occurs at an angle of
attack considerably above the severe break in the 1lift curve and there-
fore probably well into the heavy buffet region. No pitch-up problem is
indicated for the 1ift range obtained at M = 0.90. Somewhat similar
results were obtained from an investigation of an unswept wing of aspect
ratio 4 and taper ratio 0.6. (See fig. 5.)

The effects of reducing the aspect ratio of a moderately swept wing
from 4 to 3 are presented in figure 6. Inasmuch as the lower-aspect-ratio
wing was formed by cutting off the tips of the aspect-ratio-k configura-
tion, the teper ratio increased from 0.60 to 0.68. Data are presented for
a Mach number of 0.90 for a tail located approximately 15 percent semispan

above and below the wing chord plane extended.

For the tail located above the fuselage, a pitch-up tendency is shown
for either aspect ratio wing coincident with an abrupt break in the 1lift
curve. For the aspect-ratio-4 wing, the severity of the Cp break would

indicate a fairly severe pitch-up. Reducing the aspect ratio to 35 delayed
the onset of pitch-up by about 0.1C;, and the importance of the much

milder pitch-up tendency indicated is questionable in view of the probable
presence of appreciable buffet.

With the tail located below the fuselage, no pitch-up tendency is
shown for either aspect ratio.

Figure 7 illustrates the effect of taper ratio on the stability
characteristics of configurations having an aspect ratio of 3 and quarter-
chord sweep of 30°. Data are presented at Mach numbers of 0.92 and 1.06
for a tail located on the chord plane extended and 64 percent of the wing
semispen above the chord plane extended.

At M = 0.92, regardless of tail height and taper ratio, a jog is
present in the moment curve at moderate 1ift coefficient. The destabi-
lizing tendencies, however, occur at a 1ift coefficient about 0.2 higher
for the wing having 0.5 taper and would appear to be somewhat less severe.
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taper ratic, an abrupt instability is present at extremely

high a as the high tail approaches the wake. At a Mach number of 1.06,
no pitch-up problem is indicated in the 1ift range obtained.

h5o delta wing with tips clipped to form a wing with an aspect ratio of 3

The effect of tail height on the stability characteristics of a

are given in figure 8. The taper ratio was 0.14 and the quarter-chord
sweep, 36.8°. Of the three tail positions investigated, the middle tail

was clearly the worst.

For the high tail, the 1ift coefficient at which a

pronounced instability exists at M = 0.80 was delayed to an angle of attack

of 18° or well beyond the abrupt break in the 1lift curve.
tail had fairly acceptable characteristics at both Mach numbers.
this arrangement, it is obvious that a low tail or a very high tail repre-

sents the best choice of tail location from the pitch-up standpoint.

The effect of Mach number on the stability characteristics of a con-

figuration having a 47° swept wing of aspect ratio 3.5 is shown in fig-

ure 9 for tail heights of 6 and 56 percent of the wing semispan above the

wing chord plane. Filgure O shows that, although the instability was less

The chord-plane
Thus for

pronounced for the lower tail, neither configuration had acceptable pitch-up

characteristics.

is delayed to a progressively higher 1ift coefficlent as the Mach number
is increased from 0.90 to 1.04. TFor the lower tail it is also evident

that the severity of the pitch-up tendency is considerably reduced at the

highest Mach number.

The effect of tail height on the stability characteristics of a
45° swept wing of aspect ratio 4 at a Mach number of 0.90 is shown in
figure 10.
the tail is placed O.lhb/2 below the fuselage, undesirable pitching-
moment characteristics are retained.

The effect of a leading-edge modification on the stability character-

The wing-fuselage characteristics are such that, even when

istics of the 45° wing at M = 0.90 1is presented in figure 11. The
leading-edge modification used consisted of a 10-percent chord-extension

from 65 percent semispan to the wing tip and a full-span 20-percent-chord

nose flap.
the 20-percent chord line. Such an arrangement has been shown to have

favorable performance characteristics at high subsonic speeds. See
reference 2.

For a tail location above the fuselage, the use of the modified wing
delayed the onset of pitch-up by about 0.1Cj,.
however, would not appear to be altered.
fuselage it would appear that the use of the modification would result in

The combination was drooped 6° streamwise and hinged about

fairly acceptable pitching-moment characteristics. - See reference 3.

Furthermore, the results show that the onset of pitch-up

The severity of the pitch-up,
When the tail is placed below the
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The importance of localized inboard plan-form modifications on the
tail contribution to stability at M = 0.90 is illustrated in figure 12.
The inboard modifications were added to the configuration having nose
droop and chord-extensions. Pitching-moment and tail contribution to
the stability (Cmu)t are plotted against angle of attack.

On the left-hand side of figure 12 is shown the effect of adding a
trailing-edge extension inboard of the 4O-percent-semispan station. The
tail height was O.26b/2 above the chord plane extended. It is evident
that the addition of the extension increased the severity of the insta-
bility. The reason for this increase is traceable to the highly
destabilizing effect of the trailing-edge extension on the tail con-
tribution to the stability.

On the right-hand side of figure 12 is shown the effect of a root
indentation extending inboard of the 30-percent-semispan station intersecting
the fuselage at about the 30-percent-chord line. A tail height of lk-percent
semispan above the chord plane was used for this study. A significant
improvement in the stability characteristics is shown for the configura-
tion with root indentations. The reason for this improvement is traceable

to the stabilizing effect of the indentation on the tail contribution to
stability.

The effects of more extreme plan-form modifications are summarized
in figures 13 and 14. Data are presented for the basic 450 wing of aspect
ratio 4, for a cranked wing with inboard sections swept 45° and outboard
4 O-percent-semispan sections unswept, and for an M-plan-form wing with
inboard hO-percent-semispan sections swept forward h5° and outboard sec-
tions swept back 45°. Results are presented at Mach numbers of 0.80 and
0.90 and for tail heights of 0, 27, and 55 percent above the chord plane.

For the basic swept wing it has been previously shown that, because
of the nature of the tail-off characteristics, no tail location produced
acceptable stability characteristics.

From the results with the cranked wing it would appear that somewhat
better characteristics were obtained for the low tail than for the corre-
sponding swept~wing configuration. Although the high tail investigated
would not be acceptable, there was a definite improvement over the results
obtained with the swept wing and the use of an extremely high tail should
not be ruled out. The mid-tail showed essentially no improvement and had
by far the worst stability characteristics.

For the M-plan-form wing, no pitch-up is indicated for the chord-
plane tail. For the high tail, the 1ift coefficient at which pitch-up is
indicated is almost twice that for the swept wing at M = 0,80 and substan-
tial gains over the swept wing are also shown at M = 0.90. A somewhat
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higher tail location than that tested would, however, in this instance
also be desirable. The characteristics of the mid-tail were considerably
improved over the comparable swept-wing configuration but this.tail loca-
tion still appears the least desirable of the three locations investigated.

SUMMARY OF RESULTS

Figure 15 is used as an aid in summarizing the results and is essen-
tially a high-speed counterpart of the Shortal-Maggin boundary for wing
and wing-fuselage configurations. The configurations have been evgluated
in the Mach number range from 0.80 to 0.95, the speed range for which ?he
most serious pitch-up can be expected for many configurations. The points
plotted are for simple wing and wing-fuselage combinations having thick-
nesses from 3 to 6 percent streamwise. The open symbols define the
combination of aspect ratio and sweep that produce pitching-moment char-
acteristics that would not of themselves constitute a pitch-up problem
whereas the solid symbols represent configurations having unacceptable.
tail-off pitching-moment characteristics. The half-filled sy@bols define
configurations which, when combined with a fairly constant tail contri-
bution to stability, would produce marginal pitch-up characteristics.

The boundary region represents wings having more or less marginal
characteristics.

For configurations having wings falling on the left side of the
boundary, caution must be exercised to avoid placing the tail in a region
of unfavorable flow characteristics. For the aspect-ratio-3, essentially
unswept wing investigated, it was not considered that a serious pitch-up
problem existed; however, for a range of high tail positions a pitch-up
tendency would be encountered at extremely high angles of attack.

For configurations falling in the boundary area, the tail must be
located so as not to aggravate but, if possible, to improve the wing
characteristics. For these wings it was generally found that a moderately
high tail location produced the most serious pitch-up tendency. A very
high or moderately low tail would give more marginal results and only a
very low tail produced good characteristics.

For wings falling above the boundary, the tail must overcome the
undesirable wing characteristics. For the rather thoroughly investigated
45° swept aspect-ratio-t wing, undesirable pitch-up would probably be
present at all rational tail positions. The use of wing "fixes" com-
bined with a very low tail produced an acceptable configuration for this
wing. The use of localized plan-form modifications and composite plan
forms offers the possibility of greater latitude in tail location for
wings of this type and warrant further study.
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Finally, it should be remenbered that only the constant-speed pitch-up
has been treated in this paper. Large and abrupt changes in pitching

moment with Mach number, however, can also produce severe pitch-up and
should be avoided if possible.
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13 L 450 inboard; 0° outboard | .30|Cranked plan form 27 .18¢
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SOME AERODYNAMIC CONSIDERATIONS GOVERNING THE STATIC
STABILITY OF CRUCIFORM MISSILES
By Donald D. Baals, M. Leroy Spearman, and David G. Stone

Iangley Aeronautical Laboratory

INTRODUCTION

The static stability and control requirements governing the design
of cruciform missiles are broad and complex, but, in general, there are
two basic requirements of overriding importance: the first, to maintain
linearity of the pitching or yawing moments to sufficiently high angles
of incidence and, second, to minimize the induced rolling moment
resulting from roll attitude or control deflection. This paper presents
some of the available methods for predicting missile stability character-
istics and will endeavor to indicate how to minimize adverse aerodynamic
effects. ’

At the 1951 NACA Conference on Aerodynamic Design Problems of Super-
sonic Guided Missiles, a rather complete coverage of the basic problems

of the stability of cruciform missiles was presented wherein it was shown

that the longitudinal and induced roll characteristics are largely under-
standable and predictable on the basis of existing aerodynamic theory.
For missile configurations the assumption was made that the vortex sheet
trailing the forward surfaces is completely rolled up in the region of
the tail. The resulting vortex locations and tail loads can then be
predicted by existing techniques.

This general approach has not changed significantly. Recent work
has added to the knowledge of missile vortex fields (ref. 1), and limited
advances in simplifying assumptions and calculative techniques have been
made. It now appears possible by rather simple techniques to predict the
general variation and the order of magnitude of the pitching and induced
rolling moments for a relatively wide range of missile configurations.

LONGITUDINAL CHARACTERISTICS

Figure 1 is an illustration of the simplified flow model considered
in the analysis which follows. It is assumed that the basic-body, body-
wing, and body-tail characteristics can be estimated by slender-body and
linear theory. 1In order to determine the interference effects of the
forward wing on the trailing surface, the assumption is made that the
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trailing vortex sheet behind each wing panel is concentrated into one
discrete vortex. The position of each vortex with respect to the tail
is approximated for zero roll by simply assuming that the vortex trails
in the streamwise direction. It is then possible to calculate the down-
wash distribution in the plane of the tail and the corresponding tail
loads. This procedure has been systematlized and compared with experi-
ment in reference 2.

The procedure assumed is of necessity over-simplified and embodies
the inherent limitations of slender-body and linear theory along with
known discrepancies in the assumption of the vortex field. It is known,
for example, that the body-alcone characteristics are nonlinear and are
predicted by slender-body theory only for bodies at low angles of attack.
In calculating wing-tail interference, the assumption that one fully
rolled up vortex is discharged from each wing panel holds in the majority
of configurations. The work of Spahr and Dickey (ref. 1), however, shows
that for panels of high aspect ratio the flow behind the panel may con-
sist of a flat sheet of several vortices; and for high angles of attack,
body vortices appear in the flow. In spite of the rather gross assump-
tions involved, however, the results provide, for moderate angles of
attack, a qualitative picture which fits the pattern of experiment. b

Figure 2 shows the range of missile configurations investigated.
Tt includes configurations with the smaller surfaces forward or rearward
and considers both subsonic and supersonic characteristics.

Figure 3 shows the center-of -pressure variation with angle of attack .
for a representative group of missile configurations from figure 2. The
circles are experimental results and the dashed lines are calculated
results based on the aforementioned procedures. It will be noted that
the correlation is relatively good - especially with relation to the
center-of -pressure shift with angle of attack.

With the simplified flow model and the calculative techniques as a
basis, it is possible to propose missile configuration requirements for
minimizing the longitudinal center-of -pressure travel with angle of
attack. An analysis of results indicates that one of the most important
parameters governing the center-of-pressure shift is the ratio of the
spans of the two lifting surfaces.

In figure 4 is shown, as a function of span ratio, the experimental
variation of center-of-pressure shift in terms of body length for an
angle-of-attack increment of 10°. The "span ratio" here is defined as
the retio of the small to the large surface. The numbers within the
symbols refer to the configurations in figure 2. Configurations 1 to 8
are limited to subsonic characteristics; configurations 9 to 21 are for
Mach numbers in the range from approximately 1.3 to 2.0. The center-of-
pressure shift is rearward except for those symbols with flags. It will
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be noted that the largest center-of-pressure shift occurs for span ratios
near unity.

Figure 5 shows the calculated center-of-pressure shifts corresponding
to the experimental results of figure 4. Tt will be noted that the calcu-
lated results correlate very well with the experimental values, and the
same general effects of span ratio are noted. Also shown in this figure
is the calculated center-of-pressure variation for a missile configuration
in which the span ratio is systematically varied. The calculations are
made for wing and tail with 60° delta plan form at a Mach number of 2.0.
Note that the peak center-of-pressure travel occurs when the rear sur-
face is about 0.9 of the span of the forward surface or, in other words,
when the tail span is approximately equal to the vortex span.

Although span ratio appears to be the primary parameter from the
standpoint of center-of-pressure shift, the scatter at any one value of
span ratio indicates the importance of other parameters. From analysis
of experimental data and use of the simplified calculative techniques,
these parameters are indicated to be:

(a) Panel mspect ratic and plan form

(v) Ratio of body diameter to wing span

(c) Relative distances between the forward and rear surfaces
(d) Fineness ratio of the body alone

In general, for a given configuration holding span ratio and aspect
ratio constant, the effect of plan form on center-of-pressure shift is
relatively small. The effective panel aspect ratio PBA does have a
significant influence, the larger center-of-pressure shifts occurring
for the lower values of effective aspect ratio.

There appears to be an effect of spacing between the forward and
rearward surfaces associated with the displacement of the vortex at the
tail. The maximum center-of-pressure shift for span ratios near 1 appears
to occur for a wing-tail spacing of about 2 to 3 spans. Shorter spacings
can reduce the center-of-pressure shift but at a sacrifice in tail
efficiency.

Another parameter to be considered is the ratio of body diameter to
wing span. If this ratio is large, the position of the wing trailing
vortices are greatly influenced by body cross-flow characteristics; and
secondly, the nonlinear force characteristics of the body alone become
evident in the complete configuration characteristics.

For configurations where the wing-tail interference effects are
small, the body-alone characteristics may be the primary factor governing
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the center-of-pressure shift. In a previous paper, Edward W. Perkins
and David H. Dennis have considered the nonlinear body characteristics
with angle of attack and have shown that these are a function of nose
shape and fineness ratio, along with other factors. Related character-
istics have been considered in reference 3.

The pitching-moment characteristics of a series of ogive cylinders
of fineness ratio from 14.8 to 19.1 are shown in figure 6 from tests in
the Langley 4- by 4-foot supersonic pressure tunnel at a Mach number
of 2.0 (ref. 4). The Reynolds number based on body diameter was 750, 000.
The pitching-moment coefficient is based on the chord and area of a
typical wing that was added later to provide a complete missile. The
center of moments has been adjusted for each fineness-ratio body to pro-
vide the same low angle-of-attack stability. Note that the linearity of
the moment curve is greatly influenced by fineness ratio, and that the
shortest body (fineness ratio of 14.8) has the least departure from the
low angle-of-attack stability.

Figure 7 shows the stability characteristics of a canard missile
configuration utilizing the various fineness-ratio bodies shown in fig-
ure 6. The wing and controls had leading-edge sweeps of 70° with a span
ratio of 0.46. This would result in low canard-wing interference. Data
are presented for control deflections of 0° and 10°. The center of
moments has been adjusted such that each configuration has the same
static stability at low angles of attack. Note that the long body is
linear only to about 10° and has zero moment at approximately 20° angle
of attack. The short body (fineness ratio of 14.8) has the most linear
characteristics and 1s stable throughout the test angle-of-attack range.

The change in the complete model stability for these configurations
stems basically from the body-alone characteristics. The canard-wing
interference was negligible as found by agreement between the complete-
configuration tests and summation of the individual components.

In figure 8 is shown the control characteristics for the fineness-
ratio-15.7 configuration at a Mach number of 2.0. Note that, for a
control deflection of 30°, the pitching-moment variation with angle of
attack is linear up to a trim angle of 12°.  The corresponding a/&
curve shows a gradual decrease in control effectiveness with no severe
nonlinearities. For the fineness-ratio-14.8 configuration, which basi-
cally has the most linear moment characteristics, a 300 control deflec-
tion will trim the model at approximately 18° angle of attack. The
static stability was adjusted in each case to give the highest usable
trim angle of attack. Thus, if the basic configuration has-sufficiently

linear characteristics, high trim angles may be obtained with relatively
small controls.

The Mach number characteristics of some free-flight missile configu-
rations with low span ratios are shown in figure 9. The aerodynamic-
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center location through the Mach number range is shown for a series of
missiles of two different fineness ratios with the control surfaces
either forward or rearward. The short bodies show the least center-of-
pressure travel. The only significant center-of-pressure travel is
noted for the longest body in the transonic speed range.

To summarize the situation with relation to the longitudinal char-
acteristics of missile configurations, it has been shown possible for a
rather wide range of configuration to predict for zero roll the general
variation of the nonlinear moment characteristics for moderate angles of
attack. The most important parameter governing the nonlinearities is the
span ratio of the lifting surfaces. In general, the span ratio should
not be near unity. That is, the tail span should not be of the same
order as the wing vortex span. The effect of body-alone characteristics
is shown to be of importance. If the body diameter is large with rela-
tion to the wing span, the body-alone characteristics can govern the
complete configuration.

LATERAL CHARACTERISTICS

The discussion thus far has been limited to the longitudinal char-
acteristics of missile configurations. From the symmetry conditions of
a cruciform missile, however, the same general analysis and conclusions
will apply for the characteristics in the side-force plane. There
remains, however, the problem of induced roll produced by the reaction
of the trailing wing to the vorticity shed by the forward control surfaces.

Sherman Edwards and Katsumi Hikido of the Ames Aeronautical
Iaboratory, in an unpublished analysis, have attacked the problem of
induced roll with essentially the same basic approach that has been used
in the analysis of the longitudinal characteristics, but with the dif-
ference that the load distribution on the tail resulting from the vortex
field is integrated to give tail rolling moment. The basic aerodynamic
model here assumes a deflection of the vertical control surfaces with the
unyawed model at an angle of attack.

Because the induced roll is critical to the spanwise load distri-
bution on the tail and because of the fact that the vortices in the
angle-of -attack plane trail in a complex path to the rear, a more pre-
cise method is employed in establishing the position of the vortices in
relation to the tail. A step-by-step graphical analysis is made which
includes imasge vortices in the body and considers the movement of the
four free vortices due to mutual interference and to the potential cross-
flow arocund the body.

Figure 10 shows the calculated values and the experimental results
for the tail rolling moment Mly different missile configu-
rations with the control surffices forward. Iooking from the rear, this
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figure shows the calculated position of the vortices in the plane of

the tail for increments in angle of attack of 4°. For these vortex .
positions, the induced tail rolling-moment coefficients based on tail

area and span have been calculated and are shown by the dashed curve. -

Good agreement is shown with the experimental values of tail rolling -

moment represented by the symbols.

It will be noted for the two configurations on the right that, when
the body dismeter is large with relation to the vortex span, the vortex
on the underside quickly passes around the body and becomes located in
the second quadrant. For such conditions, the rolling-moment coeffi-
cient reverses direction and tends toward positive values for the con-
figuration analyzed. It should be noted that the iuduced roll is small
for configurations where the span ratio is small. Tn addition, there
has been found an effect of longitudinal spacing between the forward
and rear surfaces. The shorter spacing reduces the displacements of
the vortices at the tail and tends to minimize the induced roll.

The linearity of the rolling-moment-coefficient curve is not
important in itself. The major problem, however, is whether the magni-
tude of the induced rolling moments is sufficiently small to be within
the rolling power of the ailerons.

Figure 11 is an experimental contour plot showing lines of con- -
stant rolling-moment coefficient for conditions of combined pitech and
yaw for zero control deflection. These data are from tests in the
langley 4- by Lk-foot supersonic pressure tunnel at a Mach number of 2.0
of a delta-canard configuration (fineness ratio of 15.7) utilized in »
reference 4. The rolling moment is zero when a« = B (a roll angle of
45°) since the configuration is then symmetrical with respect to the
relative wind. The maximum roll occurs for a roll angle of approxi-

o)
mately 22% - approximating a sine wave variation.

A 20° differential deflection of the two tip ailerons (see ref. 5
for wing aileron configuration) of this configuration produces a
rolling-moment coefficient of about 0.01 for the range of o and B
considered. TFor the untrinmmed condition assumed (6H =%y = O), the

rolling moment produced by the ailerons is sufficient to overcome the
induced roll for all combinations of a and B except for the small
shaded area shown.

Figure 12 shows the experimental variation of induced rolling
moment that occurs when the vertical canards are deflected while the
angle of attack is varied at zero sideslip. The results show that the
induced roll due to control deflection can be either positive or nega-
tive and of the same order of magnitude as for the controls undeflected.
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This indicates regions where the induced roll may be zero or may be
beyond the range of some types of roll control.

Recent experimental information is available to show the effect
of combined pitch and yaw with controls deflected. Figure 1% shows the
experimental effects of sideslip on the induced roll variation with
angle of attack for the 10° vertical canard deflection shown in fig-
ure 12. The nature of the induced roll is shown to vary considerably
in sign and megnitude as the sideslip angle is changed. These large
and varied changes in induced roll for cases of combined piteh and yaw
are indicative of the complex control problems that exist for canard
cruciform missiles, even though the canard surfaces are small.

These induced roll problems for configurations with controls for-
ward might possibly be circumvented through the use of trailing-edge
controls on the rear panel or through the use of tail rearward designs
in contrast to a canard configuration. Any gains to be had by these
means, however, might result in other problems such as a decrease in
longitudinal control effectiveness or maximum trim angles attainable,

In summary, the problem of induced roll for cruciform missile con-
figurations is important, for rolling moments can be produced which are
beyond the range of roll control. The simple case of induced roll due
to the deflection of forward controls with the body incidence limited
to one plane appears to be understood and can be adequately predicted.
The practical problem of induced roll for conditions of combined pitch
and yaw using control deflections required to trim is more complex.

This problem merits considerable further experimental and analytical
study.




REFERENCES

Spahr, J. Richard, and Dickey, Robert R.: Wind-Tunnel Investigation
of the Vortex Wake and Downwash Field Behind Triangular Wings and
Wing-Body Combinations at Supersonic Speeds. NACA RM A53D10, 1953.

Nielsen, Jack N., Kaattari, George E., and Anastasio, Robert E.:
Calculative Method for Estimating the Lift and Center of Pressure
of Wing-Body-Tail Combinations at Subsonic, Transonic and Super-
sonic Speeds. (Prospective NACA paper. )

Allen, H. Julian, and Perkins, Edward W.: Characteristics of Flow
Over Inclined Bodies of Revolution. NACA RM A50L07, 1951.

Spearman, M. Leroy: Aerodynamic Characteristics in Pitch for a
Series of Canard-Type Cruciform-Wing Missiles at a Mach Rumber
of 2.01. (Prospective NACA paper. )

Spearman, M. Leroy, and Robinson, Ross B.: Wind-Tunnel Investi-
gation of a Ram-Jet Canard Missile Model Having a Wing and Canard
Surfaces of Delta Plan Form With 70° Swept Leading Edges.
Iongitudinal and Iateral Stability and Control Characteristics at
a Mach Number of 1.60. NACA RM I52El5, 1952.

'y

«




.“l

o

o\

CONFIDRIFTEAL *uo fu0 3°% o0t it

SIMPLIFIED VORTEX MODEL

EXPERIMENTAL MISSILE CONFIGURATIONS

g
i}
%

(XXX X

gt



PR

TPiel el il LCOMEDENTIAL

TYPICAL CENTER-OF-PRESSURE VARIATIONS WITH ANGLE

OF ATTACK
-M=018 _ _ - M=0.46 -M=1.93
/"’ o oo o © ©
6 p” o © e
o g
//oo o °
. Sk . a4 N *
cp I | J L | J L | —
! ~M=1.93 M=1.62 ~M=1.62
6 | |
M@ g,Q'Q' o
. . o
| Pl L R o
e g o O
/Io ,d O//’
5<L9 —~an@ud /' —t— e |
I4 1 J L ! | e :, 1 —_
(0] 6 12 0 6 12 4 6 12

EXPERIMENTAL EFFECT OF SPAN RATIO

7 Jaa=10°

SMALL SURFACE SMALL SURFACE

A5r =— " FORWARD o5 REARWARD
1ok
05F & m ‘ [E)
E3| e
@
- -
0 I3t 0 5
SPAN RATIO
Figure 4

Y

of



19

L} ] .o L] - . LA L X 2
CONFIDERTIAJs f T E 237, s,
(X ] L X 2 ] e @00 o & @ L 2

CALCULATED EFFECT OF SPAN RATIO

(Axcp)
1 /aa=10°

150 SMALL SURFACE FORWARD ——‘-5MALL SURFAGE REARWARD—

05} /

rd
of o
" 5

10
SPAN RATIO

F_igure 5

EFFECT OF BODY FINENESS RATIO ON Cm

M=20
- F.R.=191
177
ol n 167
gl
-
L 157
C
m 14.8
A
1 1 | 1 1 J
20 30
° ° a, DEG
Figure 6




.ﬁ.:

¢ ° 3 CONFIDENTIAL

STABILITY CHARACTERISTICS FOR MISSILES OF VARIOUS
FINENESS RATIOS

M=20
i
FR. —_
19, —g— Cmo{\\\‘ —
-1 s
H
.lt\ /_/—IO"
(7.7 e Cmo -0
-
1
[—
167 et Cmo —
-1
1
157 -~ Cmol= —
-1
1
148 —e—m OmO e
-l
o] 8 16 24
a, DEG
Figure T

TRIM CHARACTERISTICS %F 2CANARD CONFIGURATION

Cm

8, DEG

2

CTRIM, ,
DEG

0

0

FR=148—
>

F.R.=157

J

0

0 20 30
3,,DEG

F.R.=157 &;;ﬂ
L 1 Il i ! 1 1
10 20 30
a, DEG
Figure 8

R

f




tay d

-

'\

CONFIDEN$TAIs. & s, 3e: 2o °

MACH NUMBER CHARACTERISTICS OF MISSILE CONFIGURATIONS

SPAN
FR. RamiO

-—eg 220 042
L

-

- —EsTrTE T TSRy

INDUCED~ROLL CHARACTERISTICS OF CRUCIFORM MISSILES

—=— W e—=

M:=1.4; 3y=8° M=1.72; 8y =10° M=1.7;8y=15°
20% i6°
20°
a=0° a=0° a=0°

o]
1 i i IO SR | L ! 1 N J
0 10 20 o} 10 20
a, DEG
Figure 10

13

L L 4
ce L N J
- ® o
see o6



.: : ..: e’ o0 o0 L ] -« . [ X X [ X )
N I I R - o
et S lte. e ittt L CONRIDENTTAL i
.
*
ROLLING-MOMENT VARIATION FOR COMBINED a AND B
-
M=2.0; FR=157 ; 8,23, =0° .
16
B,DEG |
8 —
)
a, DEG
Figure 11
EFFECT OF CONTROL DEFLECTION ON INDUCED ROLL
M=2.0;FR.=15.7;84-0° *
B-0°
02 -
By
DEG
N -30
-20
o -10
0 0
oz L A~
L 1 1 1 1 1 il |
o 10 30
a ,DEG
Y
Figure 12




‘ ee oo o ° . Y]
* O @ * & @ . & @
- CONFIDERTAAL ¢ o ces e
‘ e [ X X J .o 90¢ © & 9o
»
o
EFFECT OF B ON INDUCED-ROLL VARIATION WITH &
8y =-10°; M=2.0; F.R.=15.7
02
B, DEG
4
- — 8
12
° Cl 0 4/’/’ o
\ 16
. \\\\\\\__/_//
-\
\::-N_”’//—-\\\\\(2o
-.02%- '.El
- 1 1 | { ]
0 10 20
a, DEG
Figure 13
<

(X ]
[ ]
L ]

(XXX X
(XX ]



ta, A

v

L X J L » 20 e ® 009 © o 9
CONFIDERYSAL" ¢"e 2 Ts el et s
:.. :.. ... :.. :.: ... L X ] : : : :.. :.

EXAMINATION OF RECENT STABILITY DERIVATIVE DATA
By Frank S. Malvestuto, Jr., and Richard E. Kuhn

Langley Aeronautical laboratory
INTRODUCTION

A number of previous papers have reported on the effects of vari-
ous aerodynamic parameters on the longitudinal motions of airplanes and
missiles. In the present paper attention is directed to the aerodynamic
parameters, the so-called stability derivatives that affect the lateral
behavior of airplanes and missiles. The discussion is centered on three
important quantities CZB, the effective-dihedral derivative, CnB, the

directional-stability derivative, and Clp’ the damping-in-roll deriva-

tive. These quantities are considered for a large angle-of-attack range
at subsonic speeds. A few remarks will also be made on the sideslip
derivatives at zero 1ift in the supersonic speed range.

DISCUSSION

For the subsonic speed range, the lateral-stability derivatives
have been the subject of intensive research by the Langley high-speed
- by 10-foot tunnel. Particular attention has been paid to the varia-
tion with Mach number in the high angle-of-attack range that is repre-
sentative of flyable attitudes of many high-speed airplanes. The
effective-dihedral and the directional-stability derivatives of the
three complete models sketched in figure 1 are presented in figures 2
and 3. Model I is equipped with a 30° sweptback wing of aspect ratio 3;
model II has a 45° swept wing of aspect ratio 4; and model III (repre-
senting the X-5 airplane) is equipped with a 60° swept wing of aspect
ratio 2. To the right of each sketech in figure 1 is a plot of the model
1ift coefficient against angle of attack for two available Mach numbers
indicative of the low and high subsonic speed range.

The effective dihedral derivative CzB, expressed here in radians,

for the three models is presented in figure 2 for the range of angle of .
attack and the Mach numbers indicated in figure 1. It is important to
note the highly nonlinear variation of this derivative with angle of
attack and the pronounced effect of Mach number on these variations.
This nonlinear behavior is strongly dependent upon the separation of
flow from the wings, particularly in the vicinity of the tips, and
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commences at angles of attack at which these swept wings by no means com-
pletely stalled. Note that model I retains its positive effective
dihedral (that is, -ClB) through the angle-of-attack range and increasing

Mach number tended to increase this quantity at the higher angles.
Models II and III have the more typical variation of ClB with angle of

attack and show the decrease to zero and to negative effective dihedral
at the higher angles. Configurations having this latter type of varia-
tion of CZB’ and the variation of the derivative CnB to be discussed

later, could easily be flying at angles at which one or the other of these
derivatives become zero. The manner in which these zero values affect the
lateral motions of airplanes will be discussed in the following paper by
John P. Campbell with emphasis on the CnB derivative. The point to be

observed from the data presented here is that increasing Mach number may
change the angle of attack at which derivatives become zero. As an illus-
tration, the results of model II show that increasing Mach number increased
the angle at which CZB and CnB become zero; whereas, for model III, the

Mach number effect is reversed; that is, increasing Mach number decreases
the angle of attack at which zero values occur.

The effects of angle of attack and Mach number on the companion
lerivative CnB are shown in figure 3. At the higher angles the varia-

tion of this derivative depends not only upon the tall effectiveness,
that is, the difference between the tail-on and tail-off results, but
also may be greatly influenced by the variation of the wing-body charac-
teristics. As an example, for models I and II the increase in the sta-
bility of the wing-body combination at the higher Mach number tends to
compensate for the reduction in tail effectiveness shown by the decrease
in the increment between the tail-on and tail-off results. For model III,
however, although the tail effectiveness remains appreciably constant up
to large angles of attack, the decrease in the stability of the wing-body
combination causes a reduction in CnB for the complete model and is the

primary cause of this reduction. It is also of interest to point out for
this model that the angle of attack at which ClB and CnB tend to zero

is approximately the same and decreases with ilncreasing Mach number. This
similarity of the action of Mach number on Cl and C, 1s not surprising
g B

since for this model the wing-body characteristics, which in the main usu-
ally control CZ , are also the controlling influence for C, as was
B

B
indicated previously. These results emphasize the need for having,

through the Mach range, not only proper tail effectiveness, but equally
important, proper wing-body design, incorporating satisfactory directional

characteristics.
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The effects of horizontal-tail height on the directional-stability
derivative CnB and also on the effective-dihedral derivative Cy for

model I are shown in figures 4 and 5. The curves on the left of each
figure represent horizontal tail-off data; the next set of curves gre for
the horizontal tail in the low position. This arrangement is the one con-
sidered in the previous figures. The data to the right are for the hori-
zontal tail in high position. The expected increase in the directional-
stability derivative with the tail in the high position is clearly evident
from these results. For the effective-dihedral derivative CZB, the relo-

cation of the tail from the low to the high position produced again, as
expected, an increase in the negative value of the derivative.

There is one additional point related to the sldeslip derivatives
that deserves consideration. In attempts to devise "optimum fixes" to
alleviate the pitch-up conditions for various airplanes, consideration
has also been given to the effect of these same fixes on the lateral
derivatives. The results available so far are very limited and no spec-
ific conclusion can be made. The data of figure 6, however, illustrate
for one configuration, model III, the effect of a leading-edge chord-
extension on the CnB and CZB derivatives. At the lower Mach number

the effect of chord-extensions in producing a linear pitching-moment
variation is clearly evident, but the effect of these chord-extensions
on the corresponding CnB and CzB derivatives are relatively insignif-

icant. At the higher Mach number, although unfortunately the available
chord-extension-on data are somewhat incomplete, the small effect of these
chord-extensions on the derivatives is still evident, the trend for the
higher Mach number being almost identical to that shown for the lower
Mach number. It should be remembered, of course, that Clﬁ did not show

any pronounced breaks until angles of attack approaching stall were
reached.

So far, the discussion of the lateral derivatives for the subsonic
speed range has been directed toward the static effects. Recently, the
characteristics in steady roll of several wings at high angles of attack
in the subsonic speed range have been investigated experimentally. For
a 450 swept-wing—body arrangement, the variation of the damping-in-roll
parameter CZP with angle of attack and Mach number is shown in figure T,

together with the corresponding 1lift variations. It can be seen that at
a Mach number of 0.2 the wing maintains a reasonable amount of damping
et all angles of attack up to the stall. However, as the Mach number is
increased, the damping-in-roll ability of the wing seriously diminishes
until at a Mach number of 0.91 instability in roll is indicated at an
angle of attack of 11°. Note also that this result occurs although the
1ift is still increasing at this angle of attack. Similar effects occur
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for wings of other plan forms as indicated in figure 8. It will be noted
here that all these wings indicate a serious loss in damping effectiveness
in about the same angle-of-attack range. Note also that, with the excep-
tion of the unswept wing, this loss occurs although the over-all 1lift
coefficients of the wings are still increasing. For the unswept wing,

this loss in damping occurs at angles of attack corresponding to the stall,
as would be expected.

One additional important point connected with these regions of poor
damping 1s that the variation of rolling moment with rolling velocity may
be very irregular as shown in figure 9. Under these conditions it is
difficult to determine a representative value of the damping coefficient.
The data shown in figure 9 are for a Mach number of 0.85. The variation
of the rolling-moment coefficient with rolling velocity shown by the dashed
curve is representative of the linear stable slope characteristic of the
low angle-of-attack range. At an angle of attack of 11°, however, the vari-
ation is nonlinear and, in the case of the 32.6° swept wing, it is unstable
over a very wide range of pb/2V. The hysteresis shown in the data for the
unswept wing and the 60° triangular wing would certainly give rise to some
undesirable dynamic-stability characteristics and possibly complicate the
design of any automatic stabilizing equipment. The instability at small
values of pb/2V and the assoclated hysteresis loops also may have some
relationship to the wing-dropping problem.

Some consideration has been given to the use of fixes in an attempt
to reduce the loss of damping in roll. Since a loss in damping is asso-
ciated with tip stalling, which is also a contributing factor in producing
pitch-up, tests were made to determine whether devices which are known to
alleviate pitch-up would also improve the damping in roll. The effect of
a fence on the damping characteristics of the 45° swept wing is shown in
figure 10. The fences were full chord and were located at the 0.65 b/2
station. For the Mach number of 0.85, the fences delayed the pitch-up
by some 5° and decidedly improved the damping. At a Mach number of 0.91,
however, the effect of the fences on either the damping or the pitch-up
decreased considerably. Refere