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USE OF FUSIBU T"ERATURE INDICATORS  FOR  OBTAINING 

QUANTITATIVE  AERODYNAMIC  REAT-TRANSFER  DATA 

By Robert A. Jones  and  James L. Hunt 
Langley  Research  Center 

SUMMARY 

Some  of  the  methods  used  for  obtaining  quantitative  aerodynamic  heat- 
transfer  data  by  means  of  temperature-sensitive  coatings  are  described  and  dis- 
cussed.  A  method  whereby  data  can  be  obtained  on  arbitrary  shapes  without  the 
use  of  a  reference  body  has  been  developed. In this  method,  the  heat-transfer 
coefficients  depend  only  upon  the  thermal  properties  of  the  model  material  and 
the  time  required  for  a  visible  phase  change  of  a  fusible  temperature  indicator 
which  is  applied to the  model  as  a  thin  surface  coating.  The  phase  change  is 
recorded  by  motion-picture  photography,  and  charts  are  given  which  relate  the 
time  required  for  the  phase  change  to  occur to the  heat-transfer  coefficient. 
Data  obtained  by  this  method  are  compared  with  aerodynamic  theory  and  with  data 
obtained  by  the  conventional  thermocouple-calorimeter  technique.  Several  con- 
figurations  were  tested  in  the  Langley  Mach 8 variable-density  tunnel.  The 
results  indicate  that  this  method  can  be  very  useful  and  that  accurate  data  can 
be  obtained. 

INTRODUCTION 

In 1958 a  temperature-sensitive  coating  was  used  at  the  Langley  Research 
Center  for  determining  qualitative  aerodynamic  heating  rates  (ref. 1). Since 
that  time  a  development  program  has  been  underway  to  perfect a technique  whereby 
quantitative  data  could  be  obtained  by  this  method.  It  was  suggested  in  ref- 
erence 1 that  motion-picture  photography  could  be  used to map  isotherms  at  suc- 
cessive  times  and  that  this  information  could  be  used  to  estimate  the  value  of 
the  heat-transfer  rates.  The  coating  utilized  in  reference 1 undergoes  color 
changes  at  certain  temperatures.  These  temperatures  are known to  be  functions 
of  exposure  time or heating  rate  (refs. 1 and 2). 

Several  methods  for  obtaining  quantitative  data  with  this  type  of  coating 
have  been  considered.  One  method  is  to  measure  the  time  required  for  the  sur- 
face to reach  the known temperature  as  indicated  by a color  change  of  the 
coating  and to calculate  the  corresponding  heat-transfer  rate  from  the  transient 
heat-conduction  equation.  Another  method  is  to  test a reference  body  made of 
the  same  material  as  the  model  (e.g., a sphere for which  the  heat-transfer  rates 
could  be  easily  calculated)  either  simultaneously  with  the  model or at  the  same 



test  conditions  and  then  to  assume  that  areas  on  the  model  and  sphere  which 
underwent  color  changes  at  equal thes had  equal  surface  temperatures. If the 
depth  of  heat  penetration  is  small  compared  with  the  model  dimensions,  then 
these  areas  would  be  expected to have  equal  heat-transfer  rates.  In  reference 3 
the  reference  sphere  method  was  used  with a color-change  coating,  and  heat- 
transfer  rates  were  determined  for a rather  complex  shape. 

The  present  authors  have  found  several  difficulties  that  are  inherent  in 
color-change  coatings,  which  limit  their  usefulness  in  obtaining  quantitative 
data.  The  primary  cause  for  these  difficulties  appeared  to  be  the  dependence 
of  the  color-change  temperature  of  the  coating  on  ambient  pressure.  (The  pres- 
sure  dependent  characteristics of one  of  these  coatings  and  the  difficulties 
which  arise  with  use  of  it  are  given  in  appendix A.) The  manufacturer's  liter- 
ature  describes  these  color-change  coatings  as  metallic  salts,  which  at  certain 
temperatures  liberate  water  vapor,  carbon  dioxide, or ammonia  and,  in so doing, 
change  color;  therefore,  it  is  not  surprising  that  the  color-change  temperature 
varies  with  pressure. A few  of  these  coatings  have  been  found  to  change  colors 
with no change in temperature  over a range of pressures  commonly  encountered  in 
hypersonic  test  facilities  (ref. 4). In  addition, at a  given  pressure,  the 
color-change  temperature  appears  to  be  somewhat  dependent  on  the  amount  of 
moisture  absorbed  from  the  atmosphere.  The  colors  themselves  are  not  too  dis- 
tinct  and  the  patterns  obtained  on  a  model  are  sometimes  difficult  to  photo- 
graph. Also, the known variation  of  the  color-change  temperature  with  the 
heating  rate or exposure  time  causes  difficulties. 

On the  basis  of  these  considerations,  a  search  was  made  for a material 
that  would  undergo a visible  change  at  a known temperature  independent  of 
heating  rate  or  ambient  pressure. A readily  available  commercial  product 
seemed  to  meet  these  requirements.  These  materials  undergo  a  visible  phase 
change  fron:  an  opaque  solid  to  a  clear  liquid  at known temperatures.  Materials 
available  have  phase-change  temperatures  that  range  from 100' F to 2500' F 
( 310.g0 K to 1644.3' K) in  increments  as  small  as 3 O  F (1.67O K) . (See  ref. 5. ) 
A method  has  been  developed  for  obtaining  quantitative  heat-transfer  rates  on 
arbitrary  shapes  for  which  these  materials  are  used  to  indicate  surface  temper- 
ature.  In  this  method,  the  heat-transfer  rates  depend  upon  the  time  required 
for  the  phase  change to occur  and  upon  the  thermal  properties  of  the  model 
wall.  The  time  required  for  the  phase  change  to  occur  is  determined  from  motion- 
picture  photography,  and  the  heat-transfer  coefficients  are  obtained  from solu- 
tions  of  the  transient  one-dimensional  heat-conduction  equation  for  a  semi- 
infinite  slab. A brief  description  of  this  method  is  given  in  reference 4. 

The  purpose  of  this  report  is  to  give a detailed  description  of  the  method 
herein  called  the  phase-change-coating  method.  The  phase-change  coatings  are 
described  and  calibrations  of  the  phase-change  temperatures  are  given for a 
range  of  heating  rates  and  ambient  pressures.  The  apparatus,  test  technique, 
and  model  construction  are  discussed. An analytical  solution  of  the  transient 
heat-conduction  equation  is  given  along  with  charts of the  aerodynamic  heat- 
transfer  coefficient  as  a  function  of  time  required  for  the  phase  change,  model 
thermal  properties,  and  test  conditions.  The  accuracy  of  the  present  method  is 
discussed  and  charts  are  given  with  the  error in indicated  heat-transfer  coef- 
ficient  for  various  possible  errors  in  thermal  properties,  time,  and  phase- 
change  temperature.  Data  obtained by this  method  for  several  configurations  in 
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a  hypersonic  facility  are  presented  and  are  compared  with  both  theoretical  data 
and  data  obtained  by  the  conventional  thin-skin  thermocouple-calorimeter  method. 

SYMBOLS 

The  units  used  for  the  physical  quantities  defined  in  this  report  are  given 
both  in  the U.S. Customary  Units  and  in  the  International  System  of  Units (SI). 
(See  ref. 6.) Factors  relating  the  two  systems  are  given  in  appendix B. 

C P 

erf  c 

h 

hC 

hv 

k 

L 

2 

MW 

r 

Rw, D 

S 

t 

td 

T 

Taw 

Tcc 

Ti 

specific  heat 

complementary 

at  constant  pressure 

error  function, - & LW e-A2dh 

aerodynamic  heat-transfer  coefficient 

aerodynamic  heat-transfer  coefficient  based  on  constant-property 
solution 

aerodynamic  heat-transfer  coefficient  based  on  variable-property 
solution 

thermal  conductivity 

length 

thickness  of  model  wall or allowable  depth of heat  penetration 

free-stream  Mach  number 

radius  of  curvature of nose 

free-stream  Reynolds  number  based  on  model  diameter 

surface  distance 

time 

thermal  diffusion  time 

temperature 

adiabatic wall temperature 

color-change  temperature 

inltial  temperature  of  model 
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TPC 

- 
T =  

X 

a 

P =  

e 

P 

h 

temperature of phase  change 

Tpc - Ti 
Taw - T i  

distance normal t o  model surface 

thermal  diffusivity,  k/pcp 

h m  
k 
- 

angular  distance from stagnation  point of sphere 

density 

dummy variable of integrat ion 

PHASE-CHANGE  COATINGS 

The materials  used  for phase-change  coatings  are  readily  available commer- 
cial   products  described  in  reference 5. These materials undergo a phase  change 
from an opaque s o l i d   t o  a c l ea r   l i qu id  at known temperatures. The materials 
available have  phase-change  temperatures t h a t   d i f f e r  as l i t t l e  as 3 O  F (1.67O K )  
and  range  from 100' F t o  2500' F ( 310.g0 K t o  1644.3' K); each material   has a 
specific  temperature  with a tolerance of +1 percent.  These mater ia ls   are  
r e l a t ive ly   i ne r t  and  have extremely low vapor  pressure  in  both  the  solid and 
l i qu id   s t a t e s .  A s  supplied by the  manufacturer  they  are  suspended  in  an  inert, 
vo la t i le ,  nonflammable vehicle which can  be mixed with a special   th inner  and 
sprayed on a model. When t h e  model i s  sprayed  with a very  thin  ( less  than 
0.001 inch  (2.54 x 10-3 em) ) coating  of  this  material ,  it appears t o  be covered 
with small opaque c rys t a l s .  When the  coating  melts, it becomes transparent and 
good contrast  between t h e   s o l i d  and liquid  regions  can  be  obtained by using a 
dark  colored model. With care  these  coatings  can  be made su f f i c i en t ly   t h in  SO 
that ,   for  the  present  conditions,   running of the  melted  coating and er rors  due 
to   t he   l a t en t   hea t  of melting  are  negligible and yet   the   contrast  i s  adequate 
f o r  black-and-white  photography.  Tests made with a spec ia l   ca l ibra t ion  appa- 
ra tus   for   coat ings of different   thickness   indicated  that   the  phase-change tem- 
perature w a s  insensi t ive  to   the  actual   coat ing  thickness   provided  the  thickness  
was less  than  about 0,001 inch  (0.254  cm). However, j u s t  enough phase-change 
material  should  be  sprayed on t h e  model to   fog  the  surface (or j u s t  enough t o  
be  vis ible)   in   order  t o  avoid  running  of  the  melted  coating i n  wind-tunnel  tests. 
The mater ia l s   used   in   th i s   inves t iga t ion  had  phase-change  temperatures of l2!5O, 
150°, 175', 200°, and 250' F (324.8', 338.7', 352.6O, 366.5', and 394.3O K). 

In  order t o   a s c e r t a i n   t h e   e f f e c t s  of  heating rate and pressure on the 
phase-change  temperature, a calibration  apparatus w a s  constructed which allowed 
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the  measurement of phase-change  temperature 
over  a  wide  range  of  heating  rates  and  ambi- 
ent  pressures.  This  apparatus  consisted of a 
thin  stainless-steel  plate  instrumented  with 
thermocouples  on  the  top  surface  and  heated 
from  below  by  a  radiant  heat  source.  The 
temperatures  were  recorded  on  magnetic  tape 
by  a  high-speed  analog-to-digital  converter. 
Sample  photographs  of  the  phase-change  pat- 
terns  obtained  with  this  calibration  apparatus 
are  shown  in  figure 1. The  phase  change is 
taking  place  at  the  line  separating  the  light 
and  dark  areas.  The  melted  coating or  dark 
area  was  subjected  to  the  higher  heating 
rates. 

Calibration  tests  were  made  for  various 
heating  rates  in  which  the  rate  of  change  of 
surface  temperature  ranged  from 1' F per  sec- 
ond  to l25O F per  second (0.56~ K/sec  to 
69.44' K/sec ) at  atmospheric  pressure.  The 
effect  of  pressures  lower  than 1 atmosphere 
(101 325 N/m2)  was  determined by placing  the 
calibration  apparatus  in a bell  jar  and 
repeating  the  procedure  for  pressures  as  low 
as 3 millimeters  of  mercury  absolute 
(399.9 N/m2).  Sample  results  of  these  tests 
are  presented  in  figure 2. For  low  heating 
rates  the  progression  of  the  phase-change 
isotherm  over  the  surface  of  the  calibration 
plate  was  observed by eye.  When  the  iso- 
therm  reached  a  thermocouple-plate  juncture, 
a  signal  was  placed  on  the  magnetic  tape  by 
manually  closing  a  limit  switch  and  thereby 
identification  was  made  of  the  temperature 
at  which  the  phase  change  occurred.  For 
the  higher  heating  rates  (above  about l5O F 
per  second (8.33O K/sec) ) the  progression 
of  the  isotherm  over  the  calibration  plate 
was  photographed  with  a  35-mm  time-study 
motion-picture  camera.  Synchronized  elec- 
trical  circuits f o r  the  camera  and  recorder 
provided  a  reference  time f o r  the  two  sets 
of  data so that  the  temperature  at  a  thermo- 
couple  location  could  be  determined  at  the 
time  the  phase-change  isotherm  reached  the 
thermocouple.  The  time,  surface  tempera- 
ture,  and  rate  of  change of surface  temper- 
ature  with  time  for  which  the  phase  change 
occurred  at  each  thermocouple  were  obtained 
from  these  records. All data  shown  in  fig- 
ure 2 are  believed  to  be  accurate  to  k4O F 

t = O  

4 

I 

t = 9 sec 
L-65-7965 

Figure 1.- Photographs of phase-change  patterns In 
calibration  apparatus. 
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(2.22' K); however, at  low  heating  rates  the  data  are  more  accurate.  These 
data  were  used  only to determine  the  variation  of  phase-change  temperature  with 
heating  rate  and  pressure  rather  than  the  actual  value of the  phase-change  tem- 
perature.  The  effects  of  pressure and heating  rate  shown  in  figure 2 are  con- 
sidered  to  be  negligible  and  the  values  quoted by the  manufacturer  for  the 
phase-change  temperature  with an  accuracy  of 3 2  percent  appear to  be  correct 
within  the  range  of  these  tests.  Therefore  the  phase-change  temperatures 
listed  by  the  manufacturer  were  used  for  the  data  of  this  report. 
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Figure 2.- Sample results of phase-change  calibrations. 
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TEST TECHNIQUE AND PHOTOGWHY 

The  first  step  in  the  test  procedure  was to photograph a model  on  which  a 
grid  had  been  painted  as  a  reference for determining  surface  locations.  This 
stand-in  model  was  placed  in  the  exact  position  where  the  test  model  was  to  be 
placed.  The  test  model was then  sprayed  with a phase-change  material  and 
mounted  on  the  model  injection  mechanism  which  was in the  retracted  position so 
that  during  the  tunnel  starting  period  the  model  was  not  exposed  to  the  air- 
stream  and  thus  remained  isothermal.  The  tunnel  was  started  and  brought  to  the 
desired  operating  conditions.  Then  the  camera and lights  were  started  and  the 
model  was  rapidly  injected  into  the  steady  airstream.  The  injection  time - that 
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is, the  time from which the  model first encounters  the  tunnel boundary layer  
u n t i l  it i s  positioned  in  the  uniform  flow - w a s  about 0.05 second. Between 
tests the  model w a s  taken  out  of  the  tunnel,  the phase-change coating was 
washed off  with  thinner,  the model w a s  cooled  unt i l  it w a s  isothermal a t  room 
temperature,  and  then a new coating  of phase-change material w a s  sprayed on the  
model. Lines of constant  heat-transfer  coefficient were located by projecting 
the  films of the  phase-change pat terns  
model. 

The progression of the  phase- 
change patterns  over  the model w a s  
recorded on high-speed 35-mm black- 
and-white film by using a spec ia l  
time-study  data camera  and strobo- 
scopic xenon f l a sh  lamps. This 
camera i s  driven by a snychronous 
motor  through  interchangeable  gears 
which allow  exact  framing  rates  of 
e i the r  10, 20, o r  30 frames  per  sec- 
ond. It i s  also  equipped  with two 
reference  t iming  l ights which can  be 
used t o   p u t  marks on the  f i lm margin 
f o r  time  correlation. The f i lm i s  
exposed i n  a double-frame  format 

on enlarged  photographs  of  the  grid 
" . 

-Stroboscopic 

Figure 3.- Typical  test  setup. L-64-8370.1 

which gives  negatives of about 24 mm by 36 mm. The model w a s  l ighted and photo- 
graphed  through windows in   the   tunnel   t es t   sec t ion .  A photograph of a typ ica l  
t e s t   s e tup  i s  presented as f igure 3. 

TREORY  FOR  HEAT-TRANSFER COEEFIClENT 

Semi-Infinite  Slab  Solution 

In   the  method described  herein  the  heat-transfer  coefficients depend on the  
time  required f o r  the  phase  change to   occw,   the   t es t   condi t ions ,  and the  
thermal  properties of the  model w a l l .  The relat ionship between the  heat-  
t ransfer   coeff ic ient  and the  other  parameters i s  determined from the  solution 
to  the  equation  governing  the  transient  one-dimensional  flow  of  heat.  This 
equation i s  

with  the  fol lowing  ini t ia l  and  boundary conditions which most nearly  describe 
the  actual  tunnel t r ans i en t   t e s t :  

T(x,O) = Ti 



It  is  assumed  that  the  phase-change  coating  is  at  the  surface  temperature 
T(0, t)  and  the  time  t  is  required  when T(0, t) = Tpc ( Tpc is  the  tempera- 
ture  at  which  the  phase  change  occurs . Other  assumptions  are  as  follows: 1 

(1) The  depth  of  heat  penetration  into  the  wall  is  small  compared  with  the 
wall  thickness  and  surface  radius  of  curvature so that  the  wall  acts  like  a 
semi-infinite  slab  (eqs. (1) and (3) ) . 

(2) The model  is  isothermal  before  injection  into  the  airstream  (eq. (2)). 

(3) The  surface  experienced  an  instantaneous  step  in  aerodynamic  heat- 
transfer  coefficient  at  time  zero  and  this  coefficient  is  invariant  with  time 
(eq. (4)); this  condition  is  normally  encountered  in  a  wind  tunnel  with  con- 
stant  stagnation  conditions  for  a  laminar  boundary  layer  and  rapid  injection  of 
the  model. 

(4) The  thermal  diffusivity a of  the  wall  is  invariant  with  temperature. 

The  solution  of  equation (1) is  given  in  reference 7. With  the  specified 
boundary  conditions,  equation (1) can  be  written  here  in  terms  of  parameters of 
interest  as 

where 

p = p 
4 e-?' dh 

O 0 2  
erfc = - 

Equation (5) is  plotted  in  figure 4 in  terms  of  the  parameter p as  a  function 
of T. The  parameter p depends  on  the  properties  of  the wall, the  aerodynamic 
heat-transfer  coefficient,  and  the  time  required  for  the  phase  change  to  occur. 
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For a given  set  of  conditions  and a known time  for  the  phase  change,  the  heat- 
transfer  coefficient  can  be  computed  from  equation (7). ( A  full-page  copy  of 
figure 4 is  inserted  at  the  end  of  this  report  for  the  working  convenience  of 
the  reader.) 

An alternate  plot  of  equation (5) is  given  in  figure 5. In  this  figure  the 
parameter EJa is  plotted  as a function of time  for  various  values  of T. If 
the  model  properties  are known, the  heat-transfer  coefficient  can  be  read 
directly  from  this  plot;  however,  interpolation  between  the  different  values 
of T is  required. 

h - 

Time, t, sec 

Figure 4.- Solution of heat-conduction  equations (plot of eq. (5)). Figure 5.- Alternate plot for the  solution of heat-conduction 
equations. 

Thermal  Diffusion  Time 

The  time  required  for  the  phase  change  to  occur  should  be  large  compared 
with  the  time  from  initial  exposure  of  the  model  until  steady  flow  is  estab- 
lished  in  order  to  minimize  errors  due  to  the  erroneous  heating  rates  encoun- 
tered  while  the  model  is  passing  through  the  tunnel  boundary  layer  and  errors 
due to the  accuracy  of  determining  the  initial  time.  (These  errors  are  dis- 
cussed  in  a  subsequent  section  of  this  report.)  However,  the  time  required  for 
the  phase  change  to  occur  must  be  short  compared  with  the  thermal  diffusion  time 
of  the  wall  as  this  is  one  of  the  boundary  conditions  (eq. (3)). This  thermal 
diffusion  time  td  is  independent  of  the  aerodynamic  heat-transfer  coefficient 
and  depends  only  on  the  thermal  diffusivity  of  the  wall  and  the  allowable 
depth 2 of  heat  penetration.  The  thermal  diffusion  time  is  given  approxi- 
mately  by  the  following  equation: 

2% 0.2 

Equation (9) was  obtained  by  assuming a cubic  distribution  of  temperature  with 
depth  in  a  slab  subjected to  an instantaneously  applied  constant  heat-transfer 
rate  at  one  surface  and  solving  for  the  value of td  for  which  a  significant 
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change  in  temperature  occurred  at  the  depth 1. In  order to meet  the  necessary 
condition  that  the  time  required  for  the  phase  change  to  occur  be  short  com- 
pared  with  the  thermal  diffusion  time  of  the  wall,  the  allowable  depth of heat 
penetration 2 must  be small compared  with  pertinent  model  dimensions,  such  as 
wall  thickness,  nose  radius,  corner  radius,  that  is,  for  any  given  model  dimen- 
sions  the  maximum  allowable  time  for  a  phase  change  to  occur  is  td.  In  prac- 
tice,  however,  the  time  required  for  the  phase  change  to occur can  be  con- 
trolled  by  selecting  a  coating  material  with  a  suitable  value  of Tpc. It  may 
sometimes  be  desirable  to  spray  different  areas  of  a  model  with  coating  mate- 
rials  having  different  values  of Tpc. To  insure  a  reasonably  long  thermal 
diffusion  time,  the  model  wall  should  have  a  very low thermal  conductivity 
which a l s o  should  minimize  any  lateral  conduction  along  the  surface. 

Comparison  of  Semi-Infinite  Slab  Solution 

With  Finite  Slab  Solution 

In  order  to  check  both  the  usefulness  of  the  infinite-slab  constant- 
property  solution (eq. (5) ) and  the  method  given  for  determining  the  depth  of 
heat  penetration  (eq. (9) ), a  computation  was  made  for  a  finite  slab 1/4 inch 
(0.635 cm)  thick  with  thermal  properties  corresponding  to  those  for  one  of  the 
model  walls  used  in  this  investigation.  This  computation  was  made  by  using  the 
numerical  analysis  method  of  reference 8, an  aerodynamic  heat-transfer  coef- 
ficient  of 0.001 Btu/ft2-sec-'F (20.43 W/mp-OK),  an  initial  temperature  of 75' F 
(297.0' K), and  an  adiabatic  wall  temperature  of 940' F (777.6' K) . The  slab 
material  had  the  following  thermophysical  properties: 

p = 117.6 lb/ft3 (1883.95 kg/m3) 

Cp = 0.2163 Btu/lb-OF (905 J/kg-%) 

k = 0.79 x 10- 4 Btu/ft-sec-OF (4.919 X 10-1 J/m-sec-'K) 

The  resulting  temperature-time  variations of the  front  and  back  surfaces 
of  the  l/b-inch-thick  slab  are  shown  in  figure 6 in  which  the  surface  tempera- 
ture  of  a  semi-infinite  slab  having  the  same  properties  (eq. (5)) is also 

300 
included.  Note  that  the  front  surface 

(0.635 cm)  slab  and  semi-infinite  slab 

35 seconds. For the  same  conditions, 
material  properties,  and  slab  thick- 

temperatures  for  the  1/4-inch-thick 

are  nearly  the  same  for  as  long  as +- _" Finite slab solution  (ref. 8) 
200 

150"- ~~~ 

2- 360 
c 

/ 
c1 
E 

B ness,  equation (9) gives  a  thermal 

3OC fore,  equation (9) gives  a  conserva- 
p 100- " 32cE diffusion  time  of 29 seconds.  There- 

1 2 2o 40 60 8OlO0 tive  value  for  the  thermal  diffusion 50 

Time, t, sec time or time  for  which  the  infinite 
Figure 6.- Effect  of f in i te  s lab on surface  temperature. slab  solution  (eq. (5)) is  valid. 
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Effects  of  Temperature  Dependent  Properties 

on  Semi-  Inf  inite  Slab  Solution 

All models  used in obtaining  the  phase-change-coating  data  presented  in 
this  report  were  constructed  from a fiber-glass-reinforced  plastic.  The  spe- 
cific  heat,  thermal  conductivity,  and  density  of  samples  of  this  wall  material 
were  measured  by a private  corporation. (A description  of  the  methods  used  in 
obtaining  these  values  is  given  in  ref. 9 . )  The  quoted  accuracy  was k2 percent 
for  specific  heat  at  constant  pressure, k 3  percent  for  thermal  conductivity, 
and k1 percent  for  density.  The  values  of  these  properties  for  the  fiber-glass- 
reinforced  plastic  at  various  temperatures  are  listed  in  the  following  table: 

T 

OK 

297.0 
310 - 9 
324.8 
338.7 
352.6 
366.5 

394.3 
380.4 

P 

lb/ft3 

119.1 
118.7 
118.3 
117.8 

116.9 
116.5 
116.1 

117.4 

1902.8 
1901.4 
1894.9 
1887. o 
1880.6 
1872.6 
1866.2 
1859 ' 7 

Btu/lb-OF 

0.1987 
.216 3 
.2288 
.2369 
2545 

* 2994 
- 2699 
* 3055 

I 

J/kg-OK 

831.4 
905.0 
957.3 
991.2 
1064.8 
1252.7 
1129.3 
1278.2 

0.77 x 0.4794 
* 79 

* 4857 * 78 
* 4919 

* 5230 .84 
.5168 - 83 .5168 - 83 .4981 .80 
-4981 .80 

The  variation  of  these  properties,  particularly  specific  heat,  with  temperature 
is  appreciable. In  the  solution  of  the  heat-conduction  equation  the  material 
properties  appear  as  the  parameter G/k (eq. (7) ). The  data  shown  herein 
were  reduced  by  using  the  average  value  of G / k  for  the  temperature  range 
from 75O F (297.0' K) (approximate  initial  temperature)  to  the  phase-change 
temperature Tpc. These  values  are  as  foiiows: 

22.6 
22.4 
21.0 

In  order  to  evaluate  the  effects  of  the  variation  of  material  properties 
(cp and k) with  temperature,  the  numerical  analysis  method  of  reference 8 was 
used  to  obtain  heat-transfer  coefficients  for  the  actual  variable  properties 
listed  previously  by  interpolating  linearly  between  the  eight  temperatures  for 
which  the  properties  were  measured.  In  figure 7, the  heat-transfer  coefficients 
determined by this  method  for  variable  properties  are  compared  with  values 
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obtained by use  of  equation (5). The 
data  are  shown  as  the  ratio  of  the  heat- 
transfer  coefficient h, determined 1.0 
from  the  variable-property  finite-slab 
solution  of  reference 8 to the  heat- .8  
transfer  coefficient h, determined 
from  the  constant-property  inifinite- - 6  h,' 
slab  solution  of  equation ( 5 )  as a func- 
tion  of  time  for  several  values  of . 4  

phase-change  temperature  and  various 
heat-transfer  coefficients  ranging  from . 2  
0.001 to 0.01 Btu/ft2-sec-OF (20.43 to 
204.3 W/m2-OK).  It  is  thought  that  the 0 2 

hV 

b 

.. - 
8 

Time, t, sec 

OF OK 

o 113 31b.2- 
D 125 324.8 

a 175 352.6 

n 225 380.4- 
o 250  394.3 

b 200 366.5 

12 14  16 

effects  of  the  variation in  thermophys- 
ical  properties  with  temperature  indi- 
cated in figure 7 are  small  enough  to  be 

Figure 7.- Effect of variable  thermal  properties on heat-transfer 
coefficients. 

considered  negligible. 

ACCURACY 

Several  factors  affecting  the  accuracy  of  this  phase-change-coating  method 
have  already  been  considered  in  the  previous  section  and  are  not  repeated  here. 
One  factor  that  is  considered  is  radiation.  Since  the  model  wall  must  be  made 
from  a  good  insulating  material,  care  was  taken  to  avoid  errors  due  to  radia- 
tion.  The  walls  of  the  tunnel  remained at nearly  room  temperature  during a test 
and  the  temperatures  at  which  the  phase  change  occurred  were  relatively  low so 
that  radiation  from  these  sources  was  negligible.  However,  it  was  found  that 
radiation  from  photoflood Imps could  introduce  a  considerable  error.  Photo- 
flood  lamps  set  at an intensity  suitable  for  photography  were  found  to  melt  the 
lower  phase-change-temperature  coatings  in  only  a few seconds  or  on  the  same 
order  of  time  as  required  for  the  lower  aerodynamic  heat-transfer  rates.  This 
problem  was  eliminated  by  the  use  of  high-intensity  electronic  stroboscopic 
lamps  which  were  synchronized  with  the  camera  shutter.  Although  these  lamps  had 
a  high  intensity,  the  duration  of  a  single  flash  was  only 25 microseconds so 
that  the  total  on  time  of  the  lamps  at  the  highest  framing  rate  was  only 
0.75 X 10-3 second  per  second  of  test  time  or  less  than 0.1 percent. 

Errors  due  to  the  accuracy  with  which  the  phase-change  temperature  is 
known,  the  accuracy  with  which  the  thermophysical  properties  of  the  wall  are 
known, and  the  accuracy  of  determining  the  initial  time  (t = 0) all  have  an 
effect  on  the  accuracy  of  the  heat-transfer  coefficient  which  can  be  evaluated 
by  use  of  equations ( 5 ) ,  (6), and (7). The  maximum  percent  error  in  heat- 
transfer  coefficient  has  been  calculated  by  assuming  errors  of *3 percent  in k, 
k2 percent  in  cp, +1 percent  in p, +1 percent in Tpc, and 0.1 second  in  time 
and  is  shown  in  figure 8 as  a  function  of  time  for  three  different  phase-change 
coatings.  The  percent  errors  used  for  these  factors  are  the  maximum  errors 
quoted  by  the  company  which  performed  the  thermophysical  property  measurements, 
the  maximum  errors  quoted  by  the  manufacturer  of  the  phase-change  coating,  and 
an  error  in  initial  time  which  was  thought  by  the  authors to be  the  maximum 
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error  possible  with  the  technique  used  herein.  The m a x i m u m  percent   error   in  
heat- t ransfer   coeff ic ient  (shown i n   f i g .  8) i s  independent  of  the  magnitude  of 
the  heat- t ransfer   coeff ic ient .  In addition,  the  t ime  variation of t h i s   e r r o r  
i s  due only t o   t h e   e r r o r   i n   i n i t i a l  t i m e .  The errors  introduced by e r r o r s   i n  
thermophysical  properties and  phase-change  temperature are invariant  with time. 
Two sources  of  error which have not  been  considered  in  figure 8 but which appear 
in  the  value  of  used  (eq.  (6)  ) are  Taw and Ti. For the  experimental 
results given i n   t h i s   r e p o r t  Taw w a s  calculated by using  the  appropriate 
entropy,  the  estimated  local  pressure,  and a laminar  recovery  factor. The adia- 
ba t i c  wall temperature i s  always  near  the  total  temperature, and f o r  most hyper- 
sonic   fac i l i t i es   the   d i f fe rence  Taw - Ti i s  very  large compared with  any  pos- 
s i b l e   e r r o r   i n  Taw so  that Taw can be neglected as a source of e r ror .  

The accuracy  of Ti depends on the  device  used  to measure it and  gener- 
a l ly   i n i t i a l   t empera tu re  can  be  determined  accurately. However, the   d i f -  
ference Tpc - T i  i s  not  always  large so tha t   t he   e r ro r   i n  T due t o  the 
e r r o r   i n  Tpc becomes larger  for  coatings  having  smaller  values of Tpc. It 
i s  essent ia l ,   therefore ,  t o  cool  the model to   near  room temperature f o r  each 
t e s t ,   p a r t i c u l a r l y   f o r  low values of Tpc. 

- 

For   these   t es t s ,   the   in i t ia l  t i m e  (t = 0 )  w a s  taken t o  be tha t  of the f i r s t  
frame of f i lm which showed the  model in  the  tunnel  free  stream. Inasmuch as the  
model actually  encountered  the  airflow a short  t i m e  before   this   so-cal led  ini-  
t i a l  time,  there i s  an e r r o r   i n   t h e   i n i t i a l  time due to  the  elapsed  t ime from 
the   ins tan t   the  model f i r s t  encounters  the  separated  tunnel  boundary  layer  until 
it i s  positioned  in  the  free  stream.  This  time w a s  about 0.05 second for   these 
t e s t s .  There i s  a l so  an e r r o r   i n   i n i t i a l  time due t o  t h e   f i n i t e  framing r a t e  
of the camera. The i n i t i a l  time  can  only be determined to   t he   nea res t  frame; 
therefore,  since  the  framing  rate w a s  20 per  second f o r  most of these   t es t s ,   the  
maximum of t h i s  e r ro r  w a s  0.05 second. The  maximum e r r o r   i n   i n i t i a l  time i s  the  
sum of these two er rors  or 0.10 second f o r  these  tes ts ;  however, a more r ea l i s -  
t i c   es t imate  of the  error  could  be made. 

S ince   t he   e r ro r   i n   i n i t i a l  time A t  i s  one error  over which the  experi- 
mentalist  has some control,  it has  been  considered i n  more d e t a i l   i n   f i g u r e  9. 
A s  the  time  required for the  phase  change t o  occur becomes very  large,   the 
e r ro r  due t o  an e r r o r   i n   i n i t i a l  time  approaches  zero; however, t h i s  e r ro r  i s  
large at short  times. Two things can be done t o  reduce  the  error  in h due t o  
a n   e r r o r   i n   i n i t i a l  time A t .  F i r s t ,   t he  model should  be  injected  into  the air- 
stream as rapidly as possible  with  the camera running a t  a fairly  high  framing 
rate t o  r educe   t he   e r ro r   i n   i n i t i a l  t i m e  A t .  Rapid injection  also  reduces  the 
e f f ec t s  of the erroneous  heating rates encountered  while the model i s  passing 
through  the  tunnel  boundary  layer. Second, the  value  of  the phase-change tem- 
perature Tpc should  be  selected  to  obtain  reasonably  long times; however, 
the  t i m e  must not  exceed  the thermal diffusion t i m e .  
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4c 250° F (394.30 K) 

MODEL CONSTRUCTION 

The  conditions  that  should  be  considered  in  designing  a  model  for  use  with 
this  phase-change  method  are  as  follows: 

(1) The  thermal  diffusivity  of  the  material  should  be  small  enough  to 
insure  accuracy  with  the  one-dimensional  semi-infinite  slab  solution  and  to 
keep  lateral  conduction  to  a  minimum,  and  yet  sufficient  to  give  adequate  test 
time  although  the  test  time can be  controlled  by  the Tpc used. 

(2) The  model  must  withstand  high  injection  accelerations. 

(3) The  model  must  withstand  thermal  shock  and  relatively  high  temperatures 
depending  upon  the  enthalpy of the  facility,  heating  rate,  and  exposure  time. 

(4) The  model  wall  material  must  be  uniform  to  insure  accurate  determina- 
tion  of  its  thermophysical  properties  and  should  be  such  that  the  properties 
will  be  repeatable  in  making  more  than  one  model. 

(5) The  model  surface  must  be  impervious  to  the  test  fluid  and  to  the  paint 
and  thinner  used. 
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(6) The  color  of  the  model  surface  should  be  dark  to  provide  sufficient 
contrast  with  the melted coating. 

Experience  gained  with  several  different  materials  of  which  models  have 
been  made  has  indicated  that  the  fiber-glass-reinforced  plastic  used  in  the 
present  investigation  is  not  the  most  desirable  material  primarily  because  of 
its  nonuniformity.  It  was  found  that  models  made  by  different  technicians or 
from  different  batches  of  material  did  not  have  the  same  thermophysical  prop- 
erties. A high-temperature  epoxy  plastic  was  found  which  had  sufficient 
strength  without  fiber-glass  reinforcement.  This  material  is  excellent  for 
applications  where  the  maximum  surface  temperature  will  not  exceed 500° F 
(533.15' K) . For testing  in  high-enthalpy  facilities  where  some  portion  of  the 
model  surface  is  likely  to  reach  a  temperature in excess  of 500' F (533.15O K), 
ceramics  should  be  considered  as  a  material.  One  glass-ceramic  material  inves- 
tigated  was  suitable  in  all  respects  except  for  a  porous  white  flat  surface. 
It  was  found  that  a  1000-angstrom-thick  coating  of Cr 0 could  be  placed  on  the 
surface  by  vapor  deposition  which  would  completely  seal  the  surface,  give  it  a 
dark  color,  and  be  thin  enough  to  have  negligible  effect  on  the  thermophysical 
properties.  However,  other  ceramic  materials  are  probably  available  which  are 
nonporous  and  dark  colored  and  are  therefore  more  suitable  for  use  at  high 
enthalpies. 

2 3  

EXPERlMENTAL mSULTS AND DISCUSSION 

Heat-transfer  data  have  been  obtained  for  several  configurations  at  hyper- 
sonic  speeds  by  use of the  phase-change-coating  method. All data  presented 
herein  were  obtained in the  Langley  Mach 8 variable-density  tunnel  which  has  an 
axisymmetric  contoured  nozzle  with  an  18-inch-diameter (0.4572 m)  test  section 
and  operates  as  a  blowdown  facility by exhausting  to  a  41-foot-diameter 
(12.497 m)  vacuum  sphere.  Maximum  tunnel  operating  times  are  approximately 
2 minutes (120 see);  however,  these  tests  required  about 15 seconds. A descrip- 
tion  of  the  characteristics  of  this  facility  is  given in reference 10. 

Hemisphere-Cylinder 

A 4-inch-diameter (10.16 cm)  hemisphere-cylinder  was  tested  at  free-stream 
Reynolds  numbers  of 2 X 105, 3.4 x 105, and 6.8 x 105 based  on  model  diameter 
and  at  zero  angle  of  attack.  This  hemisphere-cylinder  model  was  constructed  by 
forming  a  layer  of  fiber-glass-reinforced  plastic  over  an  aluminum  mandrel. 
Two thermocouples  were  attached  at  the  plastic-aluminum  interface to monitor 
the  initial  temperature.  The 200' F (366.5O K) phase-change  coating  was  used 
for  each  test.  The  grid  model  and  coated  model  positioned  in  the  test  section 
prior  to  the  test  are  shown in figure  lO(a).  Sample  photographs  of  the  phase- 
change  patterns  obtained  during  one  of  the  tests  are  shown  as  figure  10(b). 

The  heat-transfer-coefficient  distributions  obtained  for  the  three 
Reynolds  numbers  are  compared  with  theoretical  distributions  in  figure 11. 



Grid model 

Coated model 

t = 2.6 sec 

t = 4.6 sec 

t = 6.6 seC 

(a) Gr id   and coated  models wi th  no airflow. (b) Phase-change  patterns  on  coated model. T = 20O0 F. 
PC 

Figure 10.- Photographs of 4-inch-diameter  hemisphere-cylinder models. L-65-7966 
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Figure 11.- Heat-transfer  distribution on hernisphere-cylinder. 
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Several  tests  were  made  at  each  Reynolds  number  and  the  repeatability of the 
data  was  very  good;  therefore,  only  one  set of data  is  shown.  The  theoretical 
heat-transfer  coefficients  were  obtained by using  a  modified  Newtonian  pressure 
distribution  with  the  method of reference 11 to  determine  the  stagnation-point 
value  and  the  method of reference 12 to determine  the  distribution.  The  exper- 
imental  data  are  in  relatively  good  agreement  with  the  theoretical  values 
except  for  the  data  point  nearest  the  stagnation  point  for  each  of  the  three 
Reynolds  numbers.  These  data  points  correspond to the  earliest  time  for  which 
data  could  be  reduced - that  is,  considerably  less  than 1 second - and  the  error 
in h  due  to any error in  determining  the  initial  time  is  therefore  large 
(figs. 8 and 9 ) .  These  initial  data  are  shown  only to emphasize  the  point  that 
the  time  required for  the  phase  change  to  occur  must  be  large  compared  with  the 
time  required to inject  the  model  or  large  compared  with  the  error  in  deter- 
mining  the  initial  time.  For  these  tests  the  initial  time  was  taken to  be  that 
of  the  first  frame  of  film  which  showed  the model  to be in  the  tunnel  free 
stream.  Inasmuch  as  the  model  actually  encountered  the  airflow  a  short  time 
before  this  so-called  initial  time,  the  error  in  initial  time  is  such  as  to 
always  make  the  indicated  heat-transfer  coefficient  larger  than  the  actual  value 
for  very  early  times.  The  second  data  point  shown  in  figures ll(a),  (b), and  (c) 
corresponds to  a  time less than 0.2 second  after  the  first  data  point  and  is 
much  closer  to  the  theoretical  values. 

Segment  of  a  Sphere  at  Angle of Attack 

A comparison  of  heat-transfer  data  obtained  by  the  phase-change-coating 
method  with  data  obtained  by  the  thermocouple-calorimeter  method  is  presented 
in  figure 12. The  two  sets  of  data  were  obtained  on  similar  models  at  the  same 
test  conditions  in  the  same  facility.  The  phase-change  model  had  a  spherical 
radius  r of 4.8 inches (12.19 cm)- 
and  a  face  diameter  of 4 inches 
(10.16 em)  and  was  made  from  fiber- 
glass-reinforced  plastic.  The 
thermocouple-calorimeter model was 
built to the  same  shape  but  was  made 
from  stainless  steel  with  a 0.030- 
inch-thick (0.0762 em)  skin.  Iron- 
constantan  thermocouples  were  spot- 
welded  to  the  inner  surface of this 
thin skin.  The  data  shown  are  for 
various  locations  along  the  vertical 
line  of  symmetry  at an angle  of 
attack  of 35'. The small number  of 
phase-change  data  points  shown  is 
due  to  the  relatively  low  framing 
rate  of  the  camera.  Actually  one 
could obtain  as  much  data  as  desired 
by simply  operating  the  camera  at 
higher  framing  rates.  Good  agree- 
ment  is  indicated  for  these  two 
methods  of  obtaining  aerodynamic 
heat-transfer  data. 
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Figure 12.- Comparison of phase-change data with  thermocouple- 
calorimeter data for a segment of a 4.8-inch-diameter  sphere  at 
an  angle of attack of 35'. 



Bell-Shaped  Configurations 

The  heat-transfer  coefficients  on  two  bell-shaped  configurations  have  been 
obtained  with  the  phase-change  method  on  models  made  from  fiber-glass-reinforced 
plastic. From other  tests  of  these  configurations a rather  extensive  separated 
region  was  observed  with  reattachment  somewhere  on  the  flare  as  is  indicated  in 
the  schlieren  photographs of models 1 and 2 in  figure 13. Consequently,  these 
shapes  would  be  expected  to  have  areas in which  the  heat-transfer  rates  vary 
rapidly  with  surface  distance  and  it  might  be  difficult to detect  the  maximum  or 
minimum  rates  with  thermocouple-calorimeter  techniques  because  of  thermocouple 
spacing  and  lateral  conduction.  The  phase-change-coating  method  however  should 
provide a reasonably  accurate  measurement  of  these  maximum  and  minimum  rates. 
Sample  photographs of the  phase-change  patterns  obtained  on  model 2 are  shown  as 
figure 14. Notice  the  sharply  defined  region  of  very  low  heat-transfer  rate 
just  downstream  of  the  nose.  The  measured  heat-transfer  coefficients  for  the 
two  bell-shaped  models  are  presented  in  figure 15; also  included  in  the  figure 
are  sketches  of  the  flow  patterns.  Large  gradients  in  heating  rate  are  indi- 
cated  near  the  point  of  separation. For example,  in  figure  l5(a)  the  heat- 
transfer  coefficient  varies  by  a  factor  of 4.5 over  a  surface  distance  of  only 
0.05 inch (0.127 em).  It  is  doubtful  that  heat-transfer  rates  could  be  accu- 
rately  measured  by  the  thermocouple-calorimeter  technique  in  regions  subjected 
to such  large  gradients.  The  present  phase-change-coating  method  should  there- 
fore  prove to be  very  useful for  complex  configurations.  In  reference 13 the 
phase-change-coating  method  was  used  to  measure  the  heating  rates  in  regions 
near  holes,  protuberances, and  reaction-control  jets  on  a  4-inch-diameter 
(10.16 em)  model of the  Apollo  command  module.  The  detailed  heat-transfer  dis- 
tributions  obtained  in  the  interference  regions  were  very  good,particularly so, 
considering  the  small  model  dimensions. 

CONCLUDING REMAFXS 

A method  whereby  quantitative  heat-transfer  data  on  arbitrary  shapes  can  be 
determined  by  using  a  phase-change  coating  has  been  developed.  This  coating  is 
a  fusible  temperature  indicator  which  undergoes  a  phase  change  from an opaque 
solid  to  a  clear  liquid at  a known temperature.  In  this  method  the  heat-transfer 
coefficients  depend  upon  the  time  required  for  the  phase  change to occur  as  deter- 
mined by motion-picture  photography  and  the  thermal  properties  of  the  model  wall. 
Charts  are  presented  of  the  aerodynamic  heat-transfer  coefficient  as  a  flmction 
of  the  time  required for the  phase  change  to  occur,  the  thermal  properties  of  the 
model  wall,  and  the  temperature  conditions  of  the  test.  Data  obtained  by  this 
method  and  those  obtained  by  use  of  aerodynamic  theory  and by the  conventional 
thermocouple-calorimeter  technique  show  close  agreement.  This  agreement  indi- 
cates  that  accurate  data  can be obtained  with  the  phase-change-coating  method. 

Lateral  conduction  effects  are  minimized  by  the  very  low  thermal  conductiv- 
ity  and  in  effect  the  entire  surface  of a model  is  instrumented.  Thus  the  pres- 
ent  method  appears  particularly  useful  for  complex  configurations  which  are  dif- 
icult to instrument  with  thermocouples or for  configurations  subjected  to 
interference  effects  for  which  the  desirable  placement  of  thermocouples  is  not 
known beforehand.  In  addition,  the  models  which  are  cast  from  plastic  can  be 
made  quickly  at  low  cost  and  the  data  are  rapidly  and  easily  reduced  without 
complicated  recording  apparatus or electronic  computers. 
Langley  Research  Center, 

National  Aeronautics  and  Space  Administration, 
Langley  Station,  Hampton, Va., September 16, 1965. 19 
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APPENDIX A 

ERRORS INDUCED BY THE PRESSURE  DEPENDENCE 

OF COLOR-CHANGE COATINGS 

The dependence  of the  color-change  temperature on ambient  pressure  could 
introduce an e r r o r   i n t o   t h e   r e f e r e n c e  body  method unless   the   p ressures  on t h e  
re ference  body  and t h e  model were equal  a t  each  locat ion where a simultaneous 
co lo r  change  occurred. I n  addi t ion ,  a pressure-dependent  color change would 
increase  the  complexity of a theo re t i ca l   so lu t ion   t o   such   an   ex ten t  as t o  
render it imprac t ica l .  With t h i s   i n  mind, several   color-change  coatings were 
c a l i b r a t e d   f o r   p r e s s u r e   e f f e c t s  by us ing   the   t echnique   descr ibed   in   the   sec t ion  
"Phase-Change Coatings." Some coat ings were much more sens i t ive   to   ambient  
pressure  than  others ;  however, a l l  coa t ings   t e s t ed  were a f f ec t ed   by   p re s su re   t o  
some exten t .   F igure  16 shows the  pressure  dependence of the  pink-to-blue  color  
change  of one of the  four  color-change  coatings which has  been  used  extensively 
i n  wind-tunnel tests.  The p l o t  shows the  temperature a t  which the  pink-to-blue 
co lo r  change  occurred as a funct ion  of   the  heat ing time f o r  ambient  pressures 
of 3 and 760 mm of mercury  absolute (400 and 101 325 N/m2). A considerable  
pressure  dependence i s  ind ica t ed   i n   t hese   da t a .  
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APPENDIX A 

Figure 17 is a  plot  of  the  same  data  with  the  color-change  temperature  as 
a  function  of  the  temperature  rise  rate of the  coating.  Curves of the  form 

TCc = A +  B- E + c($ 

are  shown  as  solid  lines  in  this  figure. To obtain  an  indication of  the  error 
that  could  be  induced  by  neglecting  this  pressure  effect,  equation (Al) for  the 
color-change  temperature  (assumed  valid  for  t > 2 sec)  and  equation ( 5 )  for the 
model  surface  temperature 

were  solved  simultaneously  to  give 
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APPENDIX A 

A working  form of the   so lu t ion  of equation (A2) i s  given in   f i gu re  18 for   the  

two cal ibrat ions i n  f igure 17 i n  terms of kfi as a function of time f o r  an 

i n i t i a l  temperature Ti of 80° F (299.8' K) and  an adiabatic w a l l  tempera- 
t u re  Taw of l l O O o  F (866.5O K) . If the  thermal  properties  of  the model k 
and 6 are assumed to  be  constant,   the  indicated  heat-transfer  coefficient  for 
the 3 mm of mercury calibration  curve i s  about  one-half that  obtained  with  the 
760 mm of mercury cal ibrat ion  curve  for  a l l  t e s t  times from 2 t o  25 seconds. 
Therefore, i f  the  reference model method were used  under  conditions  for which 
the  pressures on the t e s t  model and the  reference model were 3 and 760 mm of m e r - .  
cury (400 and 101 325 N/m2), respectively,  a t  locations where color changes 
occurred at equal  times,  the  indicated  heat-transfer  coefficient would be i n  
e r ro r  by a fac tor  of 2. 
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Figure 18.- Solution of equation (A2). Taw = llOOo F (866.5' K); 
Ti = 80' F (299.8' K). 



APPENDIX B 

CONVERSION OF U. S. CUSTOMARY UNITS TO S I  UNITS 

me  In t e rna t iona l  System of Units (SI )  was  adopted by the  Eleventh  General 
Conference on Weights  and  Measures he ld   i n  Pa r i s ,  October 1960, in  Resolution 
No. 1 2  ( r e f .  6 ) .  Conversion fac tors   requi red  for units used  herein  are  given 
in   the  fol lowing  table:  

1 I 

Physical  quantity 
U.S.  Customary 

Unit 
. 1  

Density . . . . , 

Heat-transfer 

lb/ft3 

coefficient . . Btu/ft2-sec-OF 

Length . . . . . . {:* 
Pressure . . . . . 

Temperature 

( O F  + 459.67) Temperature . . . 
Btu/lb-OF Specific  heat . . 
mm Hg 

rise  rate . . . 'F/sec 

Thermal 
conductivity . . Btu/ft-sec-OF 

Thermal 
diffusivity . . ft2/sec 

~~ I 

" 

Conversion 
factor 

("1 
16.0185 

2.0428 X lo4 

2.54 x 
3.048 x 10-1 

1.333 x 102 

4.184 x 103 

5/9 

5/9 

6.2265 x 103 

SI Unit 

kilograms/meter3 ( k g / d )  

watts/meter2-degrees  Kelvin  (W/m2-OK) 

meters (m) 
meters (m) 

newtons/meter2  (N/m2) 

joules/kilogram-degrees  Kelvin  (J/kg-%) 

degrees  Kelvin  (OK) 

degrees  Kelvin/second ('K/sec ) 

joules/meter-second-degrees Kelvin  (J/m-sec-'K) 

meters*/second  (m2/sec) 

Y Multiply  value  given in U.S.  Customary  Unit  by  conversion  factor  to  obtain  equivalent 
value  in SI Unit. 

Prefixes  to  indicate  multiples of units  are  as  follows: 

Prefix Multiple 
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