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LONG-TERM MOTION OF A LUNAR SATELLITE

I. INTRODUCTION

The purpose of this report is to examine two special methods of studying
the long-term motion of a lunar orbiter. The Hamiltonian used is the long-
period Hamiltonian (in which the argument of pericenter and inclination of the
salellite appear but other angular variables have been eliminated) as derived
by Kozai and Giacaglia, et. al., (References 2, 3). It includes the perturbation
of the earth as a point mass and the principal part of the oblateness of the moon.

This long-period Hamiltonian is

1 2 2 2
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where
7= 1-¢e?

e = eccentricity of the satellite's orbit
L=VvVua
G=LYV1-¢e?

H= Gcos1i

u = gravitational constant times the mass of the moon
= 3.6601891 x 103 decamegameters?3/centiday 2

a = semimajor axis of the satellite's orbit (decamegameters)
i = inclination of satellite orbit plane to the moon's equatorial plane

g = argument of pericenter of the satellite



3n£ . 1
K, = Sen (centiday =%

n_ = mean motion of the moon
= 2.2802713 x 10”3 (radians/centiday)

n = u? -3 = mean motion of the satellite

e = ratio of sum of masses of earth and moon to the mass of the earth
= 1.0123001
K, = i] , b?n? (decamegameters ?/centiday ?)
4
J. = principal part of the oblateness of the moon

= 2.41 x10~*% (Reference 2)

b = mean radius of the moon
= 0.1738 decamegameters

Since the Hamiltonian (1) is not an explicit function of time, it has a constant
value, F =1/6 C.

Special methods are needed for the problem of the long-term motion since
the standard procedures — von Zeipel's method and the method of successive
approximations — break down at this point for the lunar satellite (e.g. see Ref-
erence 2). The special methods, which involve harmonic analysis and elliptic
integrals, to be considered in this report were suggested many years ago by
E.W. Brown in his paper '"'On the Stellar Problem of Three Bodies'' (Reference 1).

In the method involving harmonic analysis it is assumed that n? and dt/dg
may be represented by cosine series with the argument of pericenter g as the
variable. Integrating dt/dg gives g as a sum of a linear expression of time
and a sine series in g. On reversing this expression we have g as a function
of time. Then n2 is approximated as a cosine series in time. In the second of
these methods proposed by Brown,
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and an approximation of cos 2g found by neglecting the oblateness of the moon
are used to give dn?/dt and dg/dn? as functions of 72 alone. These result in
elliptic integrals of thefirstand third kinds as the solutions for 72 as a function
of time and g as a function of 7? (and therefore of time).

For the harmonic analysis method it is necessary to solve the Hamiltonian
for 7? corresponding to chosen values of the argument of pericenter. To be
able to compare the values of 72 and g as obtained from harmonic analysis and
elliptic integrals the portion of the Hamiltonian containing the oblateness of the
moon was neglected, both in solving for 7? and evaluating dt /dg. Setting j,=¢0
results in the following quadratic equation in x = 72;

3(1-5cos2g)x2-[5+ 92-15cos2g(1+v?) +C'Ix + 1522 (1 - cos 2g) = 0

where

C'= 2(5- 672 + 3%

and v - H/LL are constants. nf is the value of 72 when g = 0. If the oblate-
ness of the moon is included in the Hamiltonian, however, an approximation used
in this report is to represent (1 - e2)~3/2 by its Maclaurin series terminating
the series to give the quadratic equation in e? (for small to moderate values

of e)

ae* + Be? + ¥y =0,
where
a=3K, L +£K2(-1 +1522) - 15K,Lcos 2¢g
4

B=(KL+K)(-1+9% +C ;15 K,L(1- 12) cos 2g

¥= 2(K,L +K,) (-1 +3v?) -C



This quadratic is then solved for 72 = 1 - e2, given specific values of cos 2g:

2
n2:1-e2:1+_ﬁ_:; »£_
20 42 a

(the sign is chosen so that 7% lies between zero and one).

II. THE HARMONIC ANALYSIS METHOD

Given the initial conditions

L = 0.06

G = 0.055

H = 0.05

g =0
we find

e = 0.39965264
= 0.98 355573 decamegameters
i = 24.619974°
K, = 3.105573 x10-5
= 2.1003149 x 10-8
7.6893300 x 107°.

OJx

1

We assume

7 = Z a, cos 2kg and fldi = Zbk cos 2kg,
4

k>0 k>0

terminating the series with cos 8g so that

7 = a, +a, cos 2¢g + a

1 , COs 4g + a

3 cos 6g +a, cos 8¢g

ﬁ = by +b, cos 2g + b, cos 4g + by cos 6g + b, cos 8¢
dg




Solving the Hamiltonian for 7? given the five values 2g¢ =0, 7,7/2,7/3,27/3,
we have the following results:

p: ) 20
2g 0 7 2 3 3

n, , =0 | .84027778 | 77996317 | .80665828 | .82299779 | .79219924
m”, K2#0 .84027778 | .78055119 | .80702653 | .82317074 | .79270692

Corresponding to each of the five special values of 2g with the associated values
of 7%, dt/dg is evaluated using

d 2 2 K 2
__g.:-a_F: 17 -1+_5_7./4._ +5 I_V_ cos 2¢g ..__...2_. 1__S_V__
dt G 7 n* Ln* 72

Then the following table may be used to solve for the coefficients in the series
for dt/dg:

2g 0 7 A m 27
2 3 3
%t-,xzzo 8781.8656 | 6732.7808 | 8268.1582 | 8735.5882 | 7538.4678
g
?,K2#0 8663.7170 | 6662.5543 | 8155.7627 | 8611.8994 | 7446.8692
24

Letting f, denote the kt" value of 7? in the table, the equations

fI:aO+a1+a2+a3+a4
f2:a0 -a; +a,-a; +a,

f, =2, ) t3a,

f, = 1 a 1a
4= F 58 T H T8 T,
f_=a 1a

s T8 T T Bt T



may be solved for the coefficients a, in the terminated series expansion for 72,
For K, =0 we then have

1 1

a, :—g(f1+f2)+—3-(f4+f5) = .80843917

1
a, =3 (£, =, 4 £y - 1) - .03637106
D P SR I = .00173110

32"’2{(1+2)"§'3 =

a o Le -t y-Lg, -f)=-.00021374

3~ 6 1 2 3 4 5

a, = f,-2a, +a, = - .00004979.
Thus, if K, =0,

2 = 80843917 + .03037106 cos2g + .00173110 cos 4g (2)

- .00021374 cos 6g -~ .00004979 cos 8¢

while, if K, £0,

n? = .80876405 + .03006347 cos 2g + .0016_9398 cos 4g

- .00020018 cos 6g - .00004354 cos 8¢ (2"

Similarly, the five coefficients bk in the terminated cosine series for dt /dg may
be evaluated, so that if K, = 0,

ic— - 8010.4597 + 1082.0684 cos 2g - 255.4175 cos 4g

dg

- 57.5260 cos 6g + 2.2810 cos 8g




and, if K, # 0,

_d_t. =7907.3015 + 1055.3976 cos 2g -~ 246.3136 cos 4¢g

dg
- 54.8163 cos 6g + 2.1476 cos 8¢g.

Integrating this expression for dt/dg gives

b, bz bs b4
t = bog +— sin 2g + — sin 4g +— sin 6g + — sin 8g
2 4 6 8

(the constant of integration is zero in this example because of the initial condi-
tion g = 0). Then

b, b, b, b,
t- — sin2g-_—" sin4g-__ sinbg- — sin 8g.
(i 0 o 8b,

1
g:—
bO

In particular,

(K, =0) g =-.12483678 x 10-3t - .06754097 sin 2g

+.00797137 sin 4g + .00119689 sin 6g - .00003559 sin 8¢

(K, #0) g = 12646539 x 1073t - .06673563 sin 2g + .00778754 sin 4¢g

+ .00115539 sin 6g - .00003395 sin 8¢g.

Since we may write g = 7 + ¢(g), where 7 is a linear function of time and
p(g) is a trigonometric function in g, Lagrange's expansion theorem may be
applied to reverse the equation and give g as a function in time. By this
theorem, if

y =%+ 9y,




then a series may be used to express y as a function of x:

1 0

= - - 2 _l_i_ p3 .
X + @(x) + Y aX(CP (x)) +3! ) (P2(X)) + ...

In this case, only the first four terms of this series were taken and all terms
after sin 8g were eliminated.

Hence,
g= |7+ a+:A—+E sin27 4+ [by=4+=) sin 4y
2 6
+ (( +%+%> sin 67 + (d +%+—> Sin6"]
where
k2 =0 k2 Z 0

a = -,067540965 -.06673563

b .0079713748 00778754

c .0011968934 .00115539

d -.000035595648 ~.00003395

t

A =-.-2(ab ybec + cd)
B = 2(a? - 2ac -~ 2bd)
J =6a(b-d)

D = 4(2ac + b?

w

2 2
E-6 _a__bza-c2a-d2a—b—£-bcd +E—C + bad
2 2 2

V 2 3 2
P - 24 {_bac-adc—a2b_bc2_bd2+3_2£1_ll2_ _22_‘1_}




2 3 3
M- 54 {-b’c_bcd-ab —d2?c - adb +?.6__a2c_%}

C

N - 48 {baz - 2abc - 2b?d -~ bc? - 2a%d - d3 - 2dc2}

Thus, for K, = 0,

g=7- .06685092 sin 27 + .01255112 sin 47

- .00091832 sin 67 + .00007192 sin 87 (3)
where 7 = 0.12483678 x 10~ %t (t in centidays), while if K, # 0,

g=7~.06606959 sin 27 + .01225829 sin 47 -~ .00088524 sin 67

+ .00006836 sin 8. 3"

(7 =.12646539 X 10”3 t, t in centidays).

Letting 27 take on the five special values 0, n, 7/2, 7/3, 27/3, these
equations for g give corresponding values of 2g; from these we may evaluate »?
using the terminated cosine series (2) and (2').

This gives the following results:

2T 0 T R o .2i

2 3 3
g, K, =0 0 % .71946556 | .47651148 |.97849565
7, K,=0 |.84027778 | 77996317 | .81080056 |.82570548 |.79556239
g, K,#0 0 -721 72021381 | .47693763 |.97942282
7, K, #0 | .84027778 | .78055119 | .81107413 | .82582292 | 79599495




Assuming 7m? may be written as a cosine series in 7 and taking the first

five terms of the series, we may evaluate the coefficients of these terms as
above. Thus, we have for K, =0,

7% = .81046278 + .03015257 cos 27 - .00034004 cos 47
+ .00000474 cos 67 - .00000226 cos 8 T
(T =.12483678 x 1073 1t) (4)

and for K, £0,

.81074412 + .02985152 cos 27 - .00032982 cos 471

3
il

+.00001177 cos 67 + .00000019 cos 87. (4"

(7= .12646539 x 10-3 t)

In this way both g and 7? may be found as functions of time.

Tables 1 and 2 give the values of 72 and g. Equations (4) and (4') are
plotted against time in Figure 1. This shows the shift that occurs when the
oblateness of the moon is considered in the long-period Hamiltonian. Figure 2
shows similar results for g as given by Equations (3) and (3').

As may be seen from these figures, the effect of the moon's oblateness on a
satellite at this distance from the moon (5.659 moon radii) is not great. For a
satellite near the surface of the moon, the effect of the moon's oblateness on the

eccentricity and argument of pericenter of the satellite would be much more
pronounced.

10




Table 1

7%, g Harmonic Analysis (K, =0)
t , g g F F-C
(days) n Radians Degrees x 1075 x 10710
0 .84027782 0 0 76086524 0
20 .83675070 2273639 13.02699 .76086623 .089812
40 .82692477 4543801 26.03406 76086372 -.160298
60 81298783 6850423 39.25003 .76086474 -.059685
80 .79215000 9287134 53.21135 .76086799 266027
100 78627455 1.1952296 68.48161 .76085606 -.927684
120 .78029692 1.4843190 85.04521 .76086390 -.143245
140 L718191710 1.7799106 101.98136 .76085884 -.649720
160 - 79068695 2.0606739 118.06792 76086051 -.481463
180 .80424327 2.3168499 134.33726 76086867 .334239
200 .81911010 2.5537270 146.31778 76086276 -.2575
220 83167979 2.7820046 159.39712 76086533 0
240 .83906558 3.0090020. 172.40312 76086577 .043769
260 .83965478 3.2365252 185.43923 .76086555 .022168
280 .83332190 3.4636120 198.45035 .76086267 .051159
300 .82144059 3.6913262 211.49741 .76086784 -.266027
320 80671501 3.9260582 224.94656 .76086301 .250679
340 .79268607 4.1783800 239.40354 76086301 -.232489
360 78291847 4.4552836 255.2689%4 76085703 -.829345
380 .78002546 4.7497567 272.14101 .76086506 -.027284
400 78480573 5.0413928 288.85053 .76085565 -.967474
420 .79594596 5.3120934 304.36053 .76086641 107434
440 .81050099 5.5589943 318.50691 76086596 062527
460 .82482343 5.7910522 331.80284 .76086308 -.225099
480 .83551665 6.0182398 344.81974 76086616 .082991
500 .84017939 6.2454964 357.84058 .76086530 -.003410
520 .83780875 .1897622 10.87257 .76086611 077875
540 .82891087 4167136 23.87593 .76086439 -.093791

11




Table 2
m% g: Harmonic Analysis (K, # 0)

t 2 g g F AF
(days) K Radians Degrees x 1075 x 1078
0 .84027778 0 0 .76393302 0

20 .83668256 .23048543 13.205842 76898250 .0495106

40 .82670981 .46072723 26.397726 .76906286 1298758

60 .81265809 .69497792 39.819302 76911933 .1863440

80 .79790366 194291820 54.025233 76917259 .2395950
100 .78620654 1.2142525 69.571544 .76921679 .2837964
120 .78072811 1.5074170 86.383185 76926319 .3201989
140 .78300817 1.8058868 103.46969 76923517 3021796
160 .79240119 2.0877218 119.61765 76919183 .2588421
180 .80631778 2.3446295 134.33738 .76914220 .2092065
200 .82111800 2.5832362 148.00853 .76908830 .1553075
220 .83316153 2.8143461 161.25016 .76901856 .0855607
240 .83963119 3.0445164 174.43794 .76894303 .0100385
260 .83905608 3.2751774 187.65384 76895149 .0184968
280 .83156597 3.5053372 200.84103 .76903174 .0987483
300 .81886887 3.7369943 214.11400 76909695 .1639591
320 .80395451 3.9777790 227.90995 76915085 .2178580
340 .79050779 4.2384158 242.84334 .76919868 .2656861
360 .78212960 4.5239208 259.20157 76924155 .3085574
380 .78109380 4.8229269 276.33336 .76924995 3169589
400 .T8771252 5.1136422 292.99012 76920982 2768274
420 .80013334 5.3809400 308.30515 76916465 .2316596
440 .81502776 5.625948 322.34308 .76911089 1778971
460 .82865910 5.8590324 335.69783 76905185 .1188595
480 .83771752 6.0893168 348.89215 .76896972 .0367322
500" .84018579 .03656091 2.094786 .76893447 .0014779
520 .83548432 .26695049 15.295136 .76899601 .0630166
540 .82467794 49738946 28.498317 .76907304 .1400508

12
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III. THE SOLUTION WITH ELLIPTIC INTEGRALS

The second method suggested by Brown, starting with 7 and g, results in
elliptic integral expressions for »2 and g, but for this solution the oblateness
portion of the Hamiltonian is neglected.

From the long-period Himiltonian (1) and the definition of the Delaunay
variables, we have

dn 1dG 1 23F ZAN
2 2T K1 -m) (12 2g. (5)
dt Ldt L73g 1 77)( 2SR
Setting K, = 0 in the Hamiltonian gives
2 2
W=(5-37% <;1 +3_V2)+ 15(1 - n?) (1 -iz_)cos 2g, (6)
Ui n

where the constant W is evaluated for g = 0. Then, W= 2(5 - 67,2 + 3v?) where
7,2 is the value of 72 when g = 0. On solving the Hamiltonian (6) for cos 2g,
we have

-1
cos 2¢g = [15(1 - %) (1 -1;')} \:(5 - 37%) (1 -B—V;> +2(5-672+ 37/2):]
7 Y

which may be substituted in (6) forsin2g = {1 - cos? 2g] 172 to give

% =2 = T A6 K, [(x - x)(x - x)(x - x3)]1/2,

where x = 7% x, = 7,2 and the roots x,,x

, of the polynomial are defined by the

equations
X, X, :—g-vz
154522
x2+x3--§( + Sv% - 2x,).

In this expression for dx/dt the minus sign is used when sin 2g is positive
and the plus sign when sin2g is negative.

15



If the roots of the polynomial are relabeled to give a strict ordering

. . . ! 1
X, < x), < X, with the relationship x; < x < x,, we have

dx = 7 4K, V6 dt.
J(x - x;) (x = %) (x - x3)

Integrating both sides gives

X dx _ t
’ ‘ -+ 4K, v6 dt
ng VX=X (% - %)) (% - Xy t

where x, is the initial value of x and t, may be taken as zero.
Set
xé - x y?
X =
1-y2
dx - 2(x'3 - x'2)y dy

and we have

dy

2 y :
/x5 - X J;o /(1 - k2 y2) (1 - y?)

T 4K, tV6 =

16




or

yH A -y?

fy dy 2K, t /6( )
=F t x' - x'
2 1 3 1

v, V(1-k

Let us define

<
I

2K, t /6(x;- x))

J"'O dy
u =
vy /(1 -k2y?) (1 - y?)

Then
x /x5 - % dx
Vv =
Jx 2,/(x—xi) (x - x) (x - x)

{J’x dx J"‘o dx )('3—)-{'1
+
x, /(%= x) (x - x) (x - x} b /- xD(x - %) (x - %) 2

1

JY dy N fyo dy X, - xl
y VA=A -RYYD L /A -yH -y |2

where

17



so that

'
X =X
1

- x,'=x,! dy
u+4+vz= 2 1 .
A V(1 -y -k y?)

Thus we may solve for x as a function of time, using the Jacobi elliptic function
of u and v:

x=x," +(x, - x,") sn?(uztv)

2
' ' ' snucnvdnvisnvcecnudnu
=%+ (X = %y) .

1 -k?sn?usn?v

For the given initial conditions we have

x| = 77996317

x, = .84027778

x! = 1.48392569

k2 = .08567872

sn u=1
cnu=0
cn v dn 2
x = .77996317 + .06031461 venv .
1 - .08567872 sn?v

18




To evaluate g, the Hamiltonian is solved for cos 2g, giving

2\ |"?! 2K 2 -1 2
cos 2g:[15(1-x) (1-1’_)] I:C + 2 1-3v°x +(5’3x)(1‘§i>:l’
X KL K.L 3/2 X
1 1

X

This expression is substituted for cos 2g in

K 2 2 K 2
. 1 Sv v 2 S5v
g"ﬁ[(x—T")_s(x"T)cosk-J T L2 ( T x /)

$ince

de __ % (x— 5V2>+ K, (x__’f){ C +2K2 1-32x"!
dx V/xQ(X) x /x0(x) X K,L KL x3/2

-1
+ (5 - 3%) (1 __3'_’“2_>][15(1-x) (1-f)] .
x x Lx2VQ(x)

Integrating this expression, we have

746 K g :-1—[£ +2(1 - 3v2)Kl:| r dx
3LL x, (1-%)7V%Q(x)

-f[_(_:_ + 2(31/2- S)Kl]f dx’ |
3L xg (X =) VxQ(%)

19



_l£+2(1+3y2)1(1j _dx
3L x  VxQ(x)

0

K x K,
222 (1o 3y J .__dl‘___iif dx
3L W (1-0/00 32 L ) (x-0)om

+—2— SCE o2 - 31/4—2) J"‘ ___dx
3 VL . X/QX)

K x K X
_.1__2<7+6V2>J __dL_+3y2_iJ _dx
3 L x. X2VQ(X) L Je x3vQ(x)

0

In actually evaluating g only the first three summands of the preceding were
used since the oblateness of the moon was omitted from the Hamiltonian. The
elliptic functions were evaluated using Reference 6,

IV. CONCLUSIONS

The results of these two special methods involving harmonic analysis and
elliptic integrals are comparedusing the given initial conditions and the harmonic
analysis solutions (3) and (4) for 72 and g when K, = 0. These results are tabulated

in table 3 together with the differences between the values obtained by the two
methods.

In table 2 are the values of 2 and g when the oblateness of the moon is
retained in the Hamiltonian and a Maclaurin series is used to give a quadratic
equation in e2. The value of the Hamiltonian (1) was computed for n? and ¢

(at 20 day intervals) and compared to the initial value (n?= .84027778, g = 0)
C = .76893300 x 10~s,

Although g is periodic in this example and all values are admissible, there
is the possibility that a lunar satellite may have a stable orbit but that for some
value g, of the argument of pericenter, dg/dtwill be zero so that dt/dg will be
undefined. In such an event the special values of 2g used to evaluate the coeffi-

cients in the cosine series representation of 72 and dt/dg must be restricted to
the region of admissible values, i.e., g, < g < (7 - g;).

20




7%, g; Elliptic Integrals and Harmonic Analysis Jg, =0

Table 3

n? 72 & &
( dat Elliptic | Harmonic | |A7?] IEtlhpt;f }{:nr;mn.m |Ag |
vs) Integrals | Analysis egrazs . ys18
(radians)
(] .84027778 | .84027778 | 0 x 10”3 0 0 0x10"*
20 .83674774 | .83675070 | .296 22747356 | .2273639 | 1.0966
40 .82691973 | .82692477 | .504 45445976 | .4543801| .7966
60 .81298180 | .81298783 | .603 68513324 | .6850423 | .9094
80 79820373 | .79821500 | 1.127 .92893740 | .9287134 | 2.240
100 .78626473 | .78627455 | .982 1.1954244 |1.1952296 | 1.946
120 .78029580 | .78029692 | .112 1.4844038 | 1.4843190| .848
140 78191519 | 78191710 | .191 1.7799258 | 1.7799106 | .152
160 .79068037 | .79068695 | .658 2.0605636 | 2.0606739 | 1.103
180 80424132 | .80424327 | .195 2.3167928 | 2.3168499 | .571
200 .81911161 | .81911010 | .151 2.5537699 | 2.5537270 | .429
220 .83167986 | .83167979 | .007 2.7820064 | 2.7820046 | .018
240 .83906625 | .83906558 | .067 3.0090287 | 3.0090020 | .267
260 .83965270 | .83965478 | .208 3.2366909 | 3.2365252 | 1.657
280 .83331311 | .83332190 | .879 3.4638279 | 3.4636120 | 2.159
300 .82142913 | .82144059 | 1.146 3.6914969 | 3.6913262 | 1.707
320 .80670000 | .80671501 | 1.501 3.9263168 | 3.9260582 | 2.586
340 79266806 | .79268607 | 1.801 4.1787443 |4.1783300 | 4.143
360 78290935 | .78291847 | .912 4.4555575 | 4.4552326 | 3.249
380 78002606 | .78002546 | .060 4.7499516 |4.7497667 | 1.909
400 78480504 | .78480573 | .069 5.0414831 |5.0413928 | .903
420 79594658 | .79594596 | .062 5.3120974 |5.3120934 | .040
440 .81050828 | .81050099 | .729 5.5591054 |5.5589943 | 1.111
460 .82483048 | .82482343 | .705 5.7911936 |5.7910822 |1.314
480 .83552045 | .83551665 | .380 6.0183377 |6.0182398 | .979
500 .84018034 |.84017939 | .895 6.2456836 | 6.2454964 | 1.872
520 .83780104 |.83780875 | .771 .19007482 | .1897622 | 3.1262
540 .82889504 | .82891087 | 1.583 41701462 | .4167136 | 3.0102
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The harmonic analysis method makes it possible to include the oblateness
of the moon when finding 7?2 and g as functions of time. Greater accuracy may
be achieved by the retention of terms of the series after 8¢ or 8. An advantage
of this method is the ability to include the oblateness of the moon. This is espe-
cially advantageous if the Orbiter is to be near the moon where the effect of the
moon's oblateness will be greater.
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