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LONG-TERM MOTION OF A LUNAR SATELLITE 

I. INTRODUCTION 

The purpose of this report is to examine two special methods of studying 
the long-term motion of a lunar orbiter. The Hamiltonian used is the long- 
period Hamiltonian (in which the argument of pericenter and inclination of the 
satellite zppzr kt other argdar  v$r.i&Les have been eliminated) as derived 
by Kozai and Giacaglia, et. al., (References 2, 3). It includes the perturbation 
of the earth as a point mass and the principal part of the oblateness of the moon. 

This long-period Hamiltonian is 

where + =  1 - e Z  

e = eccentricity of the satellite's orbit 

p = gravitational constant times the mass of the moon 
= 3.6601891 x decamegameters3/centiday2 

a = semimajor axis of the satellite's orbit (decamegameters) 

i = inclination of satellite orbit plane to  the moon's equatorial plane 

g = argument of pericenter of the satellite 
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L 

3 4  
K, = - (centiday - ') 

8~ n 

ne = mean motion of the moon 
= 2.2802713 x (radians/centiday) 

n = i . ~ 2  L - 3  = mean motion of the satellite 

E = ratio of sum of masses of earth and moon to  the mass of the earth 
= 1.0123001 

3 K = - J b2 n2 (decamegameters 2/centiday2) 2 2 4  
J = principal part  of the oblateness of the moon 

2 
= 2.41 x (Reference 2) 

b = mean radius of the moon 
= 0.1738 decamegameters 

Since the Hamiltonian (1) is not an explicit function of time, i t  has a constant 
value, F = 1/6 C .  

Special methods are needed for the problem of the long-term motion since 
the standard procedures - von Zeipel's method and the method of successive 
approximations - break down at this point for the lunar satellite (e.g. see Ref- 
erence 2).  The special methods, which involve harmonic analysis and elliptic 
integrals, t o  be considered in this report were suggested many years  ago by 
E .  W.  Brown in his paper "On the Stellar Problem of Three Bodies'' (Reference 1). 

In the method involving harmonic analysis it is assumed that T~ and d t /dg 
may be represented by cosine ser ies  with the argument of pericenter g as the 
variable. Integrating dt/dg gives g as a sum of a linear expression of time 
and a sine series in g . On reversing this expression we have g as a function 
of time. Then ~2 is approximated as a cosine series in time. In the second of 
these methods proposed by Brown, 
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and an approximation of cos 2g found by neglecting the oblateness of the moon 
a r e  used to  give dT'/dt and dg/dT2 as functions of 77' alone. These result in 
elliptic integrals of the first and third kinds a s  the solutions for qi as a function 
of time and g as a function of q2 (and therefore of time). 

Fo r  the harmonic analysis method it is necessary to solve the Hamiltonian 
for '1' corresponding to chosen values of the argument of pericenter. To be 
able to compare the values of 7' and g as obtained from harmonic analysis and 
elliptic integrals the portion of the Hamiltonian containing the oblateness of the 
moon was neglected, both in solving for q' and evaluating d t i d g .  Setting J z  = 0 
results in the following quadratic equation in x = 7' : 

3 ( 1 - 5 c o s 2 g ) x ' - [ 5 +  9V2-15cos2g(l+v')  tC'1 x -t 1 5 v 2  (1  - c o s  2g) = o  

where 

and v = H/L are constants. 77: is the value of 7' when g = 0. If the oblate- 
ness of the moon is included in the Hamiltonian, however, an approximation used 
in this report is to  represent ( 1 - e2)-3/2 by its Maclaurin series terminating 
the series to give the quadratic equation in e2  (for small to moderate values 
of e ) 

where 

3 
4 

a = 3K1 L t - % (- 1 + 15 v') - 1 SKILcos 2g 

P = (KIL t Kz) (-1 t 9v2) + C + 15 K,L(1 - v') C O S  2g 

Y = 2(K1L + K2) ( -  1 t 3v') - C. 
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This quadratic is then solved for  T~ = 1 - e,, given specific values of cos 2g: 

(the sign is chosen so that T~ lies between zero and one). 

11. THE HARMONIC ANALYSIS METHOD 

Given the initial conditions 

L = 0.06 
C = 0.055 
H = 0.05 
g = o  

we find 

e = 0.39965264 
a = 0.98 355573 decamegameters 
i = 24.619974O 

K, = 3.105573 X 

K, = 2.1003149 X 10-8 
C = 7.6893300x 

We assume 

q2 = % c o s  2kg and  - d t  - - c b k  c o s  2kg, 
k >  0 dg  k > O  

terminating the series with c o s  8 g so  that 

77' = a. t al cos  2g t a, c o s  4g t a3 c o s  6 g  t a, cos 8 g  

- bo + b, cos  2g t b, C O S  4g + b, c o s  6 g  t b, C O S  8g. d t  

d g  
- -  
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T - 
2 

2g 0 77 

q 2 ,  K, = 0 ,84027778 .77996317 .80665828 

, K, f 0 -84027778 .78055119 .80702653 

Solving the Hamiltonian for q2 given the five values 2g =0, T ,  771'2, 7 ~ / 3 , 2 ~ / 3 ,  
we have the following results: 

277 
3 3 

- 77 - 

.82299779 .79219924 

-82317074 .79270692 

77 - 77 - 77 0 
2 3 2g 

d t  - 3 K, = 0 8781.8656 6732.7808 8268.1582 8735.5882 
dg 

dt  -, K, f 0 8663.7170 6662.5543 8155.7627 8611.8994 
dg 

Corresponding to each of the five special values of 2g with the associated values 
of q2, d t / d g  is evaluated using 

27r 
3 

7538.4678 

- 

7446.8692 

Then the following table may be used to solve for the coefficients in the series 
for dt /dg  : 

Letting f, denote the kfh value of in the table, the equations 

f =  a. t al t a ,  t a3 t a4 

f ,  = a0 -a l  t a ,  - a3 + a 4  

f, = a0 - + a4 

1 1 1 f ,  = a,, +- al 
2 

1 a, t a3 -- as 1 1 f = a. - - a l  - - 
- z - a3 -Ta4 

5 2 2 2 
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may be solved for the coefficients ak in the terminated series expansion for  7 , .  
For K, = 0 we then have 

a. = -  1 ( f l  t f , )  t- 1 ( f ,  t f5) = .80843917 
6 3 

a l  =- 1 ( f l  - f ,  t f, - fs)  = .03637106 
3 

= .00173110 1 1 
4 2 

1 1 

a, = -  ( f l  t f , )  -- f 3  

a3 - 6 5 

a4 = f ,  - a. t a, _ -  - .00004979. 

- _  ( f l  - f , )  -5(f4 - f ) = - .00021374 

Thus, if K, = 0, 

q2 = .80843917 t .03037106  COS^^ t .00173110 C O S  4g ( 2 )  

- .00021374cos  6 g -  . 0 0 0 0 4 9 7 9 ~ 0 s  8 g  

while, if K, # 0, 

r12 = ,80876405 + .03006347 C O S  2g t .00169398 C O S  4g 

Similarly, the five coefficients bk in the terminated cosine series for d t /dg may 
be evaluated,so that if K, = 0, 

d t  - = 8010.4597 t 1082.0684 C O S  2g - 255.4175 C O S  4g  
dg 

- 57.5260 c o s  6 g  t 2.2810 c o s  8 g  

6 

a, = -  1 ( f l  t f , )  -- 1 f 3  = .00173110 
4 2 

a3 = -  1 ( f l  - f , )  -5(f4 1 - f5) = - .00021374 
6 

a4 = f ,  - a. t a, = - .00004979. 

Thus, if K, = 0, 

( 2 )  q2 = .80843917 t .03037106 c 0 ~ 2 g  t .00173110 C O S  4g 

- . 0 0 0 2 1 3 7 4 ~ 0 ~  6 g -  . O 0 0 0 4 9 7 9 C 0 ~  8 g  

while, if K, # 0, 

r12 = ,80876405 + .03006347 C O S  2g t .00169398 C O S  4g 

Similarly, the five coefficients bk in the terminated cosine series for d t /dg may 
be evaluated,so that if K, = 0, 

d t  - = 8010.4597 t 1082.0684 C O S  2g - 255.4175 C O S  4g  
dg 

- 57.5260 c o s  6 g  t 2.2810 c o s  8 g  



and, if K, # 0 ,  

dt - = 7907.3015 + 1055.3976 COS 2g - 246.3136 C O S  4g 
dg 

- 54.8163 C O S  6g t 2.1476 C O S  8g. 

Integrating this expression for d t  /dg gives 

t = bog t- bl sin 2g + -  b2 sin 4g t- b3 sin 6g t - b4 sin 8g 
2 4 6 8 

(the constant of integration i s  zero in this example because of the initial condi- 
tion g = 0). Then 

In particular , 

(K2 = 0) g = .12483678 x 1O-j t - .06754097 sin 2g 

t -00797137 sin 4g t .00119689 sin 6g - .00003559 sin 8 g  

(K, # 0) g = .12646539 x t - .06673563 sin 2g t .00778754 sin 4g 

t .00115539 sin 6g  - .00003395 sin 8 g .  

Since we may write g = 7 + cp(g) , where 7 is a linear function of time and 
(p( g) i s  a trigonometric function in g , Lagrange's expansion theorem may be 
applied to reverse the equation and give g as a function in time. By this 
theorem, if 



then a series may be used to express y as a function of X:  

In this case, only the first four terms of this series were taken and all terms 
after si n 8 g were eliminated. 

Hence, 

(C + J  2 6  t!!) s i n 6 7  t (d +;+:) s i n  

where 

k = O  
2 

a = -.067540965 
b = .0079713748 
C .0011968 934 
d -.000035595648 

A = - 2(ab  + b c  + cd) 

q = 2(a2 - 2ac - 2bd) 

k, f 0 

-. 06673 563 
.007 78 7 54 
.00115539 

- .000033 9 5 

J = 6 a ( b - d )  

D = 4(2ac  t b2) 
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P 

n - 
2 

,77996317 

7r - 
2 

Y 

.71946556 .47651148 .97849565 

.81080056 .82570548 .79556239 

.72021381 .47693763 .97942282 

ab2 a3 - b2c - bcd --- d2c - adb + -  - a 2 c  -- 
C 6 

.78055119 

- 2abc  - 2b2d - bc2 - 2a2d - d3 - 2dc2 

.81107413 ,82582292 .79599495 

Thus, for K, = 0, 
b 

g = r - .06685092 s in  27 t -01255112 sin 47 

- .00091832 s i n  6 7  t .00007192 s in  87  (3) 

where r = 0.12483678 X t ( t  in centidays), while i f  K, # 0, 

g = 7 - .06606959 s i n  27 t .01225829 s i n  4 7  - .00088524 sin 6 7  

t .00006836 s i n  87. (3') 

( 7  = .12646539 X t, t in centidays). 

Letting 27 take on the five special values 0, n, n / 2 ,  n / 3 , 2 n i 3 ,  these 
equations for g give corresponding values of 2 g ;  from these we may evaluate '1, 
using the terminated cosine series (2) and (2'). This gives the following results: 

l o  g ,  K, = O  

I 77, , K, = 0 34027778 I 
L 

9 
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Assuming q2 may be written as a cosine ser ies  in 7 and taking the first  
five terms of the series,  we may evaluate the coefficients of these te rms  as 
above. Thus, we have for K, = 0, 

q2 = .81046278 t .03015257 cos  27 - .00034004 c o s  47 

t .00000474 C O S  67 - .OOOOO226 C O S  8 7 

(7 = .12483678 x t )  

and for K, f 0 ,  

v2 = .81074412 t .02985152 cos 27- - .00032982 cos  47 

t .00001177 COS 67 + .00000019 c o s  87. (4') 

( 7  = .12646539 x t) 

In this way both g and q2 may be found as functions of time. 

Tables 1 and 2 give the values of T* and g .  Equations (4) and (4') a r e  
plotted against time in Figure 1. This shows the shift that occurs when the 
oblateness of the moon is considered in the long-period Hamiltonian. Figure 2 
shows similar results for g as given by Equations (3) and (3'). 

As may be seen from these figures, the effect of the moon's oblateness on a 
satellite at this distance from the moon (5.659 moon radii) is not great. For  a 
satellite near the surface of the moon, the effect of the moon's oblateness on the 
eccentricity and argument of pericenter of the satellite would be much more 
pronounced. 

10 
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0 
20 
40 
60 
80 

100 
120 
14 0 
160 
180 

200 
220 
240 
260 
280 

300 
32 0 
34 0 
360 
380 

400 
42 0 
440 
46 0 
480 

500 
52 0 
54 0 

.84027782 

.83675070 
A2692477 
.81298783 
.79215000 

.78627455 

.78029692 

.78191710 

.79068695 

.8042432 7 

.81911010 

.83167979 

.83906558 

.8396547 8 

.83332190 

.82144059 

.80671501 

.79268607 

.78291847 

.78002!546 

.7 8480573 

.79594596 

.81050099 

.82482343 
A3551665 

.84017939 

.83780875 

.82891087 

Table 1 +, g Harmonic Analysis (Kz = 0) 

g 
Radians 

0 
.2273639 
.4543801 
.a350423 
-92 871 34 

1.1952296 
1.4843190 
1.7799106 
2.0606739 
2.3168499 

2.5537270 
2.7820046 
3.0090020 
3.2365252 
3.4636120 

3.6913262 
3.9260582 
4.17 83800 
4.4552836 
4.7497567 

5 -0413928 
5.3120934 
5.5589943 
5.7910522 
6.0182398 

6.2454964 
.1897622 
.4167136 

g 
Degrees 

0 
13.02699 
26.03406 
39.25093 
53.21135 

68.48161 
85.04521 
101.98136 
118.06792 
134.33726 

146.31778 
159.39712 
172.40312 
185.43923 
198.45035 

211.49741 
224.94656 
239.40354 
255.26 894 
272.14101 

288.85053 
304.36053 
318.50691 
331.80284 
344.81974 

357.84058 
10.87257 
23.87 593 

F 
x 

.7 60 86 524 

.76086623 

.76086372 
- 7 60 86474 
.76086799 

.76085606 

.76086390 
-7 60058 84 
.76086051 
.76086867 

.7 6086276 

.76086533 

.76086577 

.76086555 

.76086267 

.76086784 

.76086301 

.76086301 

.760857 03 

.76086506 

.76085565 

.7 6086641 

.7 6086596 

.76086308 

.76086616 

.76086530 

.76086611 

.76086439 

F - C  
x 10-10 

0 
.089812 
-.160298 
-.059685 
.266027 

-.927684 
-.143245 
-.649720 
-.4 81463 
.334239 

-.2575 
0 

.043769 

.022168 
-051159 

-.266027 
.250679 
-.232489 -. 829345 
-.027284 

-.967474 
.lo7434 
.062527 
-.225099 
.082991 

-. 0034 10 
.077875 
-,093791 
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Table 2 
T', g: Harmonic Analysis (Kz # 0) 

0 
20 
40 
60 
80 

100 
120 
140 
160 
180 

200 
220 
240 
260 
280 

300 
320 
340 
360 
380 

400 
420 
440 
460 
480 

500 
520 
540 

.84027778 

.83668256 

.82670981 

.81265809 

.79790366 

.78620654 

.78072811 
.78300817 
.79240119 
.80631778 

.8 2111 800 

.83316153 

.83963119 

.83905608 

.83156597 

.81886887 

.80395451 

.79050779 

.78212960 

.78109380 

.78771252 

.80013334 

.81502776 

.82865910 

.83771752 

.84018579 

.83 548432 

.82467794 

g 
Radians 

g 
Degrees 

0 
.23048543 
.46072723 
.69497792 
.94291820 

1.2142525 
1.5074170 
1.8058868 
2.087721 8 
2.3446295 

2.5832362 
2.8143461 
3.04451 64 
3.2751 774 
3.5053372 

3.7369943 
3.9777790 
4.2384158 
4.5239208 
4.8229269 

5 S136422 
5.3809400 
5.625948 
5.8590324 
6.0893168 

.03656091 

.26 6 9 5 049 

.497 3 894 6 

0 
13.205842 
26.397726 
39.819302 
54.025233 

69.571 544 
86.383185 

103.46969 
11 9.61 765 
134.33738 

148.00853 
161.2501 6 
174.43794 
187.65384 
200.84103 

214.1 1400 
227.90995 
242.84334 
259.20157 
276.33336 

292.99012 
308.30515 
322.34308 
335.69783 
348.89215 

2.094786 
15.295136 
28.49 8317 

12 

F 
x 10-5  

-76393302 
.76898250 
.76906286 
.76911933 
.76917259 

.76921679 

.76926319 
.76923517 
.76919183 
.76914220 

.76908830 

.76901856 

.76 894303 

.76895149 

.76903174 

.7690969 5 

.76915085 

.76919868 

.76924 15 5 

.76924995 

.7 69209 82 

.76916465 

.76911089 

.76905185 

.76896972 

.7 6 893447 

.76899601 

.76907304 

0 
.0495106 
.1298758 
.1863440 
.2395950 

.28379 64 

.3201989 

.3021796 

.2588421 

.2092065 

.1553075 

.0855607 

.0100385 

.0184968 

.09 874 83 

.1639591 

.2178580 

.2656861 

.3085574 

.3169589 

.2768274 

.2316596 

.1778971 

.1188595 

.0367322 

.0014779 

.0630166 

.1400508 



. 
I 

~ 

. .  

.. 

- _  

N 
c 
0 
C 

9' 

'0s v113 

13 



I I I I \ \ I  I I I I I I I 1  I 1  

I I 1  IVI I I I I 1  I I I I 0 
I l l  I U l I  I I I  I 1  I I Y) m 

a 
s 
0 
N 

0 
C 
VI 

c 

.- 
cy 

Y 

v) .- 
cy 

Y 

14 



. 
III. THE SOLUTION WITH ELLIPTIC INTEGRALS 

The second method suggested by Brown, starting with 4 and g, results in 
elliptic integral expressions for 77, and g, but for this solution the oblateness 
portion of the Hamiltonian is neglected. 

From the long-period ami l ton ian  (1) and the definition of the Delaunay 
variables, we have 

d77 - 1 dC - 1 3F - 
d t  L d t  L a g  
- _ - -  _- - - 

Setting K, = 0 in the Hamiltonian gives 

where the constant W is evaluated for g = 0. 
77: is the value of q2 when g = 0. On solving the Hamiltonian (6)  for cos 2g,  
we have 

Then, w = 2(5 - 677: t 3v2) where 

which may be substituted in (6) f o r s i n 2 g  = [ l  - cos2 2eJ112 to give 

- _  dx - 2773 = T 4&K1 [(x - xl)(x - x,)(x - x3)I1I2, 
d t  

where x = T ~ ,  x1 = 77: and the roots x2,x3 of the polynomial are defined by the 
equations 

5 x2x3 =3 v2 

1 
3 

x, t x3 =-  (5 t 5v2 - 2x1). 

In this expression for dx/dt the minus sign is used when sin 2g is positive 
and the plus sign when s i n  2g is negative. 

15 



If the roots of the polynomial are relabeled to give a strict  ordering 
xi < xk < xi with the relationship x' 1 -  < x - < xi, we have 

= T 4 K ,  v'6 dt dx 

J (x  - x i )  (x - x;, (x  - xi) 

Integrating both sides gives 

,.X rt 

dx = T 4 K ,  V'K J dt J (x  - x;, (x  - x;, ( x  - x;, 
' x o  

where xo is the initial value of x and to may be taken as  zero. 

Set 

x; - x; y 2 
x =  

1 - y2 

and we have 

dY Y 2 
7 4 K 1  tv% = rn I, J (1 - k2 y2) (1 - y2) 

16 



d 

L 

or 

. .  

,. 

dY = T  2 K 1  t ,/- JY (1 - k2 y2) (1 - y2) 
y o  

Let us define 

v = 2K1 t J ~ ( x ; -  xi) 

Then 

, / x x -  dx 

2 J(x - xi) (x - xi) (x - xi) 

dx dx 

- xi)(. - xi) (x - x‘) 3 (x - x’) (x - x’) (x - XI) 4: J 1 2 3 

where 

17 



c 

so that 

dY 
J(l - y2)(1 - k2y2) 

Thus we may solve for x as a function of time, using the Jacobi elliptic function 
of u and v:  

x = x l l  t (x2'  - xI1) sn2 (u i v) 

s n  u c n  v dn v f s n  v cn u dn u 

1 - k2  sn2  u s n 2  v 
= X l l  t (x21 - XI') 

For  the given initial conditions we have 

xi = .77996317 

xi = .84027778 

xi = 1.48392569 

k2 = .08567872 

sn  u =  1 

c n u = O  

cn v dn v 
1 - .08567872 s n 2 v  

X =  .77996317 t .06031461 

18 



To evaluate g , the Hamiltonian is solved for cos  2g, giving I 

2K, 1 - 3u2x-1 t (5- 3x) (1 - 31. 
x3/2 

This expression is substituted for cos 2g in 

Since 

* dg  dx dg 
dx d t  dx 

g = -  * - =  4& K, - , 

where Q(x) = (x - xl)(x - x2) (x - x3), this substitution gives 

Integrating this expression, we have 

?4&Klg=-[- 1 c  t2(1-3v2)K1] f dx 

3 L  xO (1 - X ) r n  

--[- u2 t 2(3u2- 5 ) K j  I dx 

(x  - u2) +) 
0 

3 L  

19 



- -[- 1 c  t 2 ( 1  t 3v2)  Kl] [ dx 

3 L  fm-) 

2 K 2  dx dx 0 .  

+- - (1- 372) 
3 L  

dX 
.L- - K2 (v2 - 3 v 4 -  2 )  

- - -  K 2  ( 7  t 6 v 2 )  

3 v2L 

dx dx 
3 L  x 3 v Q o  e 

In actually evaluating g only the first three summands of the preceding were 
used since the oblateness of the moon was omitted from the Hamiltonian. The 
elliptic functions were evaluated using Reference 6. 

IV. CONCLUSIONS 

The results of these two special methods involving harmonic analysis and 
elliptic integrals are compared using the given initial conditions and the harmonic 
analysis solutions (3) and (4) for '12 and g when K, = 0. These results a re  tabulated 
in table 3 together with the differences between the values obtained by the two 
methods . 

In table 2 are the values of T~ and g when the oblateness of the moon is 

The value of the Hamiltonian (1) was computed for ^r12 and g 
retained in the Hamiltonian and a Maclaurin ser ies  is used to give a quadratic 
equation in . e2 .  
(at 20 day intervals) and compared to the initial value ( T~ = .84027775, g = 0) 
C = .76893300 x 10-5. 

Although g is periodic in this example and all values are admissible, there 
is the possibility that a lunar satellite may have a stable orbit but that for some I 

value go of the argument of pericenter, dg/d t will be zero so that d t,/dg will be 
undefined. In such an event the special values of 2g used to  evaluate the coeffi- 
cients in the cosine series representation of 772 and dt/dg must be restricted to  
the regionof admissiblevalues, i.e., go < g < (n - go ) . 
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a 

. 

t 
(days) 

0 
20 
40 
60 
80 

100 
120 
14 0 
160 
180 

2 00 
220 
240 
260 
280 

300 
320 
340 
360 
3 80 

400 
420 
440 
460 
480 

500 
520 
540 

Table 3 
+, g ;  Elliptic Integrals and Harmonic Analysis (J2 = 0) 

TI2 

Integrals 
Elliptic 

.&IO27778 

.03U I -x I I 4  

.82691973 

.81298180 

.79820373 

.78626473 

.78029580 

.78191519 

.79068037 

.80424132 

A1911161 
A3167986 
.83906625 
A3965270 
.83331311 

.82142913 

.80670000 

.79266806 

.78290935 
,78002606 

.78480504 

.7 95946 5 8 

.81050828 
A2483048 
.83552045 

.84018034 

.83 7 801 04 

.82889504 

noCl7Avv 

r12 
Harmonic 
Analysis 

.8402 77 7 8 

.836750?0 

.82692477 

.E31298783 

.79821500 

.7 8627455 

.78029692 

.78191710 

.79068695 

.80424327 

.81911010 
A3167979 
A3906558 
A3965478 
A3332190 

.82144059 

.80671501 

.79268607 

.78291847 

.78002546 

.78480573 

.79594596 
,81050099 
.82482343 
,83551665 

A4017939 
.83780875 
.82891087 

I b 2 1  

0 x 10'5 
2 9 6  
.504 
.603 
1.127 

.982 

.112 

.191 

.658 

.195 

.151 

.007 

.067 

.208 

.879 

1.146 
1.501 
1.801 
.912 
.060 

.069 

.062 

.729 

.705 

.380 

.895 

.771 
1.583 

(radians) 

0 
.22747356 
.45445976 
.68513324 
.92 893 74 0 

1.1954244 
1.4844038 
1.7799258 
2.0605636 
2 ,3167928 

2.5537699 
2,7820064 
3.0090287 
3.2366909 
3.4638279 

3.6914969 
3.9263168 
4.1787443 
4.4555575 
4.7499516 

5.0414 831 
5.3120974 
5.5591051 
5.7911936 
6.0183377 

6.2456836 
.19007482 
.41701462 

0 
.2273639 
.4543801 
.6 85 042 3 
.9287134 

1.1952296 
1.4843190 
1.7799106 
2.0606739 
2.3168499 

2.5537270 
2.7820046 
3.0090020 
3.2365252 
3.4636120 

3.6913262 
3.9260582 
4.1783300 
4.4552326 
4.7497667 

5.041392 8 
5.3 12 0934 
5.5589943 
5.7910822 
6.0182398 

6.24 549 64 
.1897622 
.4167136 

~ 

0 x 10- 
1.0966 
.7966 
.9094 

2.240 

1.946 
.848 
.152 
1.103 
.571 

.429 
,018 
.267 
1.657 
2.159 

1.707 
2.586 
4.143 
3.249 
1.909 

.903 

.040 
1.111 
1,314 
.979 

1.872 
3.1262 
3.0102 
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The harmonic analysis method makes it possible to include the oblateness 
of the moon when finding T~ and g as functions of time. Greater accuracy may 
be achieved by the retention of terms of the series after 8 g  or  8$. An advantage 
of this method is the ability to include the oblateness of the moon. This is espe- 
cially advantageous i f  the Orbiter is to be near the moon where the effect of the 
moon's oblateness will be greater. 

1. 

2. 

3. 

4. 

5.  

6 .  
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